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Abstract: Crop rotation is an important determining factor of crop productivity. Sustainable agricul-
ture requires correct rules of crop rotation. Failure to comply with these rules can lead to deterioration
of soil biochemical characteristics and land degradation. In Ukraine as well as in many other coun-
tries, sunflower monocropping is common practice and the impact of this fact should be studied to
find the most precise rules to save the economic potential of land and minimize land degradation
factors. This research provides an evaluation of the sunflower monocropping effect on the vegetation
indices obtained from MODIS vegetation indices datasets for Ukraine as one of the countries with
the biggest sunflower export in Europe. The crop rotation schemes are represented by their area
proportions at the village level calculated based on the crop classification maps for 2016 to 2020. This
representation gives the possibility to use regression models and f-test feature importance analysis to
measure the impact of 3-year and 5-year crop rotation sequences. For these purposes, we use several
models: a four-year binary representation model (model A1) and a model with all possible three-year
crop rotation scheme representations (model B). These models gave the possibility to evaluate crop
rotation schemes based on their biophysical impact on the next sunflower plantings and found that
sunflower planting with an interval of three or more years is optimal in terms of the sustainability of
soil fertility.

Keywords: sustainable agriculture; remote sensing; vegetation indices; sunflower monocropping

1. Introduction

Crop rotation is a necessary practice for sustainable food production. In many coun-
tries, crop rotation rules are regulated at the state level. This is especially important now,
when Europe is moving toward the implementation of Green Deal practices to mitigate an-
thropogenic influences on climate change. The main task of agricultural management is to
preserve the original composition and productivity of soils. The physical and chemical pa-
rameters of soils directly affect the condition of plants [1]. At the same time, noncompliance
with recognized positive agricultural practices leads to the deterioration of soil fertility and
soil quality due to the imbalance of nutrients and the disappearance of beneficial microflora
in soils and the biodiversity that supports important processes in soils. Thus, the main goal
of this study is to investigate how the ignorance of crop rotation rules for sunflowers affects
the biophysical parameters of agricultural lands in Ukraine by analysis of satellite-based
vegetation indices and crop classification information at the village council level.
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1.1. Crop Rotation Violation Impact on the Agricultural Productivity

Crop rotation violation leads to a significant change in the carbon content of soils.
Currently, studies of the impact of agricultural management and of changes in plant species
on agricultural lands is focused on soil quality. Interesting research in this area was made
by Zuber et al. in 2018 [1]—the authors evaluate the effect of long-term crop rotation
and tillage on the quantity of carbon and nitrogen stored in the soil organic matter. The
study was conducted for the state of Illinois in the United States on the basis of in situ
measurements on the test sites. It shows that some crop rotation schemes, such as corn-
soybean-wheat, can increase the soil organic carbon (SOC) stocks in the soil, whereas
crop rotation schemes such as soybean-soybean-soybean reduce SOC and total nitrogen
content. Another research project was done for the Anhui province, China [2]. In the article,
the authors simulated the effect of crop rotation using Fourier transformations based on
the crop change patterns and vegetation indices. The result was validated using in situ
measurements. The validation shows the high accuracy of the estimation of organic carbon
in the topsoil based on a combination of vegetation variables with crop rotation types.
This study showed the importance of crop rotation information and the effectiveness of its
use to assess the change and state of organic carbon. A similar conclusion on the strong
impact of crop rotation on carbon content can be drawn from a study [3] for Canada. In the
article, the authors consider the important impact of crop rotation, the tillage system, and
precipitation on the SOC stocks by using 30 years of observations. Looking at these results,
the authors conclude that the plantation of pulse crops after wheat could be better for the
SOC stocks than plantation of similar wheat crops.

1.2. Land Degradation Monitoring with Use of Satellite Data

The main purpose of modern agricultural practices is to achieve high crop productivity
with a neutral level of land degradation. The implementation of these practices would
allow farmers to use the full potential of agrarian lands without harming the environment
and thus to overcome hunger and to ensure food security in the future.

In practice, land productivity indicators can be assessed with remote sensing imagery.
In this case, integrated approaches are used to take into account the carbon content in
the soil, trends in vegetation indices, and changes in land cover. All these indicators
are interrelated—land use changes lead to a significant change in the carbon content
of soils. This methodology is used to assess the sustainable development goals (SDGs)
indicator 15.3.1, “Proportion of land that is degraded over total land area” [4]. In this case,
the maps of changes in land cover are used as a separate sub-indicator that reflects the
positive, neutral, or negative human impact on the land surface and as a means to assess
changes in carbon content in the soil. The biophysical parameters of land productivity
can be obtained from satellite images. Land productivity indicators estimated by remote
sensing vegetation indices (VIs) are generally accepted for mapping and assessing land
degradation and desertification [5]. They are widely used for countries in Europe [6] as
well as in Asia [7] and Africa [8]. Different combinations of vegetation indices, which are
studied as time series, are used and reflect the dynamics of vegetation and its biophysical
indicators. The most popular indicator is the normalized difference vegetation index
(NDVI), which is used for land productivity mapping for indicator 15.3.1 and for supporting
the calculation of indicator 2.4.1, “Proportion of agricultural area under productive and
sustainable agriculture” in a 2020 study by Kussul et al. [9]. The most common collection of
satellite NDVI for land productivity maps is the MODIS data collection (MOD13Q1-coll6).
However, today’s satellite data processing methods and available satellite missions provide
information on land productivity from higher spatial resolution NDVI. For example, the
previously mentioned 2020 study by Kussul et al. [9,10] provides an example of using
Sentinel-2 and Landsat-8 data to deliver land productivity maps with a spatial resolution
of 30 m for Ukraine [9,11]. Such data enable us to analyze land degradation not only at the
level of the country or administrative regions but also at the level of fields, thus improving
the possibilities for decision making.
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Another vegetation index, the enhanced vegetation index (EVI), is more sensitive
in areas with dense vegetation. Similar to NDVI, it can be used to quantify vegetation
greenness. In addition to VIs, biophysical variables could be extracted from satellite data,
including the leaf area index (LAI) and the fraction of absorbed photosynthetically active
radiation (FAPAR). LAI is extracted from satellite data using complex biophysical models
and better conveys the biophysical characteristics of the plant [12]. This index describes
the amount of biomass on the earth’s surface and its condition, and it makes it possible
to qualitatively assess the crop yield and deliver land productivity maps [13]. Another
biophysical variable, FAPAR, makes it possible to assess photosynthesis in plants and the
absorption of solar energy. This biophysical characteristic directly indicates the primary
productivity of photosynthesis. One more interesting vegetation index is the land surface
water index (LSWI), which is commonly used for drought monitoring and reflects the
total amount of water in vegetation and its soil background. The response of LSWI to
rainfall indicates the usability of this index for water state monitoring for agricultural
crops, especially in the critical time of the crops’ development stages in the early part of the
season [14]. In this article, we use all five of these indices to better analyze the biophysical
impact of crop rotation on agricultural land drawing on their ability to reflect changes in
the land surface from the perspective of various important factors of vegetation.

1.3. Crop Classification in Agricultural Monitoring

Most developed countries provide crop mapping based on satellite data on a regular
basis or are working on the operationalization of crop mapping technologies. Accurate crop
maps are in themselves a valuable product of data processing, and the availability of such
products for one area for different years provides great opportunities for the qualitative
analysis of land use practices. A good example of a large collection of historical crop maps
is the United States’ Cropland Data Layer, which has been making crop maps publicly
available annually since 1997 [15]. The availability of long-term crop classification maps
gives the possibility to get a better understanding of agricultural patterns for different
territories and conduct very accurate forecasts. The research by Johnson D. et al. [16] shows
that historical crop classification maps can be a valuable source of information for the
pre-season or in-season crop classification. So, the pre-season crop classification map for the
Corn Belt in the Unites States that was built with use of only previous classification maps
can achieve 70% accuracy. In European countries that use the Land Parcel Identification
System [17] as part of the Common Agriculture Policy, almost all crop information for
agricultural parcels is provided by farmers; even in these cases, there is still a need to
deliver such maps to analyze and validate the collected information. For this aim in
Europe, there are systems that provide the automatic processing of satellite data and land
cover and building of crop type maps, such as Sen-2-agri and Sen-4-CAP [18]. Thus,
remote sensing data of the Copernicus program and machine learning land cover and crop
type classification models are already having a lot of application in European Union for
supporting CAP [19]. In 2021, the first European continental scale crop classification map
based on Sentinel-1 data was published by the European Commission team [20]. The next
steps will be the operationalization of continental scale crop classification technologies and
the creation of crop maps for other years.

Ukraine is not a member of the European Union (EU) yet, and there are no products
similar to the Land Parcel Identification System available for Ukraine. Nevertheless, during
2015–2020 we delivered crop type maps for Ukraine based on Sentinel-1 and Sentinel-2
data. For this purpose, we have used modern neural network approaches [21], LSTM
and convolutional layers [22], and cloud technologies of high-performance computing
on Google Earth Engine and Amazon platforms [23]. In this study, we take advantage of
multiyear crop type maps available for Ukraine (2016–2020) at 10 m spatial resolution to
identify regions with crop rotation violations and then upscale at village scale to estimate
the impact on crop productivity.
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2. Study Area

The study area in this research is Ukraine, which is one of the major producers and
exporters of agricultural commodities. In Ukraine, 30 percent of nominal and 11.7 percent
of real gross domestic product (GDP) are related to the agricultural sector. Since 1991 (the
breakup of the Soviet Union), many alterations in land use have been made because of
economic and policy changes as well as from the climate change impact. The past few
years were especially dynamic in terms of land use changes and policy making due to
(a) the military conflict in Eastern Ukraine and the occupation of 7 percent of the territory
by Russian forces, (b) land market opening reform in Ukraine, and (c) the appearance of
double-cropping fields due to the climate change warming processes. In terms of land
productivity research, Ukraine is especially interesting because this country is a large world
exporter of agricultural production. In 2020, Ukraine was listed as one of the five biggest
agri-food exporters to the EU, with total exports to the EU of about EUR 1 billion [24]. In
addition, Ukraine is the world’s largest producer and exporter of sunflower oil, the world’s
third-largest exporter of corn, the fourth of barley, and the sixth of soybeans. The main
crops grown in Ukraine are cereals, sunflowers, corn, soybeans, and sugar beets. Most
cereal fields are related to the winter wheat fields, but also barley as a minoritarian crop
is occurring. Despite the fact that Ukraine fully ensures its food security, it meets only a
third of its potential [25]. The reason for this is the insufficient use of modern agricultural
practices and irrigation. The biggest agro-climatic zone in Ukraine is the steppe zone,
which occupies 40 percent of the country’s territory (240,000 km2). In this zone efficient
agriculture is hardly possible without irrigation, but the total irrigated area in Ukraine in
2017 was 5000 km2 [25].

Ukraine is actively struggling with problems of sustainable agriculture. These prob-
lems are compounded by global climate change processes that have significantly affected
food production in the world and in Ukraine. According to Ukraine’s 2021 Common
Country Analysis designed by the United Nations [26], climate change significantly influ-
ences the effectiveness of the Ukrainian agricultural sector. The crop growth periods and
crop calendars for the majority of crops are affected by the annual average temperature
increase by 1.45 Celsius degrees over 50 years, which is double the global increase [27,28].
Particularly sensitive to these changes are winter crops, which have become more likely to
sustain loss due to weather conditions. For example, in 2020, droughts in the Odessa region
caused a 37 percent loss of winter crops; the loss of winter crops was observed on a smaller
scale throughout Ukraine. Farmers had to plow over land, and thus Ukraine suffered great
economic and food losses. Although there were no significant changes in cereal planting
areas (50.2 percent in 2000 and 55.4 percent in 2012) observed by [29], there is a clear trend
toward increasing the land area of industrial crops. As an example, from 2000 to 2014
the total area of sunflowers, soybeans, and rapeseed in Ukraine grew from 8.4 percent to
28.4 percent. In 2016, the area of sunflowers peaked, and it has remained stable for the past
several years. The main reason for that stability is the use of sunflower seed as a sort of
“insurance policy” against a high loss rate for winter crops [30], helping farmers to salvage
income in such conditions. However, this option also leads to an increase in crop rotation
violation events [31]. Similar patterns of agricultural practices are common in other Eastern
European countries, such as Belarus and the Russian Federation. The planting of industrial
crops leads to a decrease in the productivity of land and to its degradation. Therefore,
the observed trend to increase the sown area of sunflowers contradicts the principles of
sustainable agriculture in Ukraine.

To solve this problem, the government of Ukraine has introduced crop rotation rules
that restrict farmers from planting industrial crops, forcing them to follow certain crop
rotation schemes. For example, sunflowers can be planted on the same field once per seven
years, according to the Resolution of the Cabinet of Ministers of Ukraine, 11 February 2010,
Nr 164, “Approval of standards for optimal balance of crop types in crop rotation in different
natural and agricultural regions” [32]. However, the introduction of such norms without
the creation of a mechanism for detecting violations and for controlling crop rotations has
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not led to an improvement in the situation. The lack of a state instrument for crop rotation
control still leads to frequent cases of crop rotation violations. In Ukraine, industrial crops
such as sunflowers are sometimes planted not just twice in a row, but four or five times in a
row. Additionally, farmers compensate for the reduction in soil productivity by increasing
the use of fertilizers. Thus, according to Ukrainian State Statistics Service, from 2000 to
2014, the area of crops using fertilizers increased from 22 percent to 84 percent without
changes in the use of organic fertilizer (2 percent to 3 percent). Furthermore, the continued
industrialization of the agricultural sector leads to the increase in field sizes (Figure 1). As
a result, more than 91% of fields in Ukraine have an area bigger than 5 ha. Even 65% of
minoritarian crops that occupy 6.8% of cropland are grown within the fields with an area of
5 or more ha, while most small fields (29% of total area for other classes) are usually owned
by local country folk and located in villages close to the village housings.
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3. Data
3.1. Crop Classification Maps

In this work, crop classification maps produced by Space Research Institute NASU-
SSAU (SRI) based on the Sentinel-1 and Sentinel-2 satellite images with 10 m spatial resolu-
tion were used to evaluate crop rotations. These maps have been delivered for 2016–2020
using a crop classification methodology based on neural networks and satellite data time
series [33]. This approach was used by an SRI team in the World Bank project “Supporting
Transparent Land Governance in Ukraine”, funded by the European Commission [34]. For
model training and testing, we used two separate vector layers that contain polygons with
different land cover and crop type classes. The ground truth information about crop type
classes was collected during ground surveys along the roads throughout Ukraine for each
year. Table 1 shows the number of polygons used for training (tr) and testing (tt) for each
year. The number of training and testing polygons, manually labeled based on the ground
truth points, are balanced. Figure 2 shows the geographical distribution of these polygons
on the territory of Ukraine and the Sentinel-1 coverage used for these maps production.
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Due to the fact that the data collection requires a lot of resources and time, it is not possible
to cover the full territory uniformly. In addition, not all the roads can be used for the
ground surveys due to the forest belts and distances to fields.

Table 1. The number of polygons, used for the model training (tr) and testing (tt) crop classification
maps for 2016–2020.

Class 2016 2017 2018 2019 2020

tr tt tr tt tr tt tr tt tr tt
Artificial 68 67 68 67 164 164 222 223 244 237
Bare land 57 57 54 54 81 80 135 115 138 122
Cereals 1108 1106 586 586 1146 1146 1797 1776 1911 1896
Forest 338 338 342 341 666 665 223 224 297 291

Grassland 399 399 272 272 651 650 888 866 965 957
Maize 514 513 344 344 486 486 576 566 855 850
Peas 16 16 25 24 38 38 37 34 61 55

Soybeans 273 272 191 190 325 324 373 367 389 382
Sugar beet 30 29 20 19 69 69 36 29 36 30
Sunflower 823 822 596 595 876 875 690 681 794 790

Water 88 88 96 96 240 240 351 327 350 340
Wetland 24 24 35 35 66 66 107 114 133 119

Winter rapeseed 94 94 107 106 196 195 288 278 273 265
Total 3832 3825 2736 2729 5004 4998 5723 5600 6446 6334
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Figure 3 shows these maps for major agriculture classes. The full time-series of
Sentinel-1 images (15–16 images per year) with VV and VH polarization and cloud-free
composites of Sentinel-2 images (4–5 composites per year) with red, green, blue, and near
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infrared (NIR) bands were used for each year. Table 2 shows the accuracy of classification
for main land cover and agricultural classes. The accuracy of these maps for the main crops,
such as cereals, maize, sunflowers, and soybeans, is high enough to complete accurate crop
rotation analysis.
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3.2. Vegetation Indices

To analyze crop conditions and the productivity of agricultural lands, it is possible
to use five vegetation indices provided by MODIS satellite products with coarse spatial
resolution. In particular, for research purposes we used: the normalized difference veg-
etation index (NDVI) and enhanced vegetation index (EVI) at 250 m resolution and the
leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR),
and land surface water index (LSWI) at 500 m resolution. Because the study has been
conducted for several years, the numbers of measurements for the vegetation period (from
the beginning of April until the end of October) were unified by usage of 16-day composites.
The analysis ready data that are available as the 16-day composites were used for the NDVI
and EVI estimation. The FAPAR and LSWI composites were obtained using a median filter
on vegetation indices images with masked clouds. In this, a cloud-free collection of data
with the same number of measurements for each year was produced. After this step, the
cumulative vegetation indices (VIcum) for the whole vegetation period were calculated
with the formula:

VIcum = ∑
d∈DoY16

median(VId+i)
16
r=1 (1)

where DoY16 is the set of days of the target year from April 1 until October 31 with the
16-day step and VId+ is the vegetation index for the concrete day within the 16-day period.
For instance, DoY16 for 2021 can be calculated as {91 + d ∗ 16}13

d=0 (1 April 2021, is the 91st



Sustainability 2022, 14, 3965 8 of 23

DoY). This information was extracted from MODIS data collections MOD13Q1 V6 for
NDVI and EVI, MOD15A2H V6 for LAI and FAPAR and MOD09A1 V6 surface reflectance
data for LSWI using Google Earth Engine platform. So, VIcum for each pixel is the sum of
16-day medians of correspondent VIs over the vegetation period of the target year.

Table 2. Accuracies of crop classification maps on the independent test sets for 2016–2020 (UA—User
Accuracy, PA—Producer Accuracy, F1—F1 score, OA—Overall Accuracy).

Class Classification Accuracies (%)

2016 2017 2018 2019 2020
UA PA F1 UA PA F1 UA PA F1 UA PA F1 UA PA F1

Artificial 73.1 77.2 75.0 69.0 71.7 70.3 66.6 95.0 78.3 66.4 96.4 78.7 71.5 88.5 79.1
Bare land 58.2 63.5 60.0 55.9 66.6 60.8 90.7 67.5 77.4 61.0 67.6 64.1 84.1 60.6 70.4
Cereals 92.0 88.1 90.0 97.3 96.5 96.9 99.0 98.7 98.8 99.1 98.5 98.8 94.5 92.2 93.3
Forest 96.9 99.3 98.1 99.2 98.2 98.7 99.7 99.8 99.8 83.4 99.2 90.6 85.5 99.8 92.1

Grassland 72.9 89.1 80.2 76.2 94.2 84.3 93.5 95.9 94.7 73.6 96.7 83.6 80.5 95.8 87.5
Maize 93.4 92.6 93.0 90.3 94.1 92.1 97.7 96.2 96.9 98.4 97.6 98.0 95.4 96.8 96.1
Peas 59.0 88.8 70.9 96.8 87.2 91.8 91.4 94.5 92.9 88.4 64.1 74.3 80.7 91.6 85.8

Soybeans 81.6 83.4 82.5 92.5 73.0 81.6 90.5 94.2 92.3 93.1 93.6 93.3 87.8 83.9 85.8
Sugar beet 90.9 96.6 93.6 99.8 97.5 98.6 96.4 94.6 95.5 96.6 99.3 97.9 93.3 78.7 85.4
Sunflower 94.3 94.3 94.3 94.2 97.1 95.6 98.0 98.1 98.0 98.7 98.8 98.7 96.8 97.0 96.9

Water 80.2 98.9 88.6 99.7 98.7 99.2 99.9 99.9 99.0 99.0 98.2 99.1 99.0 99.0 99.0
Wetland 77.1 77.6 77.3 83.8 49.8 62.5 85.1 64.4 73.3 88.5 81.6 84.9 86.2 86.4 86.3

Winter rapeseed 91.7 76.8 83.6 95.8 98.3 97.0 99.7 98.5 99.1 98.1 99.1 98.1 96.7 94.5 95.6
OA 88.3 91.0 97.3 96.2 91.6

4. Methodology

The main objective of this study is to investigate the impact of sunflower planting in
the different crop rotation schemes during previous years on the biophysical parameters of
crops for the current year. This investigation can be done by the analysis of relationships
between the areas of various crop rotation schemes on the averaged vegetation indices
at the village level. For this purpose, we will use the common technique for the multi-
variate dependences’ analysis—regression analysis [35]. To do this, the dependent and
independent variables should be determined first. The dependent variable should reflect
the biophysical characteristics of agricultural land for some territory. The independent
variables should reflect the impact of each certain crop rotation scheme to the value of
the dependent variable. The linear regression model will describe the relations between
dependent variable dv and independent variables {ivi}n

i=1:

dv =
n

∑
i=1

ivi ∗ ai + b (2)

where i is the number of the crop rotation scheme, which takes values from 1 to n (total
amount of crop rotation schemes), and ai and b are coefficients of regression. After assessing
ai values for each independent variable they can be interpreted as the estimate of the impact
of ivi on dv. If the sign of ai is negative, then the impact is negative; otherwise, the impact
is positive. To evaluate the significance of the coefficient ai for the dv, we use the f-test of
overall significance [36]. This test allows us to assess multiple coefficients simultaneously by
checking the null hypothesis—that the fits of the model with and without specific coefficient
are equal. For the f-test purpose, two models should be trained for each independent
variable successively. If the independent variable is insignificant, the difference between
the models’ outputs with and without this variable will be small. As a result, the f-test
provides the p-values for each regression coefficient—the probabilities dv would get the
same or larger effect if the ai is equal to 0 (zero). So, the smaller p-value for a coefficient, the
more likely ivi is significant.
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First, the space of the features used for the regression analysis S and the dependent
variables should be clarified. To do that the separate regression model for each vegetation
index NDVI, EVI, LAI, FAPAR, and LSWI was created. The cumulative vegetation index
VIcum, calculated by formula (1) and averaged by village boundaries for each village council
index (ID) is proposed for use as a dependent variable. The independent variables (or
features) should reflect the impact of each considered crop rotation on the vegetation index
VIcum. To conduct that, the proportion of the area of each crop rotation and the area of
fixed crop in the reference (target) year aggregated at the village council level were used
as the features. In this way, the contribution of different crop rotations in the value of the
vegetation index was considered. Thus, VI ID

j,y is the cumulative value of the vegetation
index VI for year y and crop type j, averaged for village ID. The respective vector of features
SID

j,y contains the proportions of area of each considered crop rotation to the total area of
fields with crop type j in the year y in the village ID. To calculate it, the reference year y
and crop type j for the year y were fixed. In this way, n available crop rotations that are
sequences of crop types for m years starting with the crop type j in the reference year were
constructed. As a result, the vector SID

j,y consists of the following elements, calculated for
each crop rotation i.

SID
j,y,i =

SID
i

SID
y (j)

(3)

where SID
i is the area of crop rotation with number i in the village ID and SID

y (j) is the area
of crop type j in the village ID and year y. If the crop rotation i will include all possible
crop rotations for five years, the number of features, most of which could be present in the
training set in only a few examples, will be enormous. This could lead to the overfitting
of the model. In particular, analysis of available crop rotation combinations shows that
625 possible variations of crop rotations cover 80 percent of the country’s area. In Ukraine,
there are only 7834 villages, and none of them include all possible crop rotations. In this
situation, any regression model would have the problem of overfitting, and the results
will not be adequate. To address the issue, we propose to consider two different features’
representation schemes.

The first one is representation of crop rotation by binary values for five years, in
which j for the target year (2020) and each pixel for every previous year can have two
possible values: j (or 1) or not_j (or 0). Such representation will be named as model A1. In
this research, j corresponds to sunflowers (sf) and not_j to not sunflowers (nsf). So, there
are 16 possible crop rotations (Table 3). We should mention that such representation is
not exhaustive, because it does not take into account all possible combinations of crop
rotations. For instance, crop rotation sf—nsf—nsf—nsf—nsf is not a violation of sunflower
rotation rules, but in the years when sunflowers have not been planted, the rotation of other
crops was not considered. It means that in the years when sunflowers were not planted,
crop rotation violations for other crop types still could appear. Thus, this model reflects
the impact of sunflower monocropping, but it does not measure the impact of different
crop rotations.

To address the issue, taking into account different crop rotations and at the same time
avoiding the problem of overfitting, let us consider a smaller number of features.

To reduce the number of crop rotation combinations for the analysis and at the same
time increase the number of training points, crop rotation analysis for major crops only for
three years with several different reference years will be considered. This representation
will be named as model B.

Model B uses 25 crop rotations (25 features) for each value of cumulative VI for
sunflowers per each village council. As a result, it will be possible to evaluate 25 possible
crop rotations for each reference year and select the best and the worst crop rotations.
Table 4 illustrates the investigated crop rotation schemes in model B. This model combined
the data for the years 2020-2019-2018, 2019-2018-2017, and 2018-2017-2016 in one training
data set and used it for the regression function fitting. This approach, on the one hand,
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increases the number of training points and, on the other hand, reduces the effect of errors
in the classification of extreme weather conditions for a specific year.

Table 3. All crop rotations considered for model A1 (sf—sunflower, nsf—not sunflower).

Index Binary
Representation 2020 2019 2018 2017 2016

1 11111 sf sf sf sf sf
2 11110 sf sf sf sf nsf
3 11101 sf sf sf nsf sf
4 11100 sf sf sf nsf nsf
5 11011 sf sf nsf sf sf
6 11010 sf sf nsf sf nsf
7 11001 sf sf nsf nsf sf
8 11000 sf sf nsf nsf nsf
9 10111 sf nsf sf sf sf

10 10110 sf nsf sf sf nsf
11 10101 sf nsf sf nsf sf
12 10100 sf nsf sf nsf nsf
13 10011 sf nsf nsf sf sf
14 10010 sf nsf nsf sf nsf
15 10001 sf nsf nsf nsf sf
16 10000 sf nsf nsf nsf nsf

Table 4. All crop rotations considered for model B.

Index 2020\2019\2018 2019\2018\2017 2018\2017\2016

1 Sunflower Cereals Cereals
2 Sunflower Cereals Maize
3 Sunflower Cereals Sunflower
4 Sunflower Cereals Soybeans
5 Sunflower Cereals Other
6 Sunflower Maize Cereals
7 Sunflower Maize Maize
8 Sunflower Maize Sunflower
9 Sunflower Maize Soybeans
10 Sunflower Maize Other
11 Sunflower Sunflower Cereals
12 Sunflower Sunflower Maize
13 Sunflower Sunflower Sunflower
14 Sunflower Sunflower Soybeans
15 Sunflower Sunflower Other
16 Sunflower Soybeans Cereals
17 Sunflower Soybeans Maize
18 Sunflower Soybeans Sunflower
19 Sunflower Soybeans Soybeans
20 Sunflower Soybeans Other
21 Sunflower Other Cereals
22 Sunflower Other Maize
23 Sunflower Other Sunflower
24 Sunflower Other Soybeans
25 Sunflower Other Other

4.1. Regression Analysis of Crop Rotation

To analyze the impact of sunflower crop rotation we propose to use a model that
represents the cumulative vegetation index for sunflowers, averaged for village ID, as a
linear regression function (2) from the independent values SID

j,y,i (3).
Calculation of coefficients ai could be considered as a traditional regression problem,

which could be solved using an ordinary least squares approach. However, the large
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number of independent variables in the model leads to a collinearity problem and to
potentially overfitting the model. To avoid it, the ridge regression technique was used [37].
The technique uses L2 regularization, which causes regression coefficients to be more
balanced and representative in the regression. Thus, the regression model used in our study
is this:

dv =
n

∑
i=1

ivi ∗ ai + b + α ∗
n

∑
i=1

ai (4)

where α is the L2 regularization penalty. To determine the best value of α, it is possible

to use a cross validation technique that fits the regression function with α ∈
{

10k
}10

k=−10
and selects the value α based on the best coefficient of determination (R2 score). The ai
coefficients defined through the model fitting determine the influence of crop rotation i in
the biophysical characteristics of crops. The biggest values of ai correspond to the best crop
rotations with positive impact on VI, while the lowest values of ai correspond to the worst
crop rotations. As a result, it is possible to combine all crop rotations into three groups:
those (a) with a negative effect on the vegetation, (b) with a positive effect on the vegetation,
and (c) with a low effect on the vegetation. The usage of different vegetation indices allows
us to evaluate this impact for different biophysical parameters of vegetation, such as NDVI,
EVI, LAI, FAPAR, and LSWI.

The reliability of the results can be assessed with the use of the f-test of overall
significance. In this case, three levels for the p-value for the regression coefficients were
defined. The first is * p > 0.05, in which the variable is insignificant and the regression
coefficient does not express the impact of independent variables to the dependent variable.
The second is ** p > 0.01, in which the regression coefficient expresses the impact of the
independent variable to the dependent variable; however, the significance is low. The third
is *** p < 0.01, in which the variable is significant and the regression coefficient expresses
the impact of the independent variable to the dependent variable.

4.2. Model A1 with Binary Crop Rotation Features and Analysis for Five Years

The first model—model A1—evaluates the impact of monocropping on the different
vegetation indices. In this case, each crop rotation is described by the sequence of n binary
values (we consider n − 1 preceding years), so for each iε[1, 16] and yε[2016, 2020] cli

y = 1
if sunflowers had been grown in the territory in year y, and cli

y = 0 in the other case. Model
A1 describes the relation of VIj,2020 at the village level from 16 crop possible monocropping
combinations during the previous four years. The main drawback of this approach is the
ignorance of the influence of other crop rotations on the vegetation indices.

4.3. Model A2 and A3 with Derived Regressors

Binary representation of monocropping schemes allows for the design of a regression
model (model A2) of the crop rotation impact prediction for the i-th monocropping scheme
(ai) based on the number of sunflower monocropping (Ns f ) for five years and the period of
years without sunflowers before the reference year (Ps f ):

ai = k1 ∗ Ns f + k2 ∗ Ps f + k3 (5)

Model A2 uses ai obtained from model A1 as a dependent variable. So, if model
A1 provides the evaluation of the crop rotation scheme represented as the sequence of
sunflower and not sunflower plantings, model A2 fits to reproduce the result of model
A1, but only with the use of statistical characteristics of sunflower appearance in the crop
rotation scheme. The main advantage of this model is the small number of regressors,
which allows us to avoid overfitting the model and to provide more accurate regression
analysis. In addition, based on this model, it is possible to get the evaluation of crop rotation
schemes that cannot be estimated from the available time-series of crop maps. Having
a statistically significant model (5), we can mathematically estimate the optimal interval
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between the subsequent planting of sunflowers and can provide predictions (extrapolation)
for a longer time period. The main problem in this model is that Ns f and Ps f are not unique
characteristics of concrete crop rotation. For example, model A2 considers crop rotation
with Ns f = 3 and Ps f = 1 as a crop rotation with sunflower planting every two years, so
two different crop rotations such as sf-nsf-sf-nsf-sf (10101) and sf-nsf-sf-sf-nsf (10110) can
have the same Ns f and Ps f values. In order to be sure of the reliability of the result, another
model—model A3 was fitted. This model represents the relationships between ai and
the time intervals between sunflower planting, in the case when all sunflower plantings
in the crop rotation scheme have equal intervals. So, the A3 model can be considered a
simplification of the A2 model that predicts ai with use of only one variable—the interval
between two sunflower plantings in the crop rotation scheme. The fitting strategy is the
same as for model A2—dependent values are ai, obtained from model A1, and independent
values are Ps f , from crop rotation schemes. In this set of points, there are only five schemes
that can be used for fitting such a model. We assumed that ai for crop rotations with 0-,1-,2-,
3-, and 4-year planting intervals for 5 years will be same as for 11 years. So, the crop
rotation sf-nsf-nsf-nsf-nsf (10000) will be considered as the planting of sunflower once per
5 years in 11 years of observation. This assumption can be done because the impact of crop
rotations weakens over the years. So, the plantings made more than 5 years before have a
much lower impact than recent plantings do. However, if the p-values of ai for some of the
useful crop rotation schemes is too big, these crop rotation schemes cannot be used for the
A3 model fitting.

4.4. Model B for Three-Year Crop Rotation Analysis out of Five Years

The second regression model—model B—takes into account all possible crop rotations
during three years for the VIs of sunflower. In this, it is possible to increase the number
of training samples by considering different three-year intervals of observations. So, as
an output (dependable variable) of the model we consider cumulative VIs for sunflower
for the years 2020, 2019, and 2018: VIj,2020 ∪ VIj,2019 ∪ VIj,2018 = VIj. Model B includes
25 different regressors; each of them corresponds to the sequence of two crop types grown
in the preceding two years out of the five major crop types (cereals, sunflowers, maize,
soybeans, and other crops). In this case, the example of crop rotation violation is sunflower-
sunflower-sunflower, and the reverse example is sunflower-soybeans-other crops.

4.5. Potential of Sentinel and Landsat Data Usage

MODIS data collection was chosen because of the need for high temporal resolution
data that give the possibility to create a uniform collection of vegetation indices time series
for the accurate estimation of accumulated vegetation indices for each year of interest. In
our experiment, moderate spatial resolution 250 and 500 m is more than enough for crop
monitoring at the village council level. However, in the future studies it is possible to
improve the accuracy of the experiment by the use of higher spatial resolution data. The
growth of available data source numbers as well as the development of new methods of
satellite data collection harmonization can give opportunities to improve the described
experiment for further years.

There are two more available satellite missions that can be used for such an experiment
in the future. The first one is the Landsat mission that launched in 1972. The two most recent
satellites of this mission have similar characteristics—Landsat-8 launched in February 2013
and Landsat-9 launched in September 2021. These satellites have two instruments—an
Operational Land Imager (OLI) that provides 8-band images with 30 m spatial resolution
and 1 panchromatic band with 15 m spatial resolution and a Thermal Infrared Sensor
(TIRS) that provides 2 bands of thermal infrared specter with 100 m spatial resolution. The
temporal resolution of both satellites is 16 days. The second is the Sentinel mission. The
Sentinel-3A satellite was launched in the February 2016. Images obtained from the Ocean
and Surface Colour Instrument, installed on the Sentinel-3 satellites, have 21 multispectral
bands with 300 m spatial resolution, 1-day temporal resolution, and can be used as an
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alternative for MODIS data. The Sentinel-2 mission was launched in June 2015, and
since March 2017 includes two satellites with multi-spectral instruments that provide
12-band images with a spatial resolution from 10 m to 60 m and temporal resolution of
5 days. Sentinel-2 optical data is an essential source of information in the agricultural
monitoring applications that give the possibility to estimate all essential vegetation indices
and biophysical characteristics of crops that can be used in the crop state analysis such as
NDVI, EVI, LAI [38], and others.

A lot of applications in remote sensing require a dense time-series of measurements
with high temporal resolution. Thus, harmonization of multi-satellite high spatial resolution
data collections is the cornerstone for the improvement of land monitoring as well as
agricultural monitoring systems. Claverie et al.’s study [39] shows the workflow that can
be used for the estimation of the harmonized collection of Landsat-8 and Sentinel-2 data.
The harmonization process requires the conductance of atmospheric correction, geometric
resampling, geographic registration, BRDF normalization, and band pass adjustment. A
good example of this harmonization method use is shown in the research by Skakun
et al. [40] on yield forecasting in Ukraine. This method has a high potential for the use of
30 m optical data for crop rotation analysis in future research, despite the need for a lot
of computational resources for data processing. However, the combined and harmonized
archive data of Landsat-8 and Sentinel-2 still have a lower temporal resolution, if we take
into account cloud conditions, in comparison with MODIS or Sentinel-3. Kirovohradska
oblast, located in central Ukraine, on average for the winter crop vegetation period (from
March until the end of June) has 6 cloud-free observations for 2016, 8 for 2017, and 11 for
2018 [41]. The absence of uniformity in the data coverage at the regional or country level
causes complications in the use of the historical harmonized collection of Landsat-8 and
Sentinel-2 data in the multi-year crop rotation analysis experiment. Such uniformity for
these years can be explained not only by atmospheric conditions, but also by the fact that
before the launch of Sentinel-2B satellite in March 2017, the temporal resolution of Sentinel-
2 data was 10 days. This is why, in our experiment on the historical data from 2016 to
2020, we are using MODIS data. However, in future experiments from 2018 with 3 satellites
(Landsat-8, Sentinel-2A and Sentinel-2B) or from 2022 with 4 satellites (by adding Landsat-
9), the temporal resolution of harmonized high spatial resolution image collections can
improve the results obtained by the methods described in the Methodology section.

As an additional data source in the crop rotation analysis, we can use the Sentinel-1
mission that was launched in the April 2014. The spatial resolution of Sentinel-1 is 20 m for
the Ground Range Detected (GRD) data used for the land monitoring applications. Usage
of Synthetic Aperture Radar data usually require the usage of complex data processing
workflows that include calibration, geometric correction, terrain correction, and resampling
to 10 m spatial resolution. Due to the presence of noise that seriously influence the quality
of data, an additional filtering step with a refined Lee algorithm is required [42] to acquire
qualitative data. As a result, it is possible to obtain SAR data with VV and VH polarization,
10 m spatial resolution, and 6-day temporal resolution that can be used for crop phenology
estimation [42] and crop classification [35]. In addition, Filgueiras et al.’s [43] study showed
high dependences between Sentinel-1 SAR indices and NDVI. This study shows that it is
possible to model Sentinel-2 NDVI synthetic data with the usage of regression functions
based on the VV and VH characteristics of Sentinel-1, expanding in this way the time-series
of Sentinel-2 vegetation indices. If we consider that Sentinel-1 is an active sensor that is not
vulnerable to the clouds, these synthetic data can be used for missing value recovery or as
an alternative to absent Sentinel-2 images due to the atmospheric conditions.

5. Results
5.1. Results for Model A1 with Binary Crop Rotation Features for Five Years

In this sub-section, we provide an analysis of 4 years of sunflower monocropping
impact on the biophysical characteristics with the binary representation of crop rotation
schemes. To evaluate this impact, we used a regression model A1 with 16 regressors (pre-
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dictors). Figure 4 (distribution of areas of each crop rotation scheme) demonstrates one of
the challenges of such a study—a significant imbalance of crop rotation area representation.
An increase in the time period for the analysis can lead to an increase in imbalance; in
addition, very important crop rotation schemes, such as sunflower planting five, four, or
even three years in a row cover only 1.1, 0.8, and 1.7 percent of the total sunflower area,
respectively. It is a big problem because the fields with the highest frequencies of sunflower
monocropping are the best sites for such analysis.
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After fitting the regression function, the regression coefficients for each monocropping
scheme and each vegetation index were accessed (Table 5). To make it easier to analyze,
these coefficients were numerated on the basis of the binary representation of the schemes—
0 for sunflower and 1 for no sunflower. Such representation contains information about
the number of years of growing sunflowers within five years and the position (year) of the
closest sunflower planting to the reference year (2020 or 2019). These characteristics can be
mathematically obtained with use of logarithm function and subtractions with 5 (length of
sequence) and 17 (group order). If the number is N, then the first value can be extracted
from the N as 5− [log2(N)] and the second as [5− log2(17− N)], where [ ] – is the integer
part of the expression. In general, the lowest values of regression coefficients correspond to
those schemes with monocropping of sunflowers. The biggest values correspond to those
schemes in which during the previous two years sunflowers had not been planted. The
worst three-crop rotations—those that have the lowest values for most of the biophysical
crop parameters—are sf-sf-nsf-nsf-nsf (11000), sf-sf-sf-nsf-nsf (11100), and sf-sf-nsf-sf-nsf
(11010). The best crop rotations from the prospective of all VIs and biophysical parameters
are those with no more than one planting of sunflowers in five years. In general, it is
possible to draw the following conclusion from these results: the best crop rotation schemes
are those in which sunflowers are as rare as possible. Most schemes with violations of
sunflower crop rotation in the past three years have negative coefficients with big absolute
values. In that case, Table 5 shows that the impact depends on the year of violation and the
number of repeated sunflower plantings.
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Table 5. The effect of sunflower monocropping on the vegetation indices from model A1.

Binary
Representation Crop Rotation NDVI EVI FAPAR LAI LSWI

11111 sf-sf-sf-sf-sf 0.041 * −0.032 * −0.09 * −0.047 * −0.068 *
11110 sf-sf-sf-sf-nsf −0.026 * −0.158 * −0.176 * −0.065 * −0.132 *
11101 sf-sf-sf-nsf-sf −0.025 ** −0.097 * −0.1 * −0.048 * −0.08 *
11100 sf-sf-sf-nsf-nsf −0.232 *** −0.194 *** −0.121 *** −0.046 *** −0.046 ***
11011 sf-sf-nsf-sf-sf −0.244 * −0.192 * −0.193 * −0.105 * −0.193 *
11010 sf-sf-nsf-sf-nsf −0.195 *** −0.09 *** −0.06 *** −0.115 *** 0.046 ***
11001 sf-sf-nsf-nsf-sf −0.04 ** −0.143 * −0.152 ** −0.087 * −0.066 **
11000 sf-sf-nsf-nsf-nsf −0.265 *** −0.245 *** −0.213 *** −0.07 *** −0.177 ***
10111 sf-nsf-sf-sf-sf 0.168 *** 0.035 ** 0.126 ** 0.009 ** 0.007 ***
10110 sf-nsf-sf-sf-nsf 0.163 *** 0.221 *** 0.098 *** 0.022 *** 0.077 ***
10101 sf-nsf-sf-nsf-sf −0.035 *** 0.006 *** −0.018 *** −0.028 *** −0.042 ***
10100 sf-nsf-sf-nsf-nsf 0.144 *** 0.227 *** 0.206 *** 0.126 *** 0.19 ***
10011 sf-nsf-nsf-sf-sf 0.169 *** 0.037 *** 0.156 *** 0.023 *** 0.082 ***
10010 sf-nsf-nsf-sf-nsf 0.055 *** 0.104 *** 0.089 *** 0.101 *** 0.014 ***
10001 sf-nsf-nsf-nsf-sf 0.051 *** 0.177 *** 0.13 *** 0.094 *** 0.124 ***
10000 sf-nsf-nsf-nsf-nsf 0.27 *** 0.343 *** 0.319 *** 0.238 *** 0.263 ***

Note: * p > 0.05, ** p > 0.01, *** p < 0.01.

Figure 5 shows the relationship between the position of crop rotation in the binary-
sorted table and the values of regression coefficients. This figure does not include crop
rotation schemes with numbers 1, 2, 3, 5, and 7, because they have not passed the f-test
of overall significance. The trend of the values of regression coefficients for different
vegetation indices is positive. It is possible to see that all schemes starting with sf-sf have
the smallest values of the coefficients and are mostly negative. The Pearson correlation
coefficient [44] between the position and average ai for five vegetation indices is 0.81, while
the R2 score [45] is 0.67. Those results mean that the regression coefficients are strongly
correlated with the position of the scheme in the sorted list of binary representations.
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Figure 5. The dependences between the binary representation of monocropping scheme and regres-
sion coefficients for different vegetation indices.

The proposed binary representation gives the possibility to estimate the number of
years of sunflower planting in each scheme and the number of years without sunflower
planting before the reference year. The first value has a negative moderate correlation with
ai equal to −0.74 and an R2 score equal to 0.55. The second value has a strong correlation
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of 0.83 with ai and an R2 score equal to 0.69. These results uncover the fact that the number
of years without monocropping is a more important indicator than the number of years
of sunflower plantings. In addition, we can conclude that the impact of the effect of crop
rotation violations weakens over time and that a sunflower crop rotation violation four
years ago has a much lower effect than a violation in recent years (one or two years ago).
Figure 6 shows the dependences between the crop rotation scheme’s areas and regression
coefficients. It shows a moderate correlation (0.45) between the crop rotation scheme’s area
and regression coefficients. So, for the long-term crop rotation strategies, land users prefer
to use crop rotation schemes with a neutral or positive effect on the vegetation indices,
rather than schemes that lead to the degradation and decrease in the vegetation indices.
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Figure 6. The dependences between crop rotation scheme’s areas and regression coefficients for
model A1.

5.2. Results for A2 and A3 Models with Derived Regressors

The results from Section 5.1 give the possibility to conduct modeling of other crop
rotation schemes’ impact on the land fertility that cannot be analyzed without long-term
measurements and statistical significance of their areas. Using coefficients ai of model
A1 (Table 5), it is possible to estimate coefficients of model A2 described by Equation (5)
with the traditional least squares approach. After the model training we obtained the
relationship (6) for ai coefficients for such crop rotations:

ai = −0.053 ∗ Ns f + 0.071 ∗ Ps f + 0.06 (6)

This model has a 0.71 R2 score and a very low mean squared error equal to 0.0052. This
means that these two characteristics (number of sunflower monocroppings for five years
Ns f and the period without sunflowers before reference year Ps f ) can be used to predict
the effect of crop rotation on vegetation indexes.

After this, we used model A2 as a simplification of model A1, described by relationship
(6), based on the Ns f and Ps f . For policy making, it is important to estimate the optimal
interval between subsequent plantings of sunflowers. If we consider the time period of ob-
servations as 11 years, the period without sunflowers before reference year Ps f takes values

from 0 to 10 and the number of sunflower monocroppings for five years Ns f =
[

10
Ps f +1

]
.

So, having Ns f and Ps f for each value in the interval from 0 to 10, it is possible to model
the influence of monocropping schemes as a polynomial approximation of the output of
model A2 (Figure 7a). Now, it is observable that with an increasing interval, the positive
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effect of the indicators increases, but the slope of the curve decreases. These observations
are consistent with the results obtained from model A3 (Figure 7b) that trained based on
the crop rotation schemes that reflect the planting of sunflower from once per 2 years to
once per 5 years.
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model A3 curve. Note: The x axis shows the intervals for the sunflower planting in the crop rotations.
The y axis is the ai value for the corresponding crop rotation. Points represent the training data
for the model fitting; the curve is the fitted regression model based on these points. Shaded zones
demonstrate the confidence intervals for prediction.

According to the crop rotation rules in Ukraine, sunflowers can be planted once per
seven years. If the highest positive effect is observed for the 10-year interval, a 6-year
interval is 60 percent of its value. At the same time, the negative effect on the vegetation
characteristics disappears after the interval equals three, taking into account the confidence
interval. Therefore, for sustainable food production, the restriction can be reduced to
planting sunflowers once every three years.

5.3. Results for Model B for Three Years of Crop Rotation out of Five Years

In this sub-section, we investigated the relationships between vegetation indices for
sunflowers and crop rotation schemes over three years using the B model. To conduct this
analysis, we calculated cumulative VIs for 2018, 2019, and 2020, which were selected as
reference years for the dependent variables according to (1). The regressors for Equation
(4) have been estimated by the same methodology as for model A, but for three years and
all five possible crop types (cereals, maize, sunflowers, soybeans, and other crops) used in
the crop rotation schemes. Data sets for all three reference years have been joined into one
data set for training the model. The distribution of three years of crop rotation schemes
(Figure 8) is more preferable for our model than the distribution of model A because the
crop rotations with sunflower plantings two or three times per three years (indices 3, 11–15,
18, and 23) are presented with a large number of samples.
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Table 6 represents the impact of crop rotations on the vegetation indices of sunflowers.
The analysis shows that for sunflowers, the worst crop rotations are sunflower-sunflower-
cereals, sunflower-cereals-cereals, sunflower-other-sunflower, and sunflower-sunflower-
sunflower. The best crop rotations are sunflower-soybeans-other and sunflower-other-other.
For most of the vegetation indices, negative crop rotations include sunflowers planted at
least once per two years or cereals crop rotation violations. This model is not sensitive to the
violation of maize and soybeans. To mitigate the negative effect on sunflower production,
farmers would be better to rotate it with maize or soybeans and, at the same time, plant
sunflowers no more than once per three years.

Figure 9 shows the dependences between the crop rotation scheme’s areas and regres-
sion coefficients. The cumulative areas for three years, used for the experiment, reflect
the tendency of crop rotation scheme occurrence from 2016 to 2020. Now, the correlation
between the crop rotation scheme areas and regression coefficients is moderately negative
(−0.46). So, for the short-term crop rotation strategy, land users prefer to use crop rotation
schemes with a negative effect on the vegetation indices. The crop rotation schemes that
occupy the biggest part of the land are sunflower-cereals-sunflower, sunflower-cereals-
other, sunflower-cereals-cereals, and sunflower-maize-sunflower. So, we can see that crop
rotations with sunflower planting rule violations are very popular. It can be explained
by the economic benefits that can be obtained from the planting of sunflower or other
industrial crops. Additionally, it is important to explain why, in long-term planning, the
land users have a tendency to use more sustainable crop rotation schemes, while in the
short-term, unsustainable are more preferable. Due to the use of the accumulated three-year
intervals areas statistics, this tendency does not mean that most fields have negative crop
rotation schemes every three years. It means that most fields have negative three-year crop
rotation schemes at least once per 5 years. The negative effect of some three-year crop
rotation schemes can be negated by further crop rotations on the fields.
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Table 6. The crop rotations’ effect on sunflower vegetation indices.

Crop Rotation NDVI EVI LAI FAPAR LSWI

Sunflower-Cereals-Cereals −0.254 *** −0.249 *** −0.145 *** −0.21 *** −0.187 ***
Sunflower-Cereals-Maize −0.039 *** −0.031 *** −0.028 *** −0.085 *** −0.098 ***

Sunflower-Cereals-Sunflower −0.194 *** −0.22 *** −0.166 *** −0.208 *** −0.133 ***
Sunflower-Cereals-Soybeans 0.16 *** 0.24 *** 0.124 *** 0.112 *** 0.057 ***

Sunflower-Cereals-Other 0.003 *** 0.075 *** −0.009 *** −0.009 *** 0.056 ***
Sunflower-Maize-Cereals 0.012 *** 0.056 *** 0.048 *** 0.01 *** 0.074 ***
Sunflower-Maize-Maize −0.016 *** 0.064 *** 0.053 *** −0.027 *** −0.035 ***

Sunflower-Maize-Sunflower −0.108 *** −0.059 *** −0.016 *** −0.067 *** −0.074 ***
Sunflower-Maize-Soybeans 0.071 *** 0.13 *** 0.062 *** 0.009 *** −0.012 ***

Sunflower-Maize-Other 0.044 *** 0.055 *** 0.069 *** 0.047 *** −0.008 ***
Sunflower-Sunflower-Cereals −0.319 *** −0.431 *** −0.289 *** −0.348 *** −0.371 ***
Sunflower-Sunflower-Maize 0.059 *** 0.061 *** −0.084 *** −0.083 *** −0.028 ***

Sunflower-Sunflower-Sunflower −0.134 *** −0.313 *** −0.213 *** −0.281 *** −0.336 ***
Sunflower-Sunflower-Soybeans −0.061 *** −0.021 *** 0.025 *** 0.029 *** 0.073 ***

Sunflower-Sunflower-Other 0.005 *** −0.039 *** 0.007 *** 0.047 *** 0.004 ***
Sunflower-Soybeans-Cereals −0.012 *** 0.048 *** 0.027 *** 0.011 *** −0.033 ***
Sunflower-Soybeans-Maize 0.047 *** 0.098 *** 0.199 *** 0.171 *** 0.147 ***

Sunflower-Soybeans-Sunflower 0.052 *** 0.07 *** −0.014 *** 0.089 *** 0.115 ***
Sunflower-Soybeans-Soybeans 0.03 *** 0.088 *** 0.025 *** 0.02 *** 0.052 ***

Sunflower-Soybeans-Other 0.15 *** 0.137 *** 0.115 *** 0.206 *** 0.118 ***
Sunflower-Other-Cereals −0.034 *** 0.026 *** −0.009 *** −0.027 *** −0.063 ***
Sunflower-Other-Maize −0.008 *** 0.03 *** 0.002 *** 0.065 *** 0.063 ***

Sunflower-Other-Sunflower −0.219 *** −0.224 *** −0.157 *** −0.173 *** −0.133 ***
Sunflower-Other-Soybeans 0.065 *** 0.087 *** 0.049 *** 0.072 *** 0.018 ***

Sunflower-Other-Other 0.131 *** 0.112 *** 0.158 *** 0.195 *** 0.105 ***
R2 score 0.31 0.39 0.44 0.4 0.21

Note: *** p < 0.01.
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model B.

6. Discussion
6.1. Crop Classification Maps Time Series

The analysis of the impact of crop rotations on biophysical parameters of plants
became possible because of the use of crop classification maps for 2016–2020. One of the
important questions that arises when performing this analysis is whether five years of data
are enough for the analysis. On the one hand, five years is not a very long period of time.
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However, on the other hand, the modernization of production and the introduction of
modern technologies in agriculture in Ukraine are carried out at a very fast pace. Therefore,
the information extracted from a very long time series of measurements may be biased by
climate change and the modernization of agricultural practices. Climate change strongly
influences the biophysical parameters of plants growing in Ukraine and the nomenclature
of crops and species. Taking into account these factors, five years is the optimal time for
such modeling.

Crop rotation scheme representation was chosen as proportions of areas of each crop
rotation at the village council level because it is the best way to represent crop rotation
information in the linkable way for biophysical characteristics. The use of pixel or field
level representation does not give the possibility to compare different crop rotation schemes
because for each unit of analysis only one type of it will be presented. At the same time,
the averaging of vegetation indices at village council level give the possibility to estimate
which crop rotation, in the proportion, gives a higher increase or loss of vegetation indices.

6.2. Crop Classification Accuracy

To perform this study, we use crop classification maps delivered on the basis of
time series of optical and radar satellite data from Copernicus Sentinel missions. As
a classification algorithm, modern approaches for crop classification based on neural
networks were used, which provide rather high accuracy of classification for different
crops. Neural networks have been trained on the in situ data collected each year during
ground surveys along the roads in Ukraine. The obtained crop classification maps have
high accuracies with the F1-score from 81 percent up to 99 percent for majoritarian crop
classes. Therefore, it can be concluded that the crop classification maps used in the analysis
provide sufficient accuracy for this analysis.

6.3. Crop Rotation Valuation Drawbacks

The main problem with the proposed methodology is the influence of weather condi-
tions and agricultural practices on the value of vegetation indices. These factors lead to the
possibility that the values of vegetation indices for crop rotations with a low positive or
negative effect may be biased. Thus, the sign of the regression coefficients does not show in
general whether they have a positive effect on the vegetation, but they show that with such
crop rotation under these conditions, the vegetation index decreases. However, it is still
possible to determine which crop rotations are better and which are worse. In this case, the
worst crop rotations would have the lowest values of regression coefficients, while the best
crop rotations would have the highest values of regression coefficients.

Analyzing the results for concrete conditions in Ukraine, we can determine for which
specific crop rotations there is an improvement or deterioration of biophysical indicators of
vegetation in the climatic conditions of the country and in local agricultural practices.

7. Conclusions

In this study, we analyzed the impact of crop rotation on the biophysical parameters
of sunflowers at the level of village councils using satellite data. The research method is
regression analysis, which allows us to assess the impact of different indicators on the
vegetation indices. As independent variables, we used the ratios of different crop rotation
scheme areas for the villages.

The five-year monocropping model with the binary representation of sunflower plant-
ing confirms the negative effect of frequent planting of sunflowers. It shows the strong
relationship between the number of years of sunflower plantings in the crop rotation and
a decline in the vegetation indices. Additionally, it demonstrates that this effect is more
significant for small intervals between sunflower plantings. This analysis also showed that
planting sunflowers once per seven years according to the crop rotation rules in Ukraine is
rational because of the high positive influence on the vegetation indices. However, starting
from the sunflower planting interval equal to three years, the negative effect from sun-
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flower planting is not observed. Thus, planting sunflowers once every four years would be
infrequent enough to avoid negative consequences and land degradation. Analysis of crop
rotations of all major crops over three years shows that different crop rotations with and
without violations have different effects on sunflower productivity. All crop rotations with
previously planted sunflowers had the highest negative effect on the vegetation indices.
The worst crop rotation with the highest negative effect for most crop types and biophysical
characteristics is crop rotation violations for sunflowers. In addition, we found a tendency
to use more sustainable crop rotation schemes for long-term crop rotation strategy and com-
mon violations of rules and use of unsustainable crop rotations for the short-term strategies.
The results can be used for the implementation and modernization of agricultural norms in
Ukraine and Europe.
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