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PREFACE  
 

The relevance of the publication of this tutorial is due to the fact that Materials 

sciences are very important for specialists in the applied physics. It is also supported 
by the fact that at present not only the educational but also the monographic literature 
cannot keep pace with rapid development of materials science, in other words, of 
applied solid-state physics. In this context, the applied physics and, especially, 
microelectronics with nanoelectronics are particularly fast-growing areas, so it is 
clear that they are not mentioned in well known books on material science and solid-
state physics issued 20–40years ago. This concerns many areas of physics and 
technology—from the materials elaboration to the devices realization.  

The features of the presentation of the Material Science in this book are 
significantly simplified mathematical interpretation of theories, with an emphasis on 
the basic concepts of physical phenomena in the electronic and other materials, and 
their simple explanation. Most of the chapters are devoted to the advanced scientific 
and technological issues; in addition, some new theoretical facts related to the 
properties of materials are presented, which are important for their use in modern 
technical devices. This approach of the presentation is due to modern tendency 
towards the interpenetration and synthesis of various fields, at first glance, belonging 
to the different fields of science. 

This training course might be a key reference in the application of physics for 
advanced fundamental understanding of the physical mechanisms in micro- and 
nanomaterials and their electronic applications. It examines the modern methods of 
studying these materials properties that are needed by researchers and engineers 
working in the field of electronics. The purpose of the book is to form students' 
abilities for practical use of modern models and research tools in solving scientific 
and technical problems; learn to independently develop models of the latest electronic 
processes, as well as technological processes of electronics. Main objectives of the 
tutorial, according to the requirements of the curriculum, students after mastering the 
discipline must demonstrate the following learning outcomes: knowledge of the 
physical foundations of processes in micro- and nanostructures, as well as tools and 
methods for calculating the characteristics of correspondent devices.  

Key features: (1) Provides students with a scientifically based understanding 
of the micro- and nanomaterials and their practical applications. (2) Takes a 
simplified mathematical approach to theories, essential to understanding of micro- 
and nanomaterials, and summarizes at the end of each chapters. (3) Interweaves 
modern experiments and theories in topics such as micro- and nanomaterials. 
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INTRODUCTION 
 

The present time of universal communication obliges us to teach students 
special subjects in English. The need to use English in modern technical education 
of students is very relevant. In the course of modern interactive learning, students 
should be prepared for both individual work and work with a teacher and in a team; 
they must also be active in perception, communication and sociality. It goes without 
saying that such interactive learning should be provided with high-quality didactic 
material in modern scientific and technical English. To this end, the authors of this 
book have revised their textbooks previously published in Ukrainian into a textbook 
in English, intended for masters and doctoral students. The presented textbook 
belongs to the field of materials science physics, and is focused mainly in the 
direction of electronic engineering. 

The complex and important issue of higher education pedagogy is the 
optimization of the process of future specialists training, the development of 
professional qualifications, the creation of a new system of vocational guidance, and 
the training of competent specialists. For the training of such personnel it is 
necessary to activate the process of education, to develop new forms and methods 
of teaching. When activation of educational process is understood the construction 
of such training, which involves the organization of the educational process on a 
scientific basis, the creation of conditions for creative thinking, research work of 
students, that generates interest in their future specialty, etc. 

Use of information technologies in preparing competent specialists is one of 
the main requirements set for educational institutions in the context of development 
of the information society. Improvement of the educational process is associated 
with the informatization of education and the effective implementation of special 
methods and techniques in the educational process. An important element in 
formation of student’s higher competence is information technology tools. Under 
information technology refers to modern equipment and systems that allow you to 
manage information processes. Authors consider the effective use of various 
teaching methods, including interactive methods: readiness for cognitive actions 
from position of independence; willingness to solve problems; willingness to 
effectively use information and communication technologies at the user level; 
readiness for interpersonal oral and written relations (as in Ukrainian so in English). 
Interactive methods are based on the relationship between the student and the 
student, as well as methods that create conditions for joint activities. In other words, 
the word "interactive" means joint activities, the establishment of cooperation 
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procedure. And “interactive learning” means learning based on joint 
communication, learning through dialogue, “teacher-student”, “student-student”, 
“self-learner” relations in the following formats: conversation, dialogue, discussion, 
joint actions. Thus, interactive teaching methods built on interpersonal relationships 
satisfy the paradigm of modern education aimed at “personal development”. At the 
same time, interactive methods not only form the activity of perception and personal 
significance in learning, but also develop them. Through the interactive methods, 
students master new knowledge, qualifications, skills and abilities: development of 
critical thinking, reflexive abilities; analysis and evaluation of their ideas and 
actions; independent understanding, comprehensive analysis and the ability to select 
information; independent formation of new knowledge; participation in discussions, 
defending their opinions; decision making and solving complex issues. In the 
process of interactive learning, the student learns to formulate his opinion, correctly 
convey his thoughts, substantiate his opinion, lead a discussion, listen to others, 
respect and reckon with other opinions and points of view.  

Modern education of students in the Technical university puts forward the 
requirement to teach not only the characteristics of the profession but also the ability 
to work with scientific and technical literature, which is presented now mainly in 
English. Our practice shows that only a part of students are able to use technical 
English at their end in technical university study.  

The contents of this book takes into account a rapid progress in the field of 
material sciences to reflect latest achievements. Below is a list of the modern 
advances in electronic materials science, presented in this book, that have not 
previously been described in the educational literature. 

Chapter 1. Thermodynamics of dielectrics is dedicated to materials 
thermal properties, which are conditioned by the interaction energy of molecules, 
atoms and electrons. In addition to a general description of thermodynamics applied 
to the electrical properties of materials, the original research results are presented. 

Adiabatic and isotermal permittivity. Research and application of materials 
is generally held under the adiabatic conditions, when during the change of applied 
voltage a thermal equilibrium between dielectric and surrounding environment can 
not be installed in time, so any alteration of entropy is absent: δS = 0. Therefore, 
from experiments, the adiabatic permittivity εS is generally determined. In such 
dielectrics, which polarization depends on temperature (paraelectrics, ferroelectrics, 
pyroelectrics, and others), an another – isothermal – process of polarization might 
be important, when δТ = 0 and permittivity is isothermal: εT. Analytical 
determination of relationship between εТ and εS may be important both to explain 
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the frequency dependence of permittivity in range of subsonic frequencies, and for 
theoretical calculations. Isothermal dielectric permittivity is always greater than 
adiabatic one: εТ > εS. In most cases this difference is small and can be neglected. 
However, in the pyroelectrics, and, especially, in the vicinity of ferroelectric phase 
transition, the difference between εТ and εS can reach 10–50%, so it should be taken 
into account. 

Temperature coefficient of permittivity (TCε) is very important for practical 
application, and it is very important that thermodynamics gives a convincing 
prediction on this quession, linking the sign of TCε to the mechanisms of 
polarization. If the dielectric permittivity increases during dielectric heating, i.e., 
when TCε > 0, then the change in entropy S – S0(Т) during polarization must be 
positive. Thus, not discussing the details of processes which occur in a dielectric, 
only from general thermodynamic considerations, it can be concluded that in the 
dielectric with TCε > 0, when it is placed in the electrical field, such physical 
processes occur, which reduce the degree of molecular or atomic structure ordering. 
Conversely, if in the dielectric possessing TCε < 0, i.e., when its permittivity 
decreases with heating, the change in entropy is negative. This means that basic 
mechanisms, which determine electrical polarization, the external electrical field 
application results in the increase in the ordering of molecules (ions, atoms) in a 
dielectric. 

Explanation of second order phase transition. Degrees of a freedom while 
atomic particles movement in solids can be divided into two groups. If the interaction 
energy of particles Uint is small in comparison with thermal motion energy kBT, 
namely Uint << kBT, then the appropriate degrees of freedom behave as the collection 

of quasi-particles, i.e., as "almost ideal gas" of phonons; this refers to ordinary non-
polar dielectrics. In the opposite case, when, conversely, Uint >> kBT, then 
appropriate degrees of freedom are usually quite ordered, but their movement, too, 
can be described by the introduction of phonons. These substances include majority 
of functional polar-sensitive dielectrics (piezoelectrics and pyroelectrics), so the 
application of phonons concept to them in most cases can be considered justified. 
Much more complicated cases arise if interaction energy Uint ~ kBT. In this case, the 
theoretical description of solids becomes complicated, especially at phenomenon of 
phase transition, when the non-polar phase is turning into the polar phase. At that, 
polar-sensitive crystal behaves by such a way, when any conventional concept, 
based on phonons, can not adequately describe experimental situation. Particles 
interaction has special character: the probability of collective movements is bigger 
then the probability of individual movements. Abnormal increased role of collective 
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movements is confirmed by experiments in the vicinity off phase transition: at 
temperature T = TC crystal shows the maximum of specific heat, the minimums of 
thermal expansion and thermal diffusion coefficients. 

Specific heat of polar crystals contains an additional contribution due to the 
disordering-disordering processes of their polar-sensitive bonds. It is discovered and 
explained that in the polar crystals specific heat exceeds this parameter as compared 
with the non-polar crystals: this is clearly expressed in the vicinity of phase 
transitions, where the maximum of specific heat capacity can be several times higher 
than its average value. It might be supposed that an additional contribution to the 
specific heat in the ordering phase is due to the configurational entropy. Statistical 
possibility of several states realizing increases the total entropy of a system: such 
configuration entropy is related to the position of constituent particles rather than to 
their velocity or momentum. It is physically related to number of ways of arranging 
all particles of a system while maintaining some overall set of specified system 
properties, such as energy. Change in the configuration entropy corresponds to the 
same change in macroscopic entropy. 

Slowed thermal diffusion. At normal temperatures, the heat transfer in 
crystals is curried out mainly by the shortwave acoustic phonons, ("heat phonons"), 
which wavelength is commensurable with crystal lattice parameter, and propagation 
velocity is much less as compared with the long-length “sound phonons”. To 
describe the mechanisms of heat transfer, two important parameters, reflecting the 
peculiarities of material internal structure, are used: thermal conductivity (η) and 
thermal diffusivity (ξ). The first parameter has the meaning mainly for the technical 
properties of materials (for example, to predict their overheating), while the second 
parameter is the best for the interpretation of heat transfer mechanisms. In the polar 

crystals, both these parameters are noticeably less than in the common dielectrics, 
and thermal diffusion looks like strongly slowed down. The point is that polar 
crystals are the piezoelectrics, in which an association of acoustic phonons with 
optical phonons is clearly expressed. Indeed, in the phonons spectrum of polar 
crystals, when acoustic phonons branch approaches to the boundary of Brillouin 
zone, it bends down due to acoustic-optical interaction, so the group velocity of heat 
phonons greatly reduced. That is why, the polar crystal which are well-transparent 
for the long-waves sound phonons, for the short-waves heat phonons looks like a 
turbid medium. At that, some of optical phonons have large spatial dispersion so that 
they can make a significant positive contribution to the heat transfer. But in the most 
cases, their spatial dispersion is small, so the optical phonons give only an additional 
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contribution only to the phonons scattering, which substantially decreases as the 
thermal conductivity so the thermal diffusivity.  

In the ferroelectrics, the heat phonons are scattered by the dynamically 
ordering polar clusters; therefore, when study heat transfer, it is possible to trace as 
the polar bonds self-ordering so their forced ordering (by applied electrical field), 
obtaining amazing results in the vicinity of phase transitions. The strongest 
scattering of a diffuse-type occurs, when phonons wavelength becomes comparable 
with the size of fluctuating polar clusters: the smaller wavelength the stronger wave 
scattering in the polar structure. In the ferroelectrics, the ξ(T) dependence shows a 
sharp minimum in the Curie point, indicating a large decrease of heat phonons 
wavelength in the vicinity of phase transition due to the deposit of optical phonons 
into process of phonons scattering. In contrast, the antiferroelectric shows an acute 
maximum of ξ(T) in the Curie point due to optical phonons actively mix with the 
acoustic phonons thereby participating in the heat transfer. The point is that in the 
antipolar crystal a special arrangement of polar-sensitive bonds can lead not only to 
the increase crystal density but also facilitates the participation of optical phonons 
in phenomenon of heat transfer. This effect becomes especially noticeable in 
antiferroelectric phase transition, when multiplication of crystal lattice parameter 
happens. In them, the spatial dispersion of optical phonons is particularly large near 
the boundary of Brillouin zone due to critical decrease of their frequency; so optical 
phonons actively mix with acoustic ones, participating in the heat transfer.  

Thus, the mechanism of thermal conductivity in the polar crystals is 
predominantly phononic, since the electrical conductivity in these materials is very 
small. The interaction of the acoustic and optical phonons in the polar crystals 
manifests itself in two ways: (1) it gives an additional deposit into the phonons 
scattering, observed as a deep minimum of diffusivity; (2) it makes the contribution 
to heat transfer with an acute maximum of diffusivity seen in the antiferroelectric 
phase transition.  

Negative thermal expansion. Thermal expansion coefficient α, reflecting 
peculiarities of crystal inter-atomic bonds, in most crystals increases with 
temperature rise. That is why, the negative value of α(T), seen in as a rule in the 
polar crystals in certain temperature interval, appears to be an unusual phenomenon. 
In such crystals, the negative coefficient of thermal expansion testifies to the 
dynamic self-ordering of the polar bonds in crystals, and is seen not only in the 
piezoelectrics, but also in the semiconductors (like Si) that might be due to the 
ordering of the virtual hexagonal polar phase. Note that features of inter-atomic 
interactions, which are of special importance for the polar crystals, are better 
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revealed under the scalar (homogeneous) influences on crystal, such as the uniform 
change of temperature δT. The point is that the vector or tensor (non-scalar) actions 
are added to the symmetry of a response (Curie principle). 

The increase in the crystal volume with temperature rise (usual for most of 
solids), in the polar crystals at low temperatures slows down, since the increase in 
the intensity of thermal motion stimulates the self-ordering of polar bonds, 
increasing the rigidity of their structure and even leading to a small compression. 
But next, with significant increase in temperature, the more intense thermal 
movement violates this ordering, and, therefore, the volume of crystal continues to 
increase again, as in the ordinary crystals. In this case, the coefficient of thermal 
expansion αV in the polar crystals at low temperatures changes its sign twice, forming 
a region of negative αV. Its extended minimum means that initially (when a 
noticeable thermal motion appears) the polar bonds gradually acquire their partial 
ordering: in this case, the stronger the interatomic bonds, the lower thermal 
expansion coefficient, up to its negative value. The point is that polar structures in 
crystals arise due to the structural compensation of the electronegativity of different 
neighboring atoms. A negative value of αV(T) corresponds to such particular case, 
when the entropy grows with pressure increasing, which is the characteristic of 
configurational entropy: the region of negative expansion coefficient corresponds to 
the processes of self-ordering of polar bonds. Since the minimum αV(T) of polar 
crystals is explained by the ordering of polar bonds, this concept can be extending 
to some semiconductors. In them, it can be assumed that some polar tendencies, 
fluctuating in the structures, become consolidated at low temperatures. 

In connection with the discussion of dynamic ordering in the polar crystals, 
the conditional division of the entropy into the "vibrational entropy” and the 
"configurational entropy” becomes relevant. The vibrational entropy can be thought 
of as the number of microstates, through which the thermal energy is distributed 
between particles. The higher the temperature, the greater the vibrational entropy, 
but with the increasing of pressure it becomes smaller since the binding energy of 
particles increases. Consequently, with pressure increases, the vibrational entropy 
decreases. The configurational entropy is that part of the entropy of a system, which 
is due to the different positions of some parts of a system, which are applicable to 
all possible configurations in a system. This entropy characterizes the number of 
ways, in which related groups of atoms can be distributed in a space. With the 
increasing of pressure, the possibility of partial ordering of dynamic orientation of 
nanoscale groups becomes limited, so the mutual chaos increases. Thus, a distinctive 
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feature of the configurational entropy is its growing with pressure increase. Negative 
thermal expansion correlates to the configurational entropy. 

Strain engineering technology for polar films is based not only on the 
mismatch of thermal expansion, but to a greater degree on the difference in 
permanent lattices of film and substrate. According to principle of La Chatelier, if 
during formation of polar phase one of crystal size increases, then the forced change 
in this size of crystal should lead to the change in crystal polar state. In the biaxially 

stressed films, such materials are obtained that in the bulk state are not ferroelectrics 
at any temperature. The biaxial deformations of films make it possible to increase 
the Curie point by hundreds of degrees with a simultaneous increase in the 
polarization directed perpendicular to film thickness. Deformations, reaching value 
of several percents, have a great influence on the properties of polar-sensitive thin 
films so it becomes possible to obtain films with such properties that are not found 
in the natural materials. Thus, the difference in thermal expansion as well as the 
mismatch between lattice parameter of film and substrate can be used in modern 
technologies of microelectronics. 

Chapter 2. Interdependence of electrical conductance and polarization 
is devoted to the problem of a complex description of the electrical response of the 
material under study to an electric field applied to it. In the alternating electrical 
field, the electrically induced displace and move of charged particles lead to both an 
active and a reactive electrical current that is characterized usually by the complex 

permittivity, but also can be described by the complex conductivity. Between these 
complex parameters an unambiguous relationship can be established: both of these 
methods of a describing of electrical reaction of substance to applied electrical field, 
in principle, are equivalent. 

Electrical polarization is the charge separation while electrical conductivity 
is the charge transfer. At an alternating voltage, the connection between conductivity 
and polarization is obvious, since both of these phenomena are due to limited 
(polarization) and almost-free (conductivity) movement of electrical charges in a 
matter, and in both cases the inertial phenomena affect these movements. To be 
described in the sinusoidal electrical field both the dielectric displacement and the 
conduction can be represented by the complex parameters and Maxwell-Lorentz 
equations shows that the ohmic current density and the time derivative of electrical 
displacement are the additive quantities. That is why, the current density and bias 
current might be represented as the equivalent functions, if the complex values will 
be used to describe them. Material’s properties are usually characterized by the 
complex permittivity ε*(ω), but can also be described by the complex conductivity 
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σ*(ω). When these functions are represented by their real and imaginary parts, the 
complex conductivity is connected to the complex permittivity. However, mostly to 
describe materials parameters frequency dependence the complex permittivity is used. 

Thermally activated motion of charged particles, whose localization is 
determined by a set of potential minima and barriers, in the external electrical field 
give rise to both conduction and polarization. Polarization process predominates at 
lower frequencies, but when frequency grows the permittivity decreases that is 
accompanied by the correspondent increase of conductivity; it looks like as if 
polarization is turned into conductivity. Frequency dependence of effective 
conductivity can be useful evidence of physical nature of the polarization 
mechanisms. Inertia of charge transfer mechanisms can be clearly detected by 
dielectric spectroscopy methods, including the movement of electrons in metals. 
When charge carries show their inertia, the conductivity decreases; in metals 
conductivity decreases in the ultraviolet wavelength range so even the electronic 
polarizability of deep ionic shells in ionic lattice of metal becomes noticeable. In the 
doped semiconductors, the presence of free charge carriers decreases the refractive 
index: this negative contribution of plasma to the permittivity is seen at optical 
frequencies. In dielectrics, due to a low concentration and small mobility of charge 
carriers, the plasma oscillations are practically imperceptible. 

Chapter 3. Dynamics of electrical polarization describes the main physical 
property of dielectrics. For the application of dielectric materials in high-frequency 
electronics and information technology, the dynamic properties of polarization are 
most important, which can be described by both phenomenological and models 
representations.  

Relaxor model is discussed as a physical concept which it that coordinated 
response-polarization function of a system of dipoles, when their forced ordering by 
electrical field action is opposed by the chaotic disordering thermal motion. 
Justification of a relaxor model of dielectric spectra is given on the base of Debye 
formula of permittivity dispersion in the polar dielectrics. According to relaxor 
model, the electrical polarization of polar complexes is late as the frequency of 
electrical field grows; as a result, permittivity decreases while dielectric loss factor 
shows a maximum. In other words, at rather high frequencies the equilibrium 
distribution of the relaxing electrons, ions and dipoles has not enough time to be 
established. This effect is peculiar for the relaxation spectra, whose main 
characteristic is their diffusivity in rather broad frequency range.  

Oscillator model, describing the resonant dispersion of permittivity, is another 
key model in dielectric spectroscopy. This is physical model characterizing a 
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dynamic reaction of the system of elastically coupled electrical charges to the 
externally applied electrical field, whose action is opposed by the internal elastic 
force tending to return quasi-elastic system into the non-polarized state. Permittivity 
dispersion and corresponding losses, conditioned by quasi-elastic polarization, 
usually are observed at much higher frequencies then the relaxation processes; 
nevertheless in some dielectrics these losses become significant at microwaves, 
being important for some electronic components. At that, the presence of a minimum 
in the permittivity frequency dependence is principal sign of resonance dispersion 
that distinguishes it from relaxation dispersion.  

Dielectric spectra described by both relaxor model and oscillator model are 
very useful as a method, known in the electrical engineering as the Nyquist charts. 
When the polarization response is normalized to the value of the dielectric 
contribution, in the case of the relaxation dispersion the imaginary and the real part 
of permittivity on a complex plane are the Cole-Cole semi-circle. The resonant 
dispersion on the complex plane demonstrates more complex figure with a 
characteristic loop in the range of negative permittivity. 

Ferroelectrics new description makes it possible to refuse the concept of 
"spontaneous polarization", i.e., to the imagine that in polar crystal the "permanent 
polarization" exists. It looks more reasonable the assumption that electrical 
polarization appears as a response to external (not even electrical). This is due to a 
peculiar distribution of polar-sensitive internal bonds having distinction in ions 
affinity for electrons, i.e., electronegativity. In the ferroelectrics of order-disorder 

type large microwave absorbance is seen as in the ferroelectric phase, so in the 
paraelectric phase. Ferroelectrics of displace type, above their phase transition, 
practically have no dielectric dispersion (i.e., in their paraelectric phase); 
correspondingly, their losses above Curie point are small that might have application 
in the microwave tuneable devices. Below Curie point microwave absorbance of 
ferroelectrics is increased owing to domain walls relaxation (although dielectric 
losses in the single domain crystals of displace type ferroelectrics remain small).  

Chapter 4. Dielectric properties models explaining is given with 
considering of valence of elements constituting the crystal (taking into account the 
magnitude of their electronegativity) and by the quantum states of the electronic 
shells of atoms. In according to electronic theory of a valence, the inter-atomic bonds 
are due to the redistribution of electronic density in the outer orbitals, usually 
resulting in a stable electronic configuration of noble gas (octet) due to formation of 
ions (or shared electronic pairs between atoms). 
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Any dielectric is able to polarization in the external electrical field, but only 
some of dielectrics – polar types – can be polarized in non-electrical manner. Unique 
properties of polar crystals (pyroelectrics, piezoelectrics, etc.) can be described by a 
peculiar polar-sensitive internal structure, capable to generate electrical response 
onto non-electrical homogeneous (scalar) actions. Electrical polarization means that 
electrical charges separation occurs (which however remain non free). Electrons, 
ions and dipoles can acquire induced electrical moment (i.e., polarized state) through 
various mechanisms: (1) elastic reversible displacement of bound electric charges, 
(2) displacement of weakly bound charges with participation of their thermal 
motion, and (3) macroscopic displacement of free charges that later localize on 
defect places in dielectric. It should be noted that in the polar dielectrics all this 
processes can occur without external electrical field application but under the action 
of varying temperature, pressure, mechanical stress, exposition by sufficiently high 
energy irradiation, etc. 

Polar dielectrics-pyroelectrics have an ability to make the electrical moment 
Pi = γi⋅δT induced in them by the change of temperature δT; this property is 
described by the first rank material tensor: pyroelectric coefficient γi, i.e., electrical 
susceptibility to the change of temperature. Pyroelectrics also have an ability to 
create in them induced electrical moment Pi = ζi⋅p due to the change of hydrostatic 
pressure p, described by first rank material tensor: piezoelectric pressure coefficient 
ζi, i.e., they have sensitivity to the change in pressure. Polar dielectrics-piezoelectrics 
show the ability to create in them electrical moment induced by the mechanical 
stress: Pi = dikl⋅Xkl. This property is described by third rank material tensor: the 
piezoelectric module dikl (it can also be called as the susceptibility to mechanical 
stress). In fact, any experimental investigations of pyroelectric or piezoelectric 
effects do not allow determine directly the value of their “spontaneous polarization”, 
but experiments characterize only the magnitude of dynamic response of peculiar 
polar-sensitive internal crystalline structure.  

Spontaneous polarization presence in the pyroelectrics is questionable, since 
always existing free electric charges make it impossible availability of any 
equilibrium and unchanging polarized state. That is why, to explain the 
pyroelectricity and piezoelectricity in polar crystals, it is assumed that they contain 
the hybridized ionic-covalent polar-sensitive bonds that do not create any internal 
field, but are capable of electrical response generation to uniform non-electrical 
effect (heat, pressure, etc.). This response is described by the generalized electrical 
moment, which varies critically with temperature change. Ferroelectrics in electrical 
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field reorient polar-sensitive couplings with the nonlinear response, which gives 
different meaning of their spontaneous polarization. 

Polar crystals are characterized by a finely balanced structure of interatomic 
bonds, which is highly sensitive to the external influences. The mixed ionic-covalent 
polar-sensitive bonds make it possible for polar crystals to generate electrical 
response onto non-electrical influences (thermal, mechanical, optical, chemical, 
etc.). This response on scalar impact can be described by the generalized electrical 
moment, critically changing with temperature: Mijk(T) ~ (θ – T)n (at temperature θ 
response disappears). In the case of three-dimensional arrangement of polar bonds, 
the critical parameter is n = 2; for their two-dimensional expansion n = 1, and in the 
one-dimensional case (ferroelectrics), n = 0.5 (this is critical Landau index). Thus, 
distinction between pyroelectrics and piezoelectrics is not fundamental, and it 
consists in different spatial distribution of polar bonds. In the ferroelectrics, polar-
sensitive bonds are capable of changing their orientation with a nonlinear response 
to electrical field (hysteresis). At the same time, to explain the unique properties of 
polar crystals, it is not necessary to use the hypothesis of spontaneous polarization, 
which would be forcedly accompanied by the internal field that is difficult to explain 
in the equilibrium state. The reason for the existence of polar bonds (as well as the 
formation of crystals with non-centrosymmetric structure) is structural 
compensation for difference in electronegativity of neighboring atoms.  

Linear electromechanical effect (which is a peculiar property of polar 
crystals) can be interpreted as the linearized electrostriction. The point is that 
electrical field changes original symmetry of a crystal due to its electrical 
polarization. In this way, under fixed external voltage, the structure of a crystal turns 
into the artificially created polar structure (it becomes electrically-induced non-
centrosymmetric structure). In dielectrics which have large permittivity, electrically 
induced piezoelectric effect can become "gigantic", and this feature is really used 
now in electronics. Similarly, in the presence of electrical bias field in any crystal 
the pyroelectric effect also can be induced, that finds application in modern thermal 
sensors. In compliance with such electrically induced piezoelectric and pyroelectric 
effects, one can suppose that usual piezoelectric effect also can be explained as the 
“linearized electrostriction”. This assumption might be advanced according to the 
conception that fundamental reason of crystal intrinsic polar-sensitivity is the 
asymmetry in the electronic density distribution along the polar bonds between ions, 
which have different electronegativity (this mechanism replaces externally applied 
field).  
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Mixed covalent-ionic bonds, which in polar crystals is main property, 
guarantee piezoelectric and pyroelectric properties without external electrical field 
application to a crystal. In this way, instead of external electrical field, which need 
to be applied to ionic or covalent crystals in order to force them to have polarized 
state (although non-equilibrium), in the case of mixed covalent-ionic crystals their 
polar-sensitive state remains stable without any external field, being ensured by the 
fundamental property of ions – their electronegativity. Polar-sensitive bonds usually 
arise in such crystals, which have small coordination number (CN) which shows the 
number of nearest neighbors to given atom. Thus, to polar dielectrics and 
semiconductors an "open" structures correspond: they provide sufficient space for 
electronic orbits interaction. If in usual densely-packed crystalline structures this 
number is large (CN = 12 for metals and CN = 8–6 for ordinary dielectrics), then, 
for example, the coordination number in piezoelectric sphalerite structure and in 
pyroelectric wurtzite structure CN = 4. 

Chapter 5. Polar crystals peculiarities are seen in various experimental 
evidences of polar-sensitivity existence in the crystals: the similar structures of 
piezoelectrics and pyroelectrics; the chemical features of polar crystals confirming 
proximity of their properties; the increase in volume while polar-sensitive bonds 
self-ordering; the piezoelectric and electrocaloric contributions to the permittivity of 
polar crystals; the high-frequency dielectric absorption; the dependence of polar 
crystal elastic properties  on various electrical boundary conditions, etc. Features of 
the charge transfer in polar-sensitive crystals are explained: physical nature of giant 
change of conductivity in the critistors, posistors and varistors, as well as in the 
others field-controllable switching elements, the particularly those which exhibit the 
colossal magnetoresistance; the nature of high sensibility of nanostructured sensors 
based on zinc oxide are discussed.  

Polar-sensitivity in crystals manifests itself in the structural affinity of 
piezoelectrics and pyroelectrics with an example of zinc sulfide uniting in 
polymorphic structure the regions with sphalerite and wurtzite symmetry; as well as 
in the chemical features of polar crystals demonstrating different chemical 
sensitivity on the surfaces of opposite polarity. Moreover, polar-sensitive bonds 
ordering leads to the increased volume at the transition into polar phase; such 
crystals are characterized by the electromechanic and electrocaloric contributions 
into the permittivity as well as big high-frequency dielectric absorption. 

Charge transfer in some polar-sensitive crystals may depend on the symmetry 
of the polar phase: the large decrease of resistance in the critistors of vanadium 
dioxide type occurs from its triclinic (piezoelectric) symmetry; while large increase 
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of resistance in the posistors is due to doped barium titanate transition from the polar 
tetragonal (pyroelectric) structure into the non-polar cubic phase. Zinc oxide being 
best material for varistors (with giant change in resistance) has polar wurtzite 
(pyroelectric) structure with possible transformation into another but also polar 
sphalerite (piezoelectric) state. Others field-controllable switching elements, which 
exhibit the colossal magnetoresistance as well as high sensibility of nanostructured 
sensors based on the zinc oxide also belong to the polar-sensitive crystals.  

Electrical control by piezoelectric effect is very interesting for practical 
application in electronics: this opens possibility to implement tunable piezoelectric 
resonators and filters as well as various SAW devices. Mechanically induced 
pyroelectricity (and the volumetric piezoelectric effect) is possible to obtain in any 
polar-neutral piezoelectric (which is not pyroelectric). For this, an original method 
of partial limitation of thermal (or elastic) deformations is applied, due to which one 
of the polar-neutral axes is transformed into the polar axis. Obtaining the artificial 
pyroelectric effect (or the volumetric piezoelectric effect) is achieved in a composite 
system "non-deformable substrate – oriented plate of polar-neutral crystal". These 
studies can be realized in two- and three-dimensional structural arrangements of 
polar-sensitive bonds; as a result, the artificial pyroelectric effect is calculated for all 
10 classes of polar-neutral piezoelectric crystals. 

Special boundary conditions can be created for piezoelectric crystal to obtain 
the “pyroelectric effect” in 10 polar-neutral classes of crystals. Therefore, in any 
polar crystals, the changes in the polar-sensitivity under thermal (δT) or pressure 
(δT) variation provide the pyroelectric effect (Pi = γiδT) or the volumetric 
piezoelectric effect (Pi = ζiδp). At that, the pyroelectric coefficient γi as well as the 
volumetric piezoelectric coefficient ξi are the material vectors, which inherent to the 
polar crystals only. That is why, the polar-sensitive crystal can transform the scalar 
influences (δT or δp) into the vector type of responses, which are electrical voltage 
or electrical current. Temperature dependence of polar-sensitivity in the 
piezoelectric can be used in microelectronics for thermal sensors. By similar way, 
polar-sensitivity dependence on pressure can by applied in the mechanical sensors. 
Significant polar sensitivity in crystals of AIIIBV group can be observed along any of 
[111] directions, whereas in the standard-used direction of [100] type does not 
respond to mechanical vibrations and temperature changes.  

Chapter 6. Piezoelectrics: physics and applications. Mechanical property 
(elasticity) and electrical property (polarization) of piezoelectric crystals are 
interrelated, and, therefore, they can be considered together. This relationship is 
characterized by electromechanical coupling coefficient KEM – one of most 
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important parameters of piezoelectric materials and devices. In case of direct 
piezoelectric effect, the applied to piezoelectric mechanical energy is spent not only 
on elastic deformation, but also creates electrical polarization, which causes 
electrical energy accumulation. Conversely, supplied to piezoelectric electrical 
energy (in case of converse piezoelectric effect) is spent not only for its polarization, 
but also to its elastic deformation and elastic energy accumulation. The square of 
electromechanical coupling factor KEM

2 shows what part of energy, attached to 
piezoelectric, is converted into the energy of other kind in a static mode. However, 
this parameter is not a performance factor: firstly, because the losses of electrical or 
mechanical power are not considered, and, secondly, actual conversion efficiency of 
piezoelectric depends not only the KEM, but largely is on the shape, orientation and 
other peculiarities of piezoelectric element. 

Polar crystals and textures are distinguished by the fact that their electrical, 
elastic and thermal characteristics are interdependent. Moreover, during the study 
(or the use of devices) of only electrical effect (for example, polarization) reveals 
that corresponding electrical parameters depend on the mechanical and thermal 
boundary conditions: for example, permittivity of mechanically free crystal (εХ) 
differs from permittivity of clamped piezoelectric crystal εх (which can not be 
deformed), and always εХ > εх. By the same way, elastic stiffness of piezoelectric (or 
its elastic compliance) depends on its electrical state (short-circuited or open-
circuited) and therefore сЕ ≠ сD; in some cases they differ several times.  

Thermodynamic theory (phenomenological) allows, without specifying the 
molecular mechanisms, obtain all basic equations, describing direct and converse 
piezoelectric effect at the macroscopic level. These equations are used in 
engineering calculations, and parameters of these equations can be the basis for 
comparing the properties of different piezoelectric materials. For application in 
electronics and instrumentation, many piezoelectrics of different structures have 
been developed: crystals, ceramics, polymer materials, films, composites. One of 
most important piezoelectric crystals is quartz, which combines large mechanical Q-

factor (Qm ~ 107) with high thermal stability of resonant frequency in the operating 
temperature intervals. In electronics, piezoelectric crystals niobium tantalite, lithium 
tantalite and langasite, whose unique characteristics provide wide implementation 
of acousto-electronic devices, are widely employed. 

The chapter deals with properties of piezoelectric ceramics, polymer piezoelectric 
films, electrostriction materials and others. A description of the features is given for 

piezoelectric sensors, devises using converse piezoelectric effect, piezoelectric actuators, 
piezoelectric motors, piezoelectric transformers of voltage and current.  
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Chapter 7. Pyroelectrics: physics and applications. Transformative 
function of polar crystals is due to their peculiar physical structure and chemical 
composition. Several mechanisms of thermoelectric transformation in the polar 
dielectrics are discussed: the pyroelectric effect and converse to it electrocaloric 
effect are reviewed in the aspects of their use in electronic devices at various 
boundary conditions (adiabatic and isothermal development, mechanically free or 
clamped crystals study, short-circuited or open-circuited circumstances). The nature 
of thermoelectric coupling in polar-sensitive crystals as wellas its influence on the 
dielectric permittivity and thermal properties crystals are also described by various 
models and by thermodynamic calculations. The principles of operation of main 
types of pyroelectric sensors are considered: the motion detector sensors, infrared 
thermometers for high precision pyrometery; pyroelectric vidicons in both vacuum 
and microelectronic design, etc. Physical mechanisms and applications of 
electrically induced pyroelectric and electrocaloric effects at various conditions are 
also depicted. The possibilities of electrocaloric effect using are discussed in 
connection of its possible application in miniature solid-state refrigeration systems.  

Pyroelectricity is the property of a polar crystal to produce electrical energy 
when it is subjected to the change of thermal energy. It is possible also to define 
pyroelectric effect as the ability of crystals to generate electricity, when they are 
dynamically heated or cooled; at that, pyroelectric becomes polarized positively or 
negatively in proportional to the change of its temperature. Pyroelectricity looks like 
thermoelectric power conversion; at that, this effect is a linear one, so, according to 
Curie principle, a reversed effect must exist, namely, the electrocaloric effect, which 
the electrothermal energy conversion characterises. Physical mechanism of 
pyroelectric effect is as follows: under constant external conditions (temperature, 
pressure, etc.), the structure of polar crystal corresponds to its energy minimum. At the 
same time, the polar-sensitive interatomic bonds, striving for their mutual ordering, are 
in the subtle equilibrium with the thermal chaotic motion of atoms in crystal lattice. 
When this equilibrium changes, caused for example by the change in temperature (i.e., 
change in thermal energy), the polar crystal immediately reacts by the appearance of 
electrical polarization — bound charges appearance on the crystal surface. 

Electrocaloric effect is characterized by next physical mechanism: electrical 
field applied from the outside to a polar crystal violates its equilibrium state, which 
was previousy established thermodynamically under certain conditions at given 
temperature and pressure, which corresponds to the energy minimum. Applied field 
changes mutual ordering of polar-sensitive interatomic bonds, existing in the 
equilibrium structure. If applied electrical field is directed accordingly to the internal 



21 
 

orientation of polar bonds, then it increases total energy of a crystal and it heats up. 
If this field is directed oppositely, then crystal energy decreases, which is expressed 
in its cooling. Electrocaloric effect has a certain prospects for use in the miniature 
solid-state refrigeration systems. Using electrically induced phase transition from 
ferroelectric into anti-ferroelectric phase, a cooling up to 4 °C can be obtained in the 
single transition period. 

Thermoelectrical coupling in polar-sensitive crystals can be described by 
various models: the primary pyroelectric effect and the pyroelectric secondary 
effect; moreover, the electrically and mechanically induced artificial pyroelectric 
effects are possible. Hidden (or latent) intrinsic polarity in pyroelectric is only their 
ability to provide electrical (vector) response to any non-electrical (scalar) dynamic 
influence (such as uniform change of temperature). Primary pyroelectric effect 
reflects the strength of bonding energy of polar bonds and their resilience to the 
chaotic thermal motion: these bonds react to external action by such a change, which 
is accompanied by the electrical response, i.e., by the induced polarization. Secodary 
pyroelectric effect is the piezoelectrically transformed thermal deformation.  

Electrically induced artificial pyroelectric effect is possible in all solid 
dielectrics, but it has practical meaning only in the dielectrics with very high 
permittivity (103–105). Electrical field keeps induced polar state of dielectric in the 
opposition to the thermal motion in crystal; any violation of this equilibrium with 
temperature change leads to the electrical response: i.e., artificial pyroelectricity. 
Thermomechanically induced pyroelectric effect manifests itself in any piezoelectric 
material and arises along the polar-neutral axes (in pyroelectrics – along the special 
polar axis, being in this case the secondary pyroelectric effect). Partial limitation of 
thermal deformation turns the polar-neutral axis into the polar one. This effect can 
be of practical importance in wide-band semiconductors-piezoelectrics of AIIIBV 
type, allowing in the monolithic (one-crystal) devices combining pyroelectric 
element with amplifier. 

Infrared sensors use very small changes in temperature which can produce 
perceptible pyroelectric potential: are designed from such pyroelectric materials, 
when heat of a human or animal from several feet away is enough to generate 
voltage. Among wide variety of thermal sensors, using pyroelectric effect, motion 

detector sensors can be identified as well as infrared thermometers for high 
precision pyrometery, pyroelectric vidicons in both vacuum and microelectronic 
design, etc.  
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CHAPTER 1. THERMODYNAMICS OF DIELECTRICS 
 
Content  
1.1 Thermodynamic functions 
1.2 Dielectric permittivity temperature dependence 
1.3 Specific heat and configurational entropy 
1.4 Thermal expansion and entropy 
1.5 Thermal conductivity and thermal diffusivity 
1.6 Summary and self-test questions 

 
Many phenomena and effects could be attributed to the thermal properties of 

electronic materials conditioned by the thermal motion which determines important 
features in the electrical, magnetic, and other properties. Start with the fact that 
already the synthesis of crystals, arising their microsized and nanosized structures, 
next their alloying, annealing and quenching, as well as many other technological 
operations occur under the special thermal conditions. Thermal energy determines 
many properties of crystals; for example, generation and recombination of charge 
carriers as well as their equilibrium concentration setting in the semiconductors are 
due to thermal motion in lattice. In the different phase transitions, the dielectric-to-
metal transformations, various transitions in the ferromagnetic and ferroelectric 
states, as well as such noticeable phenomena as pyroelectricity, electrocaloric effect, 
magnetic cooling, thermostriction and others directly relate to the thermal properties.  

Thermodynamic approach to description of dielectric properties is important, 
particularly, for understanding of temperature, frequency and field dependences of 
dielectric permittivity, as well as for ferroelectric phase transitions analyzing, for 
energetic theories of piezoelectric and pyroelectric converters, as well as for the 
explanation of such phenomena as heat capacitance, thermal expansion and thermal 
diffusivity and conductivity in the polar dielectrics. 

The specific heat in the polar crystals contains an additional contribution due 
to the disordering-disordering processes of their polar-sensitive bonds. Statistical 
possibility of several states realizing increases the total entropy of a system: such 
configuration entropy is a part of total entropy of a system that is related to the 
position of constituent particles rather than to their velocity or momentum. It is 
physically related to the number of ways of arranging all the particles of a system 
while maintaining some overall set of specified system properties, such as energy. 
The change in configurational entropy corresponds to same change in macroscopic 
entropy. 
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Thermal expansion coefficient, reflecting the peculiarities of crystal inter-
atomic bonds, in most of crystals increases with temperature rise. The negative value 
of this coefficient, seen in the polar crystals in a certain temperature interval, 
correlates to the configurational entropy, which in opposed to vibrational entropy 
increases as pressure grows. Negative coefficient of thermal expansion testifies to 
dynamic self-ordering of polar bonds in crystals, and is seen not only in the 
piezoelectrics, but also in the semiconductors (like Si) that might be due to ordering 
of the virtual hexagonal polar phase.  

Thermal diffusivity coefficient is measured directly using a spread of plane 
temperature waves excited by Peltier element. By this way, both self-ordering of 
polar bonds and their forced ordering in the bias electrical field are studied. The 
interaction of acoustic and optical phonons in the polar crystals manifests itself in 
two ways: (1) it gives an additional deposit into phonons scattering, observed as a 
deep minimum of diffusivity; (2) it makes contribution to heat transfer with an acute 
maximum of diffusivity seen in the antiferroelectrics, in which soft phonon mode 
vanishes in the middle of Brillouin zone and phase transition occurs with 
multiplication of lattice unite cell, so the optical phonons actively mix with the 
acoustic ones, participating in the heat transfer. 

 

1.1 Thermodynamic functions 
 
A description of thermodynamic state in any system or material (particularly, 

in dielectrics) is dependent on the purpose of theory application, i.e., what kind of 
physical properties of a substance needs to be predicted or explained. In the case of 
dielectric, the thermodynamics allows to describe processes of dielectrics 
polarization and many other properties and features in terms of energy: the dielectric 
is regarded as the thermodynamic system, which equilibrium state can be changed 
as by electrical field application so due to many other factors.  

At that,  
∙ Thermodynamic state is determined by the combination of thermodynamic    

parameters and it is characterized by the internal energy of a system.  
∙ Thermodynamic parameters are the temperature (T), pressure (p), volume 

(V) and others; 
∙ Thermodynamic process is the change in the state of a system; depending on 

the conditions (the constancy of certain parameters), this process can be isothermal   
T = const, adiabatic δQ = const, isobaric p = const, and isochoric p = const; 
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∙ Absolute temperature T measured in {K] (Kelvin degree) characterizes the 
state of a body at the thermodynamic equilibrium (this temperature is proportional 
to average kinetic energy of particles); 

∙ Heat Q measured in [J] (joule) is the energy absorbed by a system when its 
temperature increases when system does not perform work (heat represents energy 
of thermal motion of particles forming a body);  

∙ Specific heat C measured in [J/deg] or in [cal/(deg⋅mol)], is the absorbed 
(or released) heat when temperature changes: it is the ratio of heat (given to a body 
from outside) to corresponding increase in temperature.  

∙ Internal energy (U) is that part of the total energy of a thermodynamic 
system, which does not depend on the choice of the frame of reference, but can 
change within the framework of the problem under consideration. Potential energy 
is a part of the energy of system or body that depends on the positions of particles in 
body in force fields. In solids, the sources of potential energy are Coulomb forces 
that cause the attraction of opposite sign charges and the repulsion of same sign 
charges. Kinetic energy (or energy of particles motion in solids) is due to the fact 
that atoms and ions continuously oscillate due thermal excitation. Internal energy is 
a collection of those variable components of the total energy of system that should 
be taken into account in a particular situation. Therefore, the internal energy is an 
additive quantity, that is, the internal energy of system is equal to the sum of internal 
energies of its subsystems, i.e., internal energy of system includes the energy of 
various types of motion and interaction of particles included in the system: the 
energy of translational, rotational and vibrational movements of atoms and 
molecules, the energy of intra- and intermolecular interactions, the energy of the 
electronic shells of atoms, etc. When temperature rises, the internal energy increases, 
and when temperature decreases, it decreases, but the constancy of the temperature 
of a system does not mean the invariability of its internal energy, for example, the 
temperature of the system is unchanged during phase transitions, but the energy 
changes. 

∙ Enthalpy (H) is the isobaric-isentropic potential, the thermal Gibbs function, 
which determines the heat content of system by doing constant pressure and 
corresponds to the amount of energy that is available for conversion into heat at a 
certain temperature and pressure. Enthalpy is the extensive quantity, i.e., for a 
composite system, it is equal to the sum of the enthalpies of system's independent 
parts; in this case, like the internal energy, the enthalpy is determined up to arbitrary 
constant term. Being general energetic function, the enthalpy is such property of 
thermodynamic system that is defined as the sum of system's internal energy and the 
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product of pressure p on volume V. As temperature increases from T1 to T2, the 

enthalpy increases: 

2

1

2 1

T

P

T

H H C T  
, where H1 is the enthalpy at initial 

temperature T1, and H2 is the enthalpy at final temperature T2 and Cp is the specific 
heat under constant pressure p.  

The enthalpy can be defined in two ways. The first method is based on the 
internal energy U and the work pV performed by a system relatively to the 
environment:  

H = U + pV, 

where P is the pressure and V is the volume of a material. The second method of 
enthalpy definition is based on the Helmholtz free energy F  

H = F + pV + TS, 

where F = U – TS, or on the Gibbs free energy G: H = G + TS, where G = F + pV  
(or G = H – TS) while TS represents the energy conditioned by internal disordering 
in a matter, i.e., the energy assessment of a chaos.  

It is appropriate here to clarify some of introduced concepts: 
∙ The Helmholtz free energy (F = U – TS) is the isothermal-isochoric 

thermodynamic potential that measures useful work obtainable from thermodynamic 
system at constant temperature (isothermal processes) and constant volume 
(isochoric processes). Note that at constant temperature and in equilibrium 
state system Helmholtz free energy is minimized. 

∙ The Gibbs free energy (G = F + pV) is isobaric-isothermal thermodynamic 
potential is a quantity whose change in the course of transformations is equal to the 
internal energy change of a system. The Gibbs energy shows what part of the total 
internal energy of a system can be used for the transformations (or obtained as a 
result of them) and makes it possible to establish the fundamental possibility of 
thermodynamic process under specified conditions. Mathematically, this is a 
thermodynamic potential of the following form: 

G = H – TS = U + pV – TS. 
The spontaneous course of this isobaric-isothermal process is determined by 

two factors: the enthalpy, associated with its decrease in system, and due to increase 
in its entropy (system disordering). It is the difference of these thermodynamic 
factors that is a function of the state of the system, called the isobaric-isothermal 
potential or Gibbs free energy. In solids, when thermodynamic processes studying, 
the more expedient is to take into account not a pressure, but the volume of a system, 
so the preference is given to the Gibbs free energy, G = F + PV. Its minimum 
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corresponds to the equilibrium state of a system, changing at constant temperature 
and constant volume.  

                    
 
 

      (A)             (B) 
Fig. 1.1. Thermodynamic potentials: A – temperature dependence of enthalpy and Gibbs energy 

G; B – diagram connected different thermodynamic functions (following Max Born) 
 
As seen in Fig.1. 1, the enthalpy in all cases increases with temperature, but 

the value of entropy (TS) increases faster. Consequently, the Gibbs free energy 
decreases with temperature rise. Since it is the free energy that used in subsequent 
discussions below, it should be noted that at zero absolute temperature Gibbs free 
energy equals enthalpy: G = H. At the same time, the free energy decreases with 
temperature increase, but the rate of free energy decrease is associated with the 
entropy, Fig. 1.1. 

The entropy (S) is the meaningful property of thermodynamic system 
denoting the measure of irreversible energy dissipation using to describe the 
equilibrium (reversible) processes. Besides, in the nonequilibrium (irreversible) 
processes, the entropy serves as a measure of the proximity of the state of a system 
to equilibrium: the greater the entropy, the closer the system is to the equilibrium; it 
is obvious that in the state of thermodynamic equilibrium, the entropy of the system 
has maximum. The physical meaning of entropy is the logarithm of the number of 
available microstates of the system; entropy dimension in SI units is 
[kg⋅m2⋅s−2⋅K−1] or the "joules per kelvin", [J⋅K−1]. Entropy is defined as 
function of the state of a system; the difference of entropy in two equilibrium states 
1 and 2 equals to the reduced amount of heat δQ/T, which system needs to give in 
order to be transfered from state 1 to state 2 along any but quasi-static path: ΔS = S2 

– S1 = ∫ δQ/T. Since the entropy is determined as to arbitrary constant, then in initial 

state it is possible to set S1 = 0, then ΔS = ∫δQ/T. This integral is taken for the 
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arbitrary quasi-static process. The differential function of the entropy has a form dS 
= δQ/T. Also, since the entropy is always positive and increases with temperature 
rise, the slope of free energy plot on temperature continuously increases as seen in 
Fig. 1.1A, where no phase transformations are implied in a given substance. 
However, when in the studied material the different phases are possible, the value 
of free energy shoes anomalies which gives important information about 
correspondent phase transformation, at that, the lower is the free energy the more 
resistant is the phase.  

[Useful note. Figure 1B shows a helpful mnemonic Max Born diagram, which 
might be used for better imagination of the entire picture of thermodynamic 
potentials. It is written in such way: the vertical S → T means "Sun shines onto 
Trees), the horizontal p → V can be identified with "water flows from peak to 
Valley). Next, following clock-arrow, put U, and then in the alphabet order F, G, H. 
If it’s needed to find the full differential of any thermodynamic potential, it’s going 
to be consist of two sums of multiplication of neighbor’s variables differentials 
multiplied on another two variables, which stand at another side of appropriate 
arrow. The pointed by the arrows variables (T and V, when one looks for their 
neighbor potentials, such as U, F and G), it should be written minus “–" before it. 
For example: dF = – SdT – pdV,   dG = Vdp – SdT,   dH = Vdp + TdS and dU = TdS 
– pdV. And if one wants to find differense between F and G (for instance), subtract 
dG from dF:  dF – dG = – SdT – pdV – Vdp + SdT = – d(pV), and next integrate: F 

= G – pV. Or for difference between F and U: dF – dU =  – SdT – pdV – TdS  + pdV 
= – d(TS), and after integration get: U = F + TS].  

 

1.2 Dielectric permittivity temperature dependence 
 
Electrical polarization of dielectrics is characterized by the relative dielectric 

permittivity, which is dimensionless parameter corresponding to ratio of the 
electrical induction D to the electrical field strength E: ε = D/ε0E. Dielectric 
permittivity characterizes also the density of electrical energy in the polarized 
dielectric; depending on the mechanisms of polarization, permittivity varies in 
different ways on  temperature and also on intensity and frequency of changing 
electrical field acting on dielectric. Further it will be shown that without going into 
the details of physical mechanisms of polarization, only from the general 
thermodynamic provisions, it is possible to make the important predictions and 
conclusions as to these mechanisms peculiarities. 
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Next the only most general energy relations that characterize the phenomenon 
of polarization in dielectric will be considered. To describe the state of polarized 
dielectric, the correspondent thermodynamic functions might be selected: free 
energy F, internal energy U and entropy S. At that, the thermodynamic parameters 
(independent variables) should be temperature T and electrical field E that allows 
the best possible way to describe permittivity temperature variation ε(Т). With this 
choice of parameters, it is supposed that the volume of a dielectric maintains 
constant; therefore, this approach does not include as thermal expansion so 
electrostriction of a dielectric, supposing that these effects are too small (however, 
if need, these restrictions also might be considered when using the energy relations 
obtained below). 

The first law of thermodynamics (the law of energy conservation) for 
dielectric polarization process is: 

dU = dQ + EdD                                                    (1.1) 
where dU is the change in internal energy per unit volume of dielectric and dQ is the 
change of a heat. Equation (1.1) means that the increase in energy dU during 
thermodynamic process, at which an electrical field Е or temperature T are changing 
(or both changing simultaneously), the equals to heat dQ obtained by dielectric, and 
work EdD, which is performed by the electrical field during polarization process in 
a dielectric. The free energy which characterizes the maximal work which system 

can run at constant temperature is: F U TS  .  

In compliance with the second law of thermodynamics, the alteration of 
entropy equals: dS = dQ/T, where dS can be expressed in terms of parameters E and 
T. However, instead of E, the Е2 should be selected as the independent variable, 
because the energy is a quadratic function of the field strength: 
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. 

It is important to note that entropy of reversible thermodynamic processes is 
the total differential. This means that for reversible process the value of integral from 
dS does not depend on the path of integration, but it is determined only by the limits 
of integration, i.e., by the initial and final state of a system in the thermodynamic 
process. So to get the differential equations for internal energy, it needs to use this 
property: 
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The following are the main defining cases. 

1. The case  = Const needs to be considered in order to obtain the baseline 
data for subsequent consideration of dielectric permittivity changing with the 
temperature and the electrical field.  

In view of D = 0E, the change of electrical induction, taking into account 
the energy conservation law (1.1), is: 

0 0 0d d d dD E E E        . 

Turning to the variable E2 and using the relationship
 2d 2 dE E E

, it is possible to 
obtain:  

 20d d
2

D E
E

 
 

. 
Dy substituting this expression into the above equations, and with regard to 
dependence of internal energy on selected variables T and E2, it is possible to get: 
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From right side of this equation, the dQ can be determined, and next find dS: 
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According to the property of total differential 
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Now the next differential equation for internal energy can be obtained: 
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.  

After integration, it is possible to get an important formula, which expresses 
the change in the internal energy during polarization in the case of constant 

permittivity: 
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From these expressions it follows:  2 0S E  
 . Therefore: 
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So, while the polarization occurs in the dielectric which has ε = Const the 
entropy is not changing, while the change in the internal energy U equals to the 
change in free energy F. 

2. The case ε  = ε(Т) regardless of polarization mechanisms is the next 

important point actual for many dielectrics used in electronics, because in most of 
them their permittivity varies with temperature. It is all the more important that the 
developers of dielectrics for their use in electronics usually strive to eliminate the 
temperature dependence of permittivity by investigating different mechanisms of 
polarization. 

In a given case the change of electrical induction is 

                   
 20

0 0 0d d d
2

D E E dT E E dT
T E T

  
   

 
   

  . 

Consequently, the change of internal energy equals to: 
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Defining dQ, it needs to get 
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                                                 To obtain the differential equation for energy change, the property of total 
differential dS is used. After transformations: 
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The integration of this differential equation needs to use nest expression for internal 
energy: 
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After integration it can be obtained: 
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Therefore, the free energy is 

                                  
  2

0 0

1

2
F F T E  

                                           (1.4) 
These relations for U, S and F are significantly different from the expressions 

characterizing dielectrics with constant permittivity. In particular, from comparison 

of these expressions, it is seen that well-known formula 

2
0

1

2
E 

for the energy of 
polarization characterizes the only free energy F change of dielectric in the 

electrical field but not the change in its internal energy U. 
Turning to the new thermodynamic parameters T and S (instead of T and E), it is 
possible to derive formula that links εТ and εS: 
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 ,                                 (1.5), 

where C is the specific heat while the index P means that heat capacity (as well as 
derivative дЕ/дТ) is determined at the condition, when the polarization is constant. 
As follows from the equation (1.5), the isothermal permittivity is always bigger than 
the adiabatic permittivity: εТ > εS.  
Obtained energy relations can be used to analyze many properties of dielectrics 
which are associated with the process of polarization. In particular, it is possible to 
determine whether the way of thermodynamic process of polarized state establishing 
has any influence on the magnitude of permittivity. 

If the process of polarization is considered as the isothermal (dТ = 0), the 

internal energy of polarization equals 
2

0

1

2
E 

, so its temperature dependence can 
be not taken into account during the determination of polarization energy. In 
practice, however, isothermal process is difficult to implement, since it is possible 
only at a very slow change of the electrical field and in the case of very good heat-
conducting contact of test dielectric and environment (that is the "thermostat"). 
Measuring studied sample should be provided only in the subsonic frequency range 
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and only for rather thin films deposited on the massive metallic substrate. In other 
cases, it is impossible for usual bulk sample to meet the basic requirement of 
isothermal process when the establishment of thermal equilibrium between sample 
and thermostat needs in all stages of experiment (such studies are difficult to achieve 
in practice). However, as will be noted earlier, in the case of nanoscale samples, the 
isothermal process takes place under the normal conditions. 

Usually most research of dielectrics are carried out under the adiabatic 
conditions (dS = 0) when at time of voltage change any thermal equilibrium between 
the dielectric and environment has no time to install. Already at 50 Hz electrical field 
changes 100 times per second; in addition, dielectrics have low thermal conductivity 
that makes difficult to heat exchange with the environment. Thus, in the most cases, 
real energy of dielectric polarization is described by the relation (1.4). From resulting 
expressions for U, F and S, it follows that the change in free energy during 

polarization does not depend on the changes ε(Т), and always equals 
2

0

1

2
E 

. 

However, the temperature dependence of permittivity significantly impact on the 
change in entropy. If the permittivity increases during the heating of a dielectric, that 
is, when the temperature coefficient of permittivity is positive (TCε > 0), the change 
in entropy S – S0(Т) during polarization must be positive. Thus, not discussing details 
of physical processes that occur in the dielectric, only from general thermodynamic 
considerations, it can be concluded that:  

If the dielectric, characterizing by TCε  > 0 (that means permittivity increase 

with temperature rise), is placed in the electrical field, the change in the entropy is 

positive, so such physical processes occur, which reduce the degree of ordering in 

the molecular or atomic structure in the dielectric.  

Conversely, if in the dielectric TCε  < 0, that is, if its permittivity decreases 

with heating, the change in the entropy is negative: it means that basic mechanisms, 

which determine polarization in case of external electrical field application, results 

in the increase of ordering of molecules (ions, atoms) of a dielectric. 

These important conclusions are applicable to the ferroelectrics and 
paraelectrics, but the most convincing are their application to the relaxation 
polarization. 

3. The case ε  = ε(Т) applied to thermally activated polarization, takes into 
account the feature that thermal motion of the particles in a dielectric may greatly 
affect on the polarization process (if dipoles, ions or electrons are weakly bound in 
dielectric structure). Remaining localized in the nano-size regions, these particles 
under the influence of thermal motion can make thermally activated jumps, moving 
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within atomic-dimension distances. Relaxation time of thermally activated 
polarization is strongly dependent on temperature, that is why dielectric contribution 
and losses generated by thermally activated polarizations essentially changes with 
temperature and frequency: at higher temperatures and frequencies, the permittivity 
decreases with temperature so TCε < 0, while at lower temperatures and frequencies 
the permittivity increases with temperature so TCε  > 0. Let's start with the first case 
when Curie's law is satisfied (by analogy with paramagnetics),  

1

K

T
                 (1.6) 

where T is the absolute temperature, K is the Curie constant, and ε1 characterizes the 
fast processes of polarization which only a little depends on temperature (this 
dependence is neglected). Calculated from formula (1.4), the internal energy is: 
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. 

Therefore, it turns out that the contribution into internal energy is possible only from 
the temperature-independent part of polarization. On the contrary, the change in the 
entropy is due to the contribution from those polarization which varies with 

temperature: 
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. 
 

Since entropy is a measure of disorder of the molecules, and suggesting that the 
specific mechanism of thermal polarization is the orientation of dipoles in the 
electrical field, obtained expressions can be interpreted as follows: in the absence of 
electrical field the dipoles are oriented randomly, while the electrical field influence 
results in partial ordering of dipoles orientation, and the greater the field strength, 
the more dipoles are oriented. 

   

        (A)                                                              (B) 
Fig. 1.2. Temperature dependence of permittivity and main thermodynamic functions for 

dielectrics with thermal polarization prevailing: A – within the limits of Curie law;  
B – in the wide temperature range 
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Temperature dependence of permittivity and main thermodynamic functions 
of ΔS, ΔU and ΔF for dielectric with thermally activated polarization are shown in 
Fig. 1.2A. Free energy changes with temperature, because it contains not only the 
temperature-independent contribution from internal energy, but the contribution 
from the entropy that is dependent on temperature and electrical field: 

           
  2
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1
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K
F F T E

T
     
  .         (1.7) 

From thermodynamic analysis of this example it follows that the expression 
(1.7), which characterizes the temperature dependence of permittivity, in principle 
can not be true at very low temperatures. This would be in contradiction to the third 
law of thermodynamics, which states that the entropy of any system in the absolute 
zero is the universal constant that can be set equal to zero. From formula (1.7) it 
follows that the entropy in electrical field might increase at low temperatures.  

Therefore, at very low temperatures the Curie formula (1.6) can not hold true. 
Indeed, in the description of thermal polarization, the expression (1.6) is a 

special case of more general relationship 
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1 exp

K

b
T B

T

  
        , (1.8)  

from which it implies that in broad temperature range thermally activated 
polarization is characterized by the asymmetric maximum of permittivity (Fig.1. 2B). 
It is easy to show that the change in entropy in this case is different in different parts 
of shown temperature dependence of permittivity.  

In those temperature range, where the permittivity increases with 

temperature, the electrical polarization leads to entropy increase.  

4. The case ε  = ε(E,Т) describes the non-linearity of thermally activated 
polarization, i.e., takes into account not only dynamic properties of thermally 
activated polarization, but also the nonlinear responses of this polarization seen in 
strong electrical field.  

The dielectric nonlinearity may be of interest for some applications in 
electronics, e.g. the nonlinearity of paraelectrics at ultrahigh frequencies. But as an 
illustrative example, it is possible to analyze dielectric non-linearity at different 
temperature for the thermally-activated polarization.  

From elementary models of this polarization (for example, the thermal-
electronic or thermal-ionic polarization, occurring in solid dielectrics having high 
concentration of crystal defects), the dependence of the permittivity at the same time 
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on temperature and electrical field, in a simple approximation can be represented as 
follows: 
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        , 

where ε1 characterizes the fast (deformation types) polarization, which is lightly 
affected by T and E, and coefficient B depends on the parameters of molecular 
models of polarization. 

 

   
 

(A)                                                                  (B) 
Fig. 1.3. Temperature dependence of permittivity and entropy for dielectrics with thermally 
activated polarization in strong electrical field: A – within the limits of Curie law; B – in the 

broad temperature range; εE and ΔSE are determined in the strong electrical field 

 
A joint temperature and field dependence of permittivity and entropy is shown 

in Fig.1. 3. In this case, ε(E) dependence influences on the thermodynamic functions 
as follows: in the strong electrical field, the internal and free energy reduces while 

the entropy increases.  
Specific issues related to the thermodynamic description of thermodynamics 

application to the ferroelectrics, piezoelectrics and pyroelectrics will be discussed 
further. 

 

1.3 Specific heat and configurational entropy 
 
A solid is characterized by the strength, hardness and rigidity that seemingly 

exclude the possibility of any internal movement. However, in solids there are many 
different types of microscopic motions and displacements. Firstly, there is a 
movement of structural defects: the displacement of interstitial atoms, dislocations 
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and vacancies). In the vicinities of defects the energy of crystal is increased, so 
defects can move (very slowly) in order to find energetically more favourable 
configuration. Secondly, a diffusion is another type of atoms or ions motion in solids.  

This mechanism is a result of thermal fluctuations: the kinetic energy of some 
particles due to fluctuations can get so big that particle can overcome potential 
barrier that separates one particle from another however, in most cases the 
probability of such processes at normal temperature is small.  

Thirdly, the electrons can move in solids, and just their movement determines 
many electrical and magnetic properties of a matter. It is obvious that in the case of 
ionic conductivity cations and anions show the directional move in a crystal.  

However, in the listed cases, microscopic movements in solids are not limited. 
Despite the fact that a solid the aggregate of regularly spaced and strongly interacting 
with each other particles, they particles are subjected to the microscopic oscillations 
and other excitations, which extend through crystal in a form of weakly interacting 

waves.  
To explain main characteristics of solids, in this case the heat capacity, it is 

considered that solids contain some "hidden" states – quasiparticles, which are the 
collective movement of many closely located atoms (such as local vibrations in 
crystal lattice).  

Although in each excitation many atoms are involved, this movement, 
nevertheless, has the atomic scale. For such quasiparticles, which number in any 
state is unlimited, the Bose-Einstein distribution is valid, and these particles are the 
bosons.  

If quasiparticles are a subject of Pauli principle, to them the Fermi-Dirac 
distribution is applicable, and these particles are fermions. The main contribution to 
the heat capacity of crystals is made by the bosons (only at very low and at very high 
temperatures, the contribution of fermions to the heat capacity can turn out to be 
significant).  

Quantum mechanics describes microscopic objects only mathematically, and, 
certainly, any classic model of quasiparticle is not adequate.  

However, it is possible to keep an idea of quasiparticles as some mobile 
"clusters" in crystal which might be described by the overall picture of waves that 
looks like "wave-clots" or “wave-packets”, Fig. 1.4. With some caution, one can 
assume that this is how the phonons that determine the heat capacity of the crystal 
look like. 
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Fig. 1.4. Wave packet in two-dimensional presentation 

 
1. Basic definitions. It is worth recalling that the specific value of heat 

capacity of a body is the physical quantity defined as a ratio of the amount of heat 
dQ obtained by a body to the its temperature increase by dT: С = dQ/dT, so the 
commonly used unit of specific heat in SI is [J/K]. However, the studied substance 
can be measured in the kilograms, cubic meters or moles. Correspondingly, the mass 
specific heat Cm is the amount of heat given to the unit mass of a material to increase 
it temperature by one Kelvin, so and specific heat is measured in [J⋅kg–1⋅К–1]. 
Respectively, the volumetric specific heat Cv is the amount of heat necessary to bring 
it to the unit volume of material, and it is measured in [J⋅m–3⋅К–1]. By the same 
way, the molar specific heat Cμ is measured in [J/(mol⋅К)], and, at last, in the Gauss 

system, the specific heat is determined in [cal/(g-mol⋅К)].  
The heat capacity might be dependent on:  
- various mechanical boundary conditions, which lead to difference between 

the CX peculiar for the free crystal (stress X = 0), and Cx for the clamped crystal 
(strain x = 0); 

- various electrical boundary condition when CE is defined for the short 
circuited crystal (E = 0) while CD is measured in the close circuited crystal (D = 0); 

- different thermodynamic processes, at which the CT corresponds to the 
isothermal process (T = Const ), the CS is defined during the adiabatic process (S = 
Const), the CV is defined while isochoric process (with constant volume of a system, 
V = Const) and the Cp in peculiar for the isobaric process, at which the pressure 
remains unchanged (p = Const). 

Historically, several theories of the lattice specific heat were developed. The 
first was the law of specific heat constancy (Dulong-Petit’s law) that corresponds to 
the classic ideas, but with some accuracy is valid at room temperature and higher. 
The second was the Einstein’s quantum theory of heat capacity, and it was first 
successful attempt to use quantum mechanics to describe specific heat in solids at 
low-temperatures. The third was the Debye’s quantum theory of heat capacity based 
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on the model of the constrained atomic vibrations, and showed better 
correspondence to low temperature experimental data than the Einstein's theory. The 
fourths was the Born’s theory of lattice dynamics that represents the most advanced 
method to describe crystal lattice dynamics, including theory of heat capacity.  

∙ The classic law of specific heat constancy states that the molar heat 

capacity of different solids is the same (at room temperature and increased 
temperature) and equals Сsolid = 3R, where R is the universal gas constant. Very 
important is that molar heat capacity in solids at ambient temperature more is twice 
as high in comparison with heat capacity of ideal gas: Cgaz = 3/2 R, Fig. 1.5. It should 
be remind that one mole of any substance contains the same number of atoms 
determined by the Avogadro number: NA = 6.02⋅1023 mol–1.  

 
 

Fig. 1.5. Dependence of molar heat capacity of temperature: 1 – ideal gas; 2 – solid body 

 
According to classic statistics, each degree of freedom of a gas particle makes 

same contribution to the molar heat capacity. This rule is the law of equipartition. 
Any particle of monatomic gas has only three degrees of freedom; according to this 
the molar heat capacity of a gas should be equal to 3/2 R, that is, about 13.5 
J/(kmol⋅К); in Gauss units this is 3 cal/(mol⋅К) that is in good agreement with 
experiments.  The reason is that the free atoms of gas have exclusively the kinetic 

energy; each gas atom has three degrees of freedom and the contribution to energy 
of each degree is (kBT)/2 that is just (3/2)kBT in total. Since one mole contains of NA 
atoms, the molar specific heat of a gas equals 3/2 R, Fig. 1.5. Often used in the solid 
state theories Boltzmann constant kB = R/NA defines the relationship between 
temperature and energy: kB = 1.4∙10–23 J/K = 8.6∙10−5 eV/К). 

[Note. The universal gas constant R = 8.314 J⋅mol−1K−1 equals to the 
expansion of one mole of ideal gas in the isobaric process with the increase in 
temperature by 1 K. It enters into equation of the state of ideal gas: pV = RT, and 
equals the difference between molar specific heat of ideal gas at constant pressure 
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and constant volume: R = Cp − CV. The Avogadro number NA = 6,022⋅1023 mol−1 
is the physical quantity numerically equal to the number of specified structural units 
(atoms, molecules, ions) in 1 mole of substance].  

The atom, being constrained in the crystal lattice, during its vibration 
possesses not only the kinetic but also the potential energy, which equals to kinetic 
energy on average; that is, each atom in a lattice has the twice as much energy in 
comparison with same atom in a gas: 3kBT. Exactly because of this fact the law of 
specific heat constancy follows. The Dulong-Petit’s law, in a dynamic formulation 
of a problem, is derived by the assuming that crystal lattice consists of atoms, and 
each atom is the harmonic oscillator in the three dimensions (due to 3D lattice 
structure), whereby the fluctuations in the three orthogonal directions are 
independent. This means that each atom can be associated with a superposition of 
three oscillators with energy E that satisfies to following formula: E = kBT. This 
formula follows from the theorem of energy equipartitioning among the degrees of 
freedom. Each oscillator has one degree of freedom, and, therefore, its average 
kinetic energy equals to kB/2 per temperature unit. Since the oscillations are 
harmonic, the average potential energy equals to the average kinetic energy, so the 
total energy, respectively, equals to their sum. The number of oscillators in one mole 
of substance is 3NA, and their total energy per one Kelvin equals to the specific heat 
of a solid; just from this reasoning the law of constant specific heat follows directly. 
Thus, the classic (and the simplest) idea as to the thermal motion in the crystal lattice 
can be reduced to the model of independent oscillators. 

Note that law of the molar specific heat constancy in crystals does not depend 
on the type of atoms (or ions) of a solid body and does not depend on temperature; 
it should be noted, that even this relatively simple model of equal and independent 
oscillators is capable to explain this feature. However, the low temperature 
investigations of specific heat demonstrates a fast decline of Сsolid(Т) characteristic, 
shown in Fig.1.5 by dotted line. Moreover, while approaching to absolute zero, the 
specific heat vanishes: Сsolid → 0. All this testifies a shortcomings of the simple 
model of classic oscillator. The temperature dependence of the specific heat in solids 
at low temperatures is explained in the quantum models of Einstein and Debye. 

Einstein's quantum theory of specific heat. Main assumption of this theory 

is that atom-oscillator in crystal lattice is the quantum object, not the classic one. 
However, as in the previous model, these oscillator again is considered as 
independent. The quantum oscillator with frequency ν can absorb (or emit) energy 
only by portions – by the quanta: hν = ћω. This is shown schematically in Fig.1. 6 
(see left chart). In the case of relatively high temperature (T3), when thermal motion 
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is rather intense, the average thermal energy of oscillator (kBТ3) is much greater than 
quantum of oscillator energy (kBТ3 >> ћω), so the fact, that oscillator is the quantum 
oscillator, is not significant, and, therefore, the classic Dulong-Petit’s law is 
satisfactory. 

 
 

Fig. 1.6. Specific heat quantum model for independent oscillators (curve 1) and more correcr 
model of coupled oscillators (curve 2) 

 

 
In case of low temperature, the average energy of thermal motion becomes 

approximately same as energy of quantum oscillator: kBТ1 ~ ћω. Of course, energy 
distribution between lattice vibrations is chaotic, but when crystal is getting cooled, 
the number of quantum oscillators (which do not accept and do not radiate energy) 
increases, so the specific heat should be reduced with temperature decrease. This 
result was obtained by Einstein. His theory is based on the assumption that atoms in 
the crystal lattice behave as harmonic oscillators which do not interact with each 
other. The number of oscillators in one mole of substance is equal 3NA and their 
energy is quantized. According to the model, proposed by Einstein, close to absolute 
zero of temperature the specific heat tends to zero, but at high temperatures the law 
of Dulong-Petit’s holds true. The temperature dependence of Clattice in the Einstein's 
model is described by the exponential law (Fig. 1.6. curve 1). However, subsequent 
experiments have shown that in fact this dependence is described by a cubic 

parabola: С ~ Т 3. As it turns out, it is necessary to consider the interaction between 
adjacent atoms; such calculations is made by Debye. 

Debye’s model of specific heat takes into account the contribution to heat 

capacity from the lattice of interacting atoms. This model correctly predicts the low-
temperature specific heat proportionality to T 3, and considers that atoms-oscillators 
in crystal lattice are elastically connected to each other, so their vibrations are 
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interdependent. To explain the influence of atoms interaction on the frequencies of 
their oscillations, two models are shown in Fig. 1.7a: free and bound pendulum. In 
the case of free pendulum the eigenfrequency of oscillations ω is dependent only on 
the length of pendulum – this model corresponds to the case of independent 
oscillators discussed before. The constrained pendulums, Fig. 1.7a, can serve as a 
model to explain simplest two-atom bonding. In the case of two resiliently connected 
pendulums, the oscillation process becomes more complicated, as each pendulum 
has same eigenfrequency ω but there is also the additional combinational frequency 
Ω. If there would be three pendulums, then such a system would have three 
characteristic frequencies. Obviously, for n pendulums (that mimics crystal lattice 
of n atoms) number of characteristic vibration frequencies will be n + 1. 

 

 
 

Fig. 1.7. Explanations related Debye model: a – single and two connected pendulums, 
b – string oscillations (primary tone and first overtone), c – ω(k) dependence of oscillator 
frequency of string on its length (dotted line); 1 – Einstein’s mode ωE of free oscillators;  

2 – Debye mode of bounded oscillators with maximal frequency ωD 

 
To illustrate the Debye’s model, it is possible to consider oscillations of a 

string with the length l and attached on the ends, Fig. 1.7b. The main tone has 
frequency ω0 that corresponds to wavelength λ = 2l of the elastic string. The 
overtones are 2ω0, 3ω0, … and so on, and they are located on same line ω(k) with 
wavelengths l, 2/3l, …,  and so on. The dependence of oscillation frequency ω on 
the reverse wavelength (wave vector) k = 2π/λ is shown in Fig. 1.7c. In the Debye’s 
model, the movement of the centre of masses of inter-connected lattice with N 
elements is considered. It is assumed that this complex movement (lattice vibrations) 
is equivalent to the 3N harmonic oscillators. Coordinates of these oscillators are the 
normal coordinates, and their fluctuations are termed the normal modes. 

The internal energy and the specific heat of a solid consists of additive 
contributions of energies from individual normal vibrations. To derive the formula 
that describes specific heat dependence on temperature, it is necessary to know 
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frequency spectrum of normal vibrations. This spectrum can be calculated 
theoretically, whereby in  the case of simplest lattice this solution contains three 
acoustic modes, with ω(k) dependence corresponding to three possible independent 
orientations of wave polarization vector (two transverse modes and one longitudinal 
mode). The relationship ω(k) is the dispersion law. In case of Einstein's model, 
frequency ωЕ does not depend on the wave vector k – see line 1 in Fig. 1.7c. On the 
contrary, according to Debye’s model, these relationship exists, and it is 
characterized by the sloping line 3. In this model the dependence ω(k) is linear (in 
same way as for a string), however, there is one important restriction: this line ends 
at the abscissa value π/а. This means the limiting of the wave length: λ = 2а, because 
there is no physical carrier for shorter wavelengths. 

At low-temperatures the energy of crystal increases with temperature due to 
two factors: firstly, due to the increase in average energy kBT of normal vibrations 
(that is proportional to T) and, secondly, due to the increase excited oscillations 
number proportionally to T3. Therefore, the total energy of a crystal increases with 
temperature proportionally to fourth power of temperature: Еlattice ~ Т 4.Accordingly, 
the specific heat of a lattice (which is determined as derivative; С ~ dЕlattice/dТ) is 
proportional to temperature in a cubic power: С ~ Т 3, that is in good agreement with 
experiments. At high temperatures, all normal lattice vibrations are already excited, 
and, therefore, further temperature increase does not a result of phonons number 
increase. Consequently, at relatively high temperatures, the growth of solids energy 
can only take place due to the increase in the degree of excitation of normal 
vibrations that causes the increase of their average energy proportionally to 
temperature (kBT); so energy increase in solid must be proportional to temperature: 
Еlattice ~ Т, while specific heat of lattice (С ~ dЕlattice/dТ) should not depend on 
temperature: C = const.  

Thus, above Debye temperature θD the specific heat tends to a constant value 
"3R" accordingly to the Dulong-Petit’s law. Below θD the quantum nature of lattice 
vibrations becomes decisive, that is why, Debye temperature approximately 
indicates such temperature limit, below which the quantum effects become non-

negligible. On the basis of other fundamental constants (Planck's constant h and 
Boltzmann's constant kB), the Debye temperature can be expressed in terms of Debye 
frequency: ωD = 2πνD. Indeed, by the analogy with equation kBТ = hν, it is possible 
to define similar equation kBθD = hνD, so θD = (h/kB)νD. 

In different crystals, the value of Debye frequency is located in the range of 
νD = 1013–1014 Hz. These frequencies of lattice elastic vibrations correspond to the 
far infrared range of the electromagnetic spectrum. It is assumed that at Debye 
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temperature almost all oscillatory modes (types of oscillations) in a crystal are 
excited. During further increase of temperature new oscillatory modes do not appear 
any longer, but, instead, the existing modes increase their amplitude, that is, the 
average energy with increasing temperature rises linearly. In various crystals the 
value of Debye temperature are diverse, but typically θD ~ 200 –400 K. For most of 
important in electronics crystals these temperatures are: in silicon θD = 650 К, in 
germanium θD = 380 К, in quartz θD = 250 K. In the alkali halide crystals θD varies 
from θD = 730 К in the LiF till θD = 100 K in the RbJ; the highest Debye temperature 
θD = 1860 К is seen in the diamond. At that, Debye temperature characterizes not 
only the specific heat, but also some other thermal properties of a solid (such as 
thermal conductivity, thermal expansion, melting points, etc.). 

∙ Born's dynamic theory gives a chance to calculate the specific heat and many 

other parameters of solids even more accurately than Debye’s theory, using 
peculiarities of the atomic structure of crystals. The solid body is treated as a lattice 
composed of elastically interconnected point masses. Not only the forces closest to 
a given atom are taken into account, but also the forces, acting between atoms 
located at larger distances. Even in the case of simplest model (one-dimensional 
model, i.e., the series of elastically joint atoms), it may be shown that Debye’s result 
of the linear dependence ω(k) should be corrected: in the Born’s dynamic theory the 
dispersion of elastic waves is predicted (that comes in very good agreement with 
experiments). However, in the case of low temperatures, the only lowest-energy 

phonons can be excited, so the Born’s ω(k) dispersion is negligible. Therefore, the 
low temperature dependence of lattice specific heat in the Born’s theory is also 
cubic: C ~ T3. 

In the considered harmonic approximation, the thermal expansion of a solid 
is absent, еру adiabatic and isothermal elastic constants are equal to each other and 
do not depend on еру pressure and temperature, elastic waves propagating in the 
lattice do not interact. In real conditions, all this is not fulfilled because in the 
harmonic approximation the nonlinearity of atomic vibrations is not taken into 
account. Taking into account the anharmonicity, it is also possible to explain the 
cases temperature anomalies in the specific heat capacity.  

2. Deviations from law of specific heat constancy look very unusual above 
the Debye temperature, since the specific heat is a very conservative parameter 
determined by the fundamental physical laws. In most crystals, at normal 
temperatures and higher (when T > θD) all possible lattice vibrations are already 
excited; therefore, the energy of a crystal increases with temperature rise as the 
average energy kBT of normal vibrations; therefore, the specific heat of a crystal 
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would not be dependent on temperature: C ≈ Const (but in fact, specific heat slightly 

rises with temperature increase due to anharmonicity of lattice vibrations). 
Therefore, any significant change or leap in the temperature dependence of specific 
heat is associated with the restructuring of the crystal lattice.  

 
Fig. 1.8. Temperature dependence of heat capacity for the lattice (1) and the electronic (2) 

contributions in metal: A  – nonmagnetic metal; B  – ferromagnetic metal (iron) 

 
Almost the only exception are the magnetics, where in the partially ordered 

ferromagnetic phase the magnons contribution to the heat capacity is significant (but 
it disappears above Curie point), Fig. 1.8B. Specific heat behaviour of ferromagnetic 
shows a pronounced deviation of usual C(T) dependence which is quite different 
from a smooth curve with saturation at high temperatures, observed in the non-
magnetic metals. It means that inherent to ferromagnetic destruction of spin ordering 
adds some energy throughout temperature range. Therefore, heat capacity of 
ferromagnetic, as shown in Fig. 1.8B, is significantly increased in comparison with 
usual metals. Especially noticeable effect of the increased heat capacity is seen in 
the vicinity of ferromagnetic phase transition followed by fast decrease of specific 
heat with temperature. 

If one heats a ferromagnetic above the Debye temperature, its specific heat 
looks much bigger than in non-ferromagnetic crystal. The point is that the 
contribution to the specific heat in the magnetic materials is due not only to phonons, 
but also to magnons, at that summary specific heat substantially surpasses this 
parameter seen in the conventional metals. The increased heat capacity is especially 
noticeable at temperatures below Curie point, because in this region spontaneous 
magnetization decreases, so a peak-type anomaly of the specific heat near the critical 
point is caused by elementary magnetic moments disordering that is seen in rather 
narrow temperature interval below Curie temperature. 
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In the ordering polar crystals, their specific heat similar to ferromagnetic but 
in much narrow temperature interval also exceeds the "normal specific heat" as 
compared with the non-polar crystals. This is most clearly expressed near the 
ferroelectric phase transitions, where the maximum of the specific heat can be more 
than two times higher than its average value. A convincing example of internal 
polarity disordering influence on thermo-physical properties is their change at phase 
transition from non-polar (high-temperature centrosymmetric) phase into the polar 
(low-temperature ferroelectric) phase in the TGS crystal (triglycinesulphate, 
(NH2CH2COOH)3·H2SO4), Fig. 1.9.  

 
 

Fig. 1.9. Temperature dependence of main TGS parameters: specific heat С, ultrasound speeds 
v1 in [010] direction and v3 along [001] direction, linear expansion coefficient α1 along [010] 

direction and thermal conductivity λ1 along [010] direction 

 
The point is that in the polar crystals their specific heat contains an additional 

contribution due to processes of polar bonds ordering-disordering. Implementation 
of statistical possibility of several states increases the total entropy of a system: this 
is the configurational entropy which is a part of total entropy of a system relating to 
the positions of constituent particles rather than to their velocity or momentum. It is 
explained by the number of ways of all the particles mutual arranging in a system 
while maintaining some overall set of specified system properties, such as energy. 
The change in the configurational entropy corresponds to same change in the 
macroscopic entropy. 

In connection with given in Fig. 1.9 example note the following. In the vicinity 
of phase transitions, the substance, firstly, shows the anomalies in its main physical 
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properties; secondly, allows a considerable control of physical parameters by not 
very strong external influences that is widely used in the electrically controlled 
devices; third, the substance is very sensitive to the changes in temperature, pressure, 
humidity, etc., that is used in various sensory devices. 

To understand physical causes of polar crystals peculiarities, it is necessary to 
compare the basic energy characteristics of solids with special properties arising due 
to phase transition into the phase having internal polarity. In this regard, recall that 
one of important crystal physical quantity is Debye energy ћωD.  

It becomes equal to thermal energy kBT at a certain temperature called Debye 

temperature and denoted by θD; therefore ћωD = kBθD and θD = ћωD/kB. Thus, the 
very important characteristics - Debye frequency ωD = 2πνD and Debye temperature 
- are connected with each other by two fundamental constants: Planck constant ћ 
and Boltzmann constant kB.  

The degrees of freedom at atomic particles movement in solids can be divided 
into two groups. In some degrees of a freedom, the interaction energy of particles 
Uint is small in comparison with thermal motion energy kBT. At that, when Uint << 
kBT, the appropriate degrees of a freedom behave as the collection of particles, i.e., 
as the "almost ideal gas" of phonons; at that, applicability to use the model of quasi-

particles is earnestly justified. In given discussion, this refers to the ordinary non-
polar dielectrics.  

In the opposite case, when conversely Uint >> kBT, the appropriate degrees of 
freedom are usually quite ordered, so their movement, too, can be described by the 
introduction of the quasi-particles, in a given case by the phonons. These substances 
include the majority of functional polar dielectrics (piezoelectrics and pyroelectrics), 
so the concept of phonons application to them, in most cases, can be considered 
justified. 

However, in a given discussion, the much more complicated situation arises: 
when the interaction energy is close to the averaged energy: Uint ~ kBT. In this case, 
any theoretical description of solids becomes very complicated, especially at the 
phenomenon of phase transition.  

In the vicinity of second-order phase transition the crystal behaves by such a 
way when any, based on the quasi-particles, conventional concept can not 
adequately describe the experimental situation. Normally, the interaction of closest 

neighbouring particles in a crystal is considered as dominating, while the interaction 
of distant particles might be neglected. However, near the phase transition, in 
contrast, the interaction of neighbouring particles compensates one another, and on 
this background the interaction of those particles, which are located at some distance 
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from one another, appears dominant. This interaction has a very special character: 
the probability of collective movements is bigger then the probability of individual 

movements. It is possible that such a situation contributes to the aggregation of 
groups of atoms into clusters, which presupposes the creation of the basis for 
configurational entropy. 

Abnormally increased role of the collective movements is confirmed by 
experiment, Fig.1. 10: at temperature T = TC crystal shows the maximum of specific 
heat, also the dielectric permittivity in the ferroelectric tends to infinity, as well as 
the maximum of permeability in the ferromagnetic (in superconductors their 
conductivity actually becomes infinite), and so on. 

The crystals possessing polar bonds, in the certain conditions, behave in 
complex way: the lifetime of some phonons is commensurate with the inverse 
frequency of oscillation; that is, the oscillators, which characterize these phonons, 
turn out to be over-damped.  

At the first glance, an amazing situation arises when the crystal of excellent 
quality, being ideally transparent in the optical wavelength range and having small 
attenuation of transmitting long acoustic (ultrasonic) waves, for the short (heat) 
waves turns out to be an almost opaque (turbid) environment, in which phonons of 
a certain frequency getting stuck like feet in a swamp.  

Another striking feature of the polar crystals is their compression when being 
heated (in contrast to usual crystals extension) that is observed in the low-
temperature interval. To explain the physical nature of such negative thermal 
expansion of polar crystals, a comparison will be carried out of two different scalar 
influences on polar crystals: the homogeneous change of temperature and the 
homogeneous (hydrostatic) change of pressure.  

These actions are uniting by the fact that, being scalar, both these influences 
lead to a natural (not distorted by the symmetry of external action) change in the 
crystal size, which reflecting exactly the peculiarities of crystal internal bonds. Later 
in Section 1.4 it will be shown that the main thermal effects in crystals are 
interdependent, and expedient to begin consideration with the specific heat. 

As opportune example of specific heat increasing in the polar-sensitive 
crystals, the ferroelectrics can be chosen, in which one can compare the heat capacity 
of polar and nonpolar phase (above phase-transition temperature). As an example, 
the TGS crystal is elected again, which is non-polar above its Curie point, its heat 
capacity and internal electrical moment ΔM is shown in Fig. 1.10.  
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   (A)                                                                       (B) 

 

Fig. 1.10. Temperature dependence of heat capacity (A) and averaged electrical moment of 
polarization fluctuations (B) in TGS = (NH2CH2COOH)3·H2SO4 

 

The fact is that the gradual increase and the maximum in C(T) dependence is 
necessarily manifested in the ferroelectric crystals when their phase transition 
temperature TC is approached, Fig. 1.10A. Fundamental part of the heat capacity, 
which is practically temperature-independent, is shown by the bottom dotted line. 
Above the upper dotted line, the λ-type maximum of C(T) is seen, which in this case 
reaches 50% of the fundamental specific heat (in some ferroelectrics it might be 
much times greater). This maximum is due to the nature of ferroelectric phase 
transition and corresponds to the latent heat releasing at phase transition. 

However, discussed here C(T) anomaly looks like a rather big region of the 
excess heat capacity. Below the Curie point, with decreasing temperature, the 
internal (spontaneous) polarization changes very gradually as seen in Fig. 1.10B. At 
that, the complete ordering could occur only at an unattainable absolute temperature 
T = 0 K; the unordered part is shown by the shaded area which quite corresponds to 
those temperature interval where specific heat is increased. It might be supposed that 
the contribution to the heat capacity in the gradually ordering phase is due to the 
configurational entropy. It is pertinent to note that such deviation from the linearity 
of C(T) dependence above Debye temperature occurs very rarely in solids. As noted, 
the analogous case of specific heat capacity increase is seen it the ferromagnetic, in 
which an additional contribution to the C(T) is due to the collective excitation, 
associated with the electronic spins structure in the partially ordered magnetic 
lattice, i.e., magnons.  

Shown in Fig. 1.10A specific heat increase, peculiar to the ordering polar 
crystals, requires an explanation. Need to mark that a significant smoothing of 
temperature maxima elastic stiffness s11 and s33 in TGS is seen under the influence 
of a strong CD electric field. Besides, the experiment in ultrasound absorption in 
TGS crystal near its phase transition shows the decrease of sound absorption in the 
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polar phase and its increase in the non-polar phase while DC electrical field 
application. 

All this indicates that the gradual increase in C(T) and its temperature peak 
shown in Fig. 1.10A is due to the reorganization in the arrangement of polar-
sensitive bonds, and can be explained by thermal fluctuations of disordered 
(nonpolar) phase in the depths of ordered polar phase. Probably, these fluctuations 
are concentrated in the domain walls, which dynamically can expand and contract. 
It is possible to offer another explanation to the fact that below phase transition the 
ordering of polarity in ferroelectrics occurs gradually. Statistical possibility of 
several states realizing increases the total entropy of a system: such configurational 

entropy is a part of total entropy of a system that is related to the position of the 
constituent particles rather than to their velocity or momentum. It is physically 
related to the number of ways of arranging all the particles of a system while 
maintaining some overall set of specified system properties, such as energy. Change 
in the configuration entropy corresponds to the same change in macroscopic entropy. 

From point of view of macroscopic theory, due to existing electrical, thermal 
and mechanical properties interconnection in the polar crystals, the dependence of 
their thermal properties on mechanical and electrical boundary conditions of a 
crystal is not surprising: heat capacity of mechanically clamped crystal Cx differs 
from heat capacity of free crystal CX, just as the heat capacity of short-circuited 
crystal CE is not equal to the heat capacity of electrically free (opened circuit) crystal 
CD. At that, the temperature anomaly of TGS heat capacity, shown in Fig.1. 10A, 
corresponds to the property of electrically and mechanically free crystal. 

Further it will be shown that specific features of polar crystals have noticeable 
effect on the heat exchange processes. However, the most impressive difference 
between polar and non-polar crystals is their negative thermal deformation at low 
temperatures interval, when thermal motion in crystals weakens that allows observe 
the details of structural peculiarities. 

 

1.4 Thermal expansion and entropy 
 
From the point of view of thermodynamics, the dynamic changing in the own 

structural ordering, taking place in the polar dielectrics and magnetics, need more 
detailed consideration of the entropy conception, namely, not only use traditional 
account of "kinetic" part of entropy, associated with the individual particles 
dynamics, but also the configuration entropy, since the directional inter-atomic polar 
bonds, during their ordering-disordering process, spontaneously form a lot of 
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various nanoscale configurations. A statistical possibility of several states realizing 
increases the entropy of a system: such a configurational entropy is the part of total 
entropy of system, and it relates to the position of groups of particles rather than to 
their velocity or momentum. This contribution to the entropy is due to a number of 
ways of mutual arrangement of particles contained in the system while maintaining 
some overall set of specified system properties, such as kinetic energy. The change 
in configuration entropy corresponds to same change in the general entropy. 

A number of physical phenomena, observed in the polar dielectrics, directly 
indicate a large role of the configuration part of entropy: the negative coefficient of 
thermal expansion, the maximum of heat capacity at phase transition from 
disordered phase to ordered phase, the increase of  polar phase volume when it 
arises from the non-polar phase (and the decrease of anti-polar phase volume), the 
drastic changes of phonons scattering during the heat transfer, etc. 

1. Coefficient of thermal expansion (denoted α and measured in the [deg–1] 
= [K–1] represents the alteration of relative dimensions of a solid body when its 
temperature changes by 1 K. The thermal deformation of crystal is a characteristic 
feature of the internal connections of atoms, ions or molecules; thermal deformation 
depends also on the energy value of these bonds. At that, coefficient α reflects the 
features of interatomic bonds in a crystal; particularly, in the polar dielectrics, this 
is a peculiar polar-sensitive structure arisen due to structural compensation of atoms 
electronegativity. It is pertinent to recall that relative deformation of a solid is the 
dimensionless parameter described by the second-rank tensor xij. This deformation 
can occur not only under the influence of the mechanical stress Xkl (also second rank 
tensor), but under various other external influences as well: the electrical action 
described by polar vector Ek, the magnetic influence described by axial vector Hk, 
as well as by the scalars (homogeneous) influences such as the uniform change of 
temperature δT or hydrostatic change of pressure δp. In all listed cases, the character 
and the symmetry of parameters which link the various actions (Xkl, Ek, Hk,δT,δp) 
and the linear response – strain xij – induced by these actions are very different: 

xij = sijklXkl,      xij = dijkEk,      xij = ςijkHk,     xij = αijδT,    xij = ξijδp, 

where sijkl is the elastic compliance (fours rank tensor), dijk is the piezoelectric 
module (third rank tensor), ςijk is the piezomagnetic module (third rank tensor) and 
αij is the coefficient of thermal expansion (second rank tensor), exactly the parameter 
discussing in this Section.  

It is noteworthy that first three of above parameters characterize those 
properties of a crystal which can be obtained by the external action of fields 
possessing vector symmetry, so the symmetry of a response (in this case, the strain 
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xij) is composed of symmetry of actions and symmetry of crystal. Therefore, in case 
of multifaceted study of crystal properties, the tensors sijkl, dijk, ςijk can only indirectly 
characterize the nature of internal bonds of atoms (ions) in a crystal. At the same 
time, the scalar action on a crystal (which has symmetry of a sphere) gives such 
parameter (αij), which reflects the intrinsic properties of interatomic bonds directly 
seen in the response.  

                 
              (A)                                     (B)                                     (C) 

 

Fig. 1.11. Images of material tensors of various ranks: A – zero rank tensor (scalar, such as 
density, temperature, specific heat, etc.); B – first rank material tensor (vector, such as 

pyroelectric coefficient or volumetric piezoelectric modulus); C – second rank material tensor 
(electrical permittivity, electrical conductivity, magnetic permeability, etc.) 

 
The second-rank material tensor seen in Fig. 1.11C most often describes the 

vector response to the vector action (Di ~ εikEk, ji = σikEk, etc.), so it is characterized 
by the second-order surface (ellipsoid), while its components form the symmetric 
matrix (3×3 = 9 components). But in the case of thermal expansion, the action is the 
scalar quantity (δT) while the response xij is the second rank tensor (deformation), 
which, depending on symmetry of crystal, leads to a great variety in the combination 
of different components for tensor αij. At that, the anisotropy of thermal expansion 
characterizes the anisotropic properties of atomic bonds in a crystal. It can be argued 
that it is the internal polarity, which is one of reasons for both the anisotropy of 
thermal expansion and negative deformation when crystal temperature increases in 
certain range.  
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Fig. 1.12. Matrices of thermal expansion coefficient in crystals of various classes of symmetry: 

A – cubic; B – hexagonal; C – rhombic; D – monoclinic; E – triclinic 
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This anisotropy is clearly seen from αi matrix representation in Fig. 1.12, 
where various matrices for crystals of different symmetry are presented. In the most 
common ionic and covalent crystals, the coefficient of thermal expansion is isotropic 
and can be represented by the scalar value αij = α; at that, components located in 
main diagonal of matrix αij are same, Fig. 1.12A. The ball made of such crystal, 
being exposed by uniform heating or cooling, will change its radius but will not 
change its shape. It would be seem that in the hexagonal crystals (Fig.1. 12B) this 
ball will turn into the ellipsoid of rotation, and in the case of rhombic or monoclinic 
crystals initial ball will be transformed into a three-axis ellipsoid. 

In the lower symmetry crystals, their diagonal components α11, α22 and α33 can 
have not only different values, but also different signs. Therefore, instead of second 
rank surface (the ellipsoid seen in Fig. 1.11C), the indicatrix of thermal expansion 
coefficient is symmetrical but very complex surfaces, Fig. 1.13.  

 
 

 

Fig. 1.13. Characteristic surfaces that exhibit anisotropy of physical quantities described 
by second-rank material tensor;  a – ellipsoid of permittivity of biaxial crystal symmetry; b, c, d – 
figures describing thermal expansion coefficient in crystals of different symmetry, black shows 
negative value of α (according to A.V. Shubnikov) 
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In a general case, with possibly different signs of components of thermal 
expansion tensor, the characteristic surfaces in Cartesian coordinates are not 
ellipsoids, and, generally, they are not even a surface of second order. Nevertheless, 
the knowledge of characteristic surfaces is important for anisotropic crystals 
applications. For example, in the calcite crystals, the expansion coefficient in the 
direction of principal axis of a crystal is positive, but in the directions perpendicular 
thereto it is negative. This means that in some oblique directions, the expansion 
coefficient should be zero, and, hence, in a certain direction the radius vectors of 
indicatory surface should be zero (this case is impossible for ellipsoid).  

A. Shubnikov considered all possible forms of indicatory surfaces of thermal 
expansion coefficients in the crystals in the condition when linear expansion 
coefficients α1, α2 and α3 differ both in magnitude and in sign, Fig. 1.13. Positive 
values of α are shown on these figures by t white surfaces while negative values of 
α are shown by black surfaces. As it was noted above, in the crystals of cubic 
symmetry, all three major expansion coefficients are equal, and all three of them are 
usually positive. Corresponding surface in this case is obviously the sphere with 
positive radius: this is "white-colored sphere", but this simplest case is not shown in 
Fig. 1.13. In case, when α3 ≠ α1 = α2 and α3 > 0, the surface describing expansion 
coefficients is similar to oval; it can be either flattened (at α3 < α1, Fig. 1.13b or 
elongated along axis 3. These surfaces describe simple cases of thermal expansion 
of optically uniaxial crystals that are often found in practice. In the calcite crystal, 
for example, the component α3 has positive sign, while components α1 = α2 have 
negative signs. The surface that corresponds to case is also shown in Fig. 1. 13b. It 
is composed of two egg-shaped positive (white) surface and torus-like negative 
(black) surface. The most complex forms of the indicatrix of thermal expansion can 
be observed in the triclinic crystals, in which matrix αij can not be reduced to a 
diagonal form. Characteristic surfaces of thermal expansion tensor shown in 
Fig.1.13 exhaust all possible combinations of main components of αij tensor. 

Thus, the anisotropy of thermal expansion reflects the complex distribution of 
the hybridized ionic-covalent interatomic bonds in the polar crystal, while the simple 
ionic and covalent bonds in crystal are usually characterized by the isotropic (scalar) 
thermal expansion coefficient. It can be seen from the data presented that the nature 
of thermal expansion is quite complex, but it is this that reveals the nature of intter-
atomic bonds. 

2. Physical nature of thermal expansion. The change in volume (or in the 
linear dimensions) of a crystal with temperature alteration is a result of the 
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asymmetry in the interaction law of the neighboring particles. This asymmetry can 
be easily traced in the main types of inter-tone connections, Fig. 1.14. 

 
 

             
 
 

                                                              
                        (A)                                           (B)                                              (C) 

 

Fig. 1.14. Two-dimensional image of electrical charge distribution: A – molecular crystal, in 

which the quadrupole electronic fluctuation (+ – … – +) causes the attraction of atoms while 

partial overlapping of the electronic shells leads to repulsion (←…→) compensating this 
attraction; 

B – ionic crystal where ions attraction is compensated by partial overlapping of electronic shells;  
C – covalent crystal (in graphs, solid curves show the interaction energy while dotted curves 

show the inter-atomic force) 
 
Quantitatively the degree of volume (V) change is characterized by the 

volumetric coefficient of thermal expansion (αV). According to conventional 
definition, this coefficient is a relative change of volume when body is 
heating/cooling by one degree of temperature at constant pressure p, and it can be 
written as: αV = (1/V)⋅(∂V/∂T)p. As noted, the thermal expansion of polar crystals 
might be anisotropic and can be even negative. The last means that when temperature 
increases the crystal widens (or compresses) differently in various crystallographic 
directions. Therefore, besides the volumetric expansion coefficient, the linear 
thermal expansion coefficient αl is widely used: αl = (1/l)⋅(∂l/∂T)p, where l is the 
linear dimension of tested sample. Coefficient of thermal expansion can be presented 
as a matrix (Fig. 1.12), at that, the sum of three diagonal matrix elements 
approximately equals to the volumetric expansion coefficient: αV ≈  α1 + α2 + α3. 

Occasionally observed negative value of α corresponds to a such particular 
case, when the entropy of crystal increases with the rise of a pressure that can occur 
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only in the case of configurational entropy: the temperature interval of negative 
thermal expansion corresponds to the processes of own structural ordering in crystal 
structure (at that, it should be noted that α(T) negative minimum, typical for polar 
crystals, can be seen in the semiconductors as well). With regard to practical 
applications, it should be noted that the difference in thermal expansion coefficients 
can create the mismatch between lattice parameters of deposited film and its 
substrate that is used in modern technologies of microelectronics. 

                          
 

        (A)                    (B) 
 
 

           
 

              (C)                                 (D) 
 

Fig. 1.15. Thermal expansion in different crystals: A – typical temperature dependence of 
expansion coefficient with example MgO; B – typical thermal expansion approximate 

explanation: increase in amplitude of ions oscillations as temperature rise shown by horizontals 
0-1-2-3 leads to the gradual increase of lattice constant a shown by dotted line (in fact, roughly 

shown situation develops only in the narrow interval of interatomic distance r, very deep near the 
bottom of energy minimum); C – thermal expansion in the polar crystals with examples ZnO (1) 
and HgTe (2); D –symbolic explanation of negative thermal expansion; in fact, shown situation 

develops deeply, near the very bottom of energy minimum 
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The typical for vast majority of solids example of α(T) dependence is shown 
in Fig. 1.15A: coefficient α increases with temperature rise according to cubic law 
α ~ T3, like specific heat C changes with temperature. An explanation is that the 
change in the volume or in the shape of a solid body with temperature alteration is 
due to the different nature of the forces acting between atoms. Here it is pertinent to 
note the striking difference in the temperature dependence of thermal expansion 
coefficient of most crystals (with ordinary entropy), Fig. 1.15A, and the crystals with 
a self-ordering structure, Fig. 1.15C, characterized by configurational entropy and 
negative α(T) dependence in a certain temperature interval. 

The energy of atoms interaction, Fig. 1.14 and Fig. 1.15B, consists of 
attraction (negative) and repulsion (positive) components. When the distance 
between interacting particles changes, these components vary in different ways. The 
repulsive force operates at a very short distance, because their potential energy 
decreases very fast with distance r between particles as r–8–r–12 (the nature of these 
force is that electronic shells of neighboring atoms or ions can only a little penetrate 
each other). Conversely, the attraction forces operate at a rather long distance, as 
their energy changes with interatomic distance approximately like r–1–r–6 depending 
on the nature of attraction (i.e., on the type of atomic bonds: ionic, covalent or 
molecular of mixed).  

The total energy versus distance dependence U(r) always is characterized by 
the asymmetric minimum, Fig. 1.14 and Fig. 1.15B. At lowest temperature, the 
bottom of potential well can be approximated by symmetric parabola, so that, when 
temperature changes near the absolute zero, no noticeable alteration in crystal size 
occurs: r = a. This explains why the coefficient of thermal expansion for quite 
different solids tends to zero in the region of absolute zero, Fig. 1.15A. However, as 
the amplitude of thermal oscillations increases, the middle distance between atoms 
(shown by dotted line) increases: exactly this is the evident cause of thermal 
expansion. Different energy levels are depicted in Fig. 1.15B by the horizontal lines 
1-2-3: as far as thermal oscillations amplitude increases starting from zero; at that, 
the displacement of oscillating atoms to the left becomes less than their displacement 
to the right. As a result, the time-average equilibrium position of atom (a+x) shown 
by dotted line in Fig.1.15B shifts to the right, and this effect becomes the stronger 
the higher is the energy of atom oscillation. In this argument, a special moment is 
the concept of time-average displacement of vibrating atoms <x>, which actually 
determines the temperature dependence of the expansion coefficient. According to 
given description, the physical meaning of thermal expansion coefficient) can be 
described as a reciprocal value of the slope of a curve, which expresses the 
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dependence of bonding energy on the interatomic distance (a + x) at the point 

corresponding to time-average position of atom: dU(a + x)/d(a + x) ~ 1/α.  

[Note. This formal feature can be justified microscopically. In case of small 
enough oscillations of atoms around its equilibrium position, the potential energy 
U(x) can be expanded in the Taylor series in terms of atom displacement x with the 
respect to atom equilibrium position. To describe the specific heat, it was enough to 
take into account only first term of this expansion U = ½cx2, i.e., to consider atoms 
oscillations as a harmonic. However, when analyze the thermal expansion, the 
anharmonicity of the atoms vibrations should be taken into account, at least by one 
subsequent term of Taylor series: U = ½cx2 – (1/3)bx3, where coefficient c 
charaterizes elastic bonding, while the coefficient b is referred to as coefficient of 
anharmonicity. Accordingly, the force that acts between oscillating atom and fixed 
atom is given by: f  = – dU/dx =  – cx + bx3. In this equation, a non-linear term “+ 
bx2” is added to the linear term “– cx”. The new term takes into account the 
asymmetry as to interaction forces, acting between atoms, and it is the 
anharmonicity coefficient b. Role of anharmonicity becomes more significant the 
greater is the displacement x. With this term, a time-dependent displacement of the 
oscillating atom is no longer sinusoidal (i.e., not harmonic); that is why, this 
approximation is called as anharmonic. This simple model can explain the thermal 
expansion of solids. The average potential energy of thermal fluctuations (½ cx2) at 
a given temperature equals ½ kBT, where kB is the Boltzmann constant. One can show 
that the average shift of atom in this model is xaver = (b/c2)⋅kBT. Thus, in the 
considered diatomic model, the thermal expansion coefficient α is defined as the 
ratio of average shift xaver to the equilibrium distance r0: α = kBb/r0c

1. It follows that 
in the absence of anharmonicity (when b = 0) the thermal expansion coefficient α = 
0. The asymmetry of the resultant interatomic interaction force in crystal lattice is 
considered further as main cause of the phonons interaction in a lattice]. 

Below Debye temperature, the intensity of thermal oscillations increases 
nonlinearly, and, in accordance with the theory discussed here, parameter α(T) 
should be proportional to the specific heat C(T) ~ T3 (above Debye temperature α(T) 
dependence, like the specific heat dependence, reaches a plateau, Fig. 1.15A). The 
cubic increase of the thermal expansion coefficient is performed for most crystals of 
chemical elements and for most simple chemical compositions, for example, for 
halide salts and most oxides. Moreover, the increase of thermal expansion 
coefficient with temperature rise corresponds to the Grüneisen law, which 
establishes the similarity in the temperature dependence of specific heat CV and 
thermal expansion coefficient α of solid dielectrics: α = γ⋅CV/3K. Here K is the 
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modulus of bulk elasticity*) (i.e., all-round compression modulus) and γ is the 
Grüneisen constant**) which enters in the state of equation for solids, being a 
measure of anharmonicity of interatomic forces acting in a crystal. However, the 
application of the Grüneisen relation in the case of negative expansion seems 
unconvincing, since it assumes a negative value of the parameter γ. It is possible that 
this ratio does not take into account the possibility of the presence of sonfiguration 
entropy, giving preference only to kinetic phenomena. 

[Note.  The compressibility K is an important parameter of solids; for example, 
it allows make a estimation as to inter-atomic (intra-molecular) distances. The 
greatest compressibility is observed in the crystals with long and weak bonding. The 
compressibility characterizes the dependence of relative change ΔV of crystal 
volume under hydrostatic pressure p: ΔV = – Kp. Scalar parameter K is formed as 
the invariant of elastic compliance tensor: K = s11 + s22 + s33 + 2(s12 + s13 + s31). In the 
cubic crystals and in other isotropic solids, the compressibility equals: 
K = 3(s11 + 2s12). It should be noted that the compressibility is strongly dependent 
on the atomic bonds energy. 

The dimensionless Grüneisen parameter γ describes the effect of dependence 
of crystal volume on vibrational properties of crystal lattice, as a consequence, the 
effect of temperature change on the volume or dynamics of crystal lattice. The same 
temperature dependence of the specific heat CV and the coefficient of thermal 
expansion α of solid dielectrics is established. At normal and elevated temperatures, 
the Gruneisen constant is close to unity, but it is pertinent to note that some 
experimental data indicate the deviations from Grüneisen law: at low temperatures 
γ(T) decreases somewhat more rapidly than predicts cubic law, while at high 
temperatures, instead of remaining constant value, γ(T) slowly grows]. 

The correlation of temperature expansion coefficient a with crystal’s 
compressibility K, showing crystal deformation under the uniform (hydrostatic) 

compression is very important. The relationship α ⇔ K is due to the fact that both 

the thermal action and the homogeneous compression are the scalar actions on a 
crystal, and, therefore, corresponding reaction of crystal (its deformation which is 
the second rank tensor) in both cases relates to the crystal elastic properties and 
reflects the peculiarities of the internal atomic bonds. Therefore, it is not surprising 
that during further discussion about the nature of the negative coefficient of thermal 
expansion this property will be compared with the modulus of crystal bulk elasticity, 
which characterizes the response of a crystal to hydrostatic compression. 

A convincing example of strong influence on the polar dielectric (barium 
titanate, BaTiO3) two different but scalar impacts: the uniform change of 
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temperature and the uniform hydrostatic (all-round) compression is shown in Fig. 
1.15 (permittivity measurements were carried out in weak electrical field which 
practically does not affect the phase transition).  At normal pressure and temperature 
less than 400 K (as well as at normal temperature and pressure less than 1.5 GPa), a 
predominantly ordered phase occurs in BaTiO3 (in this phase, the dynamically 
flickering nano-islands with a disordered structure remain, while the atomic bonding 
in crystal tends to full ordering when approaching unattainable absolute zero).  

           
   

  (A)       (B) 
 

Fig. 1.16. Barium titanate dielectric permittivity dependence on temperature (A) at constant 
atmosphere pressure, and on hydrostatic pressure (B) at constant temperature near 300 K/ 

 
With the increase in temperature (or pressure), the degree of ordering in the 

polar phase decreases, and at critical temperature (or critical pressure) the middle 
ordering disappears, nevertheless, the shimmering of nanosized dynamically ordered 
islands remain. It is important to note that in the almost-ordered phase, with 
increasing pressure the entropy increases, while in the disordered phase, the entropy 
decreases with pressure (by the way, this corresponds to the very general 
conclusions made in Section 1.2 in connection with Fig. 1.2). An increase in the 
entropy with increasing pressure in the polar phase also corresponds to thermal 
expansion coefficient decrease, which goes over to its sharply negative value in the 
vicinity of the phase transition. 

The point is that the homogeneous scalar actions (temperature or pressure), 
possessing the highest type of symmetry (spherical), makes it possible 
experimentally identify namely the intrinsic symmetry of the atomic bonds of a 
crystal. At that, the others methods of research tend to violate the intrinsic symmetry 
of any object under study. For instance, in case of vector type action on a crystal 
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(such as temperature gradient, electrical or other field), as well as in case when 
external influence corresponds to the second rank tensor (for instance, the 
directional mechanical stress), the symmetry of such actions mixes with internal 
symmetry of a crystal, so the response (received information) gives a distorted view 
as to own internal properties of a crystal.  

In the overwhelming majority of cases, the crystal expands when being 
heated. This means that the coefficient of thermal expansion is positive (α > 0), and 
this is thermodynamically connected with that circumstance, when under the 
increase of homogeneous pressure the entropy S decreases. On the contrary, in the 
polar crystals, at relatively low temperatures the exactly negative value (α < 0) is 
observed that thermodynamically corresponds to a such peculiar case, when the 
entropy S increases with pressure rising (it will be shown that it is possible only for 
the configurational entropy). Therefore, by thermal expansion investigating, one can 
draw a certain conclusion about the nature of atomic interactions in studied crystal. 
It will be further shown that temperature region of negative α(T) corresponds to 
thermally activated processes of structural ordering of polar bonds that arises as a 
result of structural compensation of atoms electronegativity. 

3. Negative thermal deformation. As already mentioned (and this is the main 
subject of this discussion), in the polar crystals in a certain temperature range the 
parameter α(T) takes negative value; at that, as seen in Fig. 1.15C, the dependency 
graph α(T) twice passes through a zero before it shows usual for most crystals 
growing by the law α ~ T3. Typical for the polar crystals α(T) dependence is shown 
in Fig. 1.15C by the examples of hexagonal crystal ZnO having polar wurtzite 
structure of 6m symmetry and cubic crystal HgTe, which has the polar sphalerite 
structure of 43m symmetry. It should be noted that at very low temperatures their 
thermal expansion coefficient again becomes positive, so it approaches to zero from 
its positive side (although this is invisible in the rough scale of Fig. 1.15C but can 
be seen in the insert of Fig. 1.16B for Ge crystal). In this case, the negative 
contribution to α(T) disappears, because the quantum oscillations break any ordering 
of the polar sensitive bonds in the crystal lattice (like in the virtual ferroelectrics 
KTaO3 and SrTiO3). 

Formal explanation of negative thermal expansion coefficient (which at 
lower temperatures is typical for any polar crystal) is given in Fig. 1.15D (note that 
roughly shown situation develops only in a narrow interval of interatomic distance 
r, located very deep near the bottom of energy minimum). A special characteristic 
of ions attraction in the polar crystals occurs due to the hybridization of ionic and 
covalent bonds, which becomes so complicated that leads to the specific profile of 
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attraction energy in its dependence in the vicinity of the inter-atomic distance r = a 

± x. The anharmonic vibrations in the hybridized covalent-ionic bonds become 
dependent in complex way on vibrational energy; as a result, average in time mutual 
displacement of ions changes its sign: first it decreases (r = a – x) reaching a 
minimum, and then it increases (r = a + x). All this occurs below Debye temperature 
when lattice vibrations obey quantum laws. As a result, when temperature increases, 
the volume of crystal, after initial small growth, next decreases (levels 0-1-2 in Fig.1. 
1D) so the lattice parameter reaches the value am. Only then one can see increase α 
~ T3 (on levels 2-3 and higher) that is usual for temperature expansion coefficient of 
any solid. The points of dotted curve in Fig. 1.15D, when r = am, corresponds to the 
minimum in the α(T) dependence seen in Fig. 1.15C. 

Table 1.1 gives some experimental data as to temperature minimum of thermal 
expansion coefficient in the polar substances. In most cases, αmin is about 20% of its 
value in the saturation region of α(T) characteristic. The effect of negative expansion 
is very strongly pronounced in mercury telluride crystal due to its special structure, 
which determines a very low sound velocity. For comparison, in Table 1 the low-
temperature properties of the ice are given, although the arrangement of polar bonds 
in H2O crystal is substantially different. 

Table 1.1 

Minimal value of thermal expansion coefficient (αmin), its value (α300) at temperature near 
300 K, and temperature Tα min at which αmin is observed in different polar crystals 

 

Material αmin⋅10–6, K–1 Tα min, K α300⋅10–6, K–1 

HgTe – 8 25 8 

InSb – 1.4 27 1 

ZnO – 1.2 75 5 

InAs – 0.9 35 – 

InP – 0.5 45 8 

H2O – 8 40 – 

Fused quartz – 9 40 6 
 

 

It is interesting to note that the fused quartz also belongs to the substances 
with negative values of α at low temperatures. In this material, the pronounced 
anisotropic polar properties of crystalline quartz are averaged; as a result αmin = – 
9⋅10–6 K–1 at temperature about 40 K that is 1.5 times higher than α300 = + 6⋅10–6 
K–1. After, at higher temperatures, fused quartz thermal expansion changes its sign 
to the positive near 190 K. It should be noted that a small minimum at 550–600 K is 
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also seen on α(T) characteristic in the region of α–β quartz transition. It can be 
concluded that negative value of α is a general property of substances with small 

coordination number (with the open structure), which are characterized by 
tetrahedral arrangement of atoms: in them, the ordering of polar-sensitive bonds 
becomes easier. In contrast, in structures with a tight packing, thermal expansion 
coefficient is always positive). 

[Note. It is impossible to ignore the fact that the transition to one peculiar 
ordered structure may not lead to a minimum but to the maximum intemperature 
depemdence of thermal expansion coefficient α(T): this is observed in the 
antiferroelectrics. The point is that antiferroelectric type ordering is specific - it does 
not lead to a "softening" of the structure that promotes dynamic self-ordering-
disordering in the expanded lattice, but, on the contrary, suppresses these processes 
in a "toughened", compressed lattice. Important fact is also that antiferroelectric 
phase transition occurs with multiplication of crystal lattice parameter in the ordered 
phase that is accompanied by the increase of crystal density at that α(T) maximum 

is seen (but not α(T) minimum usual for ferroelectric phase transitions].  

 
   (A)      (B) 

 

Fig. 1.17. Comparison of polar ordering (A) lattice with antipolar ordering (B): it is seen 
that a > b 

 
Simplest model of this feature is given in Fig. 1.17, where differently located 

polar-sensitive bonds give an opportunity to explain how the size of crystal lattice 
might be changed under different phase transitions. In the case of ferroelectric 
(polar) ordering, the crystal lattice occupies a larger volume than in the case of anti-
ferroelectric ordering. In this regard, it is necessary to take into account that the 
concept of configurational entropy should include not just a "static" concept of the 
existence of various locations of the groups of atoms, but precisely of their 
dynamically changing configurations. 
 4. Thermodynamic explanation of negative thermal expansion in a certain 
temperature range is based on the Gibbs function concept using the isobaric-

isothermal thermodynamic potential: a quantity which changing in the course of a 
thermodynamic process is equal to the change in the internal energy of a system.  
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Gibbs energy shows how much of total internal energy of system can be used 
for transformations or obtained as a result of them under specified conditions, and 
allows establish fundamental possibility of occurrence of changes in specified 
conditions. Mathematically, this is potential of form: G = U + pV – TS, where U is 
the internal energy, p is the pressure, V is volume, T is the absolute temperature, and 
S is the entropy. Minimum of Gibbs potential corresponds to the stable equilibrium 
of thermodynamic system with fixed temperature, pressure and number of particles. 
For further calculations, to describe system with constant number of particles, it is 
important to express the differential of Gibbs energy: 
     dG = – SdT + Vdp                                           (1.9) 

Volumetric thermal expansion coefficient is defined as the relative change in 
volume with temperature at constant pressure: α = (∂V/∂T)p/V. At that, the change 
in the volume can be expressed through the Gibbs potential as well as the pressure 
(1.9) at constant temperature: V = (∂G/∂p)T, and obtain following expression: 
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By the replacing variables in this expression, it is possible to get final result linking 
the nature of thermal expansion with entropy and pressure 
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             .                                (1.10) 

In almost all solids, as temperature rises, the increase in their volume occurs, 
and parameter α > 0 because the repulsive forces of atoms in the crystal lattice act at 
short-range distance while attraction forces act at long-range distance. Expression 
(1.10) means that the entropy is less the greater is pressure, and this correlation 
corresponds to the normally observed temperature expansion in solids.  

On the contrary, in the dynamically ordering systems, for example, in the 
polar crystals, a certain temperature interval exists, in which the coefficient α < 0; 
that means the rise of entropy with the increasing pressure. Such unusual 
phenomenon, which is the characteristic of, particularly, polar crystals, requires 
deeper understanding of entropy. Of all properties of thermodynamic system, the 
entropy S looks like difficult to explain property: the point is that temperature T, 
pressure p and volume V is easy to measure, while the entropy can not be measured 
directly. As is known, the entropy characterizes the inaccessibility of part of thermal 
energy of a system for conversion into work, in other words, it is a measure of 
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thermal energy of system per unit temperature, which is not available for performing 
useful work. Often, entropy is interpreted as a degree of disorder or randomness in 
system, namely, entropy is due to number of microscopic configurations, which are 
consistent with the macroscopic quantities (p, V, T) characterizing system. 

As noted, entropy is a function of state, because it does not depend on how 
the transition from one state of system to another state is accomplished, but it is 
determined only by initial and final states of a system. At that, the entropy establishes 
a connection between macro- and micro- states. It is believed that particular 
arrangement of particles, which characterized by average quantities, is the 
macrostate, while the individual arrangement, defining properties of all particles for 
a given macrostate, is the microstate. Entropy is related to number of ways, in which 
the microstate can rearrange itself without affecting the macrostate. At that, for 
microstates, for example, for the system of N particles, it is possible to specify 
coordinates and velocities of the particles. It's obvious that macroscopic state of 
system can be described using several macroscopic parameters, for example, p, T, 

V. 
Therefore, peculiarity of entropy is that it is the only function, which shows 

the direction of thermodynamic processes. During ideal reversible process the 
entropy does not change, while the irreversible process always increases total 
entropy. In connection with the study of dynamically ordering polar crystals, the 
conditional separation of entropy into "vibrational" and “configurational” becomes 
important.  

The vibrational entropy can be thought of as the number of microstates 
through which the thermal energy can be shared between particles. The higher the 
temperature, the greater the vibrational entropy, but with increasing pressure it 
becomes smaller, since the binding energy of the particles increases. Therefore, with 
increasing pressure, the vibrational entropy decreases. 

The configurational entropy is those part of system entropy, which is due to 
the various positions of some parts of a system, and this rule is applicable to all 
possible configurations of a system. This entropy characterizes the number of ways 
in which the groups of atoms can be distributed in the space. With increasing 
pressure, the possibilities of partial ordering of the dynamic nanoscale clusters 
collapses, and the mutual chaos increases. That is why, a distinctive feature of the 
configurational entropy is its growth with increasing pressure. 

With regard to dynamically ordering in polar crystals, then when discussing 
the relationship of entropy and pressure, the Le Chatelier’s principle can be applied: 
the ordering of polar bonds leads to the decrease in entropy and increase in volume; 
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therefore, the increase in pressure (which decreases volume) should lead to the 
disordering of the polar bonds and, accordingly, to entropy increase. Thus, the 
negative coefficient of thermal expansion proves the importance of configurational 
entropy accounting, when polar crystals properties description. In turn, the negative 
expansion indicates the presence of self-ordering-disordering processes in the polar 
crystals. 

5. Polar structures with negative thermal expansion are no special exception. 
Since here the properties of polar crystals are discussed, a convincing example, 
which shows the direct relationship of negative expansion coefficient with the 
structural ordering, may be given. This is a well-studied barium titanate crystal, 
passing while cooling from its non-polar to the polar phase at temperature ~ 400 K. 
During the phase transition from disordered paraelectric phase into ordered polar 
phase, the volume of BaTiO3 crystal increases while the configurational entropy 
decreases due to the suppression of polar fluctuations (which is peculiar to higher 
temperature disordered paraelectric phase). As seen in Fig.1. 17A, in the α(T) 
dependence a deep minimum is observed, i.e., the negative thermal expansion is 
characteristic of certain temperature range, where an intense process of ordering of 
polar bonds occurs, and this is known property of ferroelectrics.  

        
                 (A)        (B) 

 

Fig. 1.18.  Thermal expansion coefficient temperature dependence: A – in ferroelectrics KDP 
(1), TGS (2) and BaTiO3 (3); B – in semiconductors Ge, Si, С-diamond and C-graphite 

 

If one touch on the specific microscopic mechanisms of ordering in certain 
ferroelectrics, then it was established that in BaTiO3 the fluctuations of the internal 
polarity exists along four symmetry axes of third order ([111]-type) i.e., in BaTiO3 
structure, dynamically appears and disappears (flashes) most stable lowest 
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temperature rhombohedral phase. In the polar phases of barium titanate, as the 
temperature rises, the rhombohedral, orthorhombic, and tetragonal phases dominate 
sequentially, but the rhombic fluctuations remain as flickering impurity in all phases, 
including the non-polar high-temperature cubic phase. The hydrostatic pressure 
applied to BaTiO3 below its Curie point (i.e., in its polar phases) returns this crystal 
to its paraelectric (non-polar) phase, Fig. 1.16, in which, however, the fluctuations 
of [111]-type persist, and,  naturally, configurational entropy becomes larger.  

Other well known example of the configurational entropy connection with 
pressure is the phase transition in H2O at 273 K: freezing of water leads to the ice, 
which has increased volume, but externally applied pressure returns ice into the 
disordered structure of a water with more pronounced configurational entropy due 
to polar phase fluctuations.  

Thus, when discussing negative thermal deformation in the polar crystals, one 
should pay attention to the fact that α(T) takes negative value in the vicinity of 
ferroelectric phase transitions, since the volume of low-temperature predominantly 
ordered phase becomes greater than the volume of same crystal but in its disordered 
phase (however, in case of antiferroelectric phase transition, the volume of antipolar 
phase, on the contrary, decreases; correspondingly, at phase transition α(T) shows 
maximum). From the point of crystal lattice dynamics, negative value of α(Т) 
corresponds to such features in polar crystal phonon spectrum, which leads to the 
negative value of Grüneisen constant. Since this effect is observed at low 
temperatures, such singularities are due to the acoustic vibrational modes; in polar 
crystals the branch of transverse acoustic oscillations bends downward when its 
approaching boundary of Brillouin zone. Therefore, this branch can be represented 
as two parts: Debye-type mode in the beginning of spectrum and Einstein-type mode 
at its end, exactly last part of TA branch near boundary of Brillouin zone corresponds 
to a negative α(T). 

In connection with negative α(T) that is seen at low temperatures in the polar 
crystals, it is important to keep in mind other cases of negative thermal expansion 
coefficient observations. In dielectrics and semiconductors such cases are known 
among the crystals that have the layered and chain structures. Typical examples of 
such crystals are the rhombohedral tellurium and selenium, which, among other 
things, refers to the piezoelectrics of the polar-neutral class 32 (same as quartz). In 
Te crystal transversal thermal expansion coefficient is positive: α1 = α2 = +27⋅10–6 
K–1, while along the chains this coefficient is negative: α3 = –1.6⋅10–6 K–1. In the 
Te and Se crystals the helical chains Te–Te (or Se–Se) are elongated in parallel to 
the axis 3. Pronounced anisotropy and negative value of α3 are due to the fact that 
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inter-atomic bonds along the chains are much stronger than the interaction between 
chains. Therefore, with heating, the crystal contracts in the direction 3 but it expands 
in perpendicular 1 and 2 directions. 

The example of layered crystal is the hexagonal graphite, in which in the 
direction perpendicular to the plane of layers (where inter-atomic bonds are weak), 
a rather big and positive thermal displacement of atoms are observed, so in this 
direction graphite expands with heating: α3 = +30⋅10–6 K–1. However, along the 

layers of graphite (where atomic bonds are very strong) at lower temperatures, the 
negative thermal expansion coefficient is seen: α1 = α2 = –5⋅10–6 K–1, i.e., in this 
plane, while heating, the graphite becomes more compressed. The point is that in the 
graphite layers, the covalent bonds are so strong that at low temperatures the thermal 
vibrations can be excited mostly perpendicularly to the rigid layers (along 3 axis). 
In this case, a lateral compression appears, characterized by the negative α1 = α2 
along the layers. At low temperatures (up to about 300 K), in graphite layers the 
transverse acoustic vibrations dominate, being polarized perpendicularly to the 
layers of carbon: this corresponds to negative expansion. Only at a temperature of 
650 K the parameters α1(T) = α2(T) acquire their positive value – when the intensity 
of thermal movement becomes significant. Note that large negative coefficient of 
thermal expansion is observed also in the graphene and nanotubes. 

Thus, through temperature dependence of thermal expansion, the features of 
crystal inter-atomic bonds are manifested. In the layered crystals, the positive 
thermal displacements of atoms is seen perpendicularly to the planes of layers, while 
in the chain crystals they are pronounced perpendicularly to the axis of chains. In 
both cases, in the directions of the strong bonds, the coefficient of thermal expansion 
is negative. The conclusion is obvious:  
the stronger inter-atomic bonds, the less thermal expansion coefficient, down to its 

negative value. 
By comparing these data with temperature properties of polar crystals, there 

is a reason to believe that when temperature decreases below a certain limit, the 
intensity of thermal oscillations becomes so weak that a self-ordering of polar bonds 
starts that gradually leads to their strengthening. Caused by this ordering with 
temperature decrease, the widening of crystal lattice results in the negative sign of 
thermal expansion coefficient. The foregoing makes it possible to affirm that 
negative value of thermal expansion coefficient at low temperatures in the polar 
crystals is due to the increase in partial ordering of polar-sensitive bonds.  

Above considerations provide a basis for explanation of negative expansion 
coefficient in the polar crystals at low temperatures: it is the polar bonds self-
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ordering which intensifies when the thermal oscillations in a crystal become 
weakened. In this connection, it is necessary to compare the uniform temperature 
scalar action (which leads to the crystal widening or compression), and the uniform 
scalar action of a pressure (hydrostatic action). By different ways, both effects give 
rise to same result: the change of crystal volume. As is known from thermodynamics, 
the thermal expansion coefficient is related to entropy S changing with pressure: 
αV = – (dS/dP)T/V. In this way, the negative value of α(T) corresponds to such an 
unusual case, when the entropy increases with increasing pressure. (Usual is 
phenomenon when entropy decreases with pressure rise, correspondingly to a 
common case of positive thermal expansion coefficient). 

Thus possible explanation of negative thermal expansion coefficient is 
reduced to finding out a reason why entropy can increase with uniform pressure rise. 
The fact is that entropy depends not only on dynamic characteristics of particles 
(their velocity or momentum), but also depends on particles equiprobable locations: 
exactly this determines the configurational entropy, i.e., the number of ways of 
particles arranging, maintaining specific system properties. With increasing pressure 
only configurational entropy increases.  

Therefore, comparison of two different scalar influences on thermal and 
elastic properties of polar crystals shows a compelling correlation: negative thermal 
expansion is observed, if increase of homogeneous pressure increases 
configurational entropy (that, in turn, is due to the presence of metastable 
microscopic states) [7]. It can be argued that they are precisely those states that 
correspond to the ambiguity in the orientations of internal polarity. Indeed, polar 
bonds ordering leads to increase of crystal volume and to decrease of configurational 
entropy. The fact is that hydrostatic compression suppresses the ordering processes 
and thereby increases entropy. 

6. Negative thermal expansion in semiconductors. As can be seen from Table 
1, many polar crystals are semiconductors. In fact, the compounds of AIIIBV group 
have polar sphalerite structure and they belong to the piezoelectrics, while 
semiconductors of AIIBVI group are the pyroelectrics. It is pertinent to note that 
exactly polar semiconductors are the direct band semiconductors, while 
monoatomic semiconductors of diamond symmetry are the nondirect band 
semiconductors. By the way, it should be noted that at low temperatures (where 
negative α(T) is seen) the concentration of free charge carriers in semiconductors is 
very low and charge carries can not screen possible polar fluctuations in a structure. 
Therefore, the cause of the negative thermal expansion observed at low temperatures 
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has to be sought not in electrical conductivity but in the phenomenon of electrical 
polarization. 

In connection with foregoing, the low-temperature minimum in coefficient of 
thermal expansion is not surprising. With temperature decrease, the thermal chaotic 
motion freezes, and existing polar bonds becomes ordered (configurational entropy 
decreases), so the crystal occupies bigger volume, demonstrating negative α(T). 
However, with further cooling to a very low temperature, the inescapable quantum 
oscillations in the crystal lattice prevent further ordering of fluctuating polarity, so 
with the approach to zero of Kelvin the crystal again compresses a little (by similar 
way exactly the quantum oscillations impede the transition to ferroelectric phase in 
the virtual ferroelectrics KTaO3 and SrTiO3). 

If in polar AIIIBV and AIIBVI semiconductors, which have non-
centrosymmetric structure, the minimum of α(T) can be considered as explained 
before, then for atomic semiconductors of diamond type this minimum needs special 
explanation. As seen from Fig.1. 17B, in germanium, a small minimum of α(T) is 
observed at temperature round 35 K (~ 0.1 θD) while in silicon a much deeper 
minimum α(T) is seen at temperature near 60 K (~ 0.1 θD). At the first glance, it is 
difficult to suspect any natural polarity in atomic semiconductors consisting of only 
one chemical element and, naturally, possessing only by covalent bonds. 
Nevertheless, mentioned above single element crystals of tellurium and selenium 
have even a pronounced piezoelectric effect and belong to the hexagonal symmetry 
class 32 (like quartz). Probably, the reason for this internal polarity lies in the 
significant complications of covalent bonds distribution in their structure. 

As was shown theoretically, the negative coefficient of thermal expansion is 
due to the change in configurational entropy. Obviously, that it is necessary to 
indicate, which kind of the ordering process is possible in the crystals of diamond 
type. Here is assumed that the reason of negative α(T) in germanium and silicon is 
the fluctuations in the partial ordering of hexagonal polar phase, when the double 
bonds becom mixed with single covalent bonds. This assumption is based on the fact 
of hexagonal diamond existence: initially it was discovered in the meteorites but 
later is synthesized in the laboratory as well. Having appeared in peculiar 
technologic conditions, the hexagonal phase can remain stable only in the super hard 
and super stable diamond (θD ~ 1900 K and Tmetling ~ 4000 K) being observed 
throughout temperature range due to a very small concentration of charge carriers, 
which cannot screen the possible polar interactions. However, in the silicon 
(θD ~ 600 K and Tmetling ~ 1700 K) and in the germanium (θD ~ 360 K and Tmetling ~ 
1200 K) the hexagonal phase apparently can exists only in a form of the polar 
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fluctuations in the [111]-type of directions; at that, any polar interactions are 
screened by the charge carriers. It is pertinent to note that the direction of natural 
growth of these crystals from their melt is the polar [111]-direction; moreover, these 
crystals can float in their own melt (like the ice floats in water) that indicates the 
decrease of material density during crystallization. The same property is possessed, 
for example, gallium arsenide, which is a polar crystal of sphalerite symmetry.  

The hexagonal structural feature that accidentally arising in the diamond and, 
probably, weakly fluctuating in silicon and germanium, is fully implemented in the 
graphite and graphene, which cellular plane is characterized by the negative α1 = α2 
with explicit minimum at temperature 180 K (~ 0.1 θD, Fig. 1.17B). As mentioned 
earlier, crosswise to the layers of graphite is characterized by a positive α3(T). In the 
Fig. 1.17B there is not by chance the curve 4 is shown, demonstrating thermal 
expansion α(T) in the plane of graphite, in which at a temperature of about 200 K 
the minimum are seen: α1min = α2min = –1.5×10–6 К–1. The structural basis in the 
graphite planes is carbon hexagons, in which three single covalent bonds alternate 
with three double bonds. It should be noted that more strong C=C double bond is 
much shorter than single C–C bond, and it can be assumed that arising with 
increasing temperature from absolute zero thermal motion stimulates the formation 
and hardening of double covalent bonds. In favor of this assumption, it needs to note 
that temperature minimum of the thermal expansion in the graphene is even deeper 
than in graohite: αmin = –5.5×10–6 К–1 at 300 K, and in carbon nanotubes at 
temperature 240 K it reaches α min = –9.5×10–6 К–1. One could assume that, in general, 
in crystals with negative thermal expansion at low temperatures, a strong (resulting 
in compression) covalent bond formation occurs. 

Study of the features of thermal expansion in various crystals has not only 
scientific but technical interest also. In vast majority of cases, as the temperature 
rises the solid expands. Therefore, the exceptional case of negative expansion 
coefficient has a particular interest. Physical nature of negative thermal expansion 
in polar crystals corresponds to a special case when the entropy increases with 
increasing pressure that is possible only in case of configurational entropy. In turn, 
the presence of this entropy testifies to the processes of structural ordering-
disordering in the crystal. Discussed model, based on the asymmetry in the 
electronic density distribution along atomic bonds, is free from assumption of any 
internal electrical field existence in crystals. Although polar-sensitive bonding is not 
a result of internal field in crystal, it can provide an electrical response onto the non-
electrical external action that is impossible in the centrosymmetric crystals. It is 
assumed that physical basis of natural polarity is a distinction in the electronegativity 
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of ions forming a crystal. Since the temperature minimum of thermal expansion 
coefficient in the polar crystals is explained by the polar bonds ordering at low 
temperatures, a proposed concept can be extended to the non-polar semiconductors. 
In them, too, it can be supposed that fluctuating in structure polar tendencies become 
consolidated at low temperatures. 

Thus, in the polar crystals at low temperatures the coefficient of thermal 
expansion α changes its sign twice, forming a region of α negative values. The nature 
of the negative thermal expansion is explained by partial ordering of the polar-
sensitive bonds at low temperatures, leading to their long-range interaction and, a 
result, to flattening of the transverse acoustic mode of lattice vibrations near the 
boundary of Brillouin zone. The above-described features of thermal expansion in 
both conventional and polar crystals can be used in development of new technologies 
for microelectronic materials. 

 

 
 
 

Fig. 1.19. Lattice parameters temperature dependence in strained BaTiO3 film out-of-plane (1) 
and in-plane (2) in comparison with single crystal BaTiO3 (3) 

 
7. Lattice strain engineering using polar-sensitive films is based not only on 

the mismatch in thermal expansion, but to a greater degree in the difference of 
permanent lattices of the film and substrate. As known, the occurrence of internal 
polarity in a crystal is accompanied by the anisotropic change in its size: the 
elongation along the axis of polarization and the compression in the perpendicular 
direction (at that, the volume of ferroelectrics increases but in the anti-ferroelectrics 
it decreases). According to principle of La Chatelier, if during polar phase formation 
one of crystal size increases, so forced the change in this size of crystal should lead 
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to the change in its polar state. For example, in the ferroelectric their phase transition 
temperature should change.  

In the functional dielectrics, possessing polar-sensitive properties, the 
coupling between the polarization and mechanical strain is strongly manifested. The 
external mechanical action not only leads to a piezoelectric effect, but can also 
changes the temperature of ferroelectric phase transition TC. For example, 
hydrostatic pressure can lower the phase transition point by tens of degrees and 
greatly change the dielectric properties of a bulk ferroelectric, Fig. 1.15. It is 
important to note that much greater possibilities of the mechanical control by the 
polar crystal parameters appear in the epitaxial thin films, which allow large biaxial 
(plane) deformations without film destruction. The highly perfect ferroelectric thin 
films, which are synthesized on the suitable substrates, demonstrate that the strained 

ferroelectric thin films can exhibit the properties which are greatly superior the 
possibilities of their bulk. 

This phenomenon may be demonstrated by the example of most well studied 
ferroelectric – barium titanate, Fig. 1.19. The epitaxial films of BaTiO3 were 
deposited at high temperature on the isomorphic substrate GdScO3, which have same 
perovskite structure but quite different lattice parameter. The mismatch in the lattice 
parameters leads to a forced biaxial compression of a film that leads to the increase 
of its deformation perpendicularly to its plane that contributes to more stable 
polarized state of BaTiO3 that persists at much higher temperatures. The biaxial 
strain can be defined as xs = (a|| – a0)/a0, where a0 is the lattice parameter of 
ferroelectric material in its cubic state under the stress-free conditions (free-
standing) and a|| = asubs is in-plane lattice parameter of the biaxially strained 
ferroelectric film.  

The limit of strain can be given by Griffith criteria for crack formation: xs = 

(1 – ν)⋅(2ξ/(π⋅E⋅t), where ν is the Poission's ratio, ξ is the surface energy, E is the 

Young's modulus, and t is film thickness (biaxial strain xs arises from lattice 
mismatch with underlying substrate for fully coherent epitaxial growth). With this 
limit, it is quite possible to largely control the properties of polar-sensitive materials. 
In addition to above example with Curie point temperature shift in barium titanate, 
another impressive example is the conversion of virtual ferroelectric film of 
strontium titanate into the ferroelectric film, with sufficiently high Curie 
temperature (increased from 35 to 300 K). Thus, in the biaxial stressed films, such 
materials can be obtained that in the bulk state are not ferroelectrics at any 
temperature. Biaxial deformations of films make it possible to increase the Curie 
point by hundreds of degrees with a simultaneous increase in the polarization in 
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direction perpendicular to film thickness. Such films have great advantages for use 
in microwave technology. 

In the strain engineering, it is necessary to use only high quality films, 
obtained, as a rule, by the molecular-beam epitaxy: the growth of such film on 
substrate means the arrangement of film atoms similarly to the arrangement of 
substrate atoms. This technology makes it possible to convert the virtual ferroelectric 
into the ferroelectric, potential ferromagnetic into the ferromagnetic, and even to 
obtain ferroelectric and ferromagnetic properties together in one film. 

Summing up, it should be noted that biaxial deformations, created for control 
of polar-sensitive film properties, can be obtained by the essential mismatch of 
lattice parameters between film and substrate, and the different in the thermal 
expansion coefficient. (It should be recalled that bulk crystals usually break down 
long before the deformation of percentage levels is reached.). The deformations 
reaching a value of several percent have a great influence on the properties of polar-
sensitive thin films and superlattices. Coherent epitaxial films have the advantage 
that they have very few dislocations. In addition, thr epitaxial films allow create the 
superlattices: both from layers of different polar-sensitive dielectrics and alternating 
layers of polar dielectrics and ferromagnetics, thus obtaining films with properties 
that are not found in natural materials. 

 
1.5 Thermal conductivity and thermal diffusivity 

 
A thermal conductivity characterizes the ability of material to conduct heat in 

the course of chaotic thermal movement material's particles (electrons, ions, 
molecules). In a steady state, the directed heat flux qi is proportional to the 
temperature gradient: qi =  – λij∇Tj, where the second rank tensor λij is the thermal 
conduction coefficient, (this tensorial description only becomes necessary in the 
anisotropic materials while for isotropic media the scalar equation can be used: q = 
– λ⋅grad T). This relation is known as Fourier’s heat conductivity law, where qi is 
the heat flux vector, which magnitude is the amount of energy that passes in unit 
time through the unit area, oriented perpendicularly to the direction of heat transfer. 
Like dielectric permittivity εij or conductivity σij, the tensor λij can be described by a 
second-order surface, which usually has a form of ellipsoid.  

Various solids can have quite different thermal conductivity that can vary in 
thousands of times. In metals the thermal energy can be transferred predominantly 
by the electrons while in dielectrics and semiconductors by phonons. At that, in 
metals their electronic thermal conductivity is big: λ = 400–200 W/(m·K) at 300 K. 
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In the semiconductors, the heat transfer is carried out basically by the phonons being 
greatly dependent on temperature, at 300 K usually λ = 150–50 W/(m·K). In the non-

polar covalent dielectrics, the thermal conductivity also has phonon nature with λ = 
80–30 W/(m·K); newly developed aluminium nitride AlN shows λ = 180 W/(m·K) 
while the diamond at 300 K shows λ > 1000 W/(m·K). Most of mentioned materials 
have increased Debye temperature and, correspondingly, high velocity of sound 
waves. 

At that, relatively big thermal conductivity in the covalent crystals is due to 
the fact that in them the heat carriers (short-wave acoustic phonons located near the 
boundary of Brillouin zone) practically not interact with the optical phonons. In 
majority of ionic dielectrics, the phonon type of thermal conductivity at normal 
temperature not only significantly lesser than in metals, but much smaller than in 
covalent crystals: λ = 15–10 W/(m·K). It can be assumed that the ionic bonding in 
these crystals contributes to the deceleration of thermal phonons through the 
mechanism of their interaction with optical phonons. Such interaction even more 
enhanced in the polar-sensitive (non-centrosymmetric) crystals, in which the intra-
atomic bonding has the mixed ionic-covalent character, so the thermal conductivity 
in these crystals at 300 K usually is less than λ = 10 W/(m·K). 

Heat transfer is described phenomenologically in the non-equilibrium 
thermodynamics, while in the microscopic theory heat transfer in the dielectrics is 
determined mainly by the phonons mutual scattering. At normal temperatures, the 
heat transfer is carried out by the shortwave phonons, which wavelength is 
commensurable with the parameter of crystal lattice. Therefore, the polar-sensitive 
bonds, which characterize many features of noncentrosymmetric crystals, should 
clearly manifest themselves in the heat transfer.  

Indeed, the difference in thermal conductivity λ of polar and nonpolar crystals 
clearly follows from its comparison with the coefficient of thermal expansion. 
Figure 1.20A demonstrates the dependence of λ on α2 (causal relationship of these 
parameters will be explained below). 

When further discussions of heat transfer mechanisms, two parameters are 
used: the thermal conductivity (λ) and the thermal diffusivity (ξ). The first of these 
parameters is important mostly for assessing the technical properties of electronics 
material, for example, to predict possible overheating of this or that structure, while 
the second parameter is better to use in the interpretation of experimental data. In 
the polar crystals, both these parameters are noticeably less than that of common 
crystalline dielectrics and semiconductors.  



75 
 

              
 (A)      (B) 
Fig. 1.20. Main features of heat transfer in crystals: A – comparison of thermal resistance in the 
polar (curve 1) and in the nonpolar (curve 2) crystals at normal temperature; B – comparison of 

temperature dependence of thermal diffusivity ξ and thermal conductivity λ 

 
For research methods of λ and ξ  investigation compare, the following should 

be noted.  
1. Thermal conductivity coefficient λ, defined in SI units by watts per metre-

kelvin [W·m−1·K−1], as shown by kinetic theory, depends on crystal specific heat C, 
phonons average free path <l> (i.e., distance between one phonon collision with 
another phonon) and average velocity υ of phonons: λ = (1/3)⋅υ⋅l = (1/3)C⋅υ2⋅τ, 
where τ is the free path time which is time between collisions. It can be shown that 
the time of average free path is determined by the square of anharmonicity 
coefficient. Therefore, thermal conductivity is related to thermal expansion 
coefficient, which also is determined by the coefficient of anharmonicity, but in its 
first degree. Measurements really show that the inverse thermal conductivity is 
proportional to the square of thermal expansion coefficient: 1/λ ~ α1. Experimental 
data obtained from comparison of different dielectrics and semiconductors (polar 
and nonpolar) shows that such a relationship really exists, Fig. 1.20A. On the line 2, 
which has smaller slope, the crystals with increased thermal conductivity are 
grouped: they have predominantly covalent or ionic bonding. The upper curve 1 
possessing larger slope characterizes the crystals with reduced thermal conductivity: 
they are the polar crystals, in which the mixed ionic-covalent bonds predominate. 
The ratio 1/λ ~ α2 is determined by the peculiarities of interatomic bonds. In this 
case, it can be considered that crystals with larger expansion coefficient have smaller 
thermal conductivity.  
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It is important to note that temperature dependence of thermal conductivity 
follows rather complicated law, Fig. 19B, since it is determined by a product of 
specific heat C by phonons average free path <l>. As a result, at very low 
temperatures, the thermal conductivity tends to zero and with temperature increase 
λ(T) fast increases, following Debye specific heat law: C ~ T3. At that, the λ(T) 
dependence reaches a maximum at temperature T ~ 0.1θD, and only then decreases 
in connection with the temperature dependence of average free path of thermal 
phonons. It should be noted also that when studying the anomalies of thermal 
conductivity (common in the polar crystals, especially near phases transition), true 
form of the anomalies λ(T) can be somewhat distorted by the unavoidable 
temperature gradient while measurements. In this respect, temperature dependence 
of another parameter – thermal diffusivity ξ(T) can be studied with greater accuracy. 

2. Thermal diffusivity coefficient ξ is measured in SI units by [m2/s] and 
defined as the thermal conductivity divided by material's density ρ and specific heat 
at constant pressure: ξ = λ/(Cp⋅ρ). It characterizes the rate of the heat transfer of a 
material from its hot side to the cold side. In a sense, the thermal diffusivity is a 
measure of the thermal inertia; so in the substance with high thermal diffusivity the 
heat moves more rapid through it. At that, the thermal diffusivity is determined 
mainly by the average free path <l> of thermal phonons propagating in crystal (ξ ~ 
<l>). At very low temperatures the density of phonons is so small that they do not 
interact, and their free path is large being dependent mostly on the macroscopic-size 
defects including crystal boundaries. At that, the parameter ξ remains nearly 
constant, keeping its greatest value, Fig. 1.20B. However, ξ decreases hundreds of 
times as temperature increases: the point is that the intensity of phonons interaction 
becomes larger as it is determined by the anharmonicity of lattice vibrations, which 
is measured by the Grüneisen parameter γ.  

Thus, average free path of phonons is <l> ~ a/(α⋅γ⋅T), where a is the lattice 
constant and α is the thermal expansion coefficient. As temperature increases, 
thermal diffusivity falls very fast: ξ(T) ~ <l> ~ exp(T–1), since the average free path 
of phonons becomes limited by the intra-phonon umklapp processes (U-processes), 
which occur with the loss of quasi-momentum. Next, with subsequent increase of 
temperature (when T > θD), just in the temperature interval that will be discussed 
below, the lowering in the ξ(T) dependence follows the Aiken law: ξ(T) ~ T–1.  

To identify the physical mechanisms of heat transfer, an analysis of thermal 

diffusivity temperature dependence seems much simpler than the analysis of thermal 
conductivity. For example, in the non-polar silicon crystal and in the polar quartz, 
the speed of sound (determined by the long-wave phonons spread) is approximately 
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the same: ~ 5000 m/s. on the contrary, the speed of short-wave thermal phonons 
differs greatly, however: at temperature of 300 K in silicon ξ = 88 mm2/s while in 
quartz only ξ = 1.4 mm2/s. 

Therefore the coefficient of thermal diffusion is a more strong criterion for 

phonons kinetics then the thermal conductivity: thermal diffusion characterizes not 

a total heat flux but exactly the kinetics of energy carriers.  

The upper limit of the thermal diffusion is determined by so-called folding 
umklapp processes (U-processes), while the lower boundary corresponds to the 
amorphous solids, where the energy transfer occurs only between the nearest 

neighboring cells. It should be noted that such limits is difficult to indicate for the 
thermal conductivity coefficient, since there are no restrictions as to density of 
energy states. 

3. Thermal transfer features in polar crystals. In the dielectrics and 
semiconductors, the main contribution into thermal conductivity is given by the 
acoustic phonons, which group velocity slows down, when acoustic branch of 
spectrum approaches to the boundary of Brillouin zone. However, main feature of 
polar crystals (as all of them are piezoelectrics!) is that the acoustic phonons are 

associated with the optical phonons. If the optical phonons have large spatial 
dispersion, they can make a significant positive contribution to the heat transfer. But 
in most cases spatial dispersion is small, so the optical phonons give an additional 
contribution only in the phonons scattering, which substantially decreases thermal 
conductivity. Exactly this decrease due to the inhibitory interference of optical 
phonons explains the difference in thermal conductivity of polar and nonpolar 
crystals, shown in Fig. 1.20A.  

As already indicated, the thermal energy in dielectrics is transferred by the 
short-length lattice waves ("heat waves"), which propagation velocity in a crystal is 
significantly lesser as compared with the long-length “sound waves”. That is why 
the crystals which are well-transparent for long elastic waves (sound waves), in case 
of short length waves looks like a turbid medium, because short lattice waves are 
characterized by the strong scattering of a diffuse-type, when their wavelength is 
comparable with the value of intra-atomic distances. The smaller wavelength the 
stronger wave scattering by the nano-inhomogeneous structure; therefore, in the 
polar-sensitive crystals the main interaction of phonons is determined by the polar-
sensitive bonds.  
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           (A)            (B)                           

 

Fig. 1.21.  Thermal conductivity of ferroelectrics near their transition from higher temperature 
disordered phase into lower temperature ordered phase: A – barium titanate crystal (1) and  

ceramics (2); B – potassium dihydrogen phosphate (KH2PO4 = KDP) crystal 

 
The fact that the value of thermal conductivity is dependent on the degree of 

ordering of polar-sensitive bonds is clearly seen with the example of ferroelectrics, 
Fig. 1.21. In the polycrystalline barium titanate, its thermal conductivity in 1.5 times 
less than in single crystal, both above and below Сurie point (400 K), because 
ceramics have macroscopically disordered structure. However, as in BaTiO3 crystal 
so in its ceramics, in the ordered ferroelectric phase the thermal conductivity almost 
doubles in comparison with the nano-scopic disordered paraelectric phase. At that, 
the jump of thermal conductivity at a phase transition (especially noticeable in the 
crystal) indicates a first-order phase transition. It is also interesting to note that in 
the KH2PO4 (KDP) crystal below its Curie point (TC = 122 K) the thermal 
conductivity increases linearly with cooling, reflecting gradual process of structural 
ordering in the ferroelectric phase in accordance with the second order phase 
transition. However, thermal conductivity of KDP also slightly increases when 
crystal is heated above Curie point. In all likelihood, the fluctuations of intrinsic 
polarity are the main scattering factor for phonons which carry heat.  

Significantly decreased thermal conductivity in the polar crystals is due to the 
peculiarities of phonon dissipation process: i.e., by the perceptible binding of 
acoustical and optical phonons. This special feature of crystals, which possess the 
polar-sensitive bonds, correlates with their phonon spectrum near the boundary of 
Brillouin zone, where transverse acoustic mode has anomaly, as example, shown in 
Fig. 1.22 for GaAs (similar bending in the νTA mode is seen in quartz). This is the 
evidence of such interaction between nearest atoms that can be described by the 
mixing of acoustic and optical phonons.  
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            (A)       (B)           (C) 
 

Fig. 1.22. Phonons spectrum for: A – ionic crystal NaI; B – covalent crystal diamond;  
C – TA (transverse acoustic mode) in polar GaAs crystal (1) and in non-polar NaCl crystal (2)  

 
4. Thermal conductivity in the vicinity of phase transition demonstrates 

peculiarities that are seen when the non-polar (centrosymmetric phase) is turning 
into the polar ferroelectric phase. These crystals include the triglycinesulphate 
(TGS) and its isomorphs, which thermal conductivity is shown in Fig. 1.23 together 
with the reciprocal dielectric permittivity which tends to zero in the phase transition.  

              
                                        (A)                                                                   (B)                    

Fig. 1.23. Thermal conductivity (λ) temperature dependence and inverse value of permittivity 
(1/ε) along the [010] direction for single crystals TGS (A) and TGSel (B); small dashed lines 

show the inevitable temperature gradient while measurements  

 
As could be foreseen, in the vicinity of phase transition, the anharmonicity of 

intra-atomic interactions clearly manifests itself, so the anomalies in phonons 
kinetics are expected. The density of elementary excitations increases, so the specific 
heat (one of components of thermal conductivity) increases as well. At that, the 
maximum of specific heat corresponds to the maximum of energy fluctuations; 
therefore, the relaxation time changes critically. The density of excitations and the 
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growth of anharmonicity lead to a decrease in the diffusion length of energy carriers 
and to the decrease in the intensity of heat transfer. 

To explain such anomaly of thermal conductivity, refer again to Fig. 1.23, 
where the value of thermal conductivity in the [010] direction in the TGS crystals is 
compared with others physical parameters which determine the phonon thermal 
conductivity, namely, with the temperature dependence of specific heat C, with the 
speed of acoustic waves propagation in longitudinal vlon and transverse vtr 
orientation, and with the thermal expansion coefficient α along [010]. As can be 
seen, the Aiken's law λ(T) ~ T–1 for thermal conductivity of TGS in the studied 
temperatures region is not satisfied that is due to a small average free path of 
phonons, scattering centers for which are commensurable with the order of lattice 
constant. Therefore, temperature-variation of thermal conductivity should follow the 
change in heat capacity. But in this case the minimum of thermal conductivity would 
not be observed, since the main investment in λ(T) is made by specific heat change, 
as can be seen from Fig. 1.23. 

It is possible that the phonon scattering in the vicinity of phase transition is 
due not only to anharmonicity of lattice vibrations, but also to other additional 
phonon-scattering mechanisms, for example, the scattering on structural 
heterogeneities. It is possible to came to conclusion that the minimum of thermal 
conductivity in phase transition region is due to mechanism of phonon scattering 
considering interaction of acoustic and optical phonons. It is also possible that below 
TC in temperature interval of 40–50 °C there is a noticeable additional scattering of 
phonons on domain walls. In the TGS-family crystals the anomalies of thermal 
conductivity in vicinity of phase transition are also observed in the (100) and (001) 
directions. The absolute values of thermal conductivity of TGS, TGFB and TGSel, 
as expected, are of same order of magnitude. Anisotropy of the thermal conductivity 
is observed in all crystals: largest value of λ(T) is seen in the [100] direction while 
the smaller are in (010) and (001) directions. The anisotropy of thermal conductivity 
in the TGS is consistent with the anisotropy in the velocity of ultrasound 
propagation. 

5. Thermal diffusivity in polar crystals. As already mentioned above, during 
study of thermal conductivity, the anomalies in polar crystals display simultaneously 
two important factors. First is the temperature anomaly of specific heat C(T) at phase 
transition (this is manifestation of latent heat of transition). Second is the change in 
the average free path of phonons <l> ~ ξ(T) due to polar-sensitive bonds ordering. 
As a result, it turns out that heat transfer is determined by the product: λ(T) = 
ξ(T)×C(T). To avoid the influence of heat capacity on the heat transfer analysis and 
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to separate out the processes of phonons scattering, another method of thermal 
diffusion ξ(T) measure is developed, which indicates just the average free path of 
phonons without taking into account heat capacity C(T).  

 

          
      (A)           (B) 

 
 

Fig. 1.24.  Thermal conductivity (A) and thermal diffusivity (B) in ferroelectrics: phosphates 

1 – KH2PO4, 2 – KH2AsO4, 3 – KD2PO4 and Rochelle Salt 4 – KNaC4H4O6⋅4H2O   
 
The temperature dependence of thermal conductivity is compared to the 

thermal diffusivity in the crystals of KDP group, Fig. 1.24. These dependences are 
significantly different. In the λ(T) dependence at phase transition point, the only a 
bend is seen followed by the essential λ(T) increase at low temperature due to 
strengthening in ordering of polar bonds. However, in all studied crystals of 
phosphates in the vicinity of phase transition the thermal diffusivity ξ(T) curves 
show the sharp minima that indicates a fast shortening in average wavelength of heat 
phonons. Such large difference between the λ(T) and ξ(T) dependences is due to the 
fact that in λ(T) characteristic the decrease in phonons wavelength is compensated 
by the large maximum of the specific heat. 

Ferroelectric phosphates, which investigations are shown in Fig. 1.24, are the 
piezoelectric (polar) crystals in all temperature range; however above the Curie 
point they belong to the polar-neutral symmetry class 42m (piezoelectrics) while 
below Curie point they belong to the polar pyroelectric class mm1. Thermal 
diffusion coefficient of in phosphates at temperature close to 300 K equals 
approximately ξ ≈ 7⋅10–7 m2s–1 that considerably exceeds the value ξ ≈ 2×10–7m2s–

1 seen in the Rochelle salt crystals. The appearance of new collective excitations in 
the vicinity of phase transition leads to the fact that kinetics of acoustic phonons 
changes: an additional scattering leading to heat flux suppression is observed but 
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under the condition of increased specific heat. Exactly this factor is manifesting in 
the form of heat transfer poorly expressed minimum.  

However, the sharp anomalies in the ξ(T) dependence are observed only in the 
phosphates, in which the diffusion coefficient passes through a deep minimum (30–
50% of ξ value), and its temperature interval is narrow (20–30 K). This minimum in 
the diffusion is due to the increase in crystal’s anharmonicity, which leads to 
enlargement of inter-phonon interactions, as well as to the increase of ultrasound 
attenuation and the increase in dielectric losses. Increase in the relaxation time of 
thermal phonons also affects the anomaly of thermal diffusion. 

As above so below the Curie point, the acoustic vibration modes (phonons) in 
the polar crystals are mixed with the optical phonons; therefore, the optical phonons 
also participate in a heat transfer. In the polar crystals, the process of heat transfer is 
significantly influenced by the optical phonons, since they are associated with the 
acoustic phonons. A prerequisite for the participation of optical phonons in the 
phenomenon of heat transfer is the spatial dispersion of optical modes. The 
interaction of acoustic phonons with the soft transverse optical mode (peculiar to 
ferroelectrics) leads to a significant decrease in the average free path of phonons. It 
is obvious that at the point of phase transition the average free path of heat phonons 
is reduced to the possible minimal level. In different crystals and at various 
temperatures (and even in case of KDP deuterization – DKDP) this level remains 
almost same, Fig. 1.24B. It was also established that in a wide temperature range 
same very low level of thermal diffusion is seen in the Rochelle salt crystal, so it is 
not surprising that sharp dips in the ξ(T) curve at Curie points are not seen in this 
crystal. 

On the basis of established lowest limit of the wavelength of thermal phonons 
(which, apparently, reaches the value of unit cell parameter of a crystal), one can 
come to conclusion that in the disordered phase (above the phase transition 
temperature) this wavelength still remains an order of magnitude larger and then 
continues to drop with temperature – as it is usual for all crystals. Below the phase 
transition temperature, the role of structural ordering of polar crystals becomes very 
noticeable (apart from Rochelle salt, in which a particularly complex structure 
makes it almost heat-impermeable (resembling glass). As temperature lowers 
starting from Curie point, the essential increase of thermal phonons wavelengths is 
observed, which indicates a substantial ordering in the polar-sensitive bonds. Since 
in this temperature range there are no noticeable anomalies in the specific heat, so 
the same dependence is reproduced in the temperature dependence of thermal 
conductivity. 
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6. Electrical field influence on thermal transfer. The ability to control the 
heat flow by the electrical field has not only a scientific, but also technical interest. 
Therefore, in seen in Fig. 1.25 first experiments, this question was studied on the 
example of a polycrystalline ferroelectrics with a diffuse phase transition, in which 
dielectric permittivity can be changed approximately 10 times by the electrically 
displacement field in a considerable temperature range. The measurements were 
carried out in the vicinity of phase transition. 

 

          
     (A)         (B) 

 

Fig. 1.25. Influence of bias electrical field on thermal conductivity coefficient (λ) of nonlinear 
ferroelectric near phase transition: A – λ temperature dependence at E = 0 (1) and E = 6 kV/cm 

(2): B – λ dependence on electrical field at 48 °C  

 
The results of study of polycrystalline ferroelectric Ba(Ti,Zr,Sn)O3 are shown 

in Fig. 1.24. When constant electrical field is applied, the maximum of thermal 
conductivity in the region of phase transition remains, but it shifts by 5–8 °C towards 
lower temperatures. This corresponds to the increase in thermal conductivity in the 
ferroelectric phase near phase transition. The phenomenon of thermal conductivity 
hysteresis with the change in magnitude and sign of electrical field strength is also 
observed, Fig. 1.24B and indicates that phonons scattering is to some extent due to 
the domain structure of ferroelectric. However, for technical applications, the effect 
of thermal conductivity control seems to be too small. 

To clarify the mechanism of field effect on the thermal conductivity, the single 
crystals were studied. Very convenient object for more detailed studies of thermal 
diffusion is the TGS crystal, which is ferroelectric with hydrogen bonds that 
occupies middle position in terms of thermal diffusion coefficient: it has no large 
anomalies near its phase transition at Curie temperature TC = 49°C ≈ 323 K. The 
peculiarities in the ξ(T) variations at the phase transition from nonpolar (high-
temperature) phase to the polar (low-temperature) phase are shown in Fig. 1.26. It is 
found that the electrical bias field significantly changes the anomalies of thermal 
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conductivity and thermal diffusion at the phase transition (electrical field is applied 
along the polar axis of a crystal, where it shows greatest impact on the degree of 
polar bonds ordering).  

         
         (A)       (B) 

 

Fig. 1.26. Thermal conductivity (A) and thermal diffusivity (B) of TGS crystal near phase 
transition  

under bias electrical field influence; A: curve 1– E = 0; curve 2 – E = 6 kV/cm;  
B: 1– curve 1– E = 0. curve 2 – E =  3.4 kV/cm, curve 3 – E = 10 kV/cm   

 
The free path of phonons in the TGS, calculated from the thermal conductivity 

(λ ≈ 2×10–3 сal⋅cm–1⋅s–1⋅deg–1), the specific heat capacity (СV ≈ 0.6 cal⋅deg–

1⋅cm–3) and the speed of ultrasound propagation (v ≈ 4×103 cm⋅s–1), has the value 
of 3×10–8 cm, i.e. it is of lattice constant order. When the electrical field is applied, 
the condition of phonon scattering changes, for example, by scattering on the domain 
walls, which in the ferroelectrics in have the length on the order of lattice constant. 
As noted, the thermal conductivity depends not only on the conditions of phonon 
scattering, but also on specific heat and elastic properties of a crystal. As indicated 
above in connection with Fig. 1.9, the specific heat of TGS crystal increases as Curie 
point approaches, and its sharp maximum is observed exactly at transition point. 
Under the influence of electrical field, the “smearing” in CV(T) dependence appears 
and a decrease in specific heat maximum is seen, but its temperature is not shift. The 
displacement of thermal conductivity maximum in the ferroelectrics, in particular, 
in TGS single crystals, is probably due to a change in not only conditions of phonon 
scattering, but also by changing in the elastic properties of a crystal under the 
influence of electrical field in the region of Curie point. 

In the temperature dependences of thermal conductivity and thermal diffusion 

a big difference is obvious. The influence of the applied electrical field on the 
thermal conductivity can be explained by the shift in the frequency of optical 
phonons branch. In the absence of bias field, a small minimum accompanied by the 
maximum of λ(Т) is observed, which in the electrical field becomes blurred and 
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shifted to low temperatures (it should be noted also that magnitude of these 
anomalies also depends on unavoidable temperature gradient, at which 
measurements should be provided). However, any interpretation for alteration in the 
λ(Т) dependence is complicated also by the fact that the thermal conductivity is 
affected not only by average free path of thermal phonons, but also by the change in 
specific heat.  

As a rule, the group velocity of optical phonons is small and their contribution 
to the heat transfer is small also, so thermal excitation of the optical phonons leads 
only to an additional scattering of thermal phonons on them.  

However, one must also take into account the fact that the spatial dispersion 
of the optical phonons leads to the appearance for them the group velocity near the 
boundary of Brillouin zone.  

Note that when approaching to the boundary of Brillouin zone, the group 
velocity of acoustic phonons decreases substantially for such a "heat" phonons, and 
exactly this region of spectrum defines the heat transfer. In the polar crystals, the 
acoustic and optical phonons are connected, so that the optical phonons can 
participate in the heat transfer: this is confirmed by the electrical field influence as 
on thermal conductivity so on thermal diffusion.  

The double mechanism of optical phonons participation (scattering and 
participation) in the process of heat transfer can compensate each other in the case 
of thermal conductivity, but not in the process of thermal diffusion. 

It can be seen that thermal diffusion coefficient increases substantially in the 
ordered phase, indicating the decrease of polar-sensitive bonds disordering which 
hinders the diffusion of a heat: in the electrical bias field the wavelength of thermal 
phonons increases. In a certain sense, it is possible to control the heat flux by means 
of electrical field, although for practical significance of this effect is too small: it 
occurs in a narrow temperature range and allows heat flux controlling in the range 
of only 20%.  

It is noteworthy that above the Curie temperature (in the disordered phase) the 
influence of electrical field shows the opposite effect: the thermal diffusion 
coefficient somewhat decreases. Apparently this is due to the blurring of phase 
transition and its displacement in the electrical field to higher temperatures.  

7. Thermal diffusion in antiferroelectrics. The most impressive feature of 
thermal diffusion is seen in the relatives to polar crystals: in the antiferroelectrics, 
Fig. 1.26. Instead of deep minimum in ξ(T) dependence the sharp maximum is 
observed at Curie point, for example, in ammonium dihydrophosphate (ADP). At 
the first glance, this behavior of ξ(T) may seem quite unusual. However, the matter 
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is that to the heat transfer in the antiferroelectrics the optical phonons is substantially 
added, especially in the vicinity of phase transition.  

In this crystal, the frequency of optical vibration mode of a lattice near the 
boundary of Brillouin zone decreases critically to the frequency of the acoustic 
modes, leading to their mixing.  

This occurs precisely with the short-wave (thermal) phonons, which ensure 
heat transfer. As a result, the coefficient of thermal diffusion increases critically 
precisely in the Curie point, as seen in Fig. 1.27, curve 1.  

 

 
Fig. 1.27. Thermal diffusion comparison in ferroelectrics KDP (1) and DKDP (3)  

in comparison with antiferroelectric ADP (2) 

 
In contrast, in the ferroelectric crystals of KDP and DKDP the effect of ξ(T) 

increase does not exist, because in them the optical lattice mode decreases critically 
near the center of Brillouin zone, i.e. in the region of long-wavelength phonons. 
This decrease strongly affects the speed of sound, i.e., long-wavelength phonons as 
well as leads to the large permittivity in Curie point: at frequency of 10 GHz in the 
ferroelectric KDP εmax ≈ 1000 while in the antiferroelectric ADP at 10 GHz εmax ≈ 
90.  

Inasmuch as in the ferroelectrics (like KDP) near the center of Brillouin zone 
only the long-wave optical phonons show anomalies decrease in frequency, so this 
critical phenomenon have only little effect on the heat transfer realized by the short-
wave "thermal" phonons; that is why the scattering effect of thermal phonons 
dominates.  

It is seen especially in vicinity of phase transition when the structural 

rearrangement of crystal occurs: the wavelength of thermal phonons becomes 
minimal, leading to a deep minimum of ξ(T) seen in Fig. 1.27, curves 1 and 3. 
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Because of additional influence of optical phonons, the temperature dependence of 
thermal conductivity can not uniquely reflect the change in optical phonons kinetics. 
Such a parameter is the thermal diffusion coefficient, which mainly reflects the 
dependence of the phonon mean free path on temperature. 

Thus, the mechanism of thermal conductivity in polar-sensitive crystals is 
predominantly phonons scattering; since the electrical conductivity of these 
materials is very small it can be assumed that there are no other heat transfer 
mechanisms (electronic, excitonic or photonic).  

Consequently, discussed peculiarities of thermal conductivity can only be due 
to the change in the phonon scattering conditions. The influence of the polar-
sensitive (mixed ionic-covalent) bonds greatly affects the phenomenon of heat 
transfer in crystals: their thermal conductivity is noticeably lower than that in simple 
covalent or ionic crystals.  

Studies of the anomalies of thermal diffusion in the vicinity of ferroelectric 
phase transitions, where their disordered non-polar structure changes to ordered 
polar structure, make it possible to clarify some features in the behavior of polar-
sensitive bonds.  

 

1.6 Summary and self-test questions 
 
1. Thermal properties of a material are due to interaction energy of molecules, 

atoms and electrons. Thermodynamic function called the enthalpy (heat content) 
characterizes the energy state of system or material; enthalpy increases with 
temperature rise. The entropy is the measure of internal disordering (chaotic) in a 
system. The Helmholtz's free energy has its minimum in the equilibrium state of 
system, in which any changes occur at constant volume and temperature.   

2. Research and application of dielectrics is generally held under the adiabatic 
conditions, when during the change of applied voltage a thermal equilibrium 
between dielectric and surrounding environment can not be installed in time, so any 
alteration of entropy is absent: δS = 0. Therefore, from experiments, the adiabatic 

permittivity εS is generally determined. In such dielectrics, which polarization 
depends on temperature (paraelectrics, ferroelectrics, pyroelectrics, and others), 
another – isothermal – process of polarization might be important, when δТ = 0 and 
permittivity is isothermal: εT. Analytical determination of relationship between εТ 
and εS may be important both to explain the frequency dependence of permittivity in 
range of subsonic frequencies, and for theoretical calculations. Isothermal dielectric 
permittivity is always greater than adiabatic one: εТ > εS. In most cases this 



88 
 

difference is small and can be neglected. However, in the pyroelectrics, and, 
especially, in the vicinity of ferroelectric phase transition, the difference between 
εТ and εS can reach 10–50%, so it should be taken into account. 

3. If the dielectric permittivity increases during dielectric heating, i.e., when 
the temperature coefficient of permittivity is positive (TCε > 0), then the change in 
entropy S – S0(Т) during polarization must be positive. Thus, not discussing the 
details of processes which occur in a dielectric, only from general thermodynamic 
considerations, it can be concluded that in the dielectric with TCε > 0, when it is 
placed in the electrical field, such physical processes occur, which reduce the degree 
of molecular or atomic structure ordering. Conversely, if in the dielectric possessing 
TCε < 0, i.e., when its permittivity decreases with heating, the change in entropy is 
negative. This means that basic mechanisms, which determine electrical 
polarization, the external electrical field application results in the increase in the 
ordering of molecules (ions, atoms) in a dielectric. 

4. Basic energy characteristics of solids are the Debye energy ћωD and the 
thermal energy kBT. Debye temperature θD = ћωD/kB and Debye frequency 

ωD = 2πνD are connected with each other by two fundamental constants: Planck 
constant ћ and Boltzmann constant kB.  

5. Degrees of a freedom while atomic particles movement in solids can be 
divided into two groups. If interaction energy of particles Uint is small in comparison 
with thermal motion energy kBT, namely Uint << kBT, then the appropriate degrees of 
freedom behave as the collection of quasi-particles, i.e., as "almost ideal gas" of 
phonons; this refers to ordinary non-polar dielectrics.  

6. In the opposite case, when, conversely Uint >> kBT, then appropriate degrees 
of freedom are usually quite ordered, but their movement, too, can be described by 
the introduction of phonons. These substances include majority of functional polar-
sensitive dielectrics (piezoelectrics and pyroelectrics), so the application of phonons 
concept to them in most cases can be considered justified. 

7. Much more complicated cases arise if interaction energy Uint ~ kBT. In this 
case theoretical description of solids becomes complicated, especially at 
phenomenon of phase transition, when the non-polar phase is turning into the polar 
phase. At that, polar-sensitive crystal behaves by such a way, when any conventional 
concept, based on phonons, can not adequately describe experimental situation. 
Particles interaction has special character: the probability of collective movements 
is bigger then the probability of individual movements. Abnormal increased role of 
collective movements is confirmed by experiments in the vicinity off phase 
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transition: at temperature T = TC crystal shows maximum of the specific heat, the 
minimums of thermal expansion ant thermal diffusion coefficients, and so on. 

8. Peculiar properties of the polar crystals are manifested in their specific heat, 
thermal expansion and thermal conductivity. Crystals possessing polar-sensitive 
bonds in certain conditions  behave in a complex way: for some phonons, for 
example, the thermal ones, their lifetime is commensurate with the inverse frequency 
of oscillation; that is, characterized them oscillators turn out to be overdamped. That 
is why, the crystal of excellent optical quality, which are good optically transparent 
and have small attenuation for long acoustic (ultrasonic) waves transmission, in case 
of the short (heat) waves transmission turns out to be almost opaque environment, 
in which the phonons of certain frequency get stuck. 
 9. The specific heat in the polar crystals contains an additional contribution 
due to the disordering-disordering processes of their polar-sensitive bonds. 
Statistical possibility of several states realizing increases the total entropy of a 
system: such configuration entropy is a part of total entropy of a system that is 
related to the position of constituent particles rather than to their velocity or 
momentum. It is physically related to the number of ways of arranging all 
the particles of a system while maintaining some overall set of specified system 
properties, such as energy. The change in configurational entropy corresponds to 
same change in macroscopic entropy. 

10. In the polar crystals, their specific heat somewhat exceeds this parameter 
as compared with the non-polar crystals: this is clearly expressed in the vicinity of 
phase transitions, where the maximum of specific heat capacity can be several times 
higher than its average value. It might be supposed that an additional contribution to 
the specific heat in the gradually ordering phase is due to the configurational entropy. 

11. The statistical possibility of several states realizing increases the total 
entropy of a system: such configuration entropy is related to the position of 
constituent particles rather than to their velocity or momentum. It is physically 
related to number of ways of arranging all particles of a system while maintaining 
some overall set of specified system properties, such as energy. Change in the 
configuration entropy corresponds to the same change in macroscopic entropy. 

12. The thermal expansion reflects the features of inter-atomic bonds in 
crystals. Without matching between the thermal expansions coefficients, 
technologically obtained microelectronics structures would be mechanically 
stressed that affects their properties and even might lead to the local destruction. 
However, there are some important cases, when exactly the difference in thermal 
expansion is used for managing of combined structures properties.  
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13. In the polar dielectrics, their peculiar polar-sensitive structures arisen due 
to structural compensation of atoms electronegativity. Negative value of α(T) 
corresponds to such particular case, when the entropy of crystal increases with the 
rise of pressure that is possible only in the case of configurational entropy: the 
negative expansion region in the α(T) dependence corresponds to the processes of 
polar bonds self-ordering.  

14. Low-temperature minimum of thermal expansion coefficient can be 
explained: when temperature decreases, the thermal chaotic motion freezes, and 
existing in crystal polar-sensitive bonds become partially ordered (configurational 
entropy decreases). As a result, crystal occupies bigger volume, demonstrating 
negative α(T). With further cooling to a very low temperature, the quantum 
oscillations in the crystal lattice prevent the further ordering of fluctuating polarity, 
so with the approach to zero crystal again compresses a little before α(T) → 0 at T 
→ 0. 

15. Low temperature negative thermal expansion in semiconductors of AIIIBV 
and AIIBVI types is not surprising as they belong to the polar groups of crystals. 
However, in the atomic semiconductors of a diamond type, the α(Т) minimum needs 
explanation. It might be assumed that the reason of negative α(T) in germanium and 
silicon is the fluctuations of partial ordering of the virtual hexagonal polar phase 
(this assumption is based on the fact of hexagonal diamond existence). 

16. The strain engineering technology for polar-sensitive films is based not 
only on the mismatch of thermal expansion, but to a greater degree on the difference 
in permanent lattices of film and substrate. According to principle of La Chatelier, 
if during formation of polar phase one of crystal size increases, then the forced 
change in this size of crystal should lead to the change in crystal polar state.  

17. In the biaxial stressed films, such materials are obtained that in the bulk 
state are not ferroelectrics at any temperature. The biaxial deformations of films 
make it possible to increase the Curie point by hundreds of degrees with a 
simultaneous increase in the polarization directed perpendicular to film thickness. 
Deformations, reaching value of several percents, have a great influence on the 
properties of polar-sensitive thin films so it becomes possible to obtain films with 
such properties that are not found in the natural materials. Thus, the difference in 
thermal expansion as well as the mismatch between lattice parameter of film and 
substrate can be used in modern technologies of microelectronics. 

18. The heat transfer in the polar crystals is provided mostly by the short 
lattice waves having low velocity, so the polar crystals look like turbid medium. 
Short lattice waves demonstrate strong diffuse-type scattering by nano-size 
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inhomogeneous of structure, in which phonons interaction is determined mostly by 
the polar-sensitive bonds, because the wavelength of heat phonons is 
commensurable with the parameter of crystal lattice.  

19. The thermal conductivity depends on the crystal specific heat C, on the 
free path between phonon collisions <l>, and on the average velocity υ of phonons: 
λ = (1/3)⋅υ⋅l. In the usual temperature interval, the dependence of λ (T) goes down 
following Aiken law: λ (T) ~ T–1. the thermal conductivity corresponds to the thermal 
expansion coefficient: 1/λ ~ α2 that determined by the peculiarities of inter-atomic 
bonds. Therefore, crystals with larger thermal expansion coefficient have smaller 
thermal conductivity. 

20. The thermal conductivity in the polar crystals, in comparison with usual 
crystals, is significantly decreased that is conditioned by the peculiarities of phonon 
dissipation process: i.e., by the perceptible binding of acoustical and optical 
phonons. This special feature of crystals having polar-sensitive bonds correlates with 
their phonon spectrum near the boundary of Brillouin zone, where the transverse 
acoustic mode noticeably reduced. This is the evidence of such interaction between 
nearest atoms that can be described by the mixing of acoustic and optical phonons.  

21. The thermal diffusivity coefficient ξ is the thermal conductivity divided 
by the crystal density ρ and by its specific heat C at a constant pressure: ξ = 

λ/(Cp⋅ρ). It measures the rate of heat transfer of a material from the hot side to the 
cold side. In a sense, the thermal diffusivity is the measure of the thermal inertia; in 
the substance possessing higher thermal diffusivity, the heat moves more rapidly 
through it. At that, the thermal diffusivity is determined mainly by the mean free 
path <l> of thermal phonons propagating in crystal (ξ ~ <l>). At normal and 
increased temperatures (when T > θD) with the increase of temperature the ξ(T) 
dependence slows down following Aiken law: ξ(T) ~ T–1. In all studied ferroelectrics 
the sharp minimum are observed on ξ(T) curves, which indicate fast shortening of 
average wavelength of phonons in the vicinity of phase transition. 

22. In contrast to the ferroelectrics, where the thermal diffusivity shows a 
sharp and deep maximum at the Curie point, in the antiferroelectrics it demonstrates 
a sharp maximum, because due to the peculiarities of the antiferroelectric phase 
transition in the kinetics of phonons, the optical phonons are actively involved. 

23. Electrical field influence on the thermal transfer has not only scientific, 
but also technical interest. When the constant electric field is applied to ferroelectric, 
the maximum of its thermal conductivity in the region of phase transition remains, 
but it shifts towards the lower temperatures. This corresponds to the increase in 
thermal conductivity in the ferroelectric phase near phase transition. The 
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phenomenon of thermal conductivity hysteresis with electrical field changing is also 
observed, that indicates that the scattering of phonons is to a some extent due to the 
domain structure of ferroelectric. However, for technical applications, effect of 
thermal conductivity control seems to be too small. 

24. Thus, polar-sensitive (mixed ionic-covalent) bonds strongly affect the 
processes of heat transfer in polar crystals: their thermal conductivity is much less 
than that in the pure-ionic or pure-covalent crystals. The anomalies of thermal 
diffusion in the vicinity of ferroelectric and antiferroelectric phase transitions are 
described by the change of ordered polar structure to disordered non-polar structure. 
In the ordered phase the thermal diffusion coefficient increases; this indicates that 
disordering of polar-sensitive bonds hinders the diffusion of heat. 

 
 
Chapter 1. Self-assessment questions 
 

1. How experimentally compare adiabatic and isotermal permittivity? 
2. How is the temperature dependence of permittivity related to the change in 
entropy during electrical polarization? 
3. Why is it difficult to use quasiparticle model to explain the second-order phase 
transitions? 
4. What is the physical meaning of configuration entropy and when should it be 
used? 
5. What is the physical meaning of electronegativity and when should it be used? 
6. How to explain the difference in thermal diffusivity anomalies at the Curie 
points of ferroelectrics and antiferroelectrics? 
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CHAPTER 2. INTERDEPENDENCE OF ELECTRICAL 
CONDUCTANCE AND POLARIZATION 

 
 

Content 
2.1 Complex permittivity and conductivity 
2.2 Frequency dispersion of conductivity and permittivity 
2.3 Conductivity and permittivity at plasma resonance in conductors 
2.4 Permittivity and conductivity connection at dielectric polarisation 
2.5 Summary and self-test questions 

 
In any substance, the applied electrical field affects existing in it charged 

particles, which might be as bound so relatively free. Their reaction (electrical 
polarization or electrical conductivity) on the permanent (constant) field is possible 
to consider separately and characterize by the conductivity and dielectric constant. 
However, in the alternating electrical field, the electrically induced displace and free 
move of charged particles lead to both reactive and active a electrical current, that is 
characterized usually by the complex permittivity, but also can be described by the 
complex conductivity. At that,  between these two complex parameters the 
unambiguous relationship can be established. Both of these methods of electrical 
reaction of a substance onto the applied electrical field describing are equivalent, but 
more common parameter is the complex permittivity, although sometimes the 
complex conductivity can be more informative. 

 
2.1 Complex permittivity and conductivity 

 
1. Different responses of a substance onto the applied electrical field are 

listed symbolically in Fig. 1A. Several reversible and irreversible physical 
phenomena are seen – not only of electrical nature but also the mechanical and 
thermal responses.  Among them are not only electrical responses – electrical 
induction D(E) and current j(E), but also the mechanical effects: electrostriction 
x(E2) and piezoelectric effect x(E) as well as some thermal effects: Joule heat from 
dielectric losses δQ(E2) and the heat or cold from the electrocaloric effect δQ(E). 

However, only the electrical responses are discussed below. 
The electrical polarization, among many others phenomena, can be noted as 

the first. In dielectrics, the electrical displacement D (otherwise known as electrical 
induction (measured in [D] = C/m2) appears, which in dielectric is greater than in 
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vacuum owing to the electrical polarization P. Indeed, if there is no dielectric 
between the metallic electrodes of a capacitor (the case of a vacuum), the value of 
the electrical induction equals D = ε0E, where ε0 = 8.854⋅10–12 F/m is the electrical 
constant ([F] = C/V is the farad, unit of electrical capacitance C measure). Parameter 
ε0 in SI agrees the units of D and E, characterizing the absolute permittivity of 
vacuum.  

                
 

  (A)    (B)                    (C) 
 

Fig. 2.1. Classification of polar crystal responses on electrical field influence: A – classification 
of electrical (D, j), mechanical (strain x) and thermal (δQ heat) effects (ε is permittivity, σ is 
conductivity, R is electrostriction coefficient, d is piezoelectric module, ξ is generalized loss 

factor,  
η is electrocaloric coefficient; B – electrical induction dependence on electrical field in dielectric 

compared with vacuum; C – electrical current density j dependence on electrical field E 

 
When dielectric is placed between the electrodes of a capacitor, then, under 

the action of electrical field, the bounded positive and negative charges of atoms, 
ions and molecules of a material becomes slightly shifted relatively to each other, 
creating the overall electrical moment. The specific electrical moment (i.e., the 
moment per unit of volume) is the polarizability tradionally called as the 
polarization P. The stronger electrical field the larger is the value of P, Fig. 2.1B. 
The electrical displacement D (otherwise called induction) is the sum, determined 
as D = ε0E + P.  

The ability of dielectric to polarization in the electrical field is characterized 
by the relative permittivity ε (commonly referred to as dielectric constant), which 
shows how much more the electrical induction in a dielectric is greater than in the 
vacuum: D = ε0εE. It should be noted, however, that in the strong electrical field a 
deviation from this linear dependence of D(E) can be observed, shown in Fig. 1B. 
This dielectric nonlinearity usually is bigger in the dielectrics possessing higher 
permittivity, which in this case depends on the magnitude of electrical field: ε = ε(E). 
As a matter of fact, the temperature usually affects the polarization process that 
results in the temperature dependence of permittivity: ε = ε(T). Furthermore, when 
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dielectric is studied at the AC voltage, the permittivity can vary with frequency, so 
ε = ε(ω). Thus, very important for dielectrics parameter can be a function of several 
external influences: ε = ε (ω, E, T).  

The conduction, Fig. 1C, is the second important phenomenon, which arises 
in a material under the action of electrical field. If this field is not very big, then the 
current density, according to Ohm's law, is proportional to voltage: j = σЕ, where σ 
is the specific conductivity (otherwise called simply as conductivity). However, in 
the strong electrical fields, the Ohm's law in dielectrics and semiconductors is 
violated, resulting in the nonlinear conductivity, so that σ = σ(E), Fig. 1C. The 
increase in conductivity in strong electrical field plays a decisive role in material 
electrical durability (a steady state with small and time-independent conductivity). 
In strong electrical field conductivity increases with voltage growing, and becomes 
so big that the phenomenon of electrical breakdown occurs. Just before breakdown, 
the electrical current increases sharply due to the ionization effect, when electrons 
moving in the electrical field interact with molecules, ions or atoms, adding them a 
sufficient energy to generate new electrons. 

Electrical conductivity depends also on temperature, since thermal motion of 
atoms and molecules leads to the activation of new free charge carriers, so that σ = 
σ(T). In most dielectrics and semiconductors, the frequency dependence of 
conductivity is also observed: σ  = σ(ω). This dependence can be absent only in those 
cases, when the electrical current is carried by the untied electrons – particles with a 
very high mobility. However, electronic conductivity in dielectrics, predominantly, 
has the hopping (polaron) character, when charge carriers have large effective mass 
and, hence, a low mobility. In the case of ionic conduction, as well as in the case of 
charge transfer by the micro-particles (molions), charge carriers have rather big 
inertia; consequently, the frequency dependence of electrical conductivity becomes 
evident. Thus, the bulk specific conductivity of dielectrics and semiconductors, same 
as their permittivity, is dependent not only on temperature but also on the electrical 
field intensity and frequency: σ = σ(ω, E, T).  

Below only the frequency dependence of permittivity and conductivity is 
considered, since they turn out to be mutually dependent 

2. Complex permittivity and conductivity are introduced for the convenience 
of their interdependence describing, since only at a constant voltage these 
parameters can be considered as independent. Polarization is the charge separation, 
and electrical conductivity is the charge transfer. At an alternating voltage, the 
connection between conductivity and polarization is obvious, since both of these 
phenomena are due to the limited (polarization) and the almost-free (conductivity) 
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movement of the electrical charges in a matter, and in both cases the inertial 
phenomena affect these movements. In connection with detailed analysis, one 
should refer to the fundamental definitions. 

In the physics and materials sciences, a conception of dielectric permittivity ε 
(dielectric constant) appears in three fundamental laws: (1) filled by dielectric 
electrical capacitor, in comparison with vacuum capacitor, increases its capacitance 
in ε times (established by Faraday); (2) mechanical strength of electrical charges 
interaction reduces in ε times (Coulomb's law); (3) electromagnetic waves velocity 
in the dielectric decreases in √ε times, as follows from Maxwell-Lorentz equations. 
It is clear that all three cases regard to same physical parameter, and each of above 
said laws can be derived one from the other.  

It is also appropriate to recall that the value of relative dielectric permittivity 
(ε), as well as the relative magnetic permeability (μ) and the electrical conductivity 
(σ) in a classic understanding of these electrodynamics parameters of a substance 
follows from the homogenization of Maxwell equations derived by Lorentz more 
than 100 years ago. To obtain these three parameters of a medium, the averaging-
out was performed, using two microscopic quantities: "the physically infinitesimal 
time interval" and "the physically infinitesimal volume". At that, the smallest time 
interval is considered as τ  ≤ 10–14 s while the physically small volume of a substance 
is estimated of about a dozen of inter-atomic distances.  

Grounded by this way, the classic concept of permittivity needs to be detailed 
and might be perceived differently, because of appearance of a huge variety of 
modern experimental data, obtained by quite different methods in the various 
crystals, ceramics, polymers, composites and nano-materials. In assessing this 
diversity, it must be guided by the fundamental relationships. 

The interaction of electrical and magnetic fields E and H in a matter has been 
described by the Lorentz-Maxwell's equations:  

           rot E = – ∂B/∂t,          rot H = j + ∂D/∂t,     
                                   div D = ρ,                  div B = 0,                                 (2.1) 

where В is the magnetic induction), j is the current density, D is the dielectric 
displacement, and ρ is the density of electrical charges).  
[Note. The relationship between magnetic field H and magnetic induction В is 
defined as B =μ0μ*H, where μ0 is the magnetic permeability of vacuum, while μ* = 
μ′ – iμ″ is the complex magnetic permeability denote the real and the loss part (taking 
into account not only magnetization, but also any energy loss in alternating field). 
However, in the case under consideration, i.e., for the diamagnetics and weak 
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paramagnetics, it can be set μ* = μ′ = 1 and μ″ = 0; therefore, any magnetic processes 
are no longer taken into account in future considerations].  

Next only the electrical polarization and the electrical conductivity will be 
considered. Both of these processes occur due to electrical field effect on the charged 
particles movement in a substance, so in the AC polarization and conduction are 
usually interdependent (they can be separated only in DC electrical field). To be 
described in the sinusoidal electrical field E(ω) = E0exp(iωt), both the dielectric 
displacement and the conduction should be represented by the complex parameters. 
In the Maxwell-Lorentz equations (1), the second one (rot H = j + ∂D/∂t) shows that 
the current density j and the time derivative of electrical displacement ∂D/∂t are the 
additive quantities. That is why, the current density j = σ*E and ∂D/∂t = iωε0ε*E 
would be represented as the equivalent functions, if the complex values will be used 
to describe them. When these functions are described by the real and imaginary 
parts, the complex conductivity σ* is connected to the complex permittivity ε*: 

σ*(ω) = σ′(ω) + iσ″(ω) = iωε0ε*(ω), 
                               ε*(ω) = ε′(ω) – iε″(ω),                                                     (2.2) 

where ε0 is the dielectric permittivity of vacuum. Hence, in the sinusoidal electrical 
field, the complex conductivity σ* and the complex dielectric function ε* are 
interconnected. It follows that the real and imaginary part of dielectric permittivity 
can be expressed through the components of complex conductivity:  

ε′(ω) = σ″(ω)/(ε0ω); 

                                            ε″(ω) = σ′(ω)/(ε0ω).                                        (2.3) 

Similarly, the real and imaginary part of complex conductivity can be 
expressed through the components of complex permittivity:  

σ′(ω) = ε0ωε″(ω); 
                                               σ″(ω) = ε0ωε′(ω).                                            (2.4) 

Thus, in principle, any of aforementioned complex parameters can describe 
completely the frequency dependence of electrical response of a substance to the 
alternating voltage. Nevertheless, exactly the frequency dependence of permittivity 
is traditionally used in most researches. However, it should be noted that in some 
cases, when obtained experimentally data processing, the more informative 
parameter is turned out the frequency dependence of conductivity; for example, to 
determine accurately the natural frequency of a damped oscillator: it corresponds 

exactly to the σ′(ω) maximum. 

In conclusion of above discussion, it should be noted that formally established 
connections between σ*(ω) and ε*(ω) is expedient to be explained by the 
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microscopic mechanisms of substance responses, both from the side of polarization 
processes, which means the separation of bound electrical charges, so from the side 
of electrical conduction, which means the transfer of the non-bound charge. 

3. Electrical polarization mechanisms explain an occurrence of electrical 

moment arising in a dielectric when electrical field E is applied to it: P = ε0χE, where 
ε0 is the electrical constant and χ is the susceptibility of a dielectric. Electrical 
polarization means the separation of bound electrical charges: for example, on the 
opposite surfaces of plane-parallel dielectric sample the electrical charges of 
different signs appear; at that, these charges are not free but closely bound in a 
dielectric. As noted before, polarization is bound with electrical displacement: D = 
ε0εE = ε0E + P, which includes the induction of vacuum ε0E, and the actual 
polarization of dielectric is P = ε0χE. At that, the dielectric permittivity ε = 1 + χ 
takes into account both processes.  

At the moment of electrical voltage switching on, through a dielectric 
(included in the electrical circuit) a reactive current of electrical charges 
displacement flows; next it terminates, if the voltage remains unchanged and 
conductivity is insignificant. The voltage switching off also is accompanied by a 
jump of the electrical current of depolarization, which has an opposite sign as to 
charging current; in this way, the electrical polarization reacts only to the change of 
electrical voltage.  

The lower the inertia of polarization processes, the lower dielectric losses and 
the wider range of operating frequencies, that is very important for dielectrics used 
in high-speed electronic equipment. When electrical field is applied to a dielectric, 
the associated charges of structural units displace relative to each other, leading to 
the electrical polarization. This mechanism looks like electrical field induces in the 
dielectric a set of elementary electrical moments p = qx, where q is the charge of 
bound units and x is their mutual displacement. The electrical moment, induced by 
the external field, has contributions from the electrons (moving from their 
equilibrium positions in atoms) and from the ions (deviating from their equilibrium 
state in crystal lattice). The dipoles (polar molecules), which change the orientation 
of their moments in the electrical field, and the macro-dipoles, which are the 
electrically charged radicals or complexes in the heterogeneous structures, also lead 
to the induced polarization.  

At that, the electrons, ions and dipoles (including macro-dipoles) can acquire 
the induced electrical moment (i.e., polarized state) by the various mechanisms: (1) 
the elastic reversible displacement of tightly connected electrical charges, (2) the 
displacement of weakly bound charges during their participation in the chaotic 
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thermal motion, and (3) the macroscopic displacement of semi-free charges that later 
localize on the defects in a dielectric. Due to the large difference in the characteristic 

times, at which these mechanisms take place, it is possible to distinguish their 
contributions to the permittivity and to the delay frequencies of different polarization 
mechanisms.  

Note that only the first of above-mentioned mechanisms is considered to be 
such ones that determine those properties of dielectrics, which are necessary for their 
functioning in high speed electronic devices. In this case, particles should be tightly 
connected in a structure, so the external electrical field or any other impact cause 
only a very small deviations (as compared with atomic dimensions) from the non-
polarized equilibrium state. However, since in this process of the polarization all 

particles of a dielectric are involved, even these small displacements of charges 
result in a significant integral effect. That is why, the only mechanisms of quasi-

elastic polarization can give need permittivity with a minimal dielectric losses 
necessary for the most modern applications of dielectrics. On the contrary, 
significantly slower mechanisms of the thermal (relaxation) polarization and the 
migration (space-charged) polarization can manifest themselves in a very broad 
frequency band – from infra-low frequencies to radio frequency range. At that, 
although these mechanisms increase permittivity, they show its decrease with 
frequency growing and give significant dielectric losses in both sound and radio 
frequency ranges.  

4. Electrical conductivity appear, when the electrical field E is applied to a 
substance which have N free charge carriers per volume possessing by the charge q. 
Current density j, i.e., the electrical charge flowing per unit time through a unit area 
(oriented perpendicular to field direction) equals to j = Nqυ, where υ is the speed of 
the orderly movement of charge carriers due to the action of electrical field. This 
drift speed is much less than the velocity of chaotic motion of charge carriers in a 
material being proportional to the electrical field strength: υ = uE, where u is the 
mobility of charge carriers. According to Ohm's law, current density is proportional 
to the electrical field: j = σЕ, where σ = Nqu (measured in [S/m]) is the specific 
electrical conductivity. This quantitative characteristic of charge transport in matter 
determines the current density in a fixed electrical field.  

Electrical field acts on the charge carrier by the force qE, therefore, carrier’s 
movement increases its kinetic energy. However, the path and the time of charge 
carriers free movement in a material are limited by the “collisions” of carriers with 
atoms (molecules or ions); that is, by the interaction of charge carriers with the 
particles of a matter. In the crystalline dielectrics these collisions are described as 
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interaction with the phonons (lattice vibrations) or with the charged impurities, as 
well as with other electrically active structural defects. As a consequence, an 
accelerated motion of charge carrier is interrupted, and the energy acquired by it in 
the electrical field is dissipated. The average time of electrons free acceleration 
before the collision is the relaxation time (τ), becouse during this time the charge 
carrier returns to its state of thermodynamic equilibrium with a matter.  

Due to the variety types of charged particles possible existing in a material, 
the quite different mechanisms of their generation (excitation) and the different 
mechanisms of charges move, the transfer of charged particles might be rather 
complicated physical phenomenon. In fact, among the charge carriers, the electrons, 
polarons, ions and molions (charged complexes of molecules) are distinguished. 
Their generation process might be thermal, optical, radiation or initiated by the 
electrical field, as well as the recombination process of charge carriers can be also 
realized through many different mechanisms. The peculiarities of charge carrier 
movement in the electrical field can also be different: drift, diffusion and hopping. 

It is appropriate to note here that two important properties of dielectrics – the 
polarization and the conduction – are largely interdependent.  

Firstly, the electrons or holes, appearing in a dielectric as a result of various 
activation processes, usually become less mobile, because their own electrical field 
polarizes the surrounding nano-size areas in a dielectric, so they are forced to move 
together with these polarized regions (creating polarons). Consequently, even such 
a small amount of free electrons, which appear in dielectric due to thermal activation 
of impurities, may not cause any appreciable charge transfer just because the local 

polarization clouds around the charge carriers arises, which reduce their mobility in 
the electrical field. 

Secondly, low concentration of the charge carriers and their low mobility, in 
its turn, are responsible for a long time existence of electrostatic field in the 
dielectrics. In conductors this field is screened by the free charge carriers (in metals, 
for example, screening radius is approximately equals to inter-atomic distance). 
Thus, the electrical polarization contributes to the emergence and existence in the 
dielectrics a relatively stable state with low electronic conduction. However, this 
stability may be broken in dielectric by its heating or by the high intensity irradiation, 
particularly, by the coherent optical (laser) irradiation. At that, charge carriers are 
generated in a very high concentration, shielding electrical field, so the dielectric can 
be converted into a conductive medium. Stability of the non-conducting state of 
dielectrics may be compromised also by the strong electrical field, which accelerates 
freed electrons (or holes) up to the energy, at which they can no longer be "captured" 
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by the polarization of nano-size surroundings. These fast electrons cause the 
percussive ionization in a dielectric, resulting in the number of free electrons 
growing that ultimately gives rise to electrical breakdown, and insulator changes into 
a conductor.  

 
2.2 Frequency dispersion of conductivity and permittivity 

 
Changes in the electrical response parameters with increasing frequency is an 

inevitable process due to the inertia of particles, involved in the electrical charge 
transfer. In accordance with physical nature of charge carries and depending on 
properties of a material, the conductivity can both increase or decrease during 
frequency growth. The increase of σ(ω) is usually caused due to delay of polarization 
mechanism. This effect is conditioned by the close connection between processes of 
polarization and conduction, which, in principle, can be completely separated only 
at the direct voltage.  
 Two typical cases of interdependent changing with frequency of permittivity 
and effective conductivity in dielectrics are shown in Fig. 2.2 (it is assumed that 
conductivity at direct voltage is so small that it can be neglected). 

   
             (A)                    (B) 

 

Fig. 2.2. Comparison of frequency dependence of permittivity and effective conductivity for two 
main models describing dielectric permittivity dispersion: A – relaxation, B – resonance 

 

1. The relaxation dispersion of permittivity, Fig. 2.2A, consists in the ε′(ω) 
gradual decrease from its initial value of ε(0) to the end value of ε(∞), when the 
relaxing polarization mechanism, giving the contribution Δε = ε(0) – ε(∞), is 
completely delayed. At that, a gradual increase in the effective conductivity from 
almost zero to the constant value of σ′ef = ε0Δε/τ is seen (τ is the relaxation time). 
This dependence of conductivity in the dielectrics and in wide-gap semiconductors 
usually are observed in a broad frequency range (10–4–108 Hz), being typical for 
quite different structures and various chemical compositions. Such a common 
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property of σ(ω) dependence is described by power law: σ ~ ωn, where 0.7 < n < 1, 
established by A. Ionscher. This law is peculiar to low frequency polarization 
mechanisms, at which charged particles move in a local area in the dielectrics or 
semiconductor under the influence of alternating electrical field.  

The fact is that some ions and polarons (i.e., electrons or holes bound in ionic 
lattice) while their "hopping" movement between the states of self-trapping (as well 
as dipoles in process of their rotational vibrations between several equilibrium 
positions separated by potential barriers) simulate the increase of effective 
conductivity when frequency grows. In the same way, other charged particles and 
complexes at their moving in the limited space under the influence of electrical field 
also bring to the frequency dependence of conductivity, described by formula σ ~ ω 

n. This means that directed by the electrical field thermally activated motion of 
partially bound charged particles (whose localization are determined by a set of 
potential barriers) gives rise to both the polarization and the conduction.. 

At that, polarization predominates at comparatively low frequencies, since the 
entirely free movement of charged particles in almost constant electrical field is 
limited by the existing potential barriers (arising from structural defects and 
interfaces), which prevent the free carry of electrical charges from one electrode to 
another. Most of ions in a crystal (their concentration is n ~ 1022 cm–3) are located at 
their lattice sites; this position is rather stable and can not be disturbed by applied to 
crystal electrical field which causes only a slight shift of ionic sub-lattices (that 
constitutes the quasi-elastic polarization). However, any crystal, almost inevitably, 
contains a certain concentration (n0 << n) of impurities or structural defects, so 
charged particles are loosely bound in crystal lattice. They can be located in the 
interstices (Frenkel defects) or represent the charged vacancies (Schottky defects). 
Just these weakly constrained ions cause the electrical conductivity, Fig. 2.3. 

 
 

Fig. 2.3. Ionic conduction: a – small cation jumps over interstices, b – potential barrier in 
absence of electrical field; c – change in potential barrier in electrical field 

Stimulating by thermal movement, the ionic conductivity is similar to the 
ionic polarization (which is thermally induced polarization). In fact, both 
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mechanisms (such as the ionic thermal polarization so the ionic electro-conductivity) 
are due to the ions diffusion, supported by the electrical field. The polarization 
prevails, if the potential barrier is big, but if the potential barrier is small the 
conductivity prevails. It should be noted that in real crystals structures, due to many 
reasons, there is a broad distribution of the heights of potential barriers, and it makes 
no sense to separate these processes. 

In the case of a higher barriers (with predominance of polarization), with 
frequency grows at first one and then others kinds of charged particles do not have 
enough time (during a quarter of applied voltage period) to reach places of their next 
localization, and, therefore, they continuously follow in phase with the changing 
electrical field, already contribute to the conductivity. For this reason, the 
contribution of their motion tothe  polarization is ceased, resulting in the dispersion 
(reduction) of the permittivity: ε′(ω) decreases with ε″(ω) increase, inasmuch as 
conductivity increases: σ′(ω) = ε0ωε″(ω). It looks as if the polarization turned into 

conductivity. Very flat increase of conductivity σ′(ω) in very broad frequency range, 
Fig. 2A, can be explained by the essential difference in the heights of potential 
barriers and sizeable distinction in the length of free paths of charged particles.  

2. The resonant dispersion of permittivity, Fig. 2B, is characterized by the 
fact that at first the derivative dε′/dω is positive and next (at the resonance point) it 
changes sign to the negative value, but after the anti-resonance the derivative dε′/dω 

again becomes positive. Therefore, the permittivity passes through the maximum 
and minimum. In the region of resonance dispersion of permittivity, the effective 

conductivity is characterized by a sharp maximum σ′max = ε0Δεω0/Г, locating exactly 

at the resonance frequency ω0 of the oscillator describing this dispersion, Г is the 
relative damping factor and Δε = ε(0) – ε(∞) is the dielectric contribution of resonant 
polarization mechanism.  

When resonant dispersion occurs, in its initial stage, the dielectric losses and 
effective conductivity increase due to a weakening of elastic bonds between ions of 
a lattice when resonance approaches. As a result, at same value of electrical field, 
the mutual shift of ions increases critically, and permittivity has a maximum. In the 
resonance frequency, the elastic bonds between ions no longer have enough time to 
manifest itself in a rapidly changing alternating electric field, so that the system of 
cations and anions looks like the “electrolyte” (so a maximum of conductivity is 
seen). Then, the phase of mutual displacement of ions changes in such a way that in 
the external alternating field the anti-resonance occurs, at which the dielectric 
contribution of oscillator becomes negative while the effective conductivity 
decreases. With the further increase in frequency the ionic lattice no longer manages 
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to respond to the rapid change of electrical field, but still the electronic quasi-elastic 
polarization of ionic cores establishes and provides a certain value of ε(∞). 

Summing up, it should be noted that in case of gradual increase in frequency 
(that means the more rapid changing of electrical field) the inertia of charge carriers 
begins to affect, so their usual mode of movement at sufficiently high frequencies 
becomes impossible. At that, the large charged complexes have not enough time to 
move in phase with the applied electrical field already at subsonic frequencies (that 
is why the electrophoresis is used mainly at the direct voltage). The ionic-type 
conduction in dielectrics is late regarding the change in electrical field at radio 
frequencies, so that already at microwaves this conduction practically has no effect. 
The less inertia mechanism is the electronic conduction, but in the dielectrics this 
mechanism, for the most part, has the polaron character, so it is late at much lower 
frequencies than in the semiconductors.  

Charge transfer mechanism in the weakly ordered systems (doped wide-gap 
semiconductors and dielectrics, as well as the polymeric materials) gradually 
changes with increasing frequency from the infra-low frequency range via the 
sound-frequency range (10–5–103 Hz) up to the radio frequency range (up to 108 Hz). 
In this case, the mean free path of charge carriers movement in the electrical field 
varies from the macroscopic value (charge carries move from electrode to electrode) 
to the microscopic value (charge carries move between inter-atomic distances). 
When studying two complex parameters ε*(ω,T) and σ*(ω,T) in a broad range of 
frequencies and temperatures, we have: 

  ε*(ω,T) = ε′(ω,T) – iε″(ω,T),  
   σ*(ω,T) = σ′(ω,T) + iσ″(ω,T),  
The obtained dependences allow analyze the main mechanisms of charge 

transfer accompanied by the dielectric relaxation. 
At that, in the solids with weakly ordered structure, the charge transfer occurs 

mostly due to the hopping conduction, which includes several mechanisms (the 
variable free pass when charge carrier hopping, the phonons assistance during 
hopping, etc.). It is important to note that charges motion in the disordered systems 
is obviously accompanied by the electrical polarization of a relaxation type that is 
clearly recorded in the dielectric spectra. One of the highly possible mechanisms is 
as follows: the ion or polaron, being weakly bound in a lattice and surrounded by 
the screening cloud of opposite sign charges, moves in a lattice by the jumps. At 
that, any jump of this polaron to a new position leads to the charge transfer only in 
those case, when it is followed by screening cloud of polarization, otherwise 
surrounding environment of such charge carrier counteracts directed jumps (in fact, 
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same jumps semi-free ion makes). The mobility of these partially bound charge 
carriers is hundreds of times less than the mobility of free charge carrier, i.e., their 
relaxation time τ is large in comparison with free charge carriers. Hopping 
conductivity is small until frequency of applied electrical field is lower than 
relaxation time (ω  < 1/τ).  

Although the conductivity of weakly ordered systems at low frequencies is 
small, a perceptible electrical polarization is created by them due to the 
displacement of semi-connected charges relatively its screening environment. So 
that the polarons or weakly bound ions contribute to the relaxation polarization, 
which manifests itself at low frequencies, but when frequency grows this 
polarization decreases, being accompanied by the increase in conductivity, Fig. 2A. 
The fact is that for the time, at which polaron under the influence of higher-
frequency field manages to shift from its equilibrium position (or weakly bound ion 
displaces in a lattice), the electrical field changes its sign, so that all these charge 
carriers now are moving practically in phase with the applied alternating electrical 
field that in essence is the electrical conduction.  

When discussing various aspects of conductivity, it should be noted that the 
electronic conduction can not be discovered in dielectrics in the infrared and optical 
frequencies: it is negligibly small as compared to bias (reactive) current conditioned 
by the polarization. However, the dispersion of electronic conductivity is clearly 
manifested in the metals. The normal (described by electronic band theory) 
electronic conduction in metals does not lead to any frequency dependence of 
conductivity over entire frequency range (up to terahertz) that is used in electronics. 
Nevertheless, when the frequency of electromagnetic field extremely increases, 
eventually the movement of electrons also manifests their inertia, but the dispersion 
of conductivity in metals has another character as compared to the dielectrics and 
semiconductors.  

 

2.3 Conductivity and permittivity at plasma resonance in 
conductors 

 
The resonant changes in the electrical response at optical frequencies can be 

seen in the metals, in other conductors (graphite, nanotubes, graphene, etc.) and in 
the semiconductors. In the above discussed cases, the σ(ω) increase (possible, of 
course, up to certain limit) was discussed due to the time-delay of the electrical 
polarization; however, next conductivity decreases with frequency rise. In what 
follows, the various mechanisms of σ(ω) decrease will be discussed, which become 
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apparent, as a rule, in the highest frequency region. In a rapidly changing electrical 
field, the inertia of charge carriers begins to affect, that is why, their movement at 
sufficiently frequency electrical field becomes no longer possible).  

[Note. For comparison, it should be noted that the very slow molions do not 
have time to move in the electrical field already at sound-range frequencies, while 
the much faster ionic conductivity in solid and liquid dielectrics can hardly be 
detected already at microwave range. Since both the activation and motion of 
molions, ions and polarons in the dielectrics are caused by the chaotic thermal 
motion of these charge carriers (which in this case must overcome local potential 
barriers with relaxation time τ), then, with the increase in electrical field frequency 
ω, the situation inevitably changes when ω > 1/τ, and aforementioned charge carriers 
simply do not have time to move, so the conductivity decreases with increasing 
frequency, rarely remaining at frequency of 109 Hz]. 

Quite different situation arises with the highly mobile electrons in metals and 
semiconductors. Exposure to them by a high-frequency electrical field leads to the 
plasma resonance, and to dispersion of electronic gas conductivity (in dielectrics, 
electronic conduction has a polaronic nature and “lags” at lower frequency). The 
least inertia of “free” electrons is a characteristic of metals and other conductors 
(graphite, graphene, etc.), which widely used in electronics as inter-connectors and 
components of absorbing microwave composites. In the semiconductors, the more 
less dense electronic plasma leads to the resonance phenomena and dispersion at the 
optical frequencies. 

It is important to note that the inertia of electrons can be detected by the 
dielectric spectroscopy methods. When the charge carries show their inertia, the 
decrease of conductivity is seen; at that, in usual metals their conductivity decreases 
in the ultraviolet wavelength range (above 1016 Hz), so the electronic polarizability 

of the deep ionic shells in the ionic lattice of metal becomes noticeable. Nevertheless, 
in the weakly conducting metals and, especially, in the finely dispersed metals 
(usually used in the absorbing composites), the inertia of electronic conductivity 
may appear already in the range of millimeter waves and even at microwaves. 

The following is a simplified model, which describes the conductivity by 
using a conception of the electronic plasma in solids. The plasma is a system of 
positive and negative charge carriers; at that, the plasma can be charged (like 
electronic plasma in the metals) or neutral (like the electron-hole plasma in the 
semiconductors). The density of the charge carriers in charged plasma can reach 1022 
cm–3, while in the case of neutral plasma charge carries density might be 1015–1018 
cm–3. The plasma can be considered as a subsystem, which can interact with crystal 
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lattice that facilitates its properties study. Characteristic property of plasma is the 
presence of the collective excitations – plasma oscillations. 

The model of Langmuir oscillations in the electronic plasma of metals 
supposes that the returning force arises, when the group of electrons possessing 
charge e, mass m, and density N shifts from their equilibrium position on a some 
distance relatively to positively charged “non-moving” ionic lattice (in particular, 
this displacement can be induced by the external electrical field). The returning 
force, acting on the displaced group of electrons, causes the oscillations of electrons 
around their equilibrium position with a plasma frequency ωpl = (Ne2/mε0)1/2.  

 
 

Fig. 2.4. Conductivity σ and effective permittivity εpl frequency dependence in metals in the 
vicinity of plasma resonance  

 
Experiment indicates that electronic gas in metals demonstrates its inertia at 

frequencies of 1016–1017 Hz: at higher frequencies electrons have no time to follow 
electromagnetic field changing. That is why, above the plasma frequency it is 
possible to determine in metal the dielectric permittivity εuv arising due to the elastic 
displacement of the non-collectivized electrons (bound electronic shells inside 
ionic cores). 

Thus, the conductivity σ(ω) of metals (and other high-conductive materials 
used in electronics as the inter-connectors, in waveguides, antennas and as 
components of absorbing microwave composites) has almost constant value σ(0), 
which defines the ohmic losses of conductor in the broad frequency range including 
the terahertz range. With a further increase in frequency, a smooth decrease of 
conductivity up to zero is observed (in metals it is seen in the ultraviolet part of a 
spectrum), accompanied by the increase of permittivity, which from their negative 
value becomes positive. 



108 
 

The high-frequency properties of metals can be found using simple Drude-
Langmuir model for free charge carriers absorption in metals, from which for 
complex permittivity follows: 
                        ε*(ω) = – (Ne2/mε0)/(ω2 – iωγ) = – ωpl

2/(ω2 – iωγ)                    (2.5) 
where N is the concentration of charge carries, e is their charge, m is the effective 
mass, γ  = 1/τ is the damping factor of plasma oscillation, τ is the scattering (life) 
time of charge carries, ωpl is plasma resonant frequency, and ω is angular frequency.  

Accordingly, from the above model, the complex conductivity can be 
determined: σ*(ω) = iωε0ε*(ω), or otherwise  
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The lower frequency conductivity σ(0) remains frequency independent in the 
case when ω << 1/τ, i.e., practically in the entire frequency range used in electronics. 
At that, the conductivity makes contributions both to the real and the imaginary parts 
of permittivity: 

ε′pl(ω) = εuv – (ωplτ)2, 
 

                                                   ε″pl(ω) = ωpl
2τ/ω,                                            (2.7) 

where εuv is the contribution to permittivity given by the polarization of deep 
electronic shells of ions making up metal crystal lattice (εuv is detectable only in the 
ultraviolet frequencies). Thus, in the metals and other conductors, the plasma 
contribution to the permittivity is negative, while the plasma contribution to losses, 
of course, is positive but at low frequencies (far from resonance) it is very small.  

Graphs of the σ(ω) and ε(ω) changing are shown in Fig. 2.4: frequency 
behavior of conductivity resembles the relaxation dispersion of permittivity: at the 
frequency ω = 1/τ conductivity decreases by a half while near the frequency of 
plasma resonance conductivity vanishes. However, the frequency dependence of 
plasma contribution to permittivity resembles the resonance dispersion, but only 
above the natural frequency of correspondent oscillator. The fact is that in 
electrically conductive media below the frequency of plasma resonance the charge 
carriers shield electrical field, so the phase of their displacement in the applied 
alternating field corresponds to negative contribution into permittivity, which is the 
greater the higher concentration of charge carriers and lower frequency. 

In the frequency of plasma resonance (ω = ωpl), the permittivity of metal 
equals zero: ε′(ω) = 0 due to the compensation of negative dielectric contribution 
from free charge carriers by the positive contribution to permittivity from the 
polarization of ionic cores: εcor = ε(∞). When frequency increases above ωpl, the 
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permittivity εcor gradually gets its full value; next, with a subsequent increase in the 
frequency and its approach to the X-ray values, any polarization mechanism has no 
time for establishing, so ε′(ω) → 1.  

It is worth noting that plasma oscillations of electrons can be quantized, so the 
model of quasi-particle can be introduced: the plasmon, which is the elementary 
excitation of plasma oscillations. The formula for the plasma resonance frequency  
ωpl = (Ne2/mε0)½ shows that it is proportional to the square root of charge carriers 
concentration. In the highly conductive metals (N ~ 1022 cm–3), this frequency is 
located in the ultraviolet part of a spectrum, but for the weakly conducting metals 
the frequency ωpl is lower. In the semiconductors, which have charge carrier 
concentration of 1015–1017 cm–3, the plasma resonance frequency is seen in the 
visible optical range. At that, the effective mass of charge carriers has an essential 
influence on the resonance frequency, so that in the semiconductors, possessing 
small effective mass of electrons, the frequency of plasma resonance is increased.  

Since at the frequency of plasma resonance, dielectric permittivity ε(ω) 
vanishes, the reflection of the electromagnetic waves from crystal, when ε(ω) = 1, 
is absent; in practice, this means that a quasi-particle – plasmon – leads to a 
minimum of reflection coefficient of semiconductors in the optical range. That is 
why, the frequency ωpl can be determined from a minimum of optical reflection, 
characterizing by the ratio of charge carriers concentration to their effective mass.  

Besides, in the heavily doped semiconductors, the presence of free charge 
carriers decreases their optical refractive index. Such a negative contribution of 
electronic plasma to the permittivity at optical frequencies is especially significant 
in those semiconductors, in which the effective mass of electrons is small (usually 
these are the semiconductors of AIIIBV type). Effect of plasma onto the refractive 
index decrease is used in the integrated optics to obtain the planar optical light 
guides. All these features are manifested in the semiconductors but in the dielectrics, 
due to a low concentration and very small mobility of charge carriers, the plasma 
oscillations are practically irrelevant.  

 

2.4 Permittivity and conductivity interconnection at dielectric 
polarisation 

 
As already noted, in the electrical field applied to dielectric, both free and 

bound electrical charges move. If electrical field is alternating, and especially in the 
case high-frequency variation external field, the motion of charged particles, which 
can be as bound in the structure so relatively free, makes the contributions to both 
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active and reactive electrical currents, that is, it affects both the dielectric 
permittivity and conductivity. 

1. Dielectric losses conditioned by DC conductivity can be described by next 
simple mechanism. While directed movement of charges carriers (i.e., their drift or 
diffusion in the external field), the carriers at their free path get energy from 
electrical field. Acquired energy is spent in the "collisions", that are, actually, the 
interactions of charges carriers with the atoms, ions or molecules, which are in a 
state of thermal motion.  

Giving back acquired energy during these collisions, charge carriers increase 
the intensity of chaotic motion of particles of matter; therefore, the temperature of 
dielectric increases. For this reason, the electrical conductivity σ increases the 
dielectric loss factor ε", loss tangent tanδ and loss specific power p (energy 
dissipation per unit volume). Corresponding formulas are:  

ε′(ω) = ε(0) = ε(∞);      ε′′(ω) = σ/(ε0ω); 
tanδ(ω) = σ/(ε0εω);       p(ω) = E2ε0εωtanδ = σE2. 

It follows that conductivity determines the loss factor ε" and the loss tangent 
tanδ mainly at lower frequencies: both of these parameters decrease with frequency 
as 1/ω.  

However, the loss specific power p ~ σ in this case does not depend on 
frequency, because it is a product of the frequency independent conductivity and 
squared electrical field (р = σЕ2). Thus, the reducing of ε" and tanδ with increasing 
frequency no means the reduction of loss specific power p with increasing 
frequency, as this parameter does not depend on frequency.   

Frequency characteristics of considered parameters are shown in Fig. 2.5A. 
In the case when no absorption mechanisms exists other than the electrical 
conductivity, the permittivity is determined only by the fast polarization processes: 
ε(ω) = ε(∞), being independent on frequency. Temperature dependences of losses 
parameters in the case, when the predominant mechanism of losses is the electrical 
conductivity, are shown in Fig. 2.5B. All of them, except ε(ω) = ε(∞), show the 
exponential increase with temperature, since just by this law the conductivity varies 
with temperature. It is seen also that the electrical conductivity contributes 
significantly to the tanδ and ε" at higher temperatures and at lower frequencies.  

At very low temperatures and at very high frequencies the contribution of 
conductivity to the dielectric losses usually is so small that it can be neglected. 
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  (A)       (B) 

 

Fig. 2.5. Frequency (A) and temperature (B) dependence of dielectric basic parameters (losses 
due conductivity dominate in ε" and tanδ 

 
In the present-day electronics, the dielectrics and semiconductors are widely 

used in the microwave technique. Usually their permittivity (ε = ε′) is independent 
on frequency. For the losses of semiconductors the conductivity dominates; at that, 
their high frequency conductivity due to high mobility of electrons is independent 
on frequency including terahertz range. The loss coefficient ε″ = σ/(ε0ω) and the 
tanδ = σ/(ε0ε′ω) decrease with frequency, Fig. 2.5A, because the active component 
of current ja is frequency independent, while the reactive component jr linearly 
increases with frequency while tanδ = ja/jr. If in specified frequency range given 
dielectric has no relaxation or resonant ε-dispersions, the parameter ε′(ω) remains 
constant, while the loss factor ε′′(ω) depends on the conductivity σ and decreases 
with increasing frequency: 

 
0

* i
    
  , 

This equation is not a dispersion one, inasmuch as describes only the ε″(ω) 
dependence that is not concerned with ε′ = const.  Therefore, in the case when σ is 
independent on frequency, the conductivity does not contribute to the real part of 

permittivity. 
2. Effective conductivity conditioned by thermally activated polarization. In 

this model, it is assumed that the DC electrical conductivity is absent, but at the 
alternating voltage the active current in a dielectric appears due to the polarization 
lagging in time. Relaxation polarization is caused by a local electro-diffusion 
process, at which weakly bounded charges are accumulated in localized states (or 
dipoles are directionally oriented). Being supported by thermal movement, this type 
of polarization is settled rather slowly. Relaxation time of this polarization varies 
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with temperature but lies in the limits of 10−3–10−9 s. Thus, distinguishing frequency 
of molecular relaxation processes in such dielectrics may be located just in a such 
frequency range, where dielectrics are used in electrical engineering and electronics 
(50 Hz–100 GHz).  

Dielectric relaxation at thermal and migration polarization is described by the 
Debye equations  

   0
( ) ( )

1
i

i

    
          

   
where (0) is the permittivity before dielectric dispersion (at   0) while () is 

the permittivity after this dispersion (at   ) while  is the relaxation time. After 
dividing on real and imaginary parts, Debye equation looks like:  
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  = σef(ω)/(ε0ω), 

where σef(ω) simulates electrical conductivity of a dielectric, i.e., characterizes the 
active component of electrical current arising due to polarization time-lag (in the 
accepted notation σef(ω) = σ′(ω), Fig. 2.6B.  

   
(A)                (B) 

Fig. 2.6. Permittivity (A) and effective conductivity (B) at relaxation polarization dispersion 
 
From Fig. 6 it follows that at low frequencies (when relaxation polarization is 

totally settled in time and ()  (0), the effective conductivity () vanishes; 

next it increases with frequency growing and when  = 1/ (in centre of dispersion) 

  = /2 where  = (0) – (). At higher frequencies, when ()  (), the 

effective conductivity reaches its saturation:  = /, and next becomes 
independent on frequency (of course, within certain limits). 

3. Effective conductivity conditioned by resonant polarization. As in previous 
model, it is further assumed that DC electrical conductivity is absent but at the 
alternating voltage an active current (and hence the effective conductivity) arises in 
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the vicinity of polarization resonance. Resonant dispersion at oscillator frequency 0 

= TO can be described by the Lorentz expression: 
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where ωTO is the transverse optical frequency, Г is the relative attenuation and the 
difference ε(0) – ε(∞) = Δε characterizes the dielectric contribution of resonant 
polarization mechanism. Turning to the analysis of frequency dependence of ε′(ω) 
and σ′(ω) = ωε0ε″(ω), it is necessary to separate in the above equation real and 
imaginary parts of complex permittivity: 
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from which it follows that effective conductivity is 
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                   (A)                                                                               (B)        
     

Fig. 2.7. Permittivity (ε) and effective conductivity (σ) frequency dependence for resonance 
mechanism of polarization (A) and conductivity maximum dependence on damping coefficient (B) 

 
Analysis shows that the maximum of effective conductivity for any amount of 

attenuation is located exactly at the resonant frequency of the oscillator, Fig. 2.7A. The 
frequency dependence of oscillator effective conductivity normalized to the dielectric 
contribution in case of different values of relative attenuation is shown in Fig. 2.7B. 
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2.5 Summary and self-test questions 

 
1. In the alternating electrical field, the electrically induced displace and move 

of charged particles lead to both an active and a reactive electrical current, that is 
characterized usually by the complex permittivity, but also can be described by the 
complex conductivity; between these complex parameters an unambiguous 
relationship can be established. Both of these methods of a describing of electrical 
reaction of substance to applied electrical field are equivalent. 

2. Electrical field E applied to a substance induces in it several reversible and 
irreversible physical phenomena: not only of electrical nature but also the 
mechanical and thermal responses. Among the electrical responses, one is the 

reversible: the electrical induction D(E) describing by the dielectric permittivity  = 

D/(0E) while another is the irreversible response - the electrical current j(E) 

described by the conductivity  =j/E. 

3. Electrical polarization is the charge separation while electrical conductivity 
is the charge transfer. At an alternating voltage, the connection between conductivity 
and polarization is obvious, since both of these phenomena are due to limited 
(polarization) and almost-free (conductivity) movement of electrical charges in a 
matter, and in both cases the inertial phenomena affect these movements.  

4. To be described in the sinusoidal electrical field E() = E0exp(it), both 
the dielectric displacement and the conduction can be represented by the complex 

parameters. One of Maxwell-Lorentz equations: rot H = j + D/t) shows that 

current density j and time derivative of electrical displacement D/t are the additive 

quantities. That is why, the current density j = *E and D/t = i0*E would be 
represented as the equivalent functions, if the complex values will be used to 
describe them.  

5. Material’s properties are usually characterized by the complex permittivity 

*(), but can also be described by the complex conductivity *(). When these 
functions are represented by their real and imaginary parts, the complex conductivity 
is connected to the complex permittivity: 

            *() = () + i() = i0*(),   () = 0();   () = 0().   

            *() = () – i(),    () = ()/(0),    () = ()/(0). 
Mostly, to describe materials parameters frequency dependence the complex 
permittivity is used. 

6. Thermally activated motion of charged particles, whose localization is 
determined by a set of potential minima and barriers, in the external electrical field 
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give rise to both conduction and polarization. Polarization process predominates at 
lower frequencies, but when frequency grows the permittivity decreases that is 
accompanied by the correspondent increase of conductivity; it looks as if 
polarization turned into conductivity. 

7. Frequency dependence of effective conductivity ef() can be useful 
evidence of physical nature of the polarization mechanisms. In the case of relaxation 

polarization, in the region of dispersion ef() gradually increases to a certain 

limiting constant value: ef = 0/. In the case of resonant polarization ef.() 

also increases, but it quickly reaches a maximum max = 00/Г at the resonance 

frequency 0, and then decreases with frequency grows. 
8. Inertia of charge transfer mechanisms can be clearly detected by dielectric 

spectroscopy methods, including movement of electrons in metals. When charge carries 
show their inertia, the conductivity decreases; in metals conductivity decreases in the 
ultraviolet wavelength range so even the electronic polarizability of deep ionic shells in 
ionic lattice of metal becomes noticeable. In the doped semiconductors, the presence of 
free charge carriers decreases the refractive index: this negative contribution of plasma to 
the permittivity is seen at optical frequencies. In dielectrics, due to a low concentration 
and small mobility of charge carriers, the plasma oscillations are practically imperceptible. 

 
Chapter 2. Self-test questions 
 

1. Why is there a reciprocal relationship between complex permittivity and 
complex conductivity? 
2. Under what conditions can the dielectric constant and the conductance be 
completely separated? 
3. Under what conditions can the dielectric constant of different metals be 
compared? 
4. Which of the field-induced displacements of charged dielectric particles are 
related to polarization and which to conductivity? 
5. In what sense can the dielectric permittivity of a metal be interpreted as 
"negative"? 
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CHAPTER 3. DYNAMICS OF ELECTRICAL POLARIZATION  
 

Contents 

3.1 Polarization based on relaxor model 
3.2 Polarization based on oscillator model 
3.3 Ferroelectricity conception  
3.4 Order-disorder ferroelectrics 
3.5 Dynamics of dipole-ordering ferroelectrics 
3.6 Displacive ferroelectrics 
3.7 Dynamics of displacive ferroelectrics 
3.8 Polarization dynamics in paraelectrics 
3.9 Dynamics of antiferroelectrics, ferrielectrics, etc 
3.10 Summary and self-test questions 

 
The main physical property of dielectrics is their electrical polarization. For 

the application of dielectric materials in high-frequency electronics and information 
technology, the dynamic properties of polarization are most important, which can be 
described both phenomenological and through the models representations. Dynamic 
polarization models are applicable to the rather complex objects - ferroelectrics. 

Ferroelectric materials are widely used in electronics in hundreds of different 
devices. The requirements for the properties of these materials can be very diverse, 
and therefore, when developing their composition and technology, it is necessary to 
use various physical research methods, including dielectric spectroscopy. To 
evaluate the obtained spectra, it is necessary to know the fundamentals of physical 
mechanisms that determine certain parameters of the materials under study. A brief 
description of these mechanisms, based on the classical and modern concepts as to 
the nature of polarization, precedes the description of selected dielectric spectra.  

The necessary information and examples of dynamic properties of basic 
ferroelectrics with an order-disorder phase transition are given. Rather complete 
consideration is devoted to the dynamic properties of polarization and the main 
parameters of the paraelectrics. A brief description of the physical properties of 
ferroelectrics with a phase transition of the displacive type is given, with the 
illustrations of how these properties are reflected in the dynamic properties that is 
necessary to predict application of electronic materials based on these ferroelectrics.  

Dielectric properties and mechanisms of polarization of antiferroelectrics can 
also be of interest not only for the physics of condensed matter, but also for their use 
as the components of piezoelectric and thermoelectric materials. The relaxor 

ferroelectrics, in which the record dielectric, electromechanical and electro-optical 
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parameters have been achieved, are of greatest scientific and technical significance 
and, at the same time, the greatest difficulty for research.  

 

3.1 Polarization based on relaxor model 
 

Since not empirical but the model approach is discussed later for the 
description dielectric permittivity and loss factor frequency and temperature 
dependence, it is reasonably to start this discussion with the essence of the 
elementary model of dielectric relaxation.  

1. Frequency dependence of main relaxor parameters. The “relaxor” is 
idealized physical model, which describes an electrical response, characterizing a 
gradual establishment of equilibrium in the system of dipoles perturbed by the 
electrical field in a condition of thermal chaotic motion. Main parameters of relaxor 
are the contribution to dielectric permittivity Δε (dielectric strength) and the 
characteristic time τ (relaxation time) of a response to disturbance (or relaxation 
frequency Ω = 1/τ). To describe frequently observed in experiments broadband 
frequency dispersion of dielectric permittivity ε(ω), the parameter of the relaxation 
time distribution ς can be added to listed parameters. 

The dependence of relaxor parameters (Δε., τ and ς)  on the intensity of 
thermal motion in a system of dipoles (or polar complexes) means their strong 
dependence on the temperature. Indeed, the overcoming potential barriers during 
reorientation of dipoles, or jumps of weakly bound electrons and ions is energetically 
provided by the fluctuations of thermal motion, while the electrical field only creates 
the directionality of these transitions. At the sufficiently low temperatures any 
thermal motion almost ceases, so that relaxation time increases extremely, usually 
going beyond experimental possibilities of its definition. On the other hand, at the 
sufficiently high temperatures, very intense thermal motion converts the relaxation 
polarization into the ionic or electronic conductivity, since local potential barriers 
already cannot keep free movement of charged particles. Therefore, the temperature 
interval of 100–600 K can be considered as a limit for relaxor model application to 
describe dielectrics polarization. Another important consequence of chaotic nature 
of the relaxation polarization is extended frequency range of its manifestation. 

When relaxor model justifying, it is supposed that in the dielectric a system 
of non-interacting dipoles exists, characterizing by dipole moment and subjected to 
the chaotic thermal motion, causing these dipoles dynamic reorientation. If the 
constant electrical field E = E0 acts on such dielectric, then it forces the orientation 
of definite part of dipoles, creating the induced electrical polarization P = P0, Fig. 
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3.1A, where exact moment of electrical field switching on is not considered. In the 
applied electrical field E0 a lot of dipoles in a dielectric are continuously orienting 
and disorienting, however, in average, the polarized state with the value P0 remains 
thermodynamically stable. 

            
                                        (A)      (B) 

Fig. 3.1. Time-dependence of relaxor polarization P under the influence of constant (Aa) and 
alternating (B) electrical field E 

 
Suppose that at the moment t = t0 the electrical field is turned off; as a result, 

the chaotic thermal motion leads to a gradual depolarization of dielectric. At that, a 
new equilibrium state (not disturbed by electrical field) will be already non-
polarized. The principle of thermodynamics states that the rate of recovery of the 
equilibrium state is proportional to the magnitude of a deviation from this state, i.e., 
dP/dt = – kP. The dimension of proportionality coefficient k is the inverse value to 
time so it can be denoted as k = τ–1. Therefore, differential equation, describing  the 
gradual decrease of polarization when it approaches to the equilibrium state, is dP/dt 
= – (1/τ)P. The solution of this equation results in description of the time-dependent 
gradual decay of polarization: 

1dP
P

dt 
 

;          

dP dt

P 
 

;            0

t

P t P e

  

Frequency dependent dielectric permittivity can be found, if the alternating 
electrical field E(ω) acts on the model under consideration (system of non-
interacting dipoles), taking into account the definition of permittivity as the 
proportionality coefficient between the electrical displacement (induction) D and 
electrical field E: 

                 D = ε0εE = ε0E + P;     ε = 1 + P/ε0E.                     (3.1) 

where ε0 is the electrical constant used in SI system. Thus, to determine permittivity, 

it is necessary to find the ratio P/ε0E. For this purpose, as shown in Fig. 3.1B, the 
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sinusoidal (harmonic) dependence of electrical field of frequency ω should be used: 
E(ω) = E0exp(iωt), which in the linear case (correspondent to weak electrical field) 
leads to similar dependence of induced polarization P(ω) = P0exp(iωt). 

To find the frequency dependence of permittivity, it is necessary to solve first-
order inhomogeneous differential equation: 

0
1 i td P

P g E e
d t

 
  

where coefficient g is the reactive conductivity, which, as seen from the dimension 
of dP/dt, is the density of current while E is the electrical field (Ohm's law). When 
solving this equation, the transient processes are not considered, so by substituting 
P(ω) = P0exp(iωt) it is possible to get  
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Relative permittivity of vacuum is ε = 1, but it should be replaced by the 

contribution to the permittivity of fast polarization ε(∞), because the relaxor is 
located in dielectric medium, which is characterized, except slow dipole 

polarization, by others high frequency polarization processes. The numerator gτ/ε0 

in the above formula is the dielectric contribution of relaxor: Δε = ε(0) – ε(∞), while 
g = n0αT is determined by dipoles concentration n0 while their temperature-
dependent polarizability is αT. The dipole relaxation polarization equals αdT = 
μ0

2/3kBT, for the electronic relaxation polarization it is αeT = e2δ2/12kBT while for the 
ionic relaxation polarization polarizabily equals αiT = q2δ2/12kBT (i.e., the 
polarizability in all listed cases decreases with temperature: αT ~ T–1). This feature 
should be taken into account when studying dielectric properties in the temperature 
range. 
 The obtained result corresponds to the Debye formula, which describes the 
frequency dependence of complex permittivity consisting of real ε′(ω) and imaginary 
ε″(ω) parts:  
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From expression (3.2) the main formulas describing frequency dependence 
of tangent of dielectric loss angle (tanδ) and the specific power of losses p follow: 
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These expressions can be used for ε′, ε′″, tanδ and p frequency dependences 
investigation. When describing the ε′(ω) dependence, one can see that at low 
frequency ε′(ω) → ε(0), while at higher frequency ε′(ω) → ε(∞). At the frequency ω 
= 1/τ the dielectric contribution of relaxor εrel = ε(0) – ε(∞) is halved, Fig. 3.2A. 
From ε′″(ω) dependence it follows that ε′″→ 0 both at very low frequencies (when 
ω → 0) and at very high frequencies (when ω → ∞), Fig. 2C. By examining the 
derivatives dε′″/dω and d2ε′″/dω2, it is easy to show that ε′″(ω) has the maximum at 
frequency ω = 1/τ, i.e., exactly at the frequency, when dielectric contribution of 
relaxor εrel reduced by half with frequency rise, Fig. 2C. 

 

   
(A)      (B) 

   
 (C)      (D) 

 

Fig. 3.2. Relaxation polarization in dielectric spectra: A – permittivity; B – absorbed energy 

power;  C – loss coefficient; D – loss tangent delta. (The change of permittivity with frequency 

increase can be presented most expediently by the Bode plots, when the abscissa is the frequency 
in logarithmic scale; in this presentation many physical processes might be reflected, but in case 

of dielectric spectroscopy this is a permittivity conditioned by different polarization 
mechanisms) 

 
The frequency dependence of loss tangent angle tanδ is also characterized by 

the maximum in the region of permittivity relaxation dispersion. Exploring above 
expression on extremes, it is possible to get 
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Thus, the maximum of tanδ(ω) is observed at a frequency somewhat larger than the 
ε″(ω) maximum. It is interesting to note that the maximum of loss tangent angle 
depends only on the ε(0) and ε(∞) values. 

The average power of electrical losses also can be found from above 
expressions  

                                      

2 2
2 2

02 21

g
p E E

 
  

 
 

 .                              (3.3) 

where g is the reactive conductivity. From this formula it follows that at low 
frequencies (when relaxation polarization completely establishes in time) the 
specific power of relaxation losses practically do not manifest itself. At that, in the 
centre of permittivity dispersion, when ωτ  = 1, the specific power of losses reaches 

the value p = ½gE2. Very remarkable is the fact that at higher frequencies (when ωτ 

>> 1), the specific power of losses reaches its saturation value p = gE2 and then does 
not depend on frequency. Thus, although the relaxation polarization at higher 
frequencies is late and has no influence on the value of permittivity, the specific 
power of  relaxation processes at high frequencies remain maximal, Fig. 3.2B.  

The fact is that at rather high frequencies the equilibrium distribution of 
relaxing electrons or ions has no time for establishing. Therefore, their movement in 
the electrical field through the potential barriers affects the losses in same way as 
the ordinary (DC) electrical conductivity. Same happens with the dipoles relaxation 
polarization: if frequency is so high that polar molecule does not have enough time 
to reorient, then the bonding of opposite charges of dipole is late to manifest. As a 
result, the effect of dipole polarization on the losses becomes the same as the effect 
of two opposite-charged ions involved in the electrical conductivity. This 
circumstance is clearly seen experimentally when permittivity frequency 
dependence is studied. 

2. Temperature dependence of main relaxor's parameters describing 
thermally activated polarization in dielectrics is discussing. For this purpose, it is 
necessary to find out the temperature dependence of the coefficients included in the 
Debye equation (1). For this it needs to introduce base notations, which simplify this 
consideration: coefficients A, B and K, which do not depend on temperature: 
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By writing temperature dependences of ε′ and ε″ with new coefficients, obtain 
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Initially, such a case is considered, which corresponds to the relatively higher 

temperatures or/and lower frequencies, i.e., when ωτ < 1 so thermally activated 
polarization has enough time for its establishing. Then term “ωτ” in denominators 
of above expressions can be neglected in comparison with “1”:    
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As seen from first expression, the temperature change of permittivity occurs 
according to so-called Curie law: ε′(T) = ε(∞) + K/T, where dielectric contribution 
from fast mechanism of polarizations ε(∞) is assumed to be weakly dependent on 
temperature, Fig. 3.3A. Curie law is explained by the fact that the increase in the 
intensity of thermal oscillations of atoms, ions or molecules of a matter hinders to 
the ordering of relaxing particles in electrical field, thereby reduces their 
contribution to permittivity.  

 
 

(A)     (B) 
 

Fig. 3.3. Temperature dependence of base parameters of dielectric possessing relaxation 
polarization  

 
At that, as follows from the expression for loss factor ε″(T), the contribution 

of relaxation polarization to the dielectric loss factor also decreases with temperature 
rise, and faster than for ε′(T). The fact is that as temperature grows both the 
relaxation time of thermal polarization and the number of particles actually 
participating in the relaxation process decrease. Let us discuss the opposite case: 
when  ωτ > 1.  

This case is characterized by the fact that the process of thermal polarization 
doed not have enough time to be developed over the quarter-period of electrical field 
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changing. The delay of polarization is observed at relatively higher frequencies 
or/and at relatively lower temperatures, when the relaxation time is long enough. In 
this case one needs to neglect the unit as compared to value of ω2τ2 in the 
denominator of the above expressions.  

In addition, linear temperature dependence of discussed parameters can be 
ignored as compared with much sharper exponential one. As a result, when 
temperature grows, the increase is observed both in ε′(T) and ε″(T) in such 
temperature range, where thermal polarization due to the decrease in relaxation time 
ceases to lag at given frequency ω, i.e., when 1/τ → ω, Fig. 3.3. 

By performing complete analysis of above formulas, it can be shown that the 
temperature changing of complex permittivity, conditioned by thermal polarization, 
is characterized by non-symmetric maximum in ε′(T) curve and almost symmetrical 
maximum in ε″(T) dependence; at that, both maximums are seen exactly at ωτ = 1.  

Consequently, the location of relaxation maxima in the dependences ε′(T) and 
ε″(T) is determined by the value of frequency at which the measurements are made. 
Since the relaxation time decreases with temperature grows, both maximums ε′(T) 
and ε″(T) shift toward more high temperature when frequency increases. 

The specific power of dielectric losses also has temperature maximum, which 
is dependent on frequency. Frequency and temperature dependences of permittivity 
and losses are mutually connected with each other: the family of temperature 
characteristics of various parameters in the case of relaxation polarization is shown 
in Fig. 3.4.  

When experimental studies of many dielectrics, the dependence of tanδ(T) 
can be affected by conductivity. The effect of conductivity is especially noticeable 
at low frequencies and at high temperatures.  

In Fig. 3.4 both frequency and temperature dependences of ε and tanδ are 
given for the dielectrics, in which not only a thermal polarization but also the 
electrical conductivity is noticeably manifested. 

Experimental study of ε′(T) and tanδ(T) dependences, conducted at several 
fixed frequencies in the region of relaxation, as well as the study of frequency 
characteristics ε′(ω) and tanδ(ω) at different temperatures can serve as a basis for 
determining the height of potential barrier U overcame by the electrons, ions or 
dipoles in the process of their thermal (relaxation) polarization establishing.  

In principle, for such calculation, any pair of curves shown in Fig. 3.4 can be 
used.  
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      (A)      (B) 
 

  

   (C)          (D) 
Fig. 3.4. Thermally activated polarization and conductivity manifestation in frequency- 

temperature dielectric spectra 

 
It should be noted that dielectric permittivity dispersion studies and 

interpretation of correspondent parameters in broad frequency range take more 
laborious as compared to ε′(T) and tanδ(T) investigations in wide temperature 
interval, because to get frequency dependencies a set of experimental setups and 
different sized samples are required. Moreover, the characteristics ε′(ω) and tanδ(ω), 
as a rule, are not used when finding the value of U, since anomalies in temperature-
frequency dependency of permittivity usually are small because its frequency 
dependency is flattened. That is why, for investigation of dielectrics characterized 
by thermal polarization combined with electrical conductivity, methodologically, 
exactly the temperature dependences of tanδ(T) at several (at least two) frequencies 
are the most convenient for potential barrier definition. 

Thus, experimental dependences of tanδ(Т) at different frequencies can serve 
as the base data for the height of potential barrier determining. For its calculation, it 
is sufficient to obtain experimentally two temperatures T1 and T2, which correspond 
to two values of frequency ω1 and ω2 when the peaks of losses are observed: 
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Stated above simple theory of the relaxation polarization is confirmed by 
many experiments conducted with different dielectrics. 

3. Representation of Debye dispersion formula on complex plane leads to the 
significant simplification of permittivity dispersion analysis based on the equation: 

ε*(ω) = ε′(ω) – ε″(ω) = ε (∞) + [ε(0) – ε(∞)]/(1 + iωτ). 
 
After dividing on the real and imaginary parts it looks:  
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To simplify these formulas, introduce the "normalized" designation:  

            

 
   
*

*
0

i
 

  
 

 
   

 
. 

After that Debye dispersion formula looks like:  
(ξ*)–1 = 1 + iωτ . 
 
Then by entering notation ωτ = z and dividing real and imaginary parts of ξ*, 

obtain: 
    (ξ*)–1 = 1 + iz ;      (ξ′)–1 = 1 + z2;       (ξ″)–1 = (1 + z2)/z.     (3.5) 
 
For the further analysis, it is convenient to introduce the concept of dispersion 

frequency Ω = 1/τ, which corresponds to the frequency of absorption maximum. 
From expressions (5) it is possible to find the frequency of ξ″(z) maximum by usual 
analysis, using expressions: dξ″/dz = 0 and d2ξ″/dz2 < 0.  

         
                                      (A)                                                             (B) 
Fig. 3.5. Coal-Cole plots: A – Debye equation in usual coordinates; B – Debye equation in 

normalized coordinates 

 
The maximum of "normalized" absorption is ξ″max = 0.5 and is seen at 

normalized frequency z = 1. The width of Debye spectrum is characterized by 
parameter Δω/Ω, where Δω = ω2 – ω1; the frequencies ω2 and ω1 are determined 
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at both sides of ξ″max = 0,5. From equation z/(1 + z2) = 0,25 find 1,2 2 3z   ; 

hence spectrum width of Debye equation equals to 
2 3 3.5

 Ω


 

.It is important 
to note that Debye formula, describing the relaxation spectrum of permittivity 
dispersion, has an interesting feature: in the rectangular coordinates iξ″⋅ξ′  it is the 
circle equation: 

                                        2 2 2
0.5 0.5                                         (3.6) 

This circumstance was first noted in works of K. Cole and R. Cole [4]. Their 
diagrams are shown in Fig. 3.5 as for usual coordinates ε' and ε", so for normalized 
dielectric contribution in coordinates ξ′ and ξ″. When frequency dispersion of ε*(ω) 
is well described by the Debye equation, then the experimental data really "lie" on a 
semicircle. If experimental studies can not be conducted in all necessary frequency 
range, then the Cole-Cole diagram allows make corresponding approximations of 
spectrum to the semicircle. Such a method is very useful and it is widely used in the 
description of the relaxation dielectric spectra. 

 
3.2 Polarization based on oscillator model 

 
The oscillator model is often used at dielectric properties description when 

electronic materials are studied or applied. Compared to the relatively “slow” 
processes of the relaxation polarization, the establishing of quasi-elastic polarization 
occurs almost instantly. That is why, in the equations describing thermal relaxation 
polarization the dielectric contribution of these fast processes to the value of 
permittivity is taken into account as the ε(∞), and it was assumed that in a very broad 
frequency range this value remains constant, while dielectric losses are attributed 
only to slow polarization processes and to electrical conductivity.  

Indeed, the dielectric losses conditioned by the quasi-elastic polarization are 
observed at much higher frequencies; nevertheless, in some dielectrics already at 
microwaves the losses from the soft modes of ionic polarization become significant. 
In case of ionic lattice polarization, this loss factor gradually increases with 
frequency grows but fully manifests itself only in the far infrared frequency range 
(and in the ultraviolet range for the electronic polarization). 

In case of the quasi-elastic polarization, at which electrical field acts on ions 
(bound in crystal lattice) or electrons (bound in atom), they only slightly displace 
while a returning force arises, which is proportional to ions or electrons elastic 
shifting from their equilibrium positions. Obviously, discussed in the previous 
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section exponential law of polarization establishing, which is valid for the relaxation 
processes, is not applicable here, but it should be expected the appearance of 
oscillations of all particles forcibly deviating by the applied field from their 
equilibrium position. Undoubtedly, to describe the dynamic properties of quasi-
elastic polarization, it is expected to use the model of harmonic oscillator, taking 
into account dielectric losses by the introduction of damping factor. The elastic 
polarization is distinguished by the linear dependence of restoring force on 
displacement x induced by external field: f = – cx. At that, the polarizability αelas can 
be calculated for any model of elastic polarization as αelas = q2/c, where the elastic 
force cx resists to the displacement x of the charge q. 

1. Frequency dependence of main oscillator parameters. Suppose that in the 
unit volume of dielectric n elastically bound charged particles are displacing that 
define the induced polarization P = nqx, where q is the charge shifting on distance 
x. Each of particles is characterized by the mass m, by the coefficient elasticity c and 
by the damping factor λ′ of oscillation. If the constant electrical field E = E0 acts on 
such dielectric, then it forces the charged particles to be displaced, i.e., the constant 
shifting x0 for each charges is induced, resulting in the polarization P0 = nqx0 (at 
that, the initial time of electrical field switching on is not considered). 

 

            
          (A)       (B) 

 

Fig. 3.6. Time-dependent polarization P(t) of oscillators system under the influence of constant 
(A) and alternating (B) electrical field E(t) 

 
Suppose also that in some moment t = t0 long time applied electrical field E0 

is turned off, Fig. 6A, so elastic forces seeks to return the non-polarized 
(equilibrium) state of dielectric. This process occurs with the damped oscillations, 
and can be described by differential equation 

m(d2x/dt2) + λ′dx/dt) + cx = 0, 
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in which m(d2x/dt2) is the inertia force, λ′(dx/dt) is the friction force, and cx is the 
elastic returning force. Dividing all members of this equality by m and taking into 
account the fact that c/m = ω0

2 is the oscillation frequency (if neglect friction), from 
above equation it is possible to get second order differential equation: 

                       d2x/dt2 + λ(dx/dt) + ω0
2x = 0,                                    (3.7) 

where the damping coefficient is λ = λ′/m. Taking into account that P = nqx, the 
received equation of  particles oscillations can be rewritten for the polarization: 

                                        d2P/dt2 + λ(dP/dt) + ω0
2P = 0,                               (3.8) 

characterizing the damped oscillations of the polarization around fast established 
non-polarized state with P = 0, as shown in Fig. 3.6A. 

The last equation characterizes the oscillator which describes the resonant 
type dielectric dispersion. It is a physical model characterizing dynamic reaction of 
a system of elastically coupled electrical charges to the externally applied electrical 
field, which is opposed by the internal elastic force tending to return the system into 
the non-polarized state. The dielectric dispersion oscillator is characterized by the 
resonant frequency ω0, wave vector k = 2π/λ and relative damping factor Г. To 
describe the broadband resonant dielectric spectra that are often observed in 
experiments, the parameter of oscillator frequency distribution can be added to 
above listed dielectric dispersion oscillator parameters. 

In this model, the scattering of energy during oscillations is taken into account 
by the introducing a certain coefficient λ′ at the derivative dх/dt, i.e., representing a 
kind of "friction" (such force, as known, is proportional to the velocity of movement: 
dх/dt). The microscopic mechanisms that lead to this “friction” can be varied and 
complex. For example, in case of ionic quasi-elastic polarization in crystals, losses 
are characterized by the energy exchange between the optical and acoustic modes of 
oscillations in crystal lattice (optical and acoustic phonons). With this exchange, 
electrical energy dissipates turning into a heat. The point is that electrical field acts 
on the neighboring positive and negative ions in the opposite directions and thus 
initiates their optical (polarization) oscillations.  

The energy dissipation of these oscillations is stimulated by various 
mechanisms. 

First of all, any crystal has some structural defects which are any deviations 
of crystal structure from the ideal: any type of dislocations, grain boundaries, ionic 
vacancies and other low-mobility (“static”) structure deformations. Defects lead to 
the so-called two-phonon interaction, when optical phonons are scattering on the 
static fields of deformations. However, this is not the only mechanism of losses. 
Even if one assumes crystal structure being ideal, losses are also possible due to the 
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manifestation of oscillations anharmonicity. Depending on specific structure of a 
crystal the three-phonon or four-phonon interactions may prevail. Three-phonon 
interaction occurs, when the oscillations are described by cubic equation. In this 
case, two phonons — one of two different optical oscillation modes — generate 
phonon in the third mode. At that, transverse low-frequency wave interacts with two 
high-frequency waves belonging to same polarization branch. The four-phonon 
process is in many respects similar to three-phonon process. These and similar 
processes in oscillator model are taken into account by the introducing damping 
factor: λ′  or λ = λ′/m. 

The frequency dependence of permittivity in the oscillatory model of electrical 
polarization can be found on the base of equation (7), if one add the alternating 
electrical force qE0eiωt acting on the oscillator: 

m(d2x/dt2) + λ′dx/dt) + cx = qE0eiωt. 
If not consider the transient processes and considering only the stationary 

regime of forced oscillations, the solution of this equation is:  

x(ω) = [qE0eiωt)]/[ω0
2 – ω2 + iλω]. 

The displacement x of charged particles in the electrical field ultimately 
determines polarization of dielectric, if n particles in unit volume are shifted in same 
way: P = nqx. Therefore, above equation can be rewritten for polarization: 
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This formula shows that in the alternating electrical field E0eiωt the 
polarization varies with same frequency as electrical field, but the polarization turns 
out to be the complex parameter having another phase in comparison with exciting 
electrical field. At last, at higher frequencies, the elastic polarization does not have 
time to be established, which leads to permittivity dispersion, while the presence of 
"friction coefficient" λ results in dielectric losses. 

The frequency dependent dielectric permittivity can be found from a 
definition of permittivity as the proportionality coefficient between electrical 
displacement and electrical field: D = ε0εE = ε0E + P, from which ε = 1 + P/ε0E. 

Thus, to determine the permittivity, it is necessary to find the ratio P/ε0E, i.e., to get 

from above formula the complex parameter ε*(ω) = 1 + nq2/[ε0m(ω0
2 – ω2 + iλω]. 

To simplify this equation, the ideas of the “dielectric strength” of oscillator εq = 
nq2/ε0m and the relative attenuation Г = λ/ω0 should be used. Suppose also that some 
different processes of elastic polarization occur in a dielectric, due, for example, to 
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the rapid displacement of valence electrons and other higher modes of ionic 
oscillations, etc. It is assumed that frequencies of corresponding oscillators are 
substantially different and oscillators are independent. Therefore, the process of 
elastic polarization should be described by the various oscillators, the number of 
which is equal to k, with a result that formula of dielectric permittivity dispersion 
will take following form: 
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To describe the permittivity dispersion in the simplest (cubic) ionic crystal by 

above formula, it needs to highlight the contribution of electronic polarization εel = 
εopt = ε(∞) from above sum. Then, for ionic polarization of crystal lattice the 
frequency dependence of permittivity can be described by following expression 
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where ωTO is the transverse optical frequency, Г is the relative attenuation and the 
difference Δε = ε(0) – ε(∞) characterizes the dielectric contribution of ionic 
polarization mechanism. This equation, which is usually called Drude–Lorentz 
equation, describes the resonance spectrum of permittivity dispersion. Turning to 
the analysis of frequency dependence of ε′ and ε″, it is necessary in the above 
equation to separate the real and imaginary parts of complex permittivity: 
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To simplify analysis of obtained relations, it needs first assume that damping 

is small (Г << 1), then 
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It can be seen from formulas obtained that the value of permittivity ε′(ω) can 
be both positive and negative, while the loss coefficient is positive at any frequency: 
ε″(ω ) > 0. Indeed, the losses, characterizing heat release in dielectric due to the 
dissipation of electrical energy, always must have positive value according to the 
second law of thermodynamics. 

The above relations show that in the frequency range ω < ωTO both ε′(ω) and 
ε″(ω) increase with frequency grows and in the vicinity of ω ~ ωTO both reach 
maximums. With further growing in frequency, the ε′(ω) and ε″(ω ) dependences 
become different. The value of ε′(ω), after reaching its maximum value at frequency 
ω1, decreases sharply, and at frequency ω2 reaches minimum value, Fig. 7A and B. 
Then, as can be seen from above formulas, in the frequency range ω  > ωTO the 
magnitude of ε′(ω) gradually increases with frequency and, when  ω → ∞, the 

permittivity ε′(ω) → ε(∞). The positions of ε′(ω) and ε″(ω ) maximum and minimum 

can be obtained through the studies on extremes: ω2,1 = ωTO(1 ± Г)½. In a particular 

case of small attenuation, i.e., at Г < 1, the frequencies ω2,1 ≈ ωTO(1 ± Г/2). Maximum 
and minimum values of permittivity at frequencies ω1 and ω2 respectively equal 
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Describing the features of ε′(ω) dependence, it should be noted that when 
frequency of alternating electrical field equals to own oscillator frequency, i.e., in 
case of ω  = ωTO, the contribution to dielectric permittivity, as can be seen from 
above formula, becomes zero; in Fig. 3.7A this frequency is indicated as ω3.  

 

 
 

       (A)                                                       (B)                                                           (C) 
 
 

Fig. 3.7. Oscillator damping influence on permittivity dispersion: A – small damping; B – big 
damping; C – losses maximum 

 
In this figures, two variants of permittivity frequency dependence are shown. 

It may be that in a certain frequency range ω4  < ω  < ω5 permittivity becomes 
negative; this case is favored by big dielectric contribution of oscillator and small 
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damping of oscillations. Characteristic points ω4  and ω5 , at which the curve ε′(ω) 
intersects abscissa axis, can be determined from above equations:  

                  ω4 ≈ ωTO(1 + Г2/2)½ ,   ω4 ≈ ωTO[ε (0)/ε (∞) – Г2/2]½. 
These cases are relevant in the study of dielectric spectra, when the attenuation 

can already be estimated by the form of frequency dependence of permittivity. 
Now turn to the frequency dependence of loss coefficient ε″(ω ). As shown in 

Fig. 3.7C, in this case the maximum is observed at frequency ω6 in the vicinity of 
resonance dispersion of permittivity. When attenuation is small, this frequency can 
be easily obtained from above approximate formula, moreover, when analyzing any 
dispersion spectrum, the important characteristic is the width of spectral line, which 
directly characterizes the damping of oscillations. This parameter equals to the 
difference in frequency Δω on the level ε″max/2. In the case of small attenuation the 
maximal losses equals ε″max ≈ [ε(0) – ε(∞)]/Г; besides that the width of resonant 
spectrum is determined by relative attenuation: Δω/ω ≈ Г. In the experimental study 
of dielectric spectra, as a rule, the frequency dependence of loss coefficient is 
determined. The frequency, at which losses maximum is observed and the width of 
ε″(ω) curve (Δω) make it possible to determine such important parameters of 
oscillator model as ωTO and Γ. But all above calculated ratios are correct only in 
condition of Γ < 1. 

The analyses of exact formula for ε″(ω ) dependence show that, in reality, the 
frequency of loss factor maximum is lower than the oscillator own frequency ωTO 
and in the case of large attenuation this difference can be significant:  

         ω6 ≈ ωTO(1 – Г 2/6)  and  

   
 max 2

0

1 6Г Г

 


 
 


. 

But these relations are also approximate and case of oscillator possessing very 
high damping can lead to the error in ωTO determination. Therefore, in case of large 
attenuation of oscillations others experimentally determine parameters should be 
used to analyze the resonant dispersion spectra.  

It should be noted that the value of tangent of dielectric loss angle is easily 
determined from relation: tanδ = ε″(ω )/ε′(ω). However, parameter tanδ cannot serve 
a convenient characteristic when resonance dispersion analyzing: the point is that 
this parameter can change its sign (together with permittivity); at that, at the points 
of ε′(ω) zeros, the tanδ becomes infinite. Moreover, even in case of small dielectric 
contribution of equivalent oscillator, the maximum of tanδ significantly shifts 
towards the higher frequencies in comparison with ωTO. Therefore, to interpret 
resonance spectra, it is not advisable to use the concept of dielectric loss tangent.  
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Nevertheless, it is important to note that above formulas make it possible to 
use tanδ to estimate the contribution of far infrared permittivity dispersion to 
microwave losses. Assuming that ω  << ωTO, for this contribution the following 
expression can be obtained: 

   
 

0
tan

0
TO

Г
 


 

 


                  (3.11) 

In the case of large attenuation, when processing experimental data related to 
the resonance dispersion of permittivity, it is convenient to determine the frequency 
of equivalent oscillator by the maximum of “effective conductivity" using the 
connection σ(ω) and loss factor, established as σ(ω) = ε0ωε″(ω). Substituting loss 
factor ε″(ω) into this expression and investigating the resulting expression to 
extreme, it can be shown that in case of resonant dispersion the frequency of 
“effective conductivity” maximum σmax(ω) at any value of damping corresponds to 
the frequency of equivalent oscillator ωTO describing this dispersion.  

Note that at relaxation dispersion of permittivity study, much attention is paid 
to changing of these spectrum with temperature. In the case of resonance dispersion, 
the simple models of elastic polarization (electronic and ionic) used here to describe 
resonance spectrum do not provide grounds for conducting any detailed analysis of 
resonant frequency and losses temperature dependence. Nevertheless, it is obvious 
that dielectric losses due to the elastic polarization depend on temperature. In the 
ionic crystals, for example, such dependence is caused by the scattering of optical 
phonons on the structural defects or on other phonons. However, significant 
dependence of resonant polarization on temperature is observed only in the 
paraelectrics and ferroelectrics that will be described in detail later. 

2. Representation of Lorentz dispersiom formula on complex plane is 
convenient to describe dielectric spectra. To this end, the Lorentz oscillator 
formula should be modified by the introducing of "normalized" designations: 
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After new notation introducing for frequency: х = /0, the normalized 
equations for real and imaginary part of permittivity are: 
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The minimum and maximum 1,2(х) = [Г(2  Г)–1 are observed at normalized 

frequencies х1,2
2 = 1  Г. In the case of a large attenuation (Г > 1), the maximum 

(х) will be absent, but the minimum (х), which distinguishes resonance spectrum 
with a large attenuation from relaxation spectrum, does not disappear at any value 

of attenuation Г. The "(x) maximum is seen at normalized frequency х3: 

   2 2 2
3

1
2 2 2 12

6
x Г Г       , 

so that only for Г < 1 it can be assumed that x3 determines the frequency of dispersion 
oscillator.  

The location of  and " on the complex plane taking into account various 
relative attenuations Г is shown in Fig. 3.8. The form of these curves differs 
significantly from the arcs of Cole-Cole circles, Fig. 3.8A, because in the case of 

resonant spectrum for any Г the region of negative permittivity (() < 0) is observed. 

As attenuation increases, as () so "() maximums become blurred, while the latter 
are noticeably shifted to lower frequencies. Indeed, when some dielectrics studies 
there are cases of a large relative attenuation. The critical value of attenuation is Г = 
2, Fig. 3.8; this means that only at Г < 2 the quasi-elastic system, being exited by the 
external force from its equilibrium position and left unaffected, will carry out 

oscillations with its own frequency 0. At Г > 2 the oscillator is called "over-damped", 
because the equilibrium state of a system in this case rehabilitates itself aperiodically.

 
                      (A)                                               (B)     (C) 

Fig. 3.8. Diagram ξ"(ξ′) at different values of attenuation of oscillator Г (A), and frequency 
dependence of ξ′ (B) and ξ" (C) 

 
Different relative attenuation significantly affects the character of dispersion 

spectrum. The maximum in a curve (), observed at the beginning of frequency 

dispersion at 1 0 1     and with increasing attenuation moves towards lower 

frequencies becomes smoothed out and disappears at Г = 1. The minimum with 
increasing Г moves towards higher frequencies and decreases; however, this 
minimum in the frequency dependence of permittivity is retained even in case of 
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large attenuation. The frequency of this minimum is 2 0 1     , while its 

disappearance is possible only under condition of Г  . 

Thus, the presence of a minimum in the () frequency dependence is a 
principal sign of resonance dispersion that distinguishes it from the model of 
relaxation dispersion. 

Important task for dielectric permittivity dispersion study and for 
mathematical processing of correspondent experimental data is to determine the 

basic parameters of the dispersion equation (10), that is, the values (0), (), 0 

and Г. The first two parameters are easy determined from () dependence at such 
frequencies, when dielectric losses (absorption) are small, so the error of permittivity 
determination is little. However, there may be some difficulties in case of parameters 

0 and Г determining from experimental data.  

 

Fig. 3.9. Influence of relative attenuation Г on oscillatory process  

 
In Fig. 3.9, the time variation of the amplitude of the damped oscillator 

perturbed by the electric field with a different parameter Г. is explained. When the 

field is turned off, in the case Г < 1 the oscillations are still observed, at 1  Г < 2 
some trace of a resonance is still preserved (the amplitude becomes negative), but at 

Г   2 only the aperiodic process is visible. 
In problems related to dielectric spectroscopy, it can be important to establish 

which polarization mechanism — relaxation or resonance — must describe the 
permittivity dispersion in the object under study. In case of small attenuation, 

parameters 0 and Г can be found quite accurately using formulas given above. 
However in the case of highly damped oscillator, to express these parameters one 
needs to use following: 

 Resonance frequency 0 of dispersion oscillator can be found from the 

dependence (), if use the fact that in the dispersion region () = (). If this 
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method of frequency determining looks difficult (for example, in case of complex 

multi-oscillators spectrum), then 0 can be found from the frequency of conductivity 

( = 0) maximum, which at any damping value is located exactly at 0. 

 Relative attenuation Г can be determined from () dependence at 

permittivity minimum (min), because Г = (min/0) – 1. If this method is 
uncomfortable for some reasons (it leads to errors for "over-damped" oscillator), 

then the value of Г can be found using position of absorbance maximum: "max/0  

(at that 0 corresponds to the () maximum). 
Discussing the ways how to obtain information about fundamental properties 

of dielectrics from permittivity dispersion spectra, it is worth noting a comparative 
complexity of data processing with resonance spectra. At that, the relaxation 

dispersion of permittivity is usually observed at not very high frequencies, so for 
their research, as a rule, it is quite sufficient to provide dielectric measurements at 

frequencies up to 1010 Hz. Lucky is that in this frequency range the values of () 

and "() are determined directly from measurements without complex processing 
(for example, no using Kramers-Kronig method, commonly used when dielectrics 
study in far infrared range). However, the resonance dispersion of permittivity is 
usually observed in the far infrared wavelength range or sometimes even in 
millimeter range, when it is necessary to perform some rather complicated 

preliminary calculations before obtaining dependence *(). In this case, a 
particular complexity is observed with such dielectrics, whose dispersion spectra can 
be represented by the model of oscillators with high attenuation.  

In this regard, it is necessary to note several simple experimental features that 
characterize the dispersion spectra with large attenuation of equivalent oscillator: 

 High attenuation affects the curve () by the fact that at Γ > 1 there is no 
longer any maximum in the initial dispersion region, Fig. 3.8B. 

 Similar condition can be obtained also in the case, when a certain parameter 

associated with the modulus |*| when microwave measurement methods are 

applied. In this case, it can be shown that maximum in the |*|() dependence in the 

initial region of dispersion is absent for Г  {20[(0) – ()]}–1/2, i.e., with greater 

value of relative attenuation as it was in case of dependence (). If assume that 

ε(0) >> (), which is a characteristic of some polar dielectrics and ferroelectrics, 

given condition is simplified: 2  . 

 In the far infrared reflection spectra, as well as when use in study quasi-optic 

methods in the sub-millimeter wavelength range, the increase of () and "() in 
the initial region of resonant dispersion must lead to corresponding increase in 
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reflectance coefficient R(), i.e., with the increase of frequency the reflection of 
electromagnetic waves from dielectric grows. Approximately (in case of small 

attenuation) this relation is expressed by formula:
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, from which it is 

evident that when   0 in the initial region of permittivity dispersion R() 
increases. Really, the higher attenuation the weaker manifestation of resonant 

properties is seen in R() dependence. However, for some value of attenuation the 

growth of R() in initial region of permittivity dispersion will be absent. In case of 

(0) >> () this criterion is reduced to simple inequality Γ ≥ 2, which coincides 
with definition of "over-damped" oscillator. 

Thus, from some direct experiments by observing the very form of spectra 

(), |*|() or R() it is possible to judge which model is suitable for experimental 
data interpretation. In case of oscillator model application for permittivity dispersion 
one can even previously estimate the amount of attenuation of dispersion oscillator. 

 

  
             (A)                                                                             (B)        

Fig. 3.10. Permittivity (ε) and effective conductivity (σ) frequency dependence for resonance 
mechanism of polarization (A) and conductivity maximum dependence on damping coefficient 

(B) 

 
In conclusion, it should be noted that the attenuation of oscillator can be 

determined by the value of effective conductivity: 
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The dependence of the oscillator effective conductivity normalized to the 
dielectric contribution for different values of the relative attenuation is shown in Fig. 
3.10. 

Due to the fact that *() dependence in case of large attenuation of the 
oscillator becomes close to the relaxation type of dielectric spectrum, one should 
consider whether a single microscopic approach to permittivity dispersion can be 
found, which includes both resonance and relaxation.  

Turning to the analogy of well-developed problem of resonance absorption in 
gases, it should be noted three main mechanisms of spectral line expansion in gases, 

i.e., three mechanisms of attenuation: radiation (Г ~ –1), Doppler’s effect (Г ~ Т1/2), 

collision of particles (Г ~ 0Т
1/2). 

In a given case of relatively long waves , high temperature T and condensed 
matter (solid dielectric), the most important of these mechanisms is the collision of 

particles. For example, A. Hippel considered the case of transition of resonant 
spectrum to the relaxation by increasing gas pressure – when frequency of collisions 
exceeds the rotational speed of a rotator (dumbbell molecule).  

The density of solid dielectric corresponds to density of strongly compressed 
gas, and high frequency of collisions prevents the formation of discrete quantum 
states. As a result, the uncertainty in the presence of energy state becomes equal to 

Е = h, i.e., this uncertainty has the order of magnitude of energy of quantum.  
The resonant state in this case disappears, and the spectral line expands into a 

continuous spectrum, that is, the oscillator becomes "over-damped". 
The theories combining the models of oscillator and relaxor were developed 

in works of L. van Fleck and H. Frohlich.  
In essence, the rotator model was developed in the state of continuous 

collisions, i.e., a rotator located in the "viscous environment" was studied. It was 
shown that Debye dispersion formula is imperfect in the region of higher frequencies 
(above dispersion frequency).  

The correction to Debye formula sometimes is referred to the "inertial 
correction" that leads essentially to dispersion equation of the "over-damped" 
oscillator. 

The above comparison of the oscillator and relaxor models might be important 
for choosing a more adequate model when analyzing the spectra of permittivity 
dispersion. 
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3.3 Ferroelectrics conception  
 

Ferroelectricity is one of the most important and very complex areas of 
condensed matter physics. Dielectric spectroscopy of ferroelectrics is used not only 
as an instrument of scientific research but also in the development of diversified 
components with the necessary parameters. 

The traditional theory suggests that ferroelectrics are a subclass of pyroelectrics, 
which can be defined as the crystals of 10 polar classes of symmetry possessing 
spontaneous polarization PS. In the "hard" pyroelectrics, this polarization changes with 
temperature (which is used in electronics) and the polar structure is retained until crystal 
melts. However, in the ferroelectrics their polarized state is not stable enough: it 
disappears at the Curie temperature TC and can be changed also by many external 
influences: electrical field, pressure, etc. In particular, thr electrical field switches the 
direction of polarization to opposite, demonstrating hysteresis loop, Fig. 3.11A. 

   
 (A)     (B)    (C) 

 

Fig. 3.11. Ferroelectric spontaneous polarization dependence: A – on electrical field; B – 
on temperature; C – on pressure 

 

In connection with various possibilities for dielectric spectra interpretation in 
the ferroelectrics, it is appropriate to mention also other views about physical nature 
of ferroelectrics. In particular, when explaining various properties of polar crystals, 
one can do without the concept of "spontaneous polarization" (i.e., without imaging 
that in the polar crystal "own polarization" exists). Alternative reasonable 
assumption might be that the electrical polarization appears as a response to external 
action (not even electrical). Microscopically, this property is due to a peculiar 
distribution of polar-sensitive interatomic bonds in polar crystals whose ions have 
different affinity for electrons, i.e., different electronegativity. 

To discuss the latter approach, following should be noted. In fact, any 
experimental investigations of pyroelectric or piezoelectric effects do not allow 
determine directly the value of their “own polarization”, because any experiment 
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characterizes only the magnitude of dynamic response of a peculiar polar-sensitive 
internal crystalline structure. To explain such manifestations of crystals properties, 
it needs to take into account the special structure of atomic external structure: total 
number of electrons in atom, degree of screening of electrons from action of nucleus, 
etc. The electronegativity is a property of atom to attract electrons; it depends on the 
atomic number (number of protons in nucleus), on the degree of internal electrons 
screening, as well as on the structure features of the external electron orbitals. The 
excess electronegativity means that given atom stronger attracts electrons while 
insufficient electronegativity means less affinity atom for electrons.  

Non-centrosymmetric structures are formed owing to the compensation of 
atomic electronegativity by the polar-sensitive bonding emerging in the process of 
polar crystal formation (while it is growing from the liquid or steam state of a 
material). At that, dependently on the chemical composition of a crystal, the variety 
of combinations may occur between the ions of crystals possessing by two- or three-
dimensional polar-active constructions (which, when external actions exerts on 
them, can produce the electrical responses, describable by the tensors of different 
ranks). Polar structures of crystals are the demonstration of mixed ionic-covalent 

bonds between their ions.  
These bonds are strongly directional and, therefore, such structures lead to the 

different manifestations of the asymmetry and complexity of polar crystal structures. 
When electrical field is affected on the "persistantly arranged" polar structure, its 
electrical polarization usually looks like a linear effect (as in the ordinary 
dielectrics). However, the exception are the ferroelectrics, in which the switching of 
their “gently arranged" polarization is seen: their low-stable enantiomorphic 
structure can change its polar-sensitive direction. Outwardly this event manifests 
itself as dielectric hysteresis loop, Fig. 3.11A, which allows measure the ability of 
polar-sensitive structure to react on the external actions and indirectly can 
characterize its features. An increase in the intensity of thermal motion in the crystal 
lattice leads to the destruction of polar-sensitive bonds strength in ferroelectrics, Fig. 
3.11B, while in the pyroelectrics they remain until the crystal melts. An increase in 
pressure also leads to the destruction of these bonds, Fig. 3.11C since ferroelectricity 
is accompanied by the increase in crystal volume. The increased sensitivity to 
pressure should be taken into account when examining the dielectric spectra of 
ferroelectric samples, so that they do not appear when measured under conditions of 
exposure to mechanical stresses. 

1. Multidomain structure. When analyzing dielectric spectra, one should take 
into account that important feature of ferroelectrics (suggesting them as the electrical 
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analogue of ferromagnetics) is their spontaneous division into a plurality of domains. 
Within each domain the spontaneous polarization PS same direction, but in 
neighboring domains it has different orientation. The subdivision of ferroelectric 
structure into great number of domains is energetically advantageous, since the 
single-domain crystal would create in the environment external electrical field (as in 
the case of electrets). Obviously, energy of this field decreases with diminution of 
size of domains.  

Externally applied electrical field causes, at first, the junction of randomly 
oriented ferroelectric domains into one domain; next its polarization reaches 
saturation. As it can be seen in Fig. 3.11A, after external field switching off 
polarization tends to maintain its constant direction. If the polarity of externally 
applied field would be changed, the polarization, without changing its absolute 
value, will change its direction abruptly. For such "forced" change in the direction 
of PS, i.e., for ferroelectric polarization reversal, it is necessary to apply electrical 
field of certain value, which is the coercive field EC. Sometimes the value of this 
field reaches very large values, and then ferroelectric cannot be re-polarized and 
behaves like the pyroelectric.  

However, during a heating of such "hard" ferroelectric, as it approaches to 
Curie point TC, the coercive field EC mush reduces, and, therefore, close to Curie 
point it becomes possible to observe the hysteresis. In the ferroelectric, both coercive 
field EC and polarization PS becomes zero at T = TC. The pyroelectric, however, has 
no Curie point, and until electrical breakdown its internal polarisation does not 
change direction – such crystal rather can be destroyed than change the direction of 
polarization. It is therefore believed that theavailability of dielectric hysteresis is 
necessary and sufficient property of ferroelectric state. If temperature exceeds the 
critical value TC then as the hysteresis loop so the ferroelectric state disappears. In 
same way on ferroelectric polarization affects the increase of hydrostatic pressure, 
Fig. 3.11C. In contrast, linear pyroelectric does not change its polarized state under 
pressure up to being destroyed. Summarizing, it might be concluded that 
ferroelectric is the nonlinear pyroelectric. 

Ferroelectrics properties are considerably dependent on the domain structure. 
The origin of multidomain structure in ferroelectric crystal below phase transition is 
energetically favourable. Single-domain crystal shown in Fig. 3.12A, in principal, 
would create electrical field in the surrounding space (like electrets), to which an 
energy W1 will be spent. As can be seen from Fig. 6.2B, the energy of external field 
in two-domain crystal would be smaller than in single-domain crystal. Thus, in case 
of many-domain structure total energy of crystal must be reduced. However, this 
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reduction in energy is limited by the growth of energy W2 expended on domain walls 
formation, which separate the regions with different directions of PS, Fig. 3.12C. 
The average size of domains (at which the sum W1 + W2 is minimal) depends on 
temperature, structural defects and electrical conductance of dielectric, as well as on 
environment properties. Multidomain structure in ferroelectrics is relatively stable; 
at that, the equilibrium state of ferroelectric domains usually corresponds to domain 
size from a few hundredths of millimetre to several millimetres. 

       
 

   (A)    (B)   (C) 
 

Fig. 3.12. Domain structure of ferroelectrics: A – single-domain crystal creates depolarizing 
electrical field in surrounding area; B – in two-domain crystal depolarizing field is reduced;  
C – domain wall (DW) in vicinity of which PS gradually changes its direction to opposite  

 
The possibility of spontaneous splitting into the domains is caused by the 

changeableness of “soft” ferroelectric state in comparison with “hard” pyroelectric 
state. In this regard, sometimes ferroelectric is defined as pyroelectric which divides 

into domains. 
2. Two types of phase transitions. In the vicinity of phase transitions, the 

substance, firstly, allows considerable control of its parameters by the not very 
strong fields that is used in electrically and magnetically controlled devices; 
secondly, the substance is very sensitive to changes in temperature, pressure, 
humidity, etc. that is used in various sensory devices. Due to enormous anomaly of 
dielectric properties observed at phase transitions, dielectric spectroscopy requires 
special measurement methods and software for obtaining information about physical 
properties of the object under study (critical frequency and attenuation, critical 
relaxation time, etc.). 

It seems appropriate to discuss how fundamental theory of phase transitions 
can provide for physical interpretation of experimentally observed dielectric spectra. 

According to the condensed state physics, the nature of phase transitions can 
be like that. The degrees of freedom of atomic particles in solids can be divided into 
two groups. For some degrees of freedom the interaction energy of particles Uint is 
smaller in comparison with thermal motion energy kBT. In this case, i.e, at Uint << 
kBT the appropriate degrees of freedom behave as the collection of particles, i.e., as 
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the "almost ideal gas", and the applicability to use the model of quasi-particles is 
justified. Conversely, when Uint >> kBT, then appropriate degrees of freedom are 
ordered, but their movement, too, can be described by the introduction of quasi-
particles. In other words. both of these cases correspond to the ordinary state of 
crystals and it is possible to describe, for instance, the phenomena of electric charge 
transfer (electronic or impurity ionic), as well as the phenomena of electrical 
polarization, by involving the dynamics of the crystal lattice (phonons).  

However, if the energy of particles interaction approaches to changing with 
temperature thermal motion energy (Uint ~ kBT), the theoretical description of 
dynamic phenomena in a solid becomes complicated: exactly this case usually 
corresponds to the phase transitions. 

As known, in almost all substances at a definite temperature the significant 
change in physical properties occur and as a rule it is not a gradual but abrupt: this 
spasmodic change of properties is a phase transition. The “liquid ⇔ steam” 
(vaporization) phase transition is a typical example while another example is the 
"liquid ⇔ crystal" transition (crystallization). Both transitions refer to the first order 
(PT-I), in which the phases before and after transition point differ significantly from 
each other. At that, one phase replaces another phase just because it is more 
favourable energetically. To make this change happen, the essential energy barrier, 
separating these phases, should be overpass so the stepped changing of entropy 
should take place with a heat release (or absorption). Moreover, in the 
neighbourhood of first order phase transition the overcooling (or the overheating) is 
theoretically expected and seen experimentally. Methods of dielectric spectroscopy 
in such studies are not appropriate to use.  

However, for solid state physics, more ordinary are the phase transitions 
within same physical state, which takes place as in the crystals so in the liquid 
crystals. Of particular interest are the phase transitions, at which a new property 
appears in crystal, for example, polar phase with the ability to electrical controlling 
(hysteresis loop) in case of transition from paraelectric phase to ferroelectric phase. 
This type of transitions is related to PT-II model: at Curie temperature (T = TC) one 
phase ceases to exist, but it is replaced by another phase. In the point of transition 
both phases can not be clearly distinguished, but when system moves away from this 
point, the difference between properties of phases gradually increases. Second-order 
transitions are gradual and smooth; they do not show any temperature hysteresis and 
not accompanied by the discontinuous jump in the energy or in the volume of a 
crystal. Nevertheless, as a result of this transition, the new physical property appears: 
crystal becomes ferroelectric, ferromagnetic, ferroelastic, superconductive, etc. 
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When a ferroelectric phase transition is studied by the dielectric spectroscopy, the 
sample is exposed to the external electrical field and the “uncertainty” of phases at 
Curie point of ferroelectrics is expressed as a huge maximum of permittivity (as well 
as in the point of ferromagnetic phase transition the maximum permeability is huge). 

When microscopic characteristics of any phase transition are discussed, a 
regulating (ordering) parameter η should be considered. In crystals, it is the measure 
of structural deviation from the state of highest symmetry. Depending on what kind 
of microscopic interactions gives rise to the PT and what changes of structure take 
place, the ordering parameter η acquires different physical meaning. For example, in 
ferroelectrics ordering parameter may correspond to the degree of electrical dipoles 
regularity, in ferromagnetics parameter η describes the ordering in system of magnetic 
moments (spins), etc. Ordering parameter may have also broader content; for 
example, in case of PT with the aggregate conversion this parameter characterizes the 
degree of regularity in a mutual arrangement of atoms or molecules [3]. 

   
 (A)     (B)       (C) 
  

Fig. 3.13. Temperature dependence of ordering parameter for PT-II (A); PT-I close to PT-II (B) 
and for PT-I (C) 

 
Ordering parameter η may vary differently with temperature changing, as it is 

illustrated in Fig. 3.13. The characteristic feature of PT-II is the continuous change 
of this parameter with temperature in the ordered phase Fig.3.13A. On the contrary, 
idealized case of PT-I corresponds to the case when ordering parameter changes by 
jump, Fig. 3.13C. But it should be noted that in many experimental situations the 
η(Т) dependence very often changes by one of "intermediate" ways, shown in Fig. 
3.13B. In this case, the phase transition is the transition of first order, close to 

transition of second order. Here the ordering parameter η first changes with 
temperature increase gradually, but than abruptly falls down to the disordered phase. 

Phase transition of second order can be accompanied by the multiplication of 
the size of crystal unit cell. Then the volume of unit cell of low-symmetry phase 
(more ordered) increases in 2, 4, 8 times, as well as the translational symmetry of 
unit cell also changes. Based on microscopic changes in a structure, the phase 
transitions are divided into order-disorder type and displacive type: theoretical 
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justifications for this division will be given below. Nevertheless, it should be noted 
here that a clear border between the displacesive and order-disorder types of PT can 
not be determined. In terms of crystal symmetry, there are no differences between 
them: when analizing structure, always an average position of atoms is taken in 
consideration.  

So it is no matter how this averaging is performed: by the discrete way or by 
the continuous way. As to some other properties, especially, the dynamics of PT in 
case of displacive type of transition and in order-disorder type of transition vary 
considerably. When using dielectric spectroscopy, the most impressive results can 
be obtained for ferroelectrics. 

3. Simplest model of ferroelectrics. The main cause of the appearance of 
ferroelectric state in a crystal can be explained on the base of mixed ionic-covalent 
bonds. They lead to anharmonicity of ions vibrations in a lattice and provide 
substantial non-linearity in the law of reciprocal displacement of neighboring ions 
in crystal lattice. The energy, describing vibrations in linear chain of ions, can be 
expanded in series by the dynamic displacement x: 

                                      U(х) = ½ сх2 + ¼ bх4 + …                             (3.13) 
where x is the ion deviation from its equilibrium state. When considering electrical 
polarization of the ordinary ("linear") dielectric, the sufficient approximation is to 
take into account only the first term of this expansion: U(х) = ½ сх2, where c is the 
coefficient of elasticity.  

Here to determine the role of anharmonicity it is enough to account only next 
(anharmonic) term ¼bх4 with coefficient of anharmonicity b > 0, which must be 
positive to guarantee lattice stability in case of large fluctuations. As to the 
coefficient of elasticity, it might be as positive (с > 0) so negative (с < 0).  

The equation (3.13) corresponds to the fact that ferroelectric is found above 
the Curie point (TC), i.e., in its non-polar (paraelectric) phase, which has 
centrosymmetric structure. Below TC this model crystal passes into non-
centrosymmetric (ferroelectric) phase, for which the energy of ion spontaneous 
displacement  –F⋅x  should be added to the series (3.13): 

                U(х) = ½ сх2 + ¼ bх4 – Fx,                            (3.14) 
where F is driving electrical field. Figure 6.4 shows the functions U(x) for both 
cases: с > 0 and с < 0. To a complex parabola (½ сх2 + ¼ bх4) driving field energy 
is added in the form of an inclined straight line. It is seen that below Curie point the 
spontaneous deformation xS arises at which total energy U(x) shows a minimum.  
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          (A)            (B)          

 
 

Fig. 3.14. Energy dependence on "ferroelectric-active" ion deviation from equilibrium 
state in lattice with different elasticity coefficient: A –  с > 0; B – с < 0 

 
Since the polarized state at x = xS now is the equilibrium state, a total force 

acting on system of charges in this state equals zero: ∂U(x)/∂x = 0 that means сx  + 
bxc3 – F = 0.  Electrical field F (called the coercive field) is associated with 
spontaneous polarization: FC = βРS, where β is the Lorentz factor. In case of one-
dimensional model of ferroelectric, represented by a simple linear chain of ions, 
polarization equals РS = nqxS, where n is ions concentration and q is ions charge. By 
substituting this data to equation (3.14) the cubic equation can be obtained 

             сxS + bхS
3 − nq2βxS = 0,                                              (3.15) 

where term сxS describes the "elasticity" while member bхS
3 characterizes 

"anharmonicity". This equation has three roots: 

                                         x1= 0;    x2,3 = ± [(nq2β – c)/b ] 1/2                     (3.16) 

As far as the only spontaneously polarized phase (with spontaneous deformation 
хS ≠ 0) is taken into consideration, first solution х1 = 0 in (3.16) is a side root and 
will not be implemented here.  

The analysis of other two obtained solutions provides an opportunity to make 
following conclusions. Firstly, the signs «±» means two equivalent possible 
directions of the spontaneous polarization, which corresponds to two equal in 
magnitude but opposite in direction ions displacements: ± хS: the areas of opposite 
direction of polarization are called domains. Secondly, in the crystals possessing 
small anharmonicity (when b ⋅ 0), spontaneous displacement of ions is impossible. 
Therefore, the anharmonicity of ionic displacements is one of defining properties of 
ferroelectricity existence in crystals. Third, the equation (6.4) has real roots х2,3 only 
at the conditions when nq2β  > с (because b > 0). By multiplying left and right side 
of this inequality on deformation х, obtain its physical meaning: 

              nq2βx > cx.                                  (3.17) 
Right-hand side of this inequality corresponds to elastic force, which 

counteracts ferroelectric spontaneous displacement xS: the overlap of electronic 
shells of  neighboring ions seeks to return the non-polar state. The left side of the 
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inequality (3.17) has also the dimension of a force, and it is the leading interaction 
(i.e., leads to ferroelectricity). Thus, the ferroelectricity occurs in such crystals, in 
which the leading interaction exceeds returning interaction. The further analysis of 
inequality (6.5) shows that to the ferroelectric state in crystals contribute the high 

density of crystal (represented by parameter n), the big charge q of shifting ions and 
the increased Lorentz factor β.  

Obtained with the above simple reasoning qualitative results are consistent 
generally with the actual situation. Indeed, among large number of well-studied 
alkali halide crystals (such as NaCl) no one ferroelectric exist: ions in these crystals 
are single charged (Na+1 and Cl−1), while the Lorentz factor is small: β  = 1/3ε0 (ε0 is 
the permittivity of free space). At the same time, in the oxygen-octahedral 

ferroelectrics with a general formula ABO3, the "ferro-active" ion has the valence of 
+4 or +5 while in the inequality (6.5) charge enters as q2: i.e., in 16−25 times over 
than in alkali halides. The Lorentz factor in the ABO3 perovskites is also in five times 
higher than in the simple cubic ionic crystals. Therefore, for the fulfilment of the 
inequality (6.5) the ABO3 type ferroelectrics have all reasons. 

Returning to above description of phase transitions in the condensed matter 
physics, note that near the point of second-order phase transition the crystal behaves 
by such a way when a conventional concept based on quasi-particles can not 
adequately describe the experimental situation. Normally, the closest neighbouring 
particles in a crystal are considered as the strongly interacting particles, while the 
interaction of distant particles might be neglected. In this case, the harmonic 
approximation turns out to be rather good, so that in model described above in Fig. 
3.4 and in formula (3.13) it is possible to put b ≈ 0 and naturally in this case c > 0. 

However, near the phase transition, in contrast, the interaction of 
neighbouring particles compensates one another, and, on this background, the 
interaction of those particles which are at a distance from one another appears 
dominant. This interaction has a special character: the probability of collective 

movements is bigger then the probability of individual movements. In the described 
above model it means that the elasticity coefficient is so small that both cases c > 0 
and c < 0 are possible, so the anharmonicity comes to the fore: system stability is 
provided by b > 0. Unusually increased role of collective movements is confirmed 
by experiments: at the Curie temperature crystal shows maximum of specific heat, 
the permittivity in ferroelectrics tends to infinity as well as the permeability in 
ferromagnetic, and so on. 

Shown in Fig. 3.44 two possible cases of anharmonicity quite meet the 
requirements of inequality (6.5) which also find confirmations in properties of 
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different ferroelectrics (number of which at present far exceeds hundred). In a 
theoretical approach is common to describe phase transitions to ferroelectric state 
using two models: the displacement of crystal sublattices that in a simplest case 
corresponds c > 0, and the order-disorder phase transition, which in some sense is 
close to case with c < 0. The difference in the physical nature of these two models 
of phase transition is large enough to consider corresponding dielectric spectra in 
the different cases. 

 
3.4 Order-disorder ferroelectrics 

 
It was in such ferroelectrics about a hundred years ago that the phenomenon 

of dielectric hysteresis (similar to magnetic hysteresis) was first discovered, which 
led to the name of this entire class of materials. Previously piezoelectric and 
pyroelectric effects were widely used in them, but even now the nonlinear optical, 
electrooptical, and piezooptical properties of these crystals are of interest in 
electronics. To diagnose physical phenomena in the ordered ferroelectrics and to 
determine their parameters over a wide frequency range, the dielectric spectroscopy 
is used. For example, when studying the frequency spectra in the temperature range, 
a low-temperature transition was first detected in the Rochelle salt, as well as the 
high-temperature transitions in the crystals of potassium dihydrogen phosphate 
(KDP) type. 

In many cases dielectric spectra of ferroelectric crystals can be very complex, 
especially for order-disorder polar crystals. Depending on the orientation of studied 
crystal the dispersion of permittivity is observed at sound frequencies, at radio 
frequency range, at microwaves and up to the infrared region. The reason for such 
complexity is contributions to permittivity from various polarization mechanisms, 
as well as large dielectric anisotropy: main components of permittivity tensor ε1, ε2 
and ε3 can differ hundreds of times. High frequency properties of ferroelectrics, 
which show the phase transition of order-disorder type (most of them have the 
hydrogen bonds), are quite different from displacive ferroelectrics properties. 
Although in both cases above the phase transitions the Curie-Weiss law holds: ε(T) 
≈ C/(T–θ), parameter C in the ordering ferroelectrics by two orders of magnitude 
lesser than in the displacement ferroelectric. Moreover, the phase transition 
temperature TC in the ordering ferroelectrics is very close to the Curie-Weiss 
temperature θ.   

Experimental characteristics of key representatives of the order-disorder type 
ferroelectrics, taken from author measurements, are listed in Table 3.1.  
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Table 3.1 

Ferroelectric crystals of order-disorder type and their properties according to microwave 
research 

 

Ferroelectric 
РS, 

Qsm 
ТC, К , К С104, К 

Wg, 
еV 

А2, 

GHz  

К12 

Roshelle Salt 0,25 297 291 0,17 – – 

(two transitions) – 255 257 0,14 – – 

Deuterated Roshelle 
Salt 

– 308 300 – – – 

(two transitions) 0,35 251 253 – – – 

ТGS 2,8 322,7 322 0,28 – 8,1 

DTGS 3,2 327,5 327 0,27 – 10 

КDР 4,7 123 118 0,28 – 180 

DКDР 4,8 216 208 0,31 – 37 

Chalcogenides:       

 SbSI 50 295 285 23 1,9 – 

 SbSBr 10 95 82 12 2,2 – 

 PbTe  – – – 14 0,2 – 

 

1. Thermodynamic theory predicts that in the ordering type ferroelectrics an 
availability is required of such active structural elements (polar radicals or groups of 
ions), which possess different equilibrium positions, whose changes can be 
described by dipole moments orientation. At higher temperature (in the paraelectric 
phase), the energy of thermal motion in a crystal exceeds the energy of dipole-dipole 
interactions and, therefore, the orientation of dipoles is chaotic and does not lead to 
any total polarization (PS = 0). However, with decreasing temperature, in the vicinity 
of phase transition, interactions energy of dipoles begin to exceed thermal 
disordering, and the self-ordering of polar elements prevails, so spontaneous 
polarization appears (PS  > 0). 

Curie-Weiss law, characterizing the temperature change of permittivity, 
clearly seen in the dielectric spectra, can be obtained in  the Landau theory [1], in 

which the thermodynamic potential is written in a form:  Φ(Т,P) = Φ0(Т) + 2

1

αP2 + 

4

1

βP4 + ..., where α and β are the coefficients in series of thermodynamic potential. 



150 
 

Considering that electrical field can be defined as derivative ∂Ф/∂Р, above 
expression can be rewritten as Е = αP + βP3.  

So the inverse susceptibility is 

2
1 2

2 3E
P

P P
         

  that defines 

permittivity ε ≈ χ, since ε = 1 + χ and in ferroelectrics ε >>1. 
In the non-polar phase (paraelectric), where first term in Landau polynomial 

is negative (α > 0 when T > TC), main conditions of phase sustainability are: 
2

20 ,   0
P P

    
  . First of these expressions can be reduced to the cubic 

equation αP + βP3 = 0 which has only one valid root: Р1= 0, because high-

temperature phase is disordered (other roots Р2,3 = α/β  are imaginary since for 

PT-II parameter β  > 0 and above TC also α > 0). Permittivity temperature 
dependence in the paraelectric phase, Fig. 3.15E, is described by the Curie-Weiss 

law: 
 0

1
T   

 ,   
C

T
 

  .        

     
    (A)     (B)    (C) 

 

      
    (D)       (E)       (F) 

Fig. 3.15. Order-disorder phase transition description: thermodynamic potential (A) and its 
derivatives (B,C) dependence on ordering parameter P above TC; temperature dependence of 
polarization (D) and inverse permittivity (E); dielectric nonlinearity in non-polar phase (F) 

 
In nonlinear dielectric spectroscopy is important that in the non-polar phase 
permittivity depends not only on temperature but also on electrical field strength. 
Thermodynamics predicts significant dielectric nonlinearity, Fig. 3.15F at that P(E) 
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dependence is characterized by the saturation area. Therefore, the permittivity in the 
paraelectrics decreases in strong electrical field, because ε ~ ∂Р/∂Е. General formula, 
that takes into account both ε-non-linearity and ε-temperature dependence is 

   
     

1
3

3
3 2
0 3, 1 3C C

T E E
T T


 
 
 
  

    
    .      

It is seen that nonlinearity in the non-polar phase the higher the closer 
temperature to phase transition point.  

In the polar phase, below Curie point the spontaneous polarization appears, 
so all roots of cubic equations дФ/дР = αP + βP3 = 0 are valid. However, since α < 
0 the root P1 = 0 now corresponds to the Φ(Р) maximum, Fig. 3.16. At that, by 

definition, polar phase is stable if value Φ(Р) is minimal, i.e., at Р2,3 = α/β .  By 

substituting α = α0(Т − θ) in this expression, it is possible to find temperature 

dependence of spontaneous polarization:
 02

c

T
P

  


  shown in Fig. 6.5D. 

Temperature dependence of permittivity is 

 
 

1 2 ;   =
2

T C

C T

 
 

   . Thus, 

thermodynamic theory predicts that below Curie point, at the same distance from TC, 
the value of permittivity is twice smaller than in paraelectric phase at T > TC, Fig. 
3.15E. 

      
     (A)           (B)     (C) 

Fig. 3.16. Non-linearity in polar phase: A –  thermodynamic potential and its derivatives, 
points 1, 2 and 3 indicate roots of equation; B – polarization and dynamic permittivity field 

dependence;    C – effective permittivity field dependence: 1 – BaTiO3, 2 – Ba(Ti,Zr)O3,              
3 –Ba(Ti,Sn)O3   
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Now the nonlinear properties of ferroelectrics in the polar phase will be 
discussed. Describing the polar phase PT-II ferroelectric thermodynamic potential 
and its derivatives are shown in Fig. 3.17A. The Φ(P) dependence denotes the 
extreme points at which this function and its second derivates intersects the axis P. 
Correspondent dependence P(E), Fig. 3.17B, is characterized by the unstable region 
shown by the dashed line where permittivity ε ~ dP/dE would be negative. To 
restore the stability, the dielectric hysteresis occurs, corresponding to it differential 

permittivity ε(E) passes through two maximums when polarization switches its 
direction at the coercive field. The effective permittivity measured at alternating 
voltage, averaged over the period of electrical voltage changing is given, as 
example, for various ferroelectrics in Fig. 3.17C. 

 
          (A)        (B)        (C) 

 

Fig. 3.17. Temperature dependence of relative dielectric constant ε, spontaneous polarization PS 
and specific heat Cp for ferroelectric which are close to model of order-disorder phase transition:  

A – TGS = triglycinesulphate (NH2CH2⋅(COOH)3H2SO4); B – KDP = potassium  
dihydrogen phosphate (KH2PO4); C – Rochelle salt (RS) KNaC4H4О6⋅4Н2О 
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All predictions of theory is well confirmed by the experiments. Temperature 
dependence of permittivity, spontaneous polarization and specific heat of major 
representatives of order-disorder type ferroelectrics shown in Fig. 3.17 corresponds 
to the thermodynamic theory of phase transitions of second order. The change in the 
permittivity with temperature in ferroelectrics is so great that a logarithmic scale 
should be applied. 

Dynamic properties of all these crystals differ from same properties of 
ferroelectrics possessing displacement-type phase transition. Among other features, 
special and interesting property of crystals with order-disorder transition is the 
isotopic effect – the displacement of Curie point in case when hydrogen replacing 
by deuterium (Table 3.1). This peculiarity demonstrates the importance of hydrogen 
bonds for majority of these types of ferroelectrics. The study of dielectric spectra is 
one of important methods for obtaining information on the polarization mechanisms 
of such dielectrics. Studying the dispersion of permittivity allows evaluate the 
conclusions of various theories and hypotheses about the nature of ferroelectricity, 
as well as to obtain information about the characteristic frequencies and dielectric 
contributions of various polarization mechanisms. 

 
3.5 Dynamics of dipole-ordering ferroelectrics 

 
In the previous sections, the application of dielectric spectroscopy to the study 

of the frequency characteristics of materials is mainly considered. But there are some 
cases of significant (even critical) changes in the dielectric properties with 
temperature that also substantially affects the frequency characteristics. 

The frequency characteristics of ferroelectrics are very diverse, nevertheless, 
since many components of electronics use ferroelectric materials, their properties on 
radio frequencies and microwaves are of particular interest. Most ferroelectrics are 
characterized by high absorption coefficient at microwaves, especially near 
ferroelectric phase transitions. At that, in the order-disorder type ferroelectrics, the 
fundamental mechanism of polarization is seen exactly on microwaves due to 
critical slowing down of relaxation time (that in the end results in the phase transition 
of order-disorder type).  

In the process of dielectric spectra investigation, it is important to keep in 
mind that many of ferroelectric crystals have a pronounced anisotropy of their 
dielectric properties; at that, exactly ferroelectric properties are maximally 
manifested only in a single (polar) direction, whereas in other directions these 
crystals behave like ordinary ionic or molecular crystals. The difference in the 
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absorption in the range of millimeter waves may reach thousand times, so these 
crystals are natural polarizers. 

Almost all polarization mechanisms, which characterize ferroelectrics, are 
strongly dependent on temperature, including the change of their permittivity and 
characteristic frequency of relaxation. Therefore, permittivity dispersion in the 
ferroelectrics must be investigated in connection with the temperature dependence of 
their parameters. In this section, only those mechanisms that lead to permittivity 
dispersion of relaxation type are considered. In the polar phase of ferroelectric (below 
Curie point) dispersion of permittivity is observed due to the irreversible (in strong 
electrical fields) and reversible (in weak fields) motion of domain walls. In the non-

polar phase of ferroelectric (above Curie point), the relaxation spectra describe the main 
contribution to permittivity conditioned by self-ordering of polar clusters, which 
dielectric response varying accordingly to Curie-Weiss law: ε(T) = C/(T – θ). 

In the ordinary polar dielectrics, when temperature decreases, the relaxation 
time of polarization mechanism grows up exponentially: τ ~ exp(U/kBT) and tends 
to the infinity at zero temperature, Fig. 3.17A, curve 1. At that, correspondent 
activation energy U can be found from the loss factor ε″(T) maximum shifting to 

lower frequencies as temperature decreases (more precisely, from linear dependence 

of ln(ωε″max/ω0) on 1/Т). However, in the order-disorder type ferroelectrics, their 

relaxation type dispersion of permittivity does not obey this temperature 
dependence, especially in the vicinity of phase transitions, Fig. 3,18A, curve 2. In 
experiments, this corresponds to a sharp ε″(T) maximum at the temperature of 
ferroelectric phase transition, which, when frequency changes, does not shift on a 
temperature scale but remains at the phase transition point.  

          
                (A)                                                                                        (B) 

Fig. 3.18. Temperature dependence of relaxation time in polar dielectrics: A – comparison of 
ordinary dielectric (1) with ferroelectric (2), B –τ(T) maximum for triglycine sulfate near Curie point 
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This indicates quite different dynamics of relaxation processes due to critical 

change of relaxation time with temperature (in ordinary polar dielectrics relaxation 
time changes gradually as shown by curve 1 in Fig. 3.18A). The dynamics of 
polarization in order-disorder (dipole) type ferroelectrics supposes that the 
temperature dependence of the inverse relaxation time is close to law: τ–1 = (T – 

θ)/τ0.. Here θ describes the Curie–Weiss law for permittivity (note that θ might be a 

little different from phase transition temperature TC). As for the base parameter τ0, it 
is determined as τ0 = (2νD)–1exp(U/kBT), i.e., by usual exponential dependence, where 
U is the potential barrier overcoming by dipoles when orientation, νD is the Debye 
frequency of atomic oscillations in crystal lattice and kB is the Boltzmann constant. 
However, within the limits of critical change of τ(T), as can be seen from Fig. 3.18A, 
the value of τ0 can be considered approximately as a constant (in the vicinity of phase 
transition). 

When properties of order-disorder type ferroelectrics describing, it is 
supposed that they have some groups of atoms (clusters) containing equally directed 
dipoles. In the paraelectric phase (above Curie point) these clusters are small and 
disordered, i.e., they have equally probable orientations of dipole moments for a lot 
of polar groups, which are randomly distributed along these directions under the 
influence of thermal vibrations of crystal lattice. As temperature decreases, the 
interaction of these polar groups leads to their grows and partial ordering, until 
finally the mess gives way to ordering and phase transition to the ferroelectric 
(polarized) state occurs. In this case, however, even inside polar phase not all polar 
groups are completely ordered, especially near the phase transition. Therefore, the 
clusters of disordered phase exist even below the phase transition point, which leads 
only to a gradual decrease in permittivity with decreasing temperature. 

To analyze these processes by applying dielectric spectroscopy methods, it is 
necessary to study exactly the frequency-temperature dependence of permittivity 
and loss factor, since these experiment can determine relaxation time of the process 
leading to the spontaneous ordering of polar groups. It is notable that in the vicinity 

of dispersion the temperature dependence of permittivity is characterized by a sharp 
minimum ε′(T) in the Curie point, instead of usual sharp maximum of permittivity 
(which is seen in all ferroelectrics but at much lower frequencies). This phenomenon 
was first discovered in microwave studies of Rochelle Salt, but later similar minima 
were found at ultrahigh frequencies in other ferroelectrics.  

In the microwave range, starting with a frequency of about 108 Hz, a sharp 

minimum of permittivity appears in the place of permittivity maximum seen at lower 
frequencies. As frequency increases, this minimum expands and deepens. When 
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dispersion of permittivity ends, temperature anomaly of ε(T) = C/(T – θ) gradually 
disappears. The relaxation time in the phase transition region has a maximum, Fig. 
3.18B. On the side of paraelectric (non-polar) phase, when temperature decreases, 
a critical increase in the relaxation time is seen due to the size of polar micro-regions 
(clusters) growing. At phase transition point (when T = TC), the number of equally 
oriented clusters dominates and they confluent together. Nevertheless, below the 
phase transition an inevitable thermal fluctuations continue destroy partially the 
ordering, although the fraction of disordered regions little by little decreases during 
cooling. Correspondingly, the value of ε′(T) in the ferroelectric phase below the 
phase transition also decreases: ε(T) = C/2(TC – T), see the left dashed curve in Fig. 
3.18A below temperature TC. 

The dispersion equation for critically dependent on temperature permittivity 
can be obtained from theDebye formula, assuming in it ε(0) – ε(∞) = C/(T – θ), where 
ε(∞) is the contribution of fast mechanisms of polarization, which is only slightly 
dependent on temperature: 
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                           (3.18) 

The appearance of minimum in permittivity dependence at phase transition at 
a certain frequency means the presence of a singular point on the curve ε′(T) in the 
paraelectric phase just at given frequency. This frequency can be found from the 
derivative dε′(ω,T)/dT = 0 under the conditions ω ≥ ωC and T ≥ TC, where ωC is the 
frequency when permittivity temperature minimum occurs. Extracting the real part 
from expression (3.18) and producing this differentiation, the following formula for 

such frequency can be obtained: ωC = (TC – θ)/τ0, above which the minimum ε′(T) 

should appear instead of usual for ferroelectrics maximum (TC and θ are two 
parameters of crystal that are independent from temperature). 

Permittivity minimum at the Curie point TС, in fact, means the splitting of seen 
at lower frequencies maximum of permittivity as well as the occurrence of two ε′(T) 
maximums, shifting to the right and to the left from Curie point, i.e., both in the 
paraelectric and ferroelectric phases. Above the Curie point, in the paraelectric 
phase, when Tp > TС, the temperature of shifted ε′(T) maximum is determined by 
formula: Tp = θ  + ωpτ0, where ωp is the frequency at which ε′(T) maximum in a 
paraelectric phase observed.  

Therefore, from the description of permittivity dispersion by the Debye 
equation in the vicinity of order-disorder ferroelectric phase transition, it follows 
that a minimum in the temperature dependence of permittivity should appear, starting 
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from frequency equal 1/τ, i.e., in the center of Debye dispersion region. To analyze 
obtained experimental data, it is important to note that the equation describing 
ε*(ω,T) variance allows determine the relaxation time τ0. In fact, the temperature 
maximum of permittivity in the vicinity of permittivity dispersion is associated with 
the order-disorder type mechanism, and it can be described as  
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In the cases, where in the experiment it is possible to observe confidently only 
a beginning of permittivity dispersion in the vicinity of phase transition (providing 
measurements near the "center" of dispersion are difficult due to large attenuation), 
there is an opportunity to find the relaxation time, using experimentally observed 
ε′(ω) decrease at different temperatures: 
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where ω1 is a measurement frequency in the initial region of permittivity dispersion, 
when permittivity decreases by 5–30% from its initial value. To determine τ0, it is 
possible to use also the data on magnitude of dielectric losses, increasing in the initial 
dispersion region at frequency ω1: 
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Usually, all three listed above ways of relaxation time definition lead to same 
result (within the limits of experimental error). The dielectric loss factor ε″(ω,T) also 
can be found from above expressions.  

It is appropriate to recall that in the case of classic relaxation mechanism the 
temperature maximum of loss factor shifts towards the higher temperatures with 
increasing frequency. On the contrary, in the ferroelectrics, described by the model 
of order-disorder type phase transition, no temperature shift of loss maximum with 
the change in frequency is seen. When frequency grows, these maximums first 
increases (reaching a certain limit value) and then decreases with frequency, 
remaining located in phase transition point. This fact is opposed, firstly, to the usual 
dipole-type dielectrics and, secondly, opposed to the considering further 
displacement type ferroelectrics possessing resonant polarization. In other words, in 
the entire frequency range, where the relaxation type permittivity dispersion is 
observed, the maximums of ε″(T) are always located at the temperature of phase 
transition, i.e., at T = TC. Moreover, unlike the loss factor maximums observed in 
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usual dipole dielectrics, the maximums of ε″(T) in the ferroelectrics usually are 
higher and sharper. Due to mechanical stresses, structural defects or impurities, the 
dispersion spectrum ε*(ω,T) in the ferroelectrics becomes broadened, so sometimes 
the ε′(T) maximum is not so sharp. Moreover, in the ferroelectric crystals with 
imperfect structure this maximum looks as a little diffuse and even no minimum in 
temperature dependence of permittivity is seen. 

 
3.6 Displacive ferroelectrics  

 

The most studied of ferroelectrics, which corresponds to a displacive phase 
transition model, is barium titanate, BaTiO3. This is one of many ferroelectrics with 
perovskite structure, which can be characterized by the first order phase transition. 
Unlike uniaxial ferroelectrics, barium titanate just like most related ferroelectrics 
and antiferroelectrics is the triaxial crystal so in the paraelectric (cubic) phase in all 
crystalline directions it is characterized by same permittivity. 

1. Main experimental characteristics of displacive ferroelectrics is advisable 
to cite as an example of barium titanate shown in Fig. 3.19.  

Depending on temperature or hydrostatic pressure, the permittivity of BaTiO3 
passes through acute maximum εmax(T) which in normal pressure is seen at Curie 
temperature TC = 400 K. Note that at normal temperature same εmax(p) is observed 
under pressure of p = 2.5 GPa. The temperature hysteresis in the dependence ε(T) as 
well as hysteresis in the dependence ε(p) in the vicinity of phase transition indicates 
that phase transition in BaTiO3 is close by its nature to the first-order transition.  

 

           
   

  (A)      (B) 
Fig. 3.19. Barium titanate permittivity dependence on  temperature (A) and pressure (B)  
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From shown in Fig. 3.19 characteristics, the following important conclusions 
can be made as to the study of polar materials by dielectric spectroscopy: first, when 
measuring temperature dependences, the direction of temperature change is 
important: is it cooling or heating; secondly, the mechanical conditions (fixing) of 
the test sample are important, since the mechanical stress (for example, due to a 
difference in the coefficients of thermal expansion of holder and sample) can 
significantly affect the results. 

The parameters of several other relative to BaTiO3 materials, obtained 
experimentally at microwave measurements. are given in Table 3.2. However, the 
calcium titanate (perovskite, CaTiO3) shown in this table is only a paraelectric, and 
therefore it has no parameters PS and TC. The strontium titanate (SrTiO3) can become 
the ferroelectric, but only in externally applied electrical field: it is the virtual 

ferroelectric. Other crystals in Table 3.2 are the ferroelectrics; in addition to phase 
transition temperature, parameters C and θ from the Curie-Weiss law: ε ≈ С/(Т–θ), 
are shown, which describes the temperature dependence of permittivity above phase 
transition.   

Table 3.2 

The main parameters of complex oxides - ferroelectric crystals of the barium titanate type  
obtained accordingly to the author’s microwave research 

Crystal 
РS, 

Q/sm ТC, К , К 
С104,  

К 

Wg, 
еV 

А2, 

GHz 

К12 

CaTiO3 – – – 90 4,5 3,2 170 

SrTiO3 – – 35 8,4 3,2 180 

BaTiO3 30 400 388 12 3,3 75 

PbTiO3 80 780 730 15 3,1 90 

KNbO3 30 685 625 18 3,4 95 

LiNbO3 70 1500 – – 3,6 – 

 
The electronic band gap energy Wg is also given in Table 3.2 to characterize 

electronic conductivity of given crystals. The coefficient A describes temperature 
dependence of ferroelectric "soft mode" frequency ωTO,which determines 

permittivity dispersion in paraelectric phase: ( )TO A T    . It is seen that 

frequency of transverse optical phonon ωTO would be zero, when crystal at its 
cooling from paraelectric state reaches temperature θ. However, in the experiment 
this is not observed due to phase transition occurs before: at temperature TC > θ. 
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However, it should be noted that the difference TC –θ usually is little so the frequency 
ωTO turns out to be very small in comparison with other frequencies of crystal lattice.  

2. Thermodynamic theory based on the Landau’s theory supposes that   
thermodynamic potential of ferroelectric Φ(Т,P) can be represented as a series in 
powers of ordering parameter P  (polarization): 

                     
    2 4 6

0 2 4 6
P T P P P

      
,                          (3.19) 

where α, β, and γ are coefficients of series. Analyzing this expansion, it is possible 
to make a conclusion as to critical dependence of parameter α on temperature: α(T) 
= α0(Т – θ), where α0 is independent of temperature coefficient.  
Due to polynomial form of free energy presentation, Landau’s theory allows not 
only quantitatively describe changes of crystal properties near phase transitions, but 
also predict many physical characteristics.  

At that, according to Landau’s theory, the type of phase transition (PT-I or 
PT-II) is determined by the sign of coefficient β at the fourth degree of ordering 
parameter. In previous Section 6.2 where the phase transition PT-II was considered, 
ssecon Landau parameter β  is positive so in this case the parameter γ in polynomial 
(6.6) becomes unnecessary and one can put γ = 0 as well as β = const > 0.  

The first-order phase transition (PT-I) is characterized by polynomial (3.19) 
with parameters β < 0, α = α0(Т − θ) and γ > 0. In this case, the sustainability of a 

studied system is provided by next term ⅙γP6 > 0 in the expansion, because just this 

ensures stability of all phases.  
When these relationships detailed study, some special points for Φ(P) 

function and for its derivatives can be found. If instead of the image of the function 
Е(Р) the more convenient coordinates Р(Е) would be used, polar phase existence 
will be explained by the region of instability, that corresponds to dielectric hysteresis 
loop like in Fig. 3.13A and Fig. 3.16. Accordingly, the permittivity depends on the 
field strength. Thus, main characteristics of ferroelectrics in their polar phase 
(hysteresis loop and ε(E) dependence) do not depend on what type of phase transition 
undergoes in the Curie point. 

To study the polynomial (3.19) describing PT-I, it is necessary to find singular 
points for both the function Ф(P) and its derivatives: 

  ∂Ф/∂P = E = αP + βP3 + γP5;               (3.20) 
  ∂2Ф/∂P2 = ∂E/∂P  = 1/χ ≈ ε = α  + 3βP2 + 5γP4;   (3.21) 
  ∂3Ф/∂P3 = ∂2E/∂P2  = 6βP + 20γP3;           (3.22) 
  ∂4Ф/∂P4 = ∂3E/∂P3  = 6β  + 60γP2              (3.23) 
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The first condition for the phase stability ∂Ф/∂P = 0 leads to equation of fifth 
degree (3.20); its roots are equal to:  
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P P

  


  
  

             (3.24) 
 

To analyze the second stability condition ∂2Ф/∂P2 = 0 it is necessary to study 
the conditions for the extrema of equation E(P) = 0 which can be found from (6.8): 
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In turn, extrema of dependence ∂E/∂P are special points of expression (6.9):  
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And finally, from expression (3.23) it is possible to obtain  

   
13,14 10

P




 

.        (3.27) 

Fourteen special points (extremes, kinks, intersections with axes) characterize 
many different variants of Ф(P) dependence, which arise in the vicinity of PT-I when 
the ratio between coefficients α, β and γ changes.  

Before further analysis, it is advisable to introduce the generalized parameter 
ς = αγ/β2, which makes it possible to trace how the thermodynamic potential and its 
derivatives change  (depending on the combination of Landau parameters). It should 
be noted that this investigation might have grate interest for the nonlinear dielectric 

spectroscopy, when exactly the dependence of dynamic permittivity on electrical 
field is important. 

As seen in Fig. 3.20, just at phase transition point, i.e., at Т = ТС, the parameter 
ς = 0.2, while at Curie-Weiss temperature Т = θ  this parameter is zero (ς = 0). In the 
Fig. 3.20 it is shown how, starting from high-temperature nonpolar (paraelectric) 
phase (when ς  = 0.4) when the crystal gradually is cooling to the ferroelectric phase 
(ς  = 0.2) the change in Φ(P) and its derivatives occur, when generalized parameter 
passes through the values ς  = 0.4, 0.3, 0.2, 0. 

Continuing above analysis, note that all the roots of equations (6.9) and (6.10) 
are valid are determined by formulas (6.13) and (6.14) since β < 0 and γ > 0. 
Therefore, equations roots P13 and P14 determine respectively the minimum and 
maximum of the function ∂2Ф/∂P2, while the roots of P10, P11 and P13 determine the 
maximum and two minimums of ∂E/∂P function  as shown in Fig. 3.21.  
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         ς = 0.4                     ς = 0.3            ς = 0.2                       ς = 0 

Fig. 3.20. Dependence of Ф(P) characteristic on generalized parameter ς  = αγ/β2 

 

   
 

 (A)      (B)   (C) 
 

Fig. 3.21. Thermodynamic analysis of ferroelectric phase transition of first kind: A, B − 
derivatives describing phase transition parameters, numbers at intersections correspond to roots 

of equations (3.21−2.23); C − explanation of dielectric hysteresis and dynamic dielectric 
permittivity ε(E) 

 
Further analysis depends on Landau parameter α temperature changing. 
In the polar phase of the PT-I ferroelectric, at a sufficient distance from the 

critical point TC (when T < θ and α < 0), as follows from formula (3.25), the equation 
(3.21) has only two real roots (P6 and P7) of the four. In this case, the dependence 
E(P) is characterized by a minimum at P6 and a maximum at P7 and also intersects 
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the P axis at three points: P1 = 0;    P2,3,4,5 = ± [− β  ± (β2 − 4αγ)1/2/2γ]1/2 (the other 
roots P4 and P5 in the expression (3.24) are imaginary since α < 0. 

Characteristics ∂E/∂P and are given in Fig. 3.21B. Further, presenting the 
functional dependence E(P) as P(E), obtain a situation that is similar to PT-II and 
shown in Fig. 3.16B. with the instability region and hysteresis loop. Accordingly, 
the dynamic permittivity also changes, but in the vicinity of PT-I variations of 
polarization P(E) and permittivity ε(E) are much more complicated than in the case 
of PT-II. But far from the phase transition, both the hysteresis loop and the dynamic 
permittivity nonlinearity in the PT-I and PT-II ferroelectrics are qualitatively similar. 

Now discuss spontaneous polarization and permittivity temperature 
dependence, Fig. 3.22. At the phase transition point, the potentials of the polar and 
nonpolar phases should be the same, i.e. Ф(P) = Ф0 at P = 0. Therefore, from 
equation (3.19)  it follows α  + 1/2β + 1/3γ = 0. Substituting into this expression the 
value for PS obtained from formula (6.11) while note that the roots P2-5 and the root 
P1 are side solutions, we can obtain an equation relating all three parameters 

23
16C

 
 , where αC is first parameter Landau at T = TC. When dielectric 

spectroscopy application to PT-I ferroelectrics study, it should be noted that first 
order phase transition occurs not at the temperature Т = θ (when parameter α(T) = 0) 
but at the value αC  That is why, in case of PT-I the transition temperature TC is 

higher than Curie-Weiss temperature θ. At that, the spontaneous polarization arises 

at T = TC by a jump (unlike the PT-II), and the size of this jump equals
S

3
4

P
 


, Fig. 3.22A. 

  
                     (A)          (B) 
Fig. 3.22. Temperature dependence of spontaneous polarization (A) and inverse permittivity (B) 

in ferroelectrics possessing PT-I 

Permittivity also shows a jump at temperature TC, and its graded change is 

2
4

3
  
 ; correspondingly, at PT-I is not expected that permittivity becomes 
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infinite (as predicted in case of PT-II) but has a maximum seen at TC which equals 

2
1 6
3


 . Most studied ferroelectric which has phase transition nature close to PT-I is 

barium titanate. The temperature maximum of permittivity in pure BaTiO3 occurs at 
TC = 400 K, while Curie-Weiss temperature (θ = 388 К) is below on 12 K. Curie-
Weiss constant in barium titanate equals С = 1.2⋅105 К and temperature maximum 
of permittivity is εmax = 105.  

 

3.7 Dynamics of displacive ferroelectrics 
 
The frequency of fundamental dielectric dispersion in these ferroelectrics is 

two orders of magnitude higher than in the order-disorder type ferroelectrics. 
Therefore, if they would be considered as potential components to be used in the 
microwave electronic devices (or absorbing composites), it should be taken into 
account that the maximal absorption of electromagnetic waves in the displacement 
type ferroelectrics is located in the region of the millimeters and sub-millimeters 
waves. 

From a large number of experimental dependences of ε*(ω,T), obtained by 
the dielectric measurements using millimeter, sub-millimeter and far infrared 
waves, it is possible to get reliable information about natural frequency ω0(T) and 
damping factor γ0(T) of “soft” vibration modes of ferroelectric lattice. Permittivity 
dispersion is due to the quasi-elastic displacement of ions that usually is observed 
in the crystals at frequencies 1013–1014 Hz, but in some ferroelectrics near their 
phase transition the frequency of their “soft mode” of lattice vibrations can decrease 
down to 1011–1012 Hz. The change of permittivity in this frequency range can be 
described by the model of damped oscillator. At that, a general tendency is 
noticeable: the higher permittivity the lower dispersion frequency and greater 
attenuation of the oscillator, which describes corresponding mode of oscillation in 
a crystal lattice. 

In the paraelectric phase of displacement type ferroelectrics, i.e., above the 
ferroelectric phase transition, the temperature dependence of frequency of oscillator 
describing “soft mode” is determined by a critical dependence, i.e., by Cochran ratio 

ω0(T) = A(T – θ)½, while the characteristic attenuation frequency rather weakly 

depends on temperature: γ(T) = γ0 + aT + bT2 + cT3.  Here the first term is caused 
by two-phonon scattering on static fields of lattice defects, while the second and 
next terms correspond respectively to three- and four-phonons processes in the 
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anharmonic crystal. Near the phase transition weak temperature dependence of γ(T) 

can be neglected, however, the relative attenuation Г(T) = γ/ω0(T) depends on 

temperature critically: Г(T) = B(T – θ)–½ that is due to critical dependence of 

oscillator frequency.  
The permittivity temperature-frequency dependence of ferroelectrics, 

possessing phase transition of displacement type, can be describe by the Drude–
Lorentz equation and the Cochran ration, taking into account also Curie–Weiss law:  
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where ε(∞) characterizes the optical and other higher-frequency contributions to 
permittivity, C and θ are Curie–Weiss constants; the temperature dependence of 
damping factor γ is weak and can be neglected. 

Dividing the real and imaginary parts in equation (14), it can be obtained: 

                      

     
 

2 2
2

22 2 2 2
, ;

A T
T CA

A T

 
  

   

 
   

                   (3.29) 

 
 

2
22 2 2 2

, ;T CA
A T


 

   
 

        2
tan .

A T







       (3.30) 
 

It follows from these equation that in the region of dielectric dispersion the 
temperature dependence of permittivity in the paraelectric phase can be described 
by equation ε′max = ε(∞) + CA2/(2ωγ). The temperature at which the anomaly of of 
permittivity is seen corresponds to T = θ + [ω(γ + ω)]A2. This means that at 
sufficiently high frequency at the point of phase transition the minimum of 
permittivity should be observed at temperature T ≈ TC, as well as in the ferroelectrics 
of order-to-disorder phase transition type.  

Thus, ε′(T) minimum in the dispersion region is seen in all ferroelectrics (with 

the exception of improper ferroelectrics). 

Figure 3.23A shows the temperature dependence of permittivity in the barium 
titanate, calculated above Curie point, i.e, in the paraelectric phase. It is seen that, 
starting from a certain frequency, the ε′'(T) maximum shifts with the increase of 
frequency to higher temperatures, forming the minimum of permittivity in the Curie 
point. As it follows both from calculations and experimental data, in the region of 
dielectric dispersion the temperature maximum of loss factor: ε″max,T = CA2/(γω) 

should also be observed at frequency ω1 = A (T1 – θ)½.  
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       (A)                                                                            (B) 

Fig. 3.23. Temperature dependence of real (A) and imaginary (B) parts of permittivity in barium 
titanate paraelectric phase described by: C = 2.1⋅105 K, A = 3 cm–1K–1/2 and γ = 50 cm–1 (near 

curves the frequency is shown in cm–1), vertical line at Curie point characterizes ε′  jump, 
minimum of ε′ (T) is formed above 2 cm–1; maximum ε′ (T) shifts in range of 4–16 cm–1 while 
maximum of ε″ (T) is clearly expressed at frequencies of 12–20 cm cm–1 (1 cm–1 = 30 GHz) 

 
Therefore, the loss factor ε″,(T) in the paraelectric phase of displacement type 

ferroelectrics in the vicinity of permittivity dispersion demonstrates the maximum, 
which at sufficiently high frequency shifts to higher temperatures when frequency 
growing. Note that this is qualitatively distinguished from the family of curves ε″ (T) 
describing permittivity dispersion in relaxation model. This circumstance can be 
used in the dielectric spectroscopy to select one or another model when describing 
polarization in ferroelectrics. 

The equations (3.29) and (3.30) make it possible to find main parameters of 
dispersion oscillator from the experimental data; namely the frequency ω0(T) and 
the damping factor γ0(T) of the “soft” vibration mode. In the case when only a 
beginning of permittivity dispersion can be investigated, i.e., the significant increase 
of tanδ is found followed by frequency change of ε′,(T), next simple formulas for 
attenuation value calculating can be obtained from above expressions: 
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where ω is the measurement frequency; ε(0) is the permittivity before dispersion; 
ε′hf is the high-frequency decrease of permittivity in the initial region of dispersion. 
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In the polycrystalline ferroelectrics, as well as in the crystals possessing by 
high concentration of structural defects, when studying the temperature-frequency 
dependence of permittivity describing in the framework of oscillator model, the 
distribution of frequency of oscillators can also be taken into account (as in the case 
of relaxor).  

Thus, when experimental study of high-permittivity materials by dielectric 
permittivity frequency dispersion method, it is possible to make reliable selection 
between relaxor and oscillator models. 

 

3.8 Polarization dynamics in paraelectrics 
 
Paraelectrics are of interest for the use in the electronic components as 

materials combining high permittivity and low dielectric loss with dielectric non-
linearity found in the microwave range. The disadvantage of paraelectrics is their 
temperature instability, as a result of which the compromise solutions have to be 
applied at technical devices elaboration with use of paraelectric components. 

In solid state physics, the term "paraelectric" appeared as an analogue to the 
"paramagnetic", although this analogy is very arbitrary.  

The fact is that magnetic permeability μ of most paramagnetics is very small 
(μ = 1 + æ ≈ 1), and only the temperature dependence of their susceptibility æ obeys 
the Curie law æ = K/T. However, the permeability is great in the paramagnetic phase 
of ferromagnetics and antiferromagnetics, where it is described by the Curie-Weiss 
law μ ≈ æ = C/(T – θ). On the contrary, in the paraelectrics their permittivity is 
always high and in all cases can be described by the Curie-Weiss law ε ≈ C/(T – θ).  

Note that in most paraelectrics Curie-Weiss temperature is positive (θ > 0 K), 
and these materials tend to go into the polar on antipolar phase when temperature 
decreases (however, the electrically ordered phase in them can also appear under the 
influence of external electrical field or inhomogeneous mechanical stresses.  

If the paraelectrics are determined as the crystals with high permittivity 
obeyed Curie Weiss law, then it should be noted that there exist paraelectrics, in 
which this critical temperature looks negative (θ < 0 K) and they could be called as 
"stiff" paraelectrics, because they have never been transformed into polar phase 
(incidentally, interesting case when θ < 0 K is also known in magnetism when 
describing paramagnetic phase of antiferromagnetics). 
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Fig. 3.24. Temperature dependence of permittivity in various paraelectrics at frequencies of 37 

GHz and 77 GHz: 1 – TiO2 polycrystal, 2 – CaTiO3 polycrystal, 3 – SrTiO3 single crystal, 
4 – Ba(Ti0.6Sn0.4)03 polycrystal, Ba(Ti0.9Sn0.1)03 polycrystal, 6  – РbТiО3 single crystal [15] 

 
1. Theoretical notes. In most of paraelectrics, at temperature T = Tc ≈ θ 

(critical temperature) the phase transition occurs to ferroelectric (or antiferroelectric) 
phase. That is why the paraelectricity usually is associated with the ferroelectricity; 
for this reason, just as the ferroelectrics, the paraelectrics can be divided into two 
basic classes.  

The paraelectrics of order-disorder type (reviewed in previous Section 3.4) 
are crystals containing dipoles. As temperature decreases, the dipole-dipole 
interaction gives rise to a gradual ordering of dipole orientations, until, finally, when 

temperature becomes Tc   the ferroelectric phase arises, at which most of dipoles 
are steadily oriented. Such paraelectrics near their second-order phase transition are 

characterized by an acute (Т) maximum and rather fast decrease of permittivity with 

temperature rise that signifies the small Curie-Weiss constant (С  103 К). At that, 
at high frequencies, especially in the microwave range, the order-disorder type 
paraelectrics have huge losses and therefore very limited prospects for application. 

The paraelectrics of the displacment type are the ionic (not dipole) crystals, in 
which, however, the ionic-covalent bonding between atoms is very significant. Most 
of these paraelectrics demonstrate the first-order phase transition to the ferroelectric 

phase with a relatively flatter (Т) dependence that is characterized by big Curie-

Weiss constant: C  105 K. In electronic materials, contemporary technology of 

polycrystalline solid solutions enables to obtain quite different  and TC. This is 

especially important at high frequencies (microwave mic). While technical 
dielectrics designing, it is considered that the change in the magnitude and sign of 

TC depends on what type of polarization dominates – electronic or ionic. It is 
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important to note that the ionic (lattice) polarization depends also on the atomic 
electronic shells displacement, but the frequency characteristic of this mechanism of 
polarization is given by the inter-atomic elastic forces and the masses of ions. 
Therefore, this frequency is much less than the optical frequency but remains quite 
enough for microwave electronics applications.  

 The role of electronic shells displacements is especially important for high 

permittivity dielectrics. Note that because of electronic (optical) polarization affects 
ionic (infrared) polarization, instead of simple expression for polarization: Р = NαF 
(where α is polarizability, N is concentration of polarizable particles, and F is acting 
Lorentz force) one has to write: 
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where 1/(3ε0) is the Lorentz factor and a takes into account optical polarization. 
After some transformations, for frequencies of transverse and longitudinal optical 
phonons as well as for dielectric contribution from infrared polarization following 
expressions it can be obtained: 
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Expression for frequency LO is the sum, therefore, the influence of electronic 

polarization almost does not change the frequency LO (as opposed to value of TO). 

From above equations it is seen that the lower frequency TO the greater the value 

of mic =  (0) –() and measured at microwave frequencies.  Formula for frequency 

TO shows that with temperature increase, due to thermal expansion, on one hand, 
the term с/т reduces, but, on other hand, the subtrahend decreases being dependent 

on (). In the expression for TO, the temperature variation of the difference can be 

various depending on what effect predominates, and it defines value mic(Т).  
To describe the paraelectricity, one needs to express the Curie-Weiss constant 

through the parameters of above discussed model. The approximate form of Curie-
Weiss law ε(T) ≈ C/(T – θ) can be obtained, if the following formula is substituted:  
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By substituting of this value into the expression for permittivity, obtain  
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The main contribution to εmic is given by the far infrared (lattice) polarization. 
Formally it is mentioned as the “ionic” polarization, but in fact it is associated with 
the susceptibility of ions electronic orbitals. It is found that most part of εmic, for 
example, in the "stiff" paralectrics (such as rutile and perovskite) is caused by the 
highly polarizable oxygen octahedrons TiO6 connected by their vertices. In this case, 
the electronic clouds, which link ions in the system of octahedrons, provide enough 
freedom for easy polarization that leads to εmic > 100. 

2. "Stiff" paraelectriсs are attractive to technology due to not only in them, 
but also in their solid solutions the microwave dielectric losses are small. These non-

polar ionic crystals with ε ~ 100 (and some above) occupy special place among 
dielectrics with high permittivity. Typical representatives of such dielectrics are the 
rutile (TiO2) and perovskite (CaTiO3). It should be noted that these crystals are 
characterized by the increased electronic (optical) polarization: εоpt > 5. Moreover, 
the microwave permittivity of rutile and perovskite is strongly temperature 
dependent with the negative TCε. The dependence ε(Т) in CaTiO3 (perovskite) can 
be described in the broad temperature range, if in formula ε(T) = ε1 + C/(T – θ) one 
put ε1 = 60, С = 4⋅104 К and θ  = – 90 К.  

The explanation of frequency ωТО reducing when temperature decreases and 
the high polarization in crystals of perovskite structure may be as follows. Each ion 
is in the equilibrium position under the action of long-range electrical forces of 
attraction and short-range forces of repulsion. High polarization means that 
application of even a weak electrical field leads to the unusually large displacements 
of ions from their equilibrium position (or, according to model of "soft" ions, to the 
large deformation of the electronic shell of ions). This also means that the elastic 
force of repulsion of ions is small (i.e., it corresponds to lower oscillation frequency). 
It is logical to assume that in the perovskite-type structures the such conditions are 
created for some ions, when the compensation of short-range repulsion forces and 
long-range attraction forces occurs. Thus, the effects, caused by the interaction of 
electronic shells of ions, lead to a large value of permittivity with the anomalous 
temperature dependence as well.  

Figure 3.24 shows the fulfillment of Curie-Weiss law in the paraelectrics at 
millimeter waves (when the influence of conductivity and low-frequency relaxation 
processes is excluded). At that, the strontium titanate refers to the virtual 



171 
 

ferroelectrics (which can be easily turned to the ferroelectric phase under the 
influence of electrical field or non-uniform mechanical stress) while both solid 
solutions Ba(Ti,Sn)03 and PbTiO3 refers to the ferroelectrics with various Curie 
point. At the scale selected in Figure 3.24 it is difficult to judge the properties of 
lower permittivity "stiff" these paraelectriсs, so their characteristics at millimeter 
waves are given more detail in Fig. 3.25A,B. As it follows from crystal lattice 
dynamics, the microwave permittivity is proportional to the square of frequency of 
transverse optical vibration mode determined from infrared spectra. The experiment 
clearly indicates that the Curie-Weiss law with a negative value of the temperature 
parameter  θ  in the "stiff" paraelectrics is good satisfied.  

     
 (A)          (B) 

Fig. 3.25. Permittivity and "soft" lattice mode temperature dependence of "stiff" paraelectrics: 
A – rutile, TiO2, at 37 GHz, 1 – ε1 for crystal, 3 – ε3 for crystal, 2 – ε for ceramics; 

B – perovskite, CaTiO3, ceramics at 77 GHz 

 
The correlation of the “soft” mode frequencies and their dielectric 

contribution, which varies according to the Curie-Weiss law, can be seen in Fig. 
3.26. 

3. "Soft" paraelectrics of displacive type may be represented by strontium 
titanate, SrTiO3. In the frequency dependence of reflection coefficient, all three 
vibration modes are clearly expressed both for SrTiO3 single crystal and for the 
polycrystal. Complex permittivity of SrTiO3 temperature and frequency dependence 
can be described by the equations 
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where C = 8.4104 К,  = 35 K, A2 = 180 GHzК12, () = 40 and  = 0.6. The 

temperature dependence of SrTiO3 “soft” mode frequency TO
A T    is shown 

in Fig. 6.21B. 
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                                   (A)       (B) 

 

Fig. 3.26. Temperature dependence of inverse permittivity (A) and frequency ωTO (B) for 
paraelectrics TiO2, CaTiO3, SrTiO3 and ferroelectric BaTiO3 (in its paraelectric phase);  

Г is correspondent oscillator damping factor, 1 cm–1 = 30 GHz [14] 

 
Thus, from experimental dependences ε*(ω,Т) obtained by dielectric 

measurements on millimeter, sub-millimeter and infrared waves, it is possible to 
obtain important data on the frequency of "soft" mode (ν = ω/2π) of crystal lattice 
vibrations and its damping. Permittivity dispersion caused by the elastic 
displacement of ions in the ordinary crystals occurs at frequencies of about 1013 Hz, 
but in the “soft” paraelectrics, when approaching the phase transition, the frequency 
of “soft mode” of these oscillations can decrease to 1011 Hz. A noticeable general 
trend: the higher dielectric permittivity, the lower frequency and the greater 
attenuation of the oscillator, which describes the vibration mode of crystal lattice 
corresponding to main dispersion of permittivity. 

While study "soft" paraelectrics by the dielectric spectroscopy method, it is 
important to keep in mind their increased sensitivity not only to the impurities, 
structural defects and electrical field strength, but also to the mechanical conditions 
in which the sample under study is located. It is known, for example, that a planar 
mechanical deformation of a film sample, caused, for example, by the difference in 
the coefficients of thermal expansion of studied paraelectric film and its substrate, 
can cause the phase transition of soft paraelectric into the ferroelectric phase.  

 

3.9 Dynamics of antiferroelectrics, ferrielectrics, etc 
 
In electronics, the antiferroelectrics are used, firstly, as important components 

of piezoelectric ceramic materials, secondly, for components of high-permittivity 
low-loss microwave devices, and, thirdly, they are promising materials for 



173 
 

electrocaloric coolers. In the dynamics of dielectrics, the antiferroelectrics are 
noteworthy because despite their high permittivity most of them do not experience 
any microwave dispersion in both the paraelectric and antipolar phases. 

1. Physical basis. The antiferroelectrics are close to the ferroelectrics by their 
physical nature, structure and chemical composition. As in the ferroelectric, in the 
antiferroelectric paraelectric phase, the Curie-Weiss law is fulfilled that leads to the 
maximum of permittivity in the Curie point, where the first-order phase transition 
occurs, usually with a temperature hysteresis, Fig. 3.27A,B,D.  

   
          (A)       (B) 

   
        (C)       (D) 

   
              (E)               (F) 

 

Fig. 3.27. Temperature dependence of permittivity in antiferroelectrics PbZrO3 (A), in NaNbO3 
(B), PbMgWO6 (C) and NН4PO4 (D), as well as model of spontaneous polarization 

compensation in unit cell of antiferroelectric (E) and double hysteresis loop (F) 

 
However, any spontaneous polarization in the antiferroelectric is absent since 

below their phase transition from the paraelectric state crystal polarization is totally 
compensated within a single unit cell. The fact is that in the antiferroelectric not a 
parallel (like ferroelectric) but the antiparallel displacement of same sort ions occurs. 
In this case, the multiple increase in the size of crystal unit cell is observed. Inasmuch 
as the energy of the centrosymmetric antipolar state is not very different from the 
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energy of the non-centrosymmetric polar state, so external influences usually can 
turn antiferroelectric into the ferroelectric. For example, the phase transition from 
the antipolar to the polar state can be induced by the strong electrical field (E > Ecr); 
in this case the double hysteresis loop is observed, Fig. 3.27F.  

The phase transition between the antiferroelectric and ferroelectric phases can 
occur not only under the influence of electrical field, but also by the introducing 
impurities, by the formation of solid solutions with ferroelectric, and, sometimes, 
even as a result of temperature change. Last situation is observed, for example, in 
sodium niobate (NaNbO3, Fig. 3.27B), in which the antiferroelectric phase exists in 
a limited temperature interval from 630 K to 80 K: below temperature of 80 K crystal 
NaNbO3 turns into ferrielectric phase, in which the ferroelectric and antiferroelectric 
states coexist.  

It is noteworthy that while phase transition from their paraelectric phase, the 
antiferroelectric phase arises with the "multiplication" of crystal unit cell. As a result, 
below Curie point the size of unit cell of the antipolar phase becomes in 2, 4 or 8 
times bigger than the unit cell of paraelectric phase. Simplifying situation, it is 
possible to assume that so called "spontaneous polarization" in the antiferroelectric 
is compensated by the opposite charges displacement within new enlarged unit cell. 
In this connection, it is necessary to note that in at the phase transition from the 
paraelectric into the ferroelectric state, the multiplication of the elementary unit cell 
usually is not observed: each unit cell below Curie point becomes polarized in a 
same way, and this effect is summarized in crystal, forming PS > 0. 

Thus, in the antiferroelectric, owing to unit cell multiplication in comparison 
with original (non-polar) phase, "polar" shifts of ions during phase transition are 
compensated at the elementary level, so total spontaneous polarization in a crystal is 
absent. Important fact is that the antiferroelectric type phase transition occurs with 
the increase in crystal density, so that in the vicinity of antiferroelectric phase 
transition the maximum of thermal expansion coefficient α(T) is observed (but not a 
minimum α(T) usual for ferroelectric phase transitions). 

 
(A)       (B) 

 

Fig. 3.28. Comparison of polar ordering  lattice (A) and antipolar ordering lattice (B): it is seen 
that lattice parameters a > b 
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Simplest explanation of this feature is given in Fig. 3.28, where differently 
located polar-sensitive bonds give an opportunity to explain how the size of crystal 
lattice might be changed under different phase transitions. In the antipolar crystals, 
a special arrangement of polar-sensitive bonds can lead not only to increase of 
crystal density, but also facilitates optical phonons participation in the electrical 
properties of crystal. This becomes especially noticeable near the antiferroelectric 
phase transition, in which a spatial dispersion of optical phonons is large exactly at 
the boundary of Brillouin zone, since a critical decrease in their frequency occurs. 
Moreover, in the antiferroelectric a critical reduction in the frequency of vibrational 
"soft" mode occurs not in the center of Brillouin zone (as in displacive ferroelectric) 
but on the boundary of Brillouin zone, and, therefore, the Brillouin zone shrinks that 
is followed by change of crystal symmetry below the phase transition. 

Dielectric spectroscopy has shown that it is possible (but very conditional) to 
divide the antiferroelectrics into two groups. In the first of them ("soft"), the 
dielectric permittivity at the Curie point reaches several thousands, and they, like 
similar oxygen-octahedral ferroelectrics, experience the dispersion of permittivity 
in their paraelectric phase at millimeter waves. In the second group ("stiff" 
antiferroelectrics) the permittivity at Curie point has the order of two to three 
hundreds, and no dielectric dispersion is observed in them even at sub-millimeter 
waves. In the both groups of antiferreelectrics, in their antipolar phase, there is no 
dielectric dispersion up to far infrared range; therefore, not only at radio frequencies 
but also at microwaves the dielectric losses in the antiferroelectrics are small (in 
contrast to ferroelectrics). 

2. "Soft" antiferroelectrics can easily form solid solutions with ferroelectrics; 
moreover, a morphotropic boundary is created, in which the piezoelectric properties 
are strongly pronounced (this circumstance is widely used in electronic materials 
technology). Besides, at a not very large distance from Curie point, the strong 
external electrical field can transform "soft" antiferroelectric into the ferroelectric 
phase, showing the double-hysteresis loop, Fig. 3.27F (at that, the heat is absorbed, 
which can be used for the electrocaloric cooling).  

If the reversibility of spontaneous polarization would be considered as a 
necessary property of ferroelectric, then it will be logical to think the possibility of 
a forced transition to the ferroelectric state as the necessary condition for the 
antiferroelectric state existence (due to the proximity of these states energy). Since 
the antiferroelectric phase transition occurs with a multiplication of crystal unit cell, 
from the point of view of lattice dynamic theory, such a transition should result in 
the condensation of the lattice “soft mode” not in the center of Brillouin zone (as in 
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the displacive ferroelectric), but at the nonzero wave vector. Moreover, the 
proximity of energies of polar and antipolar phases means that at least two lattice 
critical oscillations are necessary for the antiferroelectric phase transition, as well as 
the proximity of temperature at which these modes condense. At that, one of these 
lattice vibration modes is characterized by a wave vector close to zero that leads to 
the anomaly of permittivity and to  Curie-Weiss law in the paraelectric phase.  

The most studied representative of antiferroelectrics is the lead zirconate 
(PbZrO3, TC = 230 oC, θ = 190oC, C = 1.7×105), the basic dielectric characteristics 
of which are given in Fig. 3.24; similar properties shows lead hafnat, PbHfO3 in the 
vicinity of its phase transition at temperature TC = 160oC. 

        
                            (A)        (В) 

Fig. 3.29. Temperature dependence of permittivity and losses of lead zirconate at millimeter 
wave frequencies: A — Curie-Weiss law at 36 GHz; B — permittivity dispersion in paraelectric 

phase at frequencies: 1 — (36–46) GHz, 2 —  66 GHz, 3 — 78 GHz 

 
In these antiferroelectrics, the same dispersion of permittivity in the 

paraelectric phase is found as in the BaTiO3. As can be seen from Fig. 3.29B, up to 
the  frequency of about 50 GHz the ε(T) curve at microwaves practically does not 
differ from the measured at frequency 1 MHz. However, at the millimeter waves, 
above TC a noticeable decrease in permittivity is observed, which manifests itself all 
the more, the closer is phase transition; accordingly, the losses increase. Like in 
barium titanate, this indicates a very low frequency "soft" mode of lattice vibrations: 
ν = A(T – θ)1/2 in the PbZrO3, where A = 140 GHz×K–1/2. This vibration mode is 
overdamped with the attenuation coefficient Г > 2, because in the beginning of ε(ν) 
the dielectric permittivity decreases.  

It is important to note that below the phase transition, in contrast to the 
multidomain ferroelectrics (like barium titanate), the antiferroelectrics (lead 
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zirconate and all others) shows no traces of any microwave dispersion of the 
permittivity, and their dielectric losses at microwaves are small. 

3. "Stiff" antiferroelectrics represent a large group of substances of oxygen-
octahedral structure with increased permittivity, which demonstrates a maximum at 
the Curie point, Fig. 3.30. The dielectric permittivity of "stiff" antiferroelectrics 
surpasses the permittivity of ordinary dielectric oxides by more than an order of 
magnitude, but it rarely exceeds the εmax(T) ≈ 200 in its temperature peak that is 
about a dozen times less than such peak value  of “soft” antiferroelectrics. 

  
                                         (A)      (B)     

Fig. 3.30. Temperature dependence of permittivity (1, 2) and loss tangent (1′, 2′)of four 
antiferroelectrics at frequencies 37–78 GHz: A – Pb2MgWO6 (1, 1′); Pb2YbNbO6 (2, 2′); 

B – Pb2YbTaO6 (1, 1′); Pb2YbNbO6 (2, 2′) 

 
The nature of the increased dielectric permittivity in the antiferroelectrics can 

be revealed by the dielectric spectroscopy. It's obvious that the vibrational modes of 
crystal lattice of the antiferroelectrics, possessing by the wave vector other than zero 
(q ≠ 0), can be detected only by the neutron spectroscopy. However, the 
accompanying them "soft" vibrations with q ≈ 0 can be detected in the far infrared 
region, since these modes cause large contribution to thr permittivity and therefore 
in the magnitude of far infrared reflection coefficient.  

4. Ferrielectrics are the crystals, in which their internal polarization is 
compensated only partially – by the analogy with ferrimagnetics, which are 
characterized by partial compensation of their spontaneous magnetization. 
Therefore, the ferrielectric is not entirely compensated antiferroelectric. To the 
ferrielectrics the sodium niobate (NaNbO3 below 80 K), tungsten oxide WO3, 
Pb2СdWO6 and some other isostructural compounds are related. 

In the sodium niobate, as in most antiferroelectrics, any dispersion of 
permittivity is not observed even at millimeter waves. It is noteworthy also that at 
the Curie point of NaNbO3 dielectric permittivity is of the same order of magnitude 
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as in the "soft" antiferroelectrics with Curie-Weiss parameters С = 2.8×J05 and θ = 
415 К, Fig. 3.31A. Unlike PbZrO3, the dispersion of permittivity at millimeter waves 
in the paraelectric phase of NaNbO3 is absent – as in the "stiff" antiferroelectrics. 
However, the strong electrical field applied to the antiferroelectric phase of sodium 
niobate induces in it the ferroelectric phase (however, it also appears even without 
bias field application when this crystal is cooled below 80 K). 

 

         
                          (A)       (B) 
 

Fig. 3.31. Dielectric dispersion in ferrielectrics: A – determination of Curie-Weiss law 

parameters for NaNbO3 at frequency of 37 GHz; B – temperature-frequency dependence of 

permittivity and loss tangent for Pb2CdWO6 at frequencies: 1 – 105 MHz, 2 – 3.7 MHz, 3 – 135 
MHz,  

4 and 4′ – 300 MHz; 5 and 5′ –1.5 GHz; 6 and 6′ – 37 GHz [34] 
 

In the ferrielectric lead cadmium-tungstate, Pb2CdWO6, dielectric 
spectroscopy made it possible to detect some phenomenal properties shown in Fig. 
3.31B. In this unusual for the accepted models of ferroelectricity material, 
temperature dependence of permittivity at radio frequencies differs significantly 
from ε(T) of other compounds of this type shown before in Fig. 3.30 
antiferroelectrics Pb2MgWO6 Pb2YbNbO6, Pb2YbTaO6 and Pb2YbNbO6, in which 
there is an acute maxima εmax = 100–250 at Curie point are seen at frequencies of 
105–1011 Hz while no permittivity dispersion is observed. The peculiarity of 
Pb2CdWO6 lies in the fact that at frequencies of 0.1–70 MHz the maximum ε(T) is 
blurred and gradually decreases with increasing frequency. The situation becomes 
clearer when measurements are provided in millimeter waves: permittivity 
temperature dependence indicates clear antiferroelectric phase transition at 
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temperature 700 K. At that, however, another step-like ε-anomaly at millimeter 
waves is seen at temperature of about 450 K, Fig. 3.31B, which correlates with lower 
frequency ε(T) blurred maximum.  

Additional studies have shown that in the region of ε(T) the blurred maximum 
when strong electrical field application only leads to the increase in dielectric losses, 
but hardly affects the permittivity that is not typical for ferroelectrics. The 
frequency-temperature characteristics, observed in lead cadmium-tungstate, 
partially resemble relaxor ferroelectrics properties, although do not fully meet their 
definition. Thus, the nature of ferroelectricity is very diverse, and sometimes it is far 
from always observable properties can be squeezed into predetermined models. 

 

3.10 Summary and self-test questions 
 
1. The change of both permittivity and conductivity with frequency increase 

can be presented most expediently by the Bode plots, when the abscissa is the 
frequency in logarithmic scale; in this presentation many physical processes might 
be reflected, but in case of dielectric spectroscopy this is a permittivity conditioned 
by different polarization mechanisms. 

2. The relaxor model is discussed as physical concept which it that 
coordinated response-polarization function of a system of dipoles, when their forced 
ordering by electrical field action is opposed by the chaotic disordering thermal 
motion. Justification of a relaxor model of dielectric spectra is given on the base of 
Debye formula of permittivity dispersion in the polar dielectrics.  

3. According to relaxor model, the electrical polarization of polar complexes 
is late as the frequency of electrical field grows; as a result, permittivity decreases 
while dielectric loss factor shows a maximum. In other words, at rather high 
frequencies the equilibrium distribution of the relaxing electrons, ions and dipoles 
has not enough time to be established. This effect is peculiar for the relaxation 
spectra, whose main characteristic is fuzziness in rather broad frequency range.  

4. The Lorentz oscillator, describing the resonant dispersion of permittivity, 
is another key model in dielectric spectroscopy. This is physical model 
characterizing a dynamic reaction of the system of elastically coupled electrical 
charges to the externally applied electrical field, whose action is opposed by the 
internal elastic force tending to return quasi-elastic system into the non-polarized 
state. 

5. Permittivity dispersion and corresponding losses, conditioned by quasi-
elastic polarization, usually are observed at much higher frequencies then the 



180 
 

relaxation processes; nevertheless in some dielectrics these losses become 
significant at microwaves, being important for some electronic components. At that, 
the presence of a minimum in the permittivity frequency dependence is principal 
sign of resonance dispersion that distinguishes it from relaxation dispersion.  

6. When analyzing fragments of the dielectric spectra described by both the 
relaxor model and the oscillator model, it turns out to be a very useful the method, 
known in the electrical engineering as the Nyquist charts. When the polarization 
response is normalized to the value of the dielectric contribution, in the case of the 
relaxation dispersion the imaginary and the real part of permittivity on a complex 
plane are the Cole-Cole semi-circle. The resonant dispersion on the complex plane 
demonstrates more complex figure with a characteristic loop in the range of negative 
permittivity. 

7. Ferroelectrics are characterized by spontaneous polarization, which 
direction can be changed by externally applied electrical field. The steady 
polarization is inherent to the pyroelectric crystal; however, ferroelectric differs 
from pyroelectric by its ability to re-polarization, i.e., spontaneous polarization 
switching in applied electrical field (dielectric hysteresis). Also the definition of 
ferroelectrics may be such: ferroelectric is pyroelectric that divides on domains. 

8. By analogy with magnetism (where ferromagnetics, antiferromagnetics and 
ferrimagnetics can exist), not only the ferroelectrics but antiferroelectrics and 
ferrielectrics are known. Spontaneous polarization of antiferroelectric is 
compensated already in the crystal unit cell, while in the ferrielectrics their 
antipolarization is not totally compensated.  

9. When explaining various properties of polar crystals, it is possible to refuse 
the concept of "spontaneous polarization", i.e., to imagine that in polar crystal the 
"permanent polarization" exists. It looks also reasonable the assumption that 
electrical polarization appears as a response to external (not even electrical). This is 
due to a peculiar distribution of polar-sensitive internal bonds having distinction in 
ions affinity for electrons, i.e., electronegativity. 

10. In the ferroelectrics of order-disorder type large microwave absorbance 
as in the ferroelectric so in the paraelectric phase is seen. Dielectric spectra make it 
possible to study in all details the critical dynamics of second-order phase 
transitions/ Many examples demonstrate the wide capabilities of microwave 
spectroscopy for the detection and study of subtle physical phenomena in crystals. 

11. In the ferroelectrics characterized by the order-disorder type at phase 
transition point, a sharp minimum of ε′(T) appears instead of usual maximum of 
permittivity. Former maximum splits into two maximums, and the characteristic 
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temperature of each of them shifts with increasing frequency in different directions. 
On the other hand, the temperature of loss maximum ε″(T) remains at the point of 
phase transition: firstly the loss factor increases with frequency growing but then it 
decreases staying at same temperature (these dependencies are fundamentally 
different from conventional relaxor). All these data are preferably taken into account 
when studying ferroelectrics by dielectric spectroscopy. 

12. Ferroelectrics of displace type above their phase transition practically have 
no dielectric dispersion (in paraelectric phase); correspondingly, their losses above 
Curie point are small that might have application in the microwave tuneable devices. 
Below Curie point microwave absorbance of ferroelectrics is increased owing to 
domain walls relaxation (losses in single domain crystals in displace type 
ferroelectrics remain small).  

13. In the ferroelectrics with the phase transition of displacement type, at 
sufficiently high frequency in the point of phase transition the minimum of 
permittivity can be observed at Curie point (like in ferroelectrics of order-disorder 
type phase transition). Thus, the ε′(T) minimum in the dispersion region is seen in 
all ferroelectrics (with the exception of improper ferroelectrics). However, the 
maximum of loss factor ε″,(T), observed in paraelectric phase when frequency 
grows, shifts in the direction of higher temperatures. This is qualitatively 
distinguished from the family of curves ε″ (T) described by the relaxation model of 
dispersion and can be used to select one or another model when describing 
polarization in various ferroelectrics using dielectric spectroscopy. 

 
Chapter 3. Self-test questions 

1. What is the fundamental difference between the relaxor and oscillator models? 
2. What is the reason for the blurring of the relaxation spectrum of permittivity 
dispersion? 
3. How to distinguish the spectrum of an over-retarded oscillator from a relaxor? 
4. What parameters of ferroelectric currents can be obtained from their dispersion 
spectrum? 
5. What is the difference between the dielectric spectra of displacement 
ferroelectrics from order-disorder ferroelectrics? 
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CHAPTER 4. MODELS EXPLAINING DIELECTRIC 
PROPERTIES  

 
Content 
4.1 Inter-atomic bonds classification 
4.2 Explanations of electrical properties by inter-atomic bonds 
4.3 Polar-sensitive atomic bonds 
4.4 Modeling of polar-sensitive bonds  
4.5 Summary and self-test questions 

 
Formation of the crystals, amorphous and other substances from the individual 

atoms is accompanied by the energy decrease in resulting system as compared to the 
unconnected atoms. Energy minimization is accompanied by a regular arrangement 
of atoms what is achieved by a peculiar distribution of electronic density between 
particles. This distribution is influenced by the valence of elements constituting the 
crystal (taking into account the magnitude of their electronegativity) and by the 
quantum states of the electronic shells of atoms. In according to electronic theory of 
a valence, the inter-atomic bonds are due to the redistribution of electronic dencity 
in the outer orbitals, usually resulting in a stable electronic configuration of noble 
gas (octet) due to formation of ions (or shared electronic pairs between atoms). 
 

4.1 Inter-atomic bonds classification 
 
The connections of atoms, molecules or ions are conditioned by their electrical 

and magnetic interaction. At the increased inter-atomic distance, the forces of 
attraction dominate while at the short distance the repulsion of particles sharply 
increases. Exactly the balance between long-range attraction and short-range 
repulsion is a cause of this or that structure as well as base properties of substances. 
Therefore, the inter-atomic connection creates the chemical bonds, which are due to 
atoms interaction by means of the overlap of their electronic clouds.  

1. Chemical bonding is characterized by the energy and by the length. A 
measure of bonds strength is the energy expended in the case of bond destruction, 
or the energy gained during compounds formation from individual atoms. 
Consequently, the energy of chemical bonds equals to the work that must be 
expended to separate particles that are constrained, or alienate them from each other 
on the infinite distance. While chemical bonds formation, exactly those electrons 
which belong to the valence shells take a major part, since their contribution to solid 
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body formation is much greater than the contribution of inner electrons of atoms. 
However, the division into ionic residues and valence electrons is a matter of 
convention. For example, in the metals, it is sufficient to consider that valence 
electrons are transformed into the conduction electrons while all other electrons 
belong to the ionic residues.  

The fact is that in the atoms of metal the outer electronic orbits are filled with 
a relatively small number of electrons which have low ionization energy. When these 
atoms come together (that is, when the crystal is formed from individual atoms), the 
orbits of the valence electrons strongly overlap. As a result, the valence electrons in 
metals become uniformly distributed in a space inside cationic lattice, and these 
electrons have the common wave function. Therefore, valence electrons in most of 
metals are fully collectivized, and, therefore, such crystals constitute a lattice of 
positively charged ions crowded by the “electronic gas”. Unlike, for example, the 
covalent bonds, the complete delocalization of electrons is a distinctive feature of 
metallic bonds.  

In this way, at the heart of solids classification (dielectrics, semiconductors 
and metals) the spatial distribution of valence electrons lies. Division of crystals into 
the classes suggests that solids consist of: 

∙ ionic residues, i.e., nuclei themselves and those electrons that are so strongly 
associated with their nuclei that formed the residues which cannot significantly 
change their configuration;  

∙ valence electrons, i.e., electrons, which distribution in solids may differ 
significantly from their configuration existing in isolated atoms. 

Shown in Fig. 4.1 spatial distribution of electronic density in the s-, p- and d-
orbitals of a certain atom has a strong influence on the strength and direction od 
inter-atomic bonding. At that, only the s-orbital is characterized by a spherical 
symmetry. In contrast, already the p-orbital has a very specific form, and this is 
especially true for the d-orbitals: their forms are considered as one of causes of 
transition metals specific properties. In the rare earth metals, the f-electrons are 
present, and they may play a double part: as the residues electrons of "atomic core" 
and as the "free" electrons (note that f-orbitals are too complicated, and they are not 
shown in Fig. 4.1).  

Thus, when chemical bonds formation, the valence electrons play a main part, 
because at crystal growth their contribution is much greater than the contribution of 
electrons which form atomic internal orbitals in the residues. Complex 
configurations in the distribution of the electron density, which is especially 
characteristic of the d- and f-states of the outer electron shells, have a noticeable 



184 
 

effect on the future crystal structure. This effect is especially pronounced in the 
nanoscale structures, when part of the bonds of atomic shells are located on the 
surface of nanopartles and turns out to be, as it were, "free". 

 
Fig. 4.1. Calculated forms of s-, p-, and d- orbitals: angular dependence of square wave 

functions  

 
2. Electronegativity is another important factor when formation of complex 

atomic bonds. It’s obvious that primary cause of some crystals peculiarities is the 
asymmetry of electronic density distribution along atomic bonds. Being fundamental 
chemical property, the electronegativity characterizes the tendency of atom to attract 
the shared pair of electrons (or electronic density). This property manifests itself in the 
chemical bonds as a displacement of bonding electrons towards more 
electronegative atom. The highest degree of electronegativity is in the halogens and 
strong oxidants (F, O, N, Cl), and the lowest is in active metals (s-elements of group 
I). An atom's electronegativity is affected by both its atomic number and the distance 
at which its valence electrons reside from the charged nucleus. The higher the 
associated electronegativity, the more an atom or a substituent group attracts 
electrons. The electronegativity is determined by factors like the nuclear charge (the 
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more protons  atom has, the more "pull" it will have on electrons) and the number and 
location of other electrons in the atomic shells (the more electrons an atom has, the 
farther from the nucleus the valence electrons will be, and as a result, the less positive 
charge they will experience (both because of their increased distance from nucleus 
and because other electrons in lower energy core will act to shield the valence 
electrons from the positively charged nucleus). 

Electronegativity depends on atomic number, as well as on size and structure of 
outward (valence) electronic orbitals. The higher is atomic electronegativity, the 
stronger atoms attract electrons towards themselves. The difference of atoms by 
electronegativity might be very substantial. At that, atom with higher 
electronegativity strongly attracts conjunctive electrons, so his true charge becomes 
more negative. Conversely, the atom with lower electronegativity acquires increased 
positive charge. Together these atoms create polar connection and, correspondingly, 
the non-centrosymmetric structure. At the same time, such connections do not lead 
to the appearance of any internal fields, but it can provide peculiar response to 
external impact that is quite different in various non-centrosymmetric crystals. For 
example, in case of directional mechanical influence onto polar crystal the electrical 
response arises (direct piezoelectric effect). The point is that elastic displacement of 
atoms compresses (or stretches) their asymmetric connections, and by this way 
induces the electrical charges on the crystal surface (piezoelectric polarization). On 
the contrary, if the atomic connections in crystal are the centrosymmetrical, no 
electrical response is possible to any uniform mechanical impact (however, the 
inhomogeneous thermal or mechanical impact artificially makes the atomic bonds 
asymmetrical that results in the electrical response appearance in any crystal).  

3. Differentiation of possible bonds between particles in crystals is shown in 
Fig. 4.2A. In fact, this division of real inter-atomic connections into elementary 
models is not strict. Moreover, the very nature of bonds in certain chemical 
compounds can change depending on external conditions. It is noteworthy that in 
the conditions of very high pressure any material with ionic or covalent bonding 
would acquire a property of metal bond, so any material will be turning into a 
"metal".  

The point is that the very high pressure leads to the forced convergence of 
atoms with a great overlap of their outer electronic shells and all valence electrons 
are collectivized into an electronic gas. (It should be noted that in some but rear cases 
even at normal pressure the phase transition of "dielectric-metal" is possible; this 
transition might be stimulated by the change in temperature or by the external 
electrical or magnetic field). 
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 (A) 

 

 
 

      (B)  
Fig. 4.2. Various models for atomic bonds in crystals: A – classification; B –  dependence of 

attraction energy (1), repulsion energy (2) and total energy (3) on inter-atomic distance r:  
a – ionic bond, b – covalent bond; c – molecular (quadrupole) bond; d – hydrogen bond 

 
Such a division is rather conditional, since it corresponds to simplified 

models: it should be noted that in many cases actual bonding might be more 
complicated, and the intermediate cases between simple model representations often 
take place. Figure 4.2B schematically shows the dependence of energy on inter-
atomic distance for bonds in base types of dielectrics and semiconductors (metal 
bonds are not shown). Between particles (atoms, molecules or ions), creating crystal, 
at relatively big distances the forces of attraction dominate: corresponding energy is 
negative and characterized by curves 1. At short distances the force of repulsion 
becomes much more powerful; its energy is positive and characterized curves 2. The 
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total potential energy of inter-atomic interaction is shown by curves 3 which 
minimum corresponds to the stable distance between the interacting particles (this 
is the parameter of lattice). 

Strong repulsion between the approaching atoms or ions can be modeled by 
the drastic energy dependence: Urep ~ r–8–r–12; this dependence characterizes the 
mutual impenetrability of electronic orbitals: electronic shells of the neighbor atoms 
or ions can penetrate each other only a very slightly. This is a reason while the atoms, 
ions or molecules can be presented by the “hard spheres” of certain radiuses, the size 
of which remains practically unchanged. The attraction forces that tie together 
atoms, ions and molecules in solids have electrical nature. It should be noted that 
crystals are classified just by the nature of attraction forces. As it can be seen from 
Fig. 4.2, main types of chemical bonds in dielectrics and semiconductors are: 
covalent, ionic, molecular, and hydrogen bonds. Metallic bonding (not shown in Fig. 
2B) can be considered as limiting case of covalent bond. 

The molecular and the metallic bonds are shown in the opposite sides of a 
scheme in Fig. 2A, because they are absolutely contrary. The molecular bonding is 
a main type of inter-atomic connection in the molecular crystals, in which all 
electrons are completely locked in their molecules (or atoms), Fig. 4.3A.  

 

              
                          (A)                                                              (B) 

 

Fig. 4.3. Two-dimensional image of electrical charge distribution: A – molecular crystal, in 
which quadrupole electronic fluctuation (+ – … – +) causes the attraction of atoms while partial 
overlapping of electronic shells leads to repulsion (←…→) balancing this attraction; B – metal 
crystal, black circles represent positively charged atomic residues, immersed in electronic gas 

 
The nucleus are surrounded by the spaces (shown as black balls), where the 

density of electronic cloud reaches significant values. The spindle-shaped shaded 
areas between the atoms symbolically represent dynamically self-induced dipole or 
quadrupole inter-atomic (or intermolecular) attractive forces, which provide 
molecular crystals a certain (generally low) strength. It is pertinent to note that this 
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type of bonding is present in all compounds, but since it is weak in comparison with 
other types of bonds, it is usually neglected. Only in the absence of other types of 
bonds the molecular bonding becomes decisive. 

Simplest examples of pure molecular bonding are the atomic crystals of solid 

inert gases: neon, argon, krypton and xenon. They have completely filled electronic 
shells, which stable electronic configuration undergoes only a minor change while 
solids formation. Therefore, the crystal of inert gas is the example of rigid body, in 
which strong electronic bonding exists exclusively inside atoms (or molecules), 
while the electronic density between atoms is rather small, because all electrons are 
well-localized near their own nucleuses. On going to the nanosize, this 
"conservative" type of bonding changes very little, because the electron shells for 
any particle size remain tightly bound in their atoms. 

4. Metallic bonding, as already noted, are formed by the outer electronic 
orbitals are incomplete, containing rather small amount of electrons which have low 
energy of ionization. When such atoms approach closer together (that is, when metal 
crystal is formed), the orbitals of valence electrons largely overlap each other. As a 
result, these electrons become distributed nearly uniformly in the space between 
ions, Fig. 4.3B. Indeed, the X-ray studies of metals indicate practically uniform 

electronic density in their lattice. Usually the valence electrons in metals are the joint 
collective in the crystal as a whole, and metal represents the lattice of positively 
charged ions, in which the “electronic gas” exists. This is a reason of the 
delocalization of metal bonds; moreover, metallic bonds are unsaturated and non-

directional. For the same reasons, the vetals are characterized by highest among 
crystals coordination number of ions (usually in metals this number is 12, it is the 
quantity of nearest neighbors to given particle). For comparison, it should be noted 
that in the ionic crystals this number is often 6 or 8 while coordination number in 
the covalent crystals even smaller – it is only 4 in the semiconductors of diamond 
structure. 

It is noteworthy that already in the micro-sized metallic particles an increasing 
role plays the peculiar electronic states of atoms located on the surface of metal 
particles that noticeably affects the properties of such material. With a further 
decrease in the size of metallic particles and the transition to nanoparticles, the 
formation of common electronic gas throughout nanoparticle becomes problematic, 
and the metallic bonding degenerates. 

5. Ionic bonding is peculiar mostly for ionic crystals (such as sodium chloride 
(Na+Cl–), which are the chemical compounds formed from the metal and non-metal 
elements. The energy of different ions attraction varies with distance rather slowly, 
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so the ionic bonds are the most long-ranging in comparisons with others. Like 
atomic or molecular crystals (shown before in Fig. 4.3A), the ionic crystals can be 
characterized by such a distribution of electronic charge, which is almost completely 
localized near the ions. In the simplest model of ionic crystal shown in Fig. 3.4A the 
ions look like the “nearly impenetrable charged balls". This approximation is rather 
good for those ions which possess the completely filled electronic shells. 

Typically, the cations and anions acquire the electronic configuration of inert 

gases, and, therefore, the distribution of electronic charge in them has almost 
spherical symmetry. Ions with the opposite charges attract each other due to the long-
range Coulomb forces, so the energy of their attraction varies with distance very 
slowly: Uatt ~ r–1, Fig. 4.2B. At the same time, the short-ranging repulsive energy of 
ions is inversely proportional to inter-atomic distance: Urep ~ r–8–r–12 (exponent 
depends on properties of given crystal). It might seem that ionic crystal can be 
considered as molecular crystal which lattice is built not from the atoms but from 
ions (as, for example, ions Na+ and Cl– in the rock salt). The point is that charge 
distribution between the ions, located in a solid body, is only a slightly different as 
if it were for isolated ions. However, the particles which form ionic crystal are not 
the neutral atoms: between ions the large attraction forces exist, which play major 
role and determine main properties of the ionic crystals (which differ significantly 
from properties of molecular crystals).  

 

           
 

                                              (A)      (B) 

 

Fig. 4.4.Two-dimensional image of electronic charge distribution in: A – ionic crystal, where 
ions attraction is balanced by partial overlapping of electronic shells; B – covalent crystal, black 
diffused circles represent atomic residues surrounded by the regions, where electronic density 

reaches significant values  
 

In Fig. 4.4A demonstrating simplest model of ionic crystal, all ions are 
presented as "interacting nearly impenetrable charged spheres", and this 
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approximation is quite sufficient for ions possessing entirely filled electronic shells. 
While in the molecular crystals all electrons remain locked in their native atoms, in 
the ionic crystals the valence electrons, during crystal formation, passed to the 
neighboring atoms, forming the cations and anions with a strong electrostatic 
interaction. The ionic bonding occurs between the particles of two types, one of 
which easily loses electrons, forming positively charged ions (cations) and other 
atoms that are readily get electrons, forming, respectively, negatively charged ions 
(anions). Most of electropositive cations belong to groups I and II of the Periodic 
System, while most of anions belong to the groups VI and VII. As a rule, the ions in 
crystals are packed tightly, as each of them is surrounded by the largest number of 
oppositely charged ions. Stabilization of ionic solids structure takes place at 
coordination number 6, 8 and, occasionally, even 12. It should be noted that ionic 
radiuses varies noticeably with value of coordination number. Ionic bonds, unlike 
metallic bonds, are saturated, but like in metals they are not directed. 

Like other types of bonds, ionic bonding is very sensitive to the size of 
particles, since the role of surface states in the microparticles and especially in the 
nanoparticles sharply increases. A decrease in size leads to a change in the symmetry 
of micro-crystals in comparison with bulk crystals of the same chemical 
composition; the properties of films of ionic compounds also change significantly. 

6. Covalent bonding in crystals is typical for semiconductors. Dependence of 
binding energy on the inter-atomic distance is shown in Fig. 4.2B; the attractive 
forces in case of covalent bonds are not so long-ranging as in case of ionic bonding: 
their energy changes with distance as r–2–r–4. In principle, the nature of covalent 
bond is close to the metallic bond, but in the covalent crystals the valence electrons 
are shared only between the nearest neighboring atoms while in metals their valence 
electrons are shared within crystal lattice. Usually covalent bond (which is also 
called the homeopolar bond) is formed with a pair of valence electrons which have 
opposite directions of spins (one such pair is shown by 2 arrows in the upper part of 
Fig. 4.4B, in fact, each atom is surrounded by four such pairs). While covalent 
chemical bond formation, the reduction of total energy is achieved by a quantum 
effect of exchange interaction: simplest example of covalent bond is hydrogen 
molecule H2, in which two electrons belong simultaneously to both atoms). 

Classic example of covalent crystal is the diamond, Fig. 4B, where carbon 
atoms are located rather roomy: their coordination number is only 4. The inter-
atomic space in such a crystal seems to be very free (it is enough to compare it with 
the metal in Fig. 4.3B, where the coordination number is 12). It is possible that this 
is the reason for the high mobility of electron freed from covalent bond (the effective 
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mass of such electron in some semiconductors turns out to be three orders of 
magnitude less than in metals and vacuum). At that, the diamond (as semiconductors 
of similar structure – germanium and silicon) is characterized by a comparatively 
high density of electronic cloud in the atomic interstitials: electrons are concentrated 
mainly near the lines connecting each atom with its four nearest neighbors. Although 
the diamond is a dielectric, the high charge density in the areas between atoms is the 
characteristic feature of semiconductors.  

Covalent bonds, unlike metallic bonds, are strongly directed, moreover, they 
are saturated. Saturation of the covalent bond is the ability of atoms to form only 
limited number of covalent bonds. The number of bonds formed by each atom is 
determined by its outer electronic orbital. Directivity of the covalent bond is caused 
by their peculiar electronic structure and geometrical shape of electronic orbitals 
(angles between two bonds are the valence angles). Sometimes, covalent bonding 
might have a pronounced polarity and increased polarizability, which determines 
many chemical and physical properties of correspondent compounds. The polarity 
of covalent bond formed by different atoms is due to uneven distribution of 
electronic density due to difference in electronegativity of generating atoms (just on 
this basis the covalent bonds are divided into the non-polar and polar). The 
polarizability of bonds can be expressed by non-symmetrical self-displacement of 
binding electrons. 

The following types covalent connections are distinguished: 
∙ The non-polar (simple) covalent bond arising from the fact that each of 

atoms provides one of its unpaired electrons, but formal charge of atoms remains 
unchanged, since the atoms which forming a bond equally have socialized electronic 
pair (it is this type of connection that is shown in Fig. 4.4B). 

∙ The polar covalent bond, in which generating atoms are different and the 
degree of covering of socialized pair of electrons is determined by difference in 
electronegativity both atoms. Atom with a greater electronegativity stronger attracts 
electrons, so its real charge becomes more negative. Less electronegative atom 
acquires, respectively, the positive charge of same magnitude. 

∙ The donor-acceptor bond arises, when both connecting electrons are 
provided by one of atoms (called the donor) while the second atom, involved in the 
formation of a bond, is the acceptor. When creating this pare, the formal charge of 
donor is increased by one while the formal charge of acceptor is reduced by one. 
The electronic pair of one atom (donor) goes into a common use, while another atom 
(acceptor) provides its free orbital. As donor atoms, usually serve the atoms, which 
have more than 4 valence electrons. 
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∙ The σ-bond and π-bond are the approximate description of some types of 
covalent bonds in some compounds. At that, the σ-bond is characterized by a 
maximum of electronic cloud density along the axis joining the nuclei of atoms. 
Formation of the π-bond is characterized by the lateral overlap of electronic clouds 
"above" and "below" plane of σ-bond. 

Unlike metallic coupling, the emergence of covalent bond is accompanied by 
such a redistribution of electronic density, when its maximum localizes between the 
interacting atoms. As in metals, in the case of covalent bond, a collectivization of 
outer valence electrons is seen, but the nature of electronic allocation is another than 
in metals. In the ground state of covalent crystals, i.e., at temperature T = 0 K, there 
are no partially filled electronic energy bands and the conductivity tends to zero (on 
the contrary, in the metals at T → 0 conductivity tends to infinity). In other words, 
the covalent crystal can not be described by the uniform distribution of electronic 
density between atoms, as it is typical for simple metals. Conversely, in the covalent 
crystals, their electronic density is increased along the "best destinations" leading to 
the chemical bonds. Covalent bond is the stronger the greater is the overlap of 
electronic clouds of interacting atoms. If this bond is formed between similar atoms, 
the covalent connection is called the homeopolar, and when generating atoms are 
different – the heteropolar.  

In the case when two interacting atoms shares one electronic pair, the 
connection is single, when there are two electronic pairs, this is the double bond, and 
when there are three electronic pairs the bond is triple. The distance between bound 
nuclei is the length of covalent bond; at that, bond length decreases, when the order 
of bond increases. For example, the length of "carbon-to-carbon" bond depends on 
the multiplicity: for C–C bond its length is 1.54⋅10–1 nm, in case of C=C bond the 
length is 1.34⋅10–1 nm while for С≡С it is only 1.20⋅10–1 nm. With the increase of 
bond order its energy increases.  

The directivity of covalent bond characterizes the features of electronic 
density distribution in atoms. For instance, in the germanium and silicon crystals 
(which have diamond structure) each atom is located in the centre of tetrahedron, 
formed by four atoms – closest neighbors. In this case, the tetrahedral bonds are 
formed so that each atom has only four nearest neighboring atoms. Most of covalent 
bonds are created by two valence electrons (hybridized) – one from each of 
interacting atom. In case of such connection, these electrons are localized in the 
space between two atoms; at that, the spins of these electrons are anti-parallel. In 
Fig. 4.5C, where the main types of inter-atomic bonds of dielectrics and 
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semiconductors are compared, different directions of electronic spins are 
conventionally shown by opposite arrows. 

 

        

                                                       
                        (A)                                           (B)                                     (C) 

 

Fig. 4.5. Two-dimensional image of electrical charge distribution: A – molecular crystal, in 
which the quadrupole electronic fluctuation (+ – … – +) causes attraction of atoms, while partial 
overlapping of electronic shells leads to their repulsion (←…→) compensating this attraction; B 

– ionic crystal where the attraction of ions is compensated by partial overlapping of electronic 
shells; C – covalent crystal; in graphs, solid curve shows interaction energy while dotted curve 

shows inter-atomic force  

 
Shown in Fig. 4.5 plane scheme can give only approximate representation of 

actual location of atoms. In fact, these atoms relative position in real crystals can be 
quite complex.  

7. Hybrid ionic-covalent bond is schematically shown in Fig. 4.5C. As the 
model of "purely covalent" so the model of "purely ionic" crystal are too idealized. 
In the real crystals (let us say, in some AIIIBV and AIIBIV types of semiconductors 
and in polar dielectrics) an intermediate case between the ionic and covalent bonds 
exists. In the covalent silicon crystal, see Fig. 4.6A, the electrons, on average, are 
equally distributed around atoms; at that, electronic density between atoms is rather 
big (the small coordination number 4 leaves enough room for a noticeable 
concentration of electronic density in the interatomic space). In the ionic crystal, see 
Fig. 6B, the attraction of cathion and anion is compensated by the repulsion force 
creating due to the partial overlapping of electronic shells. 
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                   (A)                                             (B)    (C) 
 

Fig. 4.6. Simplified scheme of the transition from covalent and ionic bonds to the mixed polar 
bond: A – in covalent bond the electronic density (ρ) distribution is quite symmetrical (arrows 

symbolize opposite orientation of spins in connecting electrons pair); B – in ionic bond the 
cation and anion  attract (big arrows) and small overlap of electronic shells ensures the repulsion 

(small arrows) while electronic density distribution is almost symmetrical, C – asymmetric 
mixed bond leading to polar properties of crystals, both attraction and repulsion are seen: 

covalent bond is formed by electronic pair with opposite spins; electronic density distribution is 
asymmetric that can be characterized by displacement δ 

 
The conception of intermediate type bonds agrees with the imagination of ions 

deformation due to their polarization. This may occur, for example, by the distortion 
of anion’s electronic orbital mainly by a different electronegativity of adjacent ions. 
At that, the electronic density between the ionic residues increases, i.e., the mixed 
covalent-ionic bond by peculiar charge separation becomes the polar bond. It is 
pertinent to note that exactly the presence of such bonds determines the non-
centrosymmetric structure of some crystals; i.e., hybrid ionic-covalent bonding is a 
main cause of the pyroelectric, ferroelectric and piezoelectric properties. Most of 
such active dielectrics belong to such crystals or to other ordered polar systems 
(liquid crystals, electrets, polar polymers, etc.). That is why, a physical hypothesis, 
relevant to the nature of the internal polarity (that is not caused by external electrical 
field) deserves particular attention. This hidden (or latent) polarity manifests itself 
in the polar crystals as the ability to provide electrical (vector) response to any non-
electrical scalar, vector or more complicated tensor impacts. 

The tendency of polar crystals to electrical response onto non-electrical 
impact leads to the fact that they can generate electrical potential due to the uniform 
heating or cooling of crystal (pyroelectricity) or under uniform deformation 
(piezoelectricity). They are mostly the crystals with a hybrid ionic-covalent bonding. 
Just this peculiarity causes the reduction in crystal symmetry, so polar crystals 
always belong to the non-centrosymmetric classes. On the contrary, crystals with the 
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exclusively ionic bonds, as well as the crystals with the exclusively covalent bonds 
are non-polar ones. Usually they belong to the centrosymmetric classes of crystals: 
in typically ionic crystals the central symmetry exists, i.e., no special orientations in 
the atomic connections exists. In the same way, the simple covalent crystals also 
belong to the centrosymmetric structures: each atom provides for bonding one 
unpaired electron, at that, four socialized electronic pairs are located symmetrically.  

The fact that in many crystals (for example, in some semiconductors) the type 
of bonding has an intermediate character between covalent and ionic bonds. At that, 
the energy of ionic, covalent and metallic chemical bonding is characterized by 
similar order of magnitude; in this respect they are much inferior to molecular bonds. 

8. Molecular (Van der Waals) bonds exist always, but only when much 
stronger valence bonds are absent the molecular bonds become main type of 
chemical connecting, firstly, in the molecular crystals. The forces of attraction in 
this case are relatively small being very short-ranging: energy of intermolecular 
attraction varies with distance as Uatt ~ r–4– r–6, Fig. 4.2Bc. It is evident that this kind 
of attraction is weak in comparison with ionic and covalent forces; at that, the Van 
der Waals bonds are additive and non-saturated.  

In case of non-polar molecules, the attractive forces are due to the accidental 

deformations of electronic shells. Quantum fluctuations of electronic density in the 
molecules exists always; thereby, spontaneously arising (virtual) electrical dipoles 
or quadrupoles lead to the attraction of molecules (in Fig. 4.B,c the Van der Waals 
bonding is shown schematically and only as dipole-to-dipole interaction). Electronic 
polarizability of orbitals determines the optical dispersion in the materials; that is 
why, the forces of attraction of this type sometimes are called as dispersion forces. 

In the case of polar molecules, the orientation interaction also contributes to 
the usual molecular interaction. The influence of intrinsic (permanent) dipole onto 
induced polarity of another molecule is the inductive interaction. In general, in case 
of Van der Waals bonding, main contribution is given by the dispersion forces, but 
when molecules have large dipole moments a contribution of orientation effect 
might be significant. As a rule, inductive interaction is negligible.  

9. Hydrogen bond appears between the hydrogen atoms and electronegative 
atoms P, O, N, Cl, S belonging to other molecule. The nature of this bond lies in the 
redistribution of electronic density between atoms, conditioned by the hydrogen ion 
H+ (proton), Fig. 4.2B,d. The crystals possessing hydrogen bonds (dielectrics and 
semiconductors) show the properties similar to the molecular crystals, but there is a 
reason to allocate them in special class. The point is that hydrogen is unique in 
following respects: 
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∙ the residue of hydrogen ion is "bare" proton, which size is of about 10–13 cm 
   (i.e., in 105 times smaller than any other ion); 
∙  the hydrogen needs only one electron to constitutethe stable helium-type  
   electronic shell (that is a unique case among other stable configurations  
   having only two electrons in outer shell);  
∙ the ionization potential (energy required to remove electron from atom)  
   in the hydrogen is vey big: 13.6 eV (in alkali-halide metals it is ~ 4 eV). 

Because of these properties, during formation of correspondent crystalline 
structure, the effect of hydrogen may differ significantly from the influence of other 
elements. Due to the large ionization potential of hydrogen atom it is difficult to 
remove completely its alone electron. Therefore, the formation of ionic crystals with 
hydrogen occurs differently than, for example, in the case of alkali-halide crystals. 
Hydrogen atom may not behave in a crystal as typical covalent atoms: when H atom 
loses its electron, it can create only a single covalent bond, shared with another atom. 

Because the size of proton is about 10–13 cm, it is localized on the surface of 
large negative ions; thereby such a structure arises that can not be formed with any 
other positive ions. The energy of hydrogen bond is less by order of magnitude than 
covalent bond energy, but it is greater than the energy of Van der Waals interactions 
in the order of magnitude. Although hydrogen bonds are not very strong, they plays 
important role in the properties of correspondent crystals. Hydrogen bonds are 
directional; molecules that form hydrogen bonding tend to have dipole moment that 
indicates polar nature of this bonding. In some crystals, exactly hydrogen bond leads 
to the piezoelectric, pyroelectric and ferroelectric properties; it should be noted also 
that the molecular and hydrogen bonds are very important in the various structures 
of liquid crystals. 

10. Effect of structural defects that violate strict periodicity of crystal lattice 
can lead not only to the local polar properties of ionic and covalent crystals, but in 
some rare cases even lead to formation of polar-sensitive crystal lattice. 

First, the appearance of a local polarity in crystals containing semi-free 
(localized) electrons (or electronic holes) will be discussed. They are concentrated 
in the vicinity of structural defects of a dielectric, allowing the localization of 
electrons (holes) in two or more equivalent positions, which are separated by low 
potential barriers. Thus, structural defects centers are the places of irregularity in the 
distribution of electric charge in the crystal lattice. 

This type of local electron polarization is characteristic of many technically 
important dielectrics, such as rutile (TiO2), perovskite (CaTiO3), and similar 
complex oxides of titanium, zirconium, niobium, tantalum, lead, cerium, and 
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bismuth. A high concentration of structural defects such as an anion vacancy is the 
structure peculiarity of these substances, especially in their polycrystalline state. 

 
Fig. 4.7. Local polar centres in rutile: planar lattice model of titanium dioxide with oxygen anion 

vacancy located at the intersection of electron clouds; Ο – oxygen, O–2; ∙ – Ti+4; ⋅ – Ti+3 

 
During high-temperature synthesis of ceramics from mixture of oxides (or 

while crystal growth) appearance of anionic vacancies is very likely. Electrical 
compensation of these defects occurs by the lowering of valence of cations located 
near anion vacancy. Figure 4.7 shows one of possible case of partially-bound 
electrons location near ionic vacancy in rutile. In selected part of TiO2 crystal there 
are three titanium ions as the nearest neighbours to anion vacancy (in 3D crystal the 
number such neighbours are five). Charge compensation of oxygen vacancy carried 
out by the fact that two of five adjacent to the anion vacancy titanium ions become 
trivalent: each of them contains in its outer shell one weakly bound electron; at that 
probability density of these electrons wave function is increased in the place of 
missing oxygen. Under the influence of chaotic thermal lattice vibrations these polar 
centres are oriented randomly that do not lead to regularly oriented polarization in 
crystal: concentration of anion vacancies in crystal can not be very large; so these 
pseudo-dipoles can not become self-organized into the polar lattice. 

Second example that might have of particular interest is that local polarity can 
be artificially created by irregular disposition of ions in crystal. In simple case, this 
can be obtained in the solid solutions of crystals that have different sizes of ions: in 
them, smaller ion occupies not its geometrically-central position, but shifts to one of 
nearest ions of opposite polarity. At that, polar moment is formed, which can change 
its direction in a lattice, when small ion jumps closer to another neighboring ion. 
Figure 1.7 symbolically shows, for example, potassium chloride crystal that forms 
solid solution with lithium chloride (K1-xLix)Cl, where index x is Li+1 volumetric 
concentration.   
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Fig. 4.8. The ability to create polar cluster in simple cubic ionic crystal: small positive ion 

localizes nearby one (1) of possible negative ions, having the ability to jump in other position (2) 

 
In cubic lattice of KCl crystal, small cation Li+1 jump closer to one of six 

neighboring ions Cl–1, thereby forming local dipole moment embedded in lattice. In 
Fig. 4.8 such equiprobable positions are four, but there are six of them in the volume 
of a crystal. The solubility of LiCl in the KCl is limited, so that the distance between 
these dipoles is not enough to create by their interaction polar lattice able to 
overcome energy of thermal vibrations (especially since permittivity in alkali halide 
crystals is rather small; ε < 10). That is why in others similar crystals it is also not 
possible to obtain by this way any polar lattice. 

However, some experiments with the non-central cations, imbedding into 
crystal matrix with higher permittivity, namely, in non polar (paraelectric) crystal 
KNbO3 in which ε ~ 200 turned out to be more successful: crystal (K1-xLix)Nb3 looks 
like artificial ferroelectric with Curie point round 300 K. The interaction of 
embedded dipoles, formed by the non-central location of Li+1 ions partially replacing 
K+1 ions, in the highly polarized lattice opened up a possibility for formation of self-

ordered polarization. 
 

4.2 Electrical properties explanations by inter-atomic bonds 
 
The electrical properties of a material include the electrical conductivity, 

electrical polarization, electrostriction, piezoelectric, pyroelectric and 
electrothermal effects. Different responses of crystal onto the applied electrical field 
are listed symbolically in Fig. 1A. Several reversible and irreversible physical 
phenomena are seen – not only of electrical nature but also the mechanical and the 
thermal responses.   

Among responses there are the electrical displacement (induction) D(E) and 
the electrical current j(E), among mechanical effects the electrostriction x(E2) and 
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the piezoelectric effect x(E), among thermal effects the Joule heat from dielectric 
losses δQ(E2) so the heating or cooling due to the electrocaloric effect δQ(E). 
 

 

                
 

  (A)    (B)                    (C) 
 

Fig. 4.9. Classification of polar crystal responses on electrical field influence:  
A – classification of electrical (D, j), mechanical (strain x) and thermal (δQ heat) effects (ε is 
permittivity, σ is conductivity, R is electrostriction coefficient, d is piezoelectric module, ξ is 

generalized loss factor,  η is electrocaloric coefficient;   
B – electrical induction dependence on electrical field in dielectric compared with vacuum; C – 

electrical current density j dependence on electrical field E 

 

1. Electrical polarization and electrostriction will be discussed as priority. 
The electronic quasi-elastic (optical) polarization is considered using Fig. 4.9. In the 
non-polarized state (E = 0) the electronic shells of atoms are located symmetrically 
with respect to their nuclei, Fig. 4.9A, so that the effective centre of negative charge 
(q−) creating by the electronic shells coincides with positively charged (q+) nucleus. 
Accordingly, when electrical field is absent, the elemental dipole moment is zero (p 
= 0), since it is determined by the product qx = р, but any relative displacement of 
charges q+ и q− is absent: x = 0.  

2. Electronic shells polarization (otherwise known as "optical" polarization) 
is simplified shown in Fig. 4.10. The system of positive charges (nuclei) and 
negative charges (electronic shells) is balanced, and in the one-dimensional chain of 
atoms with length l there is no polarization, Fig. 4.10A.  

If the electrical field acts on this model, the electrical force influences on each 
atom, molecule or ion, and their electronic shells displace with respect to the 
correspondent nucleus, Fig. 4.10B,C whereby the centre of negative charge shifts 
relatively to the positively charged nucleus, so that in each atom elementary polar 

moment appears: p = qx > 0.  
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       (A) 
 

 
      (B) 

 
    (C) 

 

Fig. 4.10. Electronic (optical) polarization: A – 1D covalent crystal simplified model as a chain 
consisting of alternate covalently linked atoms; B, C – electrical field influence  

 
The elementary electric moment depends on the electric field: p(E) and 

changes its sign when the electrical field changes its sign. This means that the 
dependence p(E) is an odd function, which, when expanded in a series at the 
condition of the smallness of electrical field, allows restrict to the first term of this 
series p(E) = αE where α is polarizability – the microscopic parameter. When 
macroscopic description, if electrical field E is applied to a dielectric, than an 
electrical polarization arises: P = ε0χE, where P is the polarization (macroscopic 
electrical movent), ε0 is electrical constant and χ is dielectric susceptibility. Electrical 
polarization means that the separation of electrical charges occurs: for example, on 
the opposite surfaces of plane-parallel dielectric sample the electrical charges of 
different signs appear; at that, these charges are not free but closely bound to 
dielectric. Traditionally polarization process is described by the electrical induction 

D = ε0εE = ε0E + P,   
which includes the induction of vacuum ε0E and the polarization of dielectric P = 
ε0χE; at that, dielectric permittivity ε = 1 + χ takes into account both processes. 

Electrical polarization is accompanied by the deformation: x = Δl/l; it is 
noteworthy that the magnitude and the sign of relative deformation (strain) does not 
depend on the sign of applied electric field (that is seen from Fig. 4.10B,C); that is, 
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the dependence of deformation on the field x(E) is described by an even function. 
When expanding this function in a series, the smallness of the value of deformation 
allows restrict to the first term of this series:  x(E) = RE2 where R is the coefficient 
of electrostriction. 

3. Ionic lattice polarization (otherwise known as "far-infrared" polarization) 
is modelled by simplified model of 1D ionic crystal chain with length l shown in 
Fig. 4.11A.  

 
(A) 

 

 
(B) 

          
                  (C)                  (D) 

 
Fig. 4.11. Ionic polarization: A – 1D ionic crystal as chain consisting of alternate one positive 

and one negative ion; B, С – electrical field influence, D  – polarization and strain field 
dependence 

 
When electrical field is absent, the lattice is balanced by the cations and anions 

interaction and is not electrically polarized: the system of different signs charges is 
electrically neutral, and it does not show any own electrical moment (polarization) 
in the absence of external influences. But under applied external electric field, Fig. 

4.11B,C the cations and anions mutually displace forming polarized lattice of q+q–

, in which induced elementary electrical moment is p = qx > 0. By this way, the ionic 
polarization arises, and it determines many electrical properties of ionic crystals.  
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Exactly, as in the case of electronic polarization, the ionic polarization is 
accompanied by electrostriction x(E) = RE2. In an ionic crystal, both electronic 
polarization and electrostriction (caused by electronic shells) are inappropriately 
present. However, in the ionic crystals, the electrostriction is much higher than the 
electronic electrostriction and sometimes (in crystals with high permeability) is an 
important electromechanical effect for practical application. In Fig. 4.11D the odd 
effect (linear) of polarization and the even effect (quadratic) of electrostriction effect 
are compared. 

However, the electromechanical effect, as seen in Fig. 4.9, can be not only a 
quadratic (x = RE2), but also the linear, i.e. converse piezoelectric effect:  x = dE2. 
Simple systems of covalent (electronic) and ionic bonds shown in Figs. 4.10 and 
4.11 cannot explain the linear piezoelectric effect, so it is necessary to consider more 
complex types of inter-atomic bonds. 

 

4.3 Polar-sensitive atomic bonds 
 
For further consideration of internal polarity nature, turn to possibility of 

creating polar properties in dielectric artificially in uniform impurity-less non-polar 
crystal. In fact, in ordinary ionic or covalent crystals polar properties can be obtained 
by applying to them electrical field E. At that, resulting induced polarization P = ε0(ε 
– 1)E is accompanied by electrostriction, which is the quadratic effect when relative 
deformation x of crystal increases in the applied field by parabolic law: x = R⋅E2 

(in contrast to polar crystals, in which field-induced deformation depends on applied 
field linearly, showing piezoelectric effect: x = d⋅E). It is seen that strain x in the 
case of electrostriction does not change its sign with change electrical field sign – 
unlike piezoelectric effect.  

1. Linearized electrostriction. It is quite remarkable that the linear 
electromechanical effect (which is a peculiar property of polar crystals) can be 
interpreted as the linearized electrostriction, Fig. 4.12. Suppose that external direct 
electrical field (bias field Eb) is applied to the usual centrosymmetric crystal which 
is non-piezoelectric at Eb  = 0. Applied electrical field changes the original symmetry 
of a crystal due to its electrical polarization: as seen from Fig. 4.12, the strain xb 
increases quadratically in dependence on the bias field Eb. In this way, under the 
fixed external direct voltage, the structure of a crystal turns into artificially created 
polar structure (it is turning into the “electrically induced non-centrosymmetric” 
structure). 
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Fig. 4.12. Representation of piezoelectric effect as the linearized electrostriction; in bias field Eb 

quasi-linear dependence x’(E’) imitates the piezoelectric effect [4] 

 
If that's the case, than the imitation of linear electromechanical response 

(piezoelectricity) can be observed on a wing of the electrostriction parabola: at the 
presence of bias field, the alternating electrical filed E′ generates practically linear 
mechanical response: х′ ≈ d′⋅Ε′, where d′ is electrically induced piezoelectric 
module. Calculations shows that d′ ≈ 2Q’ε0

2ε2Еb, where ε is the permittivity and Q’ 
is the electrostriction parameter. It should be noted that in those dielectrics which 
have very large permittivity (ε = 104–105) this effect can be "gigantic", Fig. 4.13B, 
that is really used now in electronics.  

Similarly, in the presence of electrical bias field, the pyroelectric effect can be 
also induced in any crystal, that also finds some application in modern thermal 
sensors. In the dielectrics possessing large permittivity, the electrically induced 
pyroelectric effect can be so great that it exceeds in the sensitivity the natural 
pyroelectricity in polar crystals. In compliance with such electrically induced 
piezoelectric and pyroelectric effects (that are possible in any solid dielectric but 
applicable in the dielectrics possessing large permittivity), one can suppose that the 
usual piezoelectric effect also can be explained as the “linearized electrostriction”, 
Fig. 4.13. This assumption might be advanced according to conception that 
fundamental reason of crystal intrinsic polar-sensitivity is the asymmetry in 
electronic density distribution along polar bonds between such ions possessing 
different electronegativity which replaces the externally applied field. In extremely 
simplified form, two linear models of electronic density distribution (covalent, ionic 
and mixed bonding) are shown in Figs. 4.10 and 4.11: both given in the normal state 
and under electrical field influence.  
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             (A)                                                                         (B) 

 

Fig. 4.13. Electrically induced piezoelectric effect in high- dielectrics: A – line 1 is SrTiO3 

with  

 = 300; line 2 – CaTiO3 with  = 150; line 3 – TiO2 with  = 100); B – comparison of relaxor-
ferroelectric and paraelectric  

 
It is pertinent to recall that in the covalent crystal the electrons are equally 

distributed around their atoms; at that, the electronic density between atoms is rather 
big. The most important property of covalent structure is the openness of their 
structure, due to a small number of neighboring atoms (four in total) and mutual 
coupling of electronic pairs having opposite spin. From this it follows, by the way, 
the increased electronic polarizability of covalent crystals (εopt = 7–15) and highest 
possible mobility of free electrons in them. It is important here that the externally 
applied field deforms the electronic shells of atoms by the stretching them that leads 
both to electrostriction x = Δl/l ~ E2 and to the increased polarization due to the 
relatively free displacement of the electronic density clots, Fig. 4.6A.  

In the ionic crystals, the mutual attraction of cations and anions is 
compensated by the repulsion of partially overlapping of electronic shells as well as 
by the essential deformation of the electronic shells of ions. In contrast to covalent 
(atomic) crystals, in which magnetic attraction of spins dominates in the outer shells, 
in the ionic crystals the outer electronic shells are under the action of electrical field 
of dissimilar ions, Fig. 4.6B. In the external electrical field, the cations and anions 
are forced to be displaced that gives such a deformation of electronic shells of ions, 
at which virtual formations of electronic pairs become possible. That is why, the 
application of external field is accompanied by the electrostriction, the value of 
which is proportional not only to E2 but also to ε2. If in the covalent dielectrics and 
semiconductors, as a rule, ε ~ 10, then in some highly polarizable non-polar ionic 
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crystals (paraelectrics) ε reaches 102–104 that leads to very large and even gigantic 
electrostriction. 

Therefore, being in the non-equilibrium polarized state, under the influence 
of externally applied field, both covalent and especially ionic crystals acquire the 

properties of polar crystals, namely, the ability to show piezoelectric, pyroelectric, 
linear electrooptical and others special effects.  

2. Mixed covalent-ionic bonding, shown in Fig. 4.6C, is the distinctive feature 
of models under discussion, as well as main property of polar crystals guarantee the 
piezoelectric and pyroelectric effects without external electrical field application. In 
this way, instead of external electrical field, which need to be connected to ionic or 
covalent crystals and forcing them to be in the polarized but nonequilibrium state, in 
the case of mixed covalent-ionic crystals their polar-sensitive state is a stable 
property without any external field, being ensured by one of fundamental properties 
of ions – their electronegativity. Exactly the distinction in the affinity to electrons in 
various ions leads to formation of hybridized polar-sensitive bonds, which determine 
crystal’s own polarity, replacing in this way external electrical field, which can 
polarize any crystal. In polar crystal its state: “able to polarization by non-electrical 
way” is entirely equilibrium state at certain temperature (T1) and pressure (p1), and 
it is stored in absence of external influences as much as one wants. If any external 
acting on polar crystal occurs (changing in temperature, mechanical stress, etc.), then 
a new stable state arises, already at T2 and p2. At that, change in state (T1 → T2 or p1 

→ p1) is accompanied by surface electrical charges dynamic appearance (in other 
words, thermally or mechanically induced polarization arises), i.e., pyroelectric or 
piezoelectric effect becomes apparent. 

3. Longitudinal piezoelectric effect (as well as the secondary pyroelectric 
effect) can be explained by a simple one-dimensional model which is the chain of 
ions with a hybrid (mixed) bonding, Fig. 4.14. In this simplified model internal 
polar-sensitive bonds are “persistant”, but they can be deformed as by mechanical 
stress (producing piezoelectric effect) so by the thermal expansion due to 
temperature change (generating secondary pyroelectric effect). Such intrinsic polar-
sensitivity in the linear pyroelectric usually is conserved up to crystal melting. Under 
the action of external electrical field, in such a model only linear polarization (as in 
any dielectric) arises with a value of permittivity typical for ordinary ionic crystals 
(ε ~ 5–10).  



206 
 

 
 

Fig. 4.14. Simplified model of ionic chain with hybridized bonding that leads to polar properties  
of crystals: A – non-deformed hybridized bonds in the absence of any external effects;  

B – mechanical stretching of chain or its elongation due to thermal expansion; C – compression 
 of the chain leads to deformation and electric polarization of opposite sign 

 

4. Ferroelectric (“non-linear” pyroelectric) also can be imagined by combined 

pictures shown in Fig. 4.14, but its intrinsic polar-sensitive bonding is "gentle", i.e., 
it is not sufficiently stable and can change its own orientation to the opposite in the 
applied electrical field, demonstrating the hysteresis loop and very large dielectric 
permittivity.  

Therefore, in contrast to shown in Fig. 4.14 a very stable polar-sensitive 
structure, which can only be destroyed by the melting or evaporation of a crystal, 
the pliable structure of a ferroelectric can be radically changed at high hydrostatic 
pressure and when temperature increases above the Curie point: in both cases, the 
polar-sensitive bonds of ions become broken and crystal acquires centrosymmetric 
struture. But the impact of a sufficiently strong electric field, without breaking the 
polarity, changes its direction as shown in Fig. 4.15.  

In other words, the increase of temperature and corresponding increase in the 
intensity of thermal chaotic movement violates the relatively weak polar-sensitive 
correlation between the neighboring ions that leads to the phase transition at Curie 
point into the non-polar phase. Similarly, the increase of hydrostatic pressure also 
promotes structural disordering by reducing the space required for the formation of 
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mixed ionic-covalent bonds, i.e. "squeezes out" polar-sensitive bond and by this 
destroys in the ferroelectric its weakly-stable ordering of polar-sensitive bonds, 
which leads to transition into disordered phase. 

 

 
Fig. 4.15. Simplified model of switchable (weakly resistant) polar-sensitive bonds in 

ferroelectric: A – initial arrangement of mixed (covalent-ionic) bonding in 1D polar crystal 
chain; B –  opposite orientation of covalent-ionic  hybridized bonds generated by a sufficiently 

strong electrical field (larger than coercive field). The simplest 1D model does not allow 
describing the switching dynamics itself, accompanied by the dielectric and electromechanical 

hysteresis 

 
5. Conception of intermediate type of bonds agrees with the assumption of 

ions deformation due their polarization that may occur, for example, by the distortion 
of more pliable electronic orbitals in anions due to different electronegativity of 
adjacent ions. At that, the electronic density between ionic residues increases, i.e., 
the mixed covalent-ionic bond, possessing greater degree of charge separation, turns 
into polar-sensitive bond. Due to the fact that these bonds are partially-covalent, they 
retain the definite orientation, which promotes their strengthenind, supporting to 
withstand to chaotic thermal motion in crystal lattice. Due to fact that these bonds 
are partially-ionic, in them, firstly, the polarizability increases since, in addition to 
electrons, the ions are shifted as well, and, secondly, increases the rate of reaction 
upon external action on crystal is determined by the inertia of ions motion of (but 
not by fast electrons), so that they determine phonon spectrum of polar crystal lattice. 

Polar-sensitive bonds can arise in crystals which have small coordination 

number (CN, showing number of nearest neighbors to given atom). Thus, to the polar 
dielectrics and semiconductors, the "open" structures correspond: this provides a 
sufficient space for electronic orbits interaction. If in the usual densely-packed 
crystalline structures this number is large (CN = 8–6 for ordinary dielectrics), then, 
for example, in piezoelectric sphalerite and in pyroelectric wurtzite the the 
coordination number is only CN = 4. 
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The polar-sensitive structure manifests itself in the crystals as an ability to 
provide electrical (vector type) response to the non-electrical scalar or more 
complicated (tensor type) of actions. It's obvious that hybridized ionic-covalent 
bonding causes the reduction in crystal symmetry, so the polar crystals always 
belong to the non-centrosymmetric classes of crystals. 

The noncentrosymmetric structure of some crystals is caused precisely by the 
presence of specific interatomic bonds, that is, ion-covalent (hybridized) bond is 
main cause of the pyroelectric, ferroelectric, and piezoelectric properties in the 
crystals. For example, the piezoelectric effect arises as the electrical response to the 
uniform or directional mechanical action on the polar crystal. Its mechanism is that 
the displacement of ions compresses (or stretches) their asymmetric bonds, as a 
result of which the electric charges are induced on the surface of a crystal. On the 
contrary, if the atomic bonds in a crystal are the centrosymmetric, no electrical 
response is possible for any uniform mechanical effect: the electrical effects from 
various charges displacement in this case compensate each other.  

 
4.4 Modeling of polar-sensitive bonds  

 
From 32 classes of crystals of symmetry, 11 classes are centrosymmetric 

classes and 21 are non-centrosymmetric classes. At that, only in 20 non-central 
classes odd electromechanical effect (piezoelectricity) is possible: x = d⋅E (i.e., 
strain x in them is proportional to applied electrical field E while d is piezoelectric 
module). Furthermore, from 20 piezoelectric classes of crystals 10 classes belong to 
pyroelectric classes of symmetry (they have special polar axis), while others 10 non-
central classes can be referred as “exclusively” piezoelectrics: they have only polar-

neutral axes which compensate each other. This means that, taking into account 
compensation effect from all these axes, polar-neutral crystal does not respond to 
the uniform change of temperature or onto hydrostatic pressure influence (as it 
happens also in centrosymmetric crystals).  

The deep-laid physical nature of intrinsic polarity in some crystals in many 
respects remains unclear. It will suffice to mention that occasionally even the 
homeopolar diamond can have a form of pyroelectric wurtzite (class symmetry 
6mm) in addition to its principal form of m3m diamond structure. Moreover, among 
many piezoelectrics several monatomic crystals exist: to piezoelectric structure of 
quartz-type (32 class of point symmetry) crystals Te and Se belong. In mentioned 
examples of non-ionic crystals, undoubtedly, only the dissymmetry of electronic 
atomic shells can be responsible for intrinsic polarity of these crystals.  



209 
 

However, below only the crystals with mixed ionic-covalent bonds will be 
discussed. At that, basically the polar-neutral crystals (in other words, “exclusively” 
piezoelectrics) will be considered, and original method will be indicated: how to 
measure any single component of polar-sensitivity in polar-neutral crystals. In 
addition to determining of “hidden” polarity, it will be shown that a possibility exists 
to obtain pyroelectric response onto uniform thermal action from non-pyroelectric 
crystals that might have some new applications.  

1. Models based on asymmetry in the distribution of electronic density along 
atomic bonds are free from assumption as to internal electrical field, so their intrinsic 
polarity no need be compensated by free charges. Although asymmetric polar-
sensitive bonding is not a result of any internal field; nevertheless, it can provide 
polar response to non-electrical homogeneous external impact (thermal, mechanical 
or other) that in principle is impossible in centrosymmetric crystals. 

Non-centrosymmetric allocation of electrical charges in polar-sensitive 
structures can be presented by different simplified structural models [5]:  

(1) Quasi-one-dimensional structural ordering, which corresponds to the 
vector (dipole-like) response onto external influences; simplest model uses linear 
unidirectional polar bond between two ions, Fig. 4.16A.  

 
 

Fig. 4.16. Simplified representation of polar-sensitive structures in crystals: A – 1D dipole-like 
model; B – 2D polarity modeling; C – 3D polar construction; polar-sensitive directions presented 
by arrows while specified rate of energy decrease with distance U(r) is shown by power function 
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(2) Two-dimensional structural arrangement of polar-sensitive bonds 
allowing describe electrical response onto scalar action by the model which consists 
of six ions, having asymmetric bonds and located in one plane, Fig. 4.16B.  

(3) Three-dimensional asymmetric polar-sensitive bonding, modeled by eight 
ions, representing spatial polar-neutral structure, Fig. 4.16C.  

Such modeling of electrical charge allocations looks quite ordinary when 
describing dynamic properties of electronic shells, for instance, to explain the nature 
of Van der Waals bonding by quantum polar fluctuating in electronic shells. Being 
applied to polar crystals, this modeling describes spatial orientation of asymmetric 
hybridized ionic-covalent bonds. Thus one-, two- and three- dimensional 
distributions of polar-sensitive bonds in a space is presented by directionality of 
structural bonds that will be used further to describe various properties of functional 
(polar) dielectrics. 

2. Dipole-type structural predisposition (Fig. 4.16A) is the simplest case 

which corresponds to the quasi-one-dimensional disposition of polar-sensitive bonds 
in a crystal. This is a well-known conception of pyroelectricity – internal ability of 
a structure to electrical response (polarization) on non-electrical action. This case is 
used here only as a way of description of polar crystal reaction onto homogeneous 
dynamic influence: on changing in time uniform heating (or cooling) that leads to 
pyroelectric effect. Similarly can be described also crystal reaction onto changing in 
time uniform compression or stretching on crystal, i.e., dynamic hydrostatic 
influence, which gives volumetric piezoelectric effect. 

Physical properties, which usually are described by dipole-like model of 
polar-sensitivity, can be described by material polar vectors. They might be 
considered as properties “built-into crystal structure”. Exactly this predisposition of 
1D oriented polar-sensitive bonds results in their reaction of vector type on any 
external scalar influence onto pyroelectric crystal. Relevant crystals belong to 10 
pyroelectric classes of symmetry (including ferroelectrics as sub-class of 
pyroelectrics). The ability of such crystals to give electrical (polar) response dMi 
onto homogeneous hydrostatic pressure dp can be described by material-type tensor 
of first rank (vector) dVi = dMi/dp which characterizes volumetric piezoelectric effect 
with module dVi. This property is inherent only in crystals of pyroelectric symmetry. 

Similarly, the ability of 1D-system of polar-sensitive bonds to electrical 
response on temperature change dT corresponds to a certain, also “material”, vector 
dMi/dT and can be described by indicatory surface (indicatrix), consisting of two 
spheres, as shown in Fig. 4.17A. These two spheres are located above and below the 
symmetry plane m and characterized by equation γ(ϕ) = = dMi/dT = γmax⋅cosϕ. It is 
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evident that polar-sensitivity spatial distribution can be described just by same way. 
The upper sphere is indicatory surface for upper orientation of Mi, while bottom 
sphere means only the change in a sign of pyroelectric coefficient γi, if internal 
polarity has opposite direction. Material vector γi has maximum in direction, 
coinciding with internal polarity direction. So γmax should be measured in the cut of 
a crystal made perpendicularly to polar axis. Angle ϕ is angle between ordinate and 
slanting crystal’s cut, in which pyroelectric effect is studied. 

 

        
                     (A)                                            (B) 

Fig. 4.17. 1D modeling of polar-sensitive bonding: A – indicatory surface of material vector; 
B – temperature dependence of pyroelectric coefficient (line 1) and internal polarity (line 2)  

 
Figure 4.17B shows the example of "gentle" (nonlinear) pyroelectric-

ferroelectric, in which of polar-sensitivity disappears after phase transition at T = θ, 
and therefore Mi(T) can be measured quantitative concerning this zero. In 
“persistent” (linear) pyroelectrics, value of Mi(T) can not be measured quantitatively 
(since this dependence is interrupted only at melting of a crystal). 

It should be mentioned also that energy of dipole-to-dipole interaction not 
very fast decreases with distance: namely, as ~r–2, Fig. 4.16A. Such peculiarity has 
significant influence on the temperature dependence of intrinsic polar-sensitivity, 
when thermal chaotic movement aspires to destroy internal ordering in structure. It 
is notable that 1D-ordering long time looks like relatively stable, because it is 
capable more strongly withstand to inescapable disorienting by 3D thermal 
fluctuations.  

That is why usual (linear) pyroelectric can preserve its internal polar-
sensitivity up to the melting of a crystal. However, if chaotic 3D thermal disordering, 
nevertheless, still can overcome a steadiness (internal energy) of self-ordering of 
polar quasi-1D system (this is case of ferroelectrics, Fig. 4.17B), then its collapse 
happens very fast (critically) that leads to phase transition into non-polar phase. At 
that, it is important to note that in temperature interval of ordered phase the 
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dependence of polar-sensitivity on temperature subordinate to Landau law: Mi(T) = 
Mmax(Θ – T)1/2, i.e., with Landau critical index “0.5”.  

Further need to consider others, less studied polar crystals, which are not 

pyroelectrics but belong to so called “exclusively” piezoelectrics. In this case more 
complicated allocation of polar-sensitivity needs another modeling than simplest 
arrangement of dipole-type polar-sensitive bonds. As noted above in connection 
with Fig. 4.16B, the intrinsic polarity of such piezoelectrics can be represented as by 
the plane 2D model (based on structure of quartz) so by the spatial 3D model (based 
on sphalerite structure); correspondingly, they can be described by second and third 
ranks tensors.  

As seen in Fig. 4.16B and C, correspondent intrinsic electrical moments, 
described by these higher-rank tensors, are totally compensated (in contrast to 
dipole-type structural arrangement). In both these cases any scalar action (e.g., 
hydrostatic pressure or uniform heating) can not arise in such crystals any response 
of vector character. Only vector or tensor types of outside actions, such as 
temperature gradient (vector grad T) or mechanical stress Xij (second-rank tensor) 
are capable to discover “hidden” internal polar-sensitivity, which awakes its vector-
type response, i.e., to induce voltage on crystal surface in open-circuit crystal or 
generate electrical current in close-circuit crystal.  

Presented below modelling of internal (or “latent”, or “hidden”) polarity 
describes an ability of low-symmetric crystal to make electrical response to variety 
of external actions that are variable in time. It should be noted that, if external impact 
after its switching on (or changed), afterwards remains constant, polarization does 
not manifest itself – unlike electrical conductivity, which exists all the time at 
external factor action (fields, illumination, radiation, heat gradient, etc.). 

3. Situated in-plane (2D) polar-sensitivity is typical characteristic of some 
piezoelectric which are not pyroelectrics (for instance, quartz). Crystals of a quartz-
symmetry are berlinite (AlPO4), cinnabar (HgS), tellurium (Te), etc. Suppose that 
these crystals are investigating by uniform thermal action, realized under special 
condition of partial limitation of thermally induced strain. According to Curie 
principle, symmetry of response includes common elements of action symmetry and 
symmetry of crystal. In this case, action is scalar but symmetry of crystal response 
is artificially changed by a limitation of its possible deformations.  

Spatial distribution of internal polar-sensitivity in quartz-type crystals can be 
described in polar coordinates as Mij(θ,ϕ) = Mmaxsin3θ⋅cos3ϕ, Fig. 4.18A, where θ 
is the azimuth angle and ϕ is the plane angle. Using radius vector directed from 
center of shown figure, one can determine the magnitude of polar-sensitivity in any 
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slanting cut of quartz-type crystals. In particular, the maxims of piezoelectric effect 
are seen along any one of three polar-neutral axes of X-type. At that, no piezoelectric 
effect is possible in the directions of Y and Z axes. 

      
                               (A)                                                                 (B) 

Fig. 4.18. Internal polar-sensitivity in quartz: A – indicatory surface; B – temperature 
dependence: 

1 – M1 found in [100]-cut plate in α- quartz; 1`– M1 found in [110] rod in high-temperature 
β-quartz; 2 – artificial pyroelectric coefficient of [100]-thin cut, 3 – piezoelectric module d14  

 
In case of 2D allocation of polar-sensitive bonds, the energy of their 

interaction decreases with distance much faster then in case of 1D interaction: U ~ 
r–3, Fig. 4.16B. This condition has significant effect on the interaction of polar-
sensitive bonds in their plane. Such kind of polar-sensitivity (described by second 
rank tensor Mij) can be suppressed by 3D thermal fluctuations more easily than in 
case of 1D internal polarity. It is remarkable that correlation between 2D internal 
polar-sensitivity also ceases at definite critical temperature, so crystals with 2D-
polarity experiencing phase transition into another symmetry state, as it is seen in 
Fig. 1.13B on example of quartz. 

At that, “effective pyroelectric coefficient γ1” vanishes in vicinity of α → β 
phase transition of quartz at temperature of θ1 ≈  850 K. It is also notable that very 
special temperature dependence is observed for components of polar-sensitivity 

M[100] = ΔM1. Calculated from γ1(T), the ΔM1 = ∫γ1dT decreases with temperature 

linearly: ΔM1 ~ (θ – T), that is, with “Landau’s” critical index 1.  
Previously such linear temperature dependence has been observed for 

spontaneous polarization of improper ferroelectrics. It should be noted that all 
piezoelectrics of quartz symmetry (SiO2, AlPO4 and HgS) have additional to α → β  
high-temperature transition, namely β → γ. In their β-phase quartz and berlinite still 
remain piezoelectrics, but with intrinsic polar-sensitivity described by 3D 
distribution in a space. At that, highest-temperature γ-phase in these crystals already 
is non-polar. 
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4. Spatially-distributed (3D) polar-sensitivity can be seen in some others 
piezoelectrics (which also are non-pyroelectrics), for instance, in the AIIIBV 
sphalerite-symmetry semiconductors (like gallium arsenide) or in KDP type 
piezoelectrics (KH2PO4 and many of its analogues in paraelectric phase). They are 
characterized by third rank material-type tensor Mijk = M111sinθ⋅sin2θ⋅cos2ϕ and 
can be described by indicatrix shown in Fig. 4.19A.  

         
(A)      (B) 

 

Fig. 4.19. Intrinsic polarity in paraelectric phase of KDP crystal: A – indicatory surface;  
B – temperature characteristics of partially clamped crystal:  1 – polar-sensitivity |M| ~ (θ – T)2;  

2 – effective pyroelectric coefficient; 3 – permittivity ε1 at microwaves  

 
Well known ferroelectrics of KDP type (and close to them antiferroelectrics 

of ADP type) at room temperature belong to polar-neutral crystals and are 
“exclusively” piezoelectrics. Their polar-sensitivity is totally compensated and 
spatially distributed as shown in Fig. 4.19A. 

 In this case, correlation between polar-sensitive bonds decreases with 
distance rather fast (as r–4, Fig. 4.16C) that testifies rather weak internal stability of 
3D-arranged polar-sensitive bonding, which can be more easily destroyed by the 
same 3D thermal fluctuations.  

Figure 4.19B shows some properties of KDP crystal above its ferroelectric 
phase transition, where this crystal is the piezoelectric of 422 class of symmetry 
(only below 150 K it turns into ferroelectric). It is seen that internal polar-sensitivity 
very gradually vanishes by law P ~ (θ – T)2, i.e., with critical index “2”. 

It was found [8] that crystals of KDP type in their paraelectric phase, similarly 
to quartz-type crystals, have high-temperature phase transition, at which their polar-
neutral 422 class changes their symmetry to non-polar class of symmetry.  

Measurement KDP crystal at microwaves (at lower frequencies proton 
conductivity interferes with measurements) shows first usual slow decrease of 
permittivity ε1(T), but then it abruptly decreases at temperature of θ  ≈ 480 K, 
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evidently in connection with high-temperature phase transition. The presence of this 
transition is confirmed by measuring thermal expansion coefficient, which has deep 
minimum at above mentioned temperature.  

Common feature of all models shown in Figs. 4.17 – 4.19 is the availability 
of critical temperature, at which coordination between adjacent polar-sensitive 
bonds is disrupted with temperature increase. At that, in some crystals, the 
temperature steadiness of polar-sensitive bonds allocations always can be described 
by critical law M(T) ~ (θ – T)n.  

It means that really phase transition temperature θ exists, which corresponds 
to the vanishing of tensor Mijk with temperature rise. It is established that critical 
parameter is n = 1, if polar-sensitive bonds are arranged in a plane (two-dimensional 
case, 2D, quartz-type crystals).  

In the event of spatial (3D) arrangement of polar-sensitive bonds (KDP and 
AIIIBV type crystals are examples), critical exponent is n = 2. These two cases differ 
essentially from the 1D dipole-type polar-sensitive bonds in ferroelectrics that shows 
well known critical law Mi(T) with n = 0.5 (Landau critical index).  

 

4.5 Summary and self-test questions 
 
1. Any dielectric is able to polarization in the external electrical field, but only 

some of dielectrics – polar types – can be polarized in non-electrical manner. Unique 
properties of polar crystals (pyroelectrics, piezoelectrics, etc.) can be described by a 
peculiar polar-sensitive internal structure, capable to generate electrical response 
onto non-electrical homogeneous (scalar) actions.  

2. Electrical polarization means that electrical charges separation occurs 
(which however remain unfree). When electrical voltage switches on, through a 
dielectric a reactive current flows caused by shifting of electrical charges; next, when 
voltage switches off, this is also accompanied by flow of depolarization current; 
inasmuch as electrical polarization is a response only to the change in the electrical 
voltage. 

3. Polarization, induced by external electrical field, is necessarily 
accompanied by mechanical deformation of a dielectric – this is the electrostriction 
(electrically induced mechanical strain), which indicates that polarized state of a 
dielectric is non-equilibrium (stressed) state, so polarization of dielectric, which is 
included in closed circuit, disappears instantly as soon as external electrical field is 
turned off. 
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4. When electrical field is applied to solid dielectric, closely connected 
charges of structural units are displaced relatively to each other, whereby dielectric 
becomes polarized. Arisen by this way electrical moment is conditioned by 
contributions from: electrons displaced from their equilibrium positions in atoms, 
ions deviated from their equilibrium state in crystal lattice, and dipoles which 
changed their orientation in the external electrical field.  

5. Electrons, ions and dipoles can acquire induced electrical moment (i.e., 
polarized state) through various mechanisms: (1) elastic reversible displacement of 
bound electric charges, (2) displacement of weakly bound charges with participation 
of their thermal motion, and (3) macroscopic displacement of free charges that later 
localize on defect places in dielectric. It should be noted that in polar dielectrics all 
this processes can occur without electrical field application but under the action of 
varying temperature, uniform pressure, mechanical stress, exposure of sufficiently 
high energy irradiation, etc. 

6. The dielectric anisotropy usually arises in dielectrics under external fields 
influence, but it always is present in polar dielectrics. This means that in non-
centrosymmetric dielectrics their electrical, thermal and mechanical characteristics 
show dependence on the directions of action and response. Any vector is defined by 
three parameters – projections on coordinate axes. Transformation from one vector 
to another is described as Di = ε0εijΕj; in the anisotropic media components εij are 
shown with two indices: one comes from vector Ej “action", while another from 
"response" vector Di, which directions may not correspond to direction of action. 

7. The dielectric nonlinearity is associated with permittivity dependence on 
electrical field. In principle, ε(E) change should be observed in all dielectrics, 
however, in most of them nonlinearity is small. Nevertheless, in some polar 

dielectrics (ferroelectrics and paraelectrics) dielectric nonlinearity can be essential 
and found applications in electronics. 

8. The boundary conditions are especially important in case of functional 
dielectrics polarization: these conditions can be electrical, mechanical and thermal. 
Two electrical boundary conditions are: (1) electrical field E = 0 that means polar 
crystal is electrically free and it is a source of current; (2) electrical induction D = 0, 
i.e., the polar crystal is electrically disconnected and it is a source of voltage.  

9. Two mechanical boundary conditions are: (1) stress X = 0 that means 
mechanically free state of polar crystal; (2) strain x = 0, i.e., polar crystal is 
mechanically clamped. Two thermal boundary conditions are: (1) isothermal 
condition with invariable temperature (δT = 0); (2) entropy S = const that 
corresponds to adiabatic condition. 
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10. All dielectrics and semiconductors are able to creation in them electrical 

moment Pi = χij⋅Ej induced by electrical field; this property is described by second 
rank symmetric tensor of dielectric susceptibility χij (or the same tensor of dielectric 
permittivity εij = 1 + χij). 

11. Polar dielectrics-pyroelectrics have ability to make electrical moment Pi 
= γi⋅δT induced in them by change of temperature δT; this property is described by 
first rank material tensor: pyroelectric coefficient γi, i.e., electrical susceptibility to 
temperature change. Polar dielectrics-pyroelectrics also have ability to create in 
them induced electrical moment Pi = ζi⋅p due to change of hydrostatic pressure p, 
described by first rank material tensor: piezoelectric pressure coefficient ζi, i.e., 
sensitivity to change in pressure. 

12. Polar dielectrics-piezoelectrics show ability to create in them electrical 
moment induced by mechanical stress: Pi = dikl⋅Xkl. This property is described by 
third rank material tensor: piezoelectric module dikl (it can also be called as 
susceptibility to mechanical stress).  

13. In fact, any experimental investigations of pyroelectric or piezoelectric 
effects do not allow directly determine the value of their “spontaneous polarization”, 
but experiments characterize only the magnitude of dynamic response of peculiar 
polar-sensitive internal crystalline structure.  

14. When explaining various properties of polar crystals, you can do without 
the concept of "spontaneous polarization", i.e., to imagine that in polar crystal the 
"permanent polarization" exists. It looks also reasonable the assumption that 
electrical polarization appears as a response to external (not even electrical). This is 
due to peculiar distribution of polar-sensitive internal bonds having distinction in 
ions affinity for electrons, i.e., electronegativity. 

15. To explain more complex manifestations of crystals properties, it needs to 
take into account a special structure of cores: total number of electrons in atom, 
degree of screening of external electrons from action of nucleus, etc. The 
electronegativity is the property of an atom to attract electrons; it depends on the 
atomic number (the number of protons in the nucleus), on the degree of screening of 
internal electrons, and on the structure of external electron orbitals. Atoms with more 
electronegativity are more strongly atoms attract electrons. 

16. Non-centrosymmetric structures are formed owing to compensation of 
atomic electronegativity by polar-sensitive bonding in the process of polar crystal 
formation (while it is growing from liquid or steam state of a material). At that, 
dependently on chemical composition of a crystal, the variety of combinations may 
occur between the ions of crystals having two- or three-dimensional polar-active 
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constructions (which, when external actions exerts on them, can produce electrical 
responses, describable by tensors of different ranks). Non-centrosymmetric 
structures of polar crystals are demonstration of mixed ionic-covalent bonds between 
their ions. These bonds are strongly directional and, therefore, such structures lead 
to different manifestations of asymmetry and complexity of polar crystal structures. 

17. When electrical field is affected on "persistant arranged" polar structure, 
its electrical polarization usually looks like a linear effect (as in ordinary dielectrics). 
It may seem, however, that the exception are ferroelectrics, in which a switching of 
their “gently arranged" polarization is seen: their low-stable enantiomorphic 
structure can change its polar-sensitive direction. Outwardly this event manifests 
itself as dielectric hysteresis loop, which allows measure the ability of polar-
sensitive structure to react on external actions and indirectly can characterize its 
features.   

18. In ordinary ionic or covalent crystals specific polar properties can be 
obtained by applying to them direct electrical field E. At that, resulting induced 
polarization is accompanied by electrostriction, which is quadratic effect: relative 
deformation of crystal increases in applied field parabolically: x = R⋅E2 (in contrast 
to polar crystals, in which field-induced deformation depends on applied field 
linearly showing piezoelectric effect: x = d⋅E). Mechanical strain in case of 
electrostriction does not change its sign when electrical field changes sign – unlike 
piezoelectric effect.  

19. It can be shown that linear electromechanical effect (which is peculiar 
property of polar crystals) can be interpreted as linearized electrostriction. The point 
is that electrical field changes original symmetry of a crystal due to its electrical 
polarization. In this way, under fixed external voltage, the structure of a crystal turns 
into artificially created polar structure (it becomes an electrically-induced non-
centrosymmetric structure). In dielectrics that have large permittivity electrically 
induced piezolectric effect can become "gigantic", and this feature is really used now 
in electronics. Similarly, in the presence of electrical bias field in any crystal the 
pyroelectric effect also can be induced, that finds application in modern thermal 
sensors. 

20. In compliance with such electrically induced piezoelectric and 
pyroelectric effects, one can suppose that usual piezoelectric effect also can be 
explained as the “linearized electrostriction”. This assumption might be advanced 
according to conception that fundamental reason of crystal intrinsic polar-sensitivity 
is the asymmetry in electronic density distribution along the polar bonds between 
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ions, which have different electronegativity (this mechanism replaces externally 
applied field).  

21. Mixed covalent-ionic bonds, which in polar crystals is main property, 
guarantee piezoelectric and pyroelectric properties without external electrical field 
application to a crystal. In this way, instead of external electrical field, which need 
to be applied to ionic or covalent crystals in order to force them to have polarized 
(although non-equilibrium) state, in the case of mixed covalent-ionic crystals their 
polar-sensitive state remains stable without any external field, being ensured by 
fundamental property of ions – their electronegativity.  

22. Polar-sensitive bonds arise in such crystals, which have small coordination 
number (CN) that shows number of nearest neighbors to given atom. Thus to polar 
dielectrics and semiconductors an "open" structures correspond: they provide 
sufficient space for electronic orbits interaction. If in usual densely-packed 
crystalline structures this number is large (CN = 12 for metals and CN = 8–6 for 
ordinary dielectrics), then, for example, coordination number in piezoelectric 
sphalerite structure and in pyroelectric wurtzite structure CN = 4. 

23. Exactly the presence of polar-sensitive bonds determines the non-
centrosymmetric structure of some crystals: hybridized ionic-covalent bonds are the 
main cause of pyroelectric, ferroelectric and piezoelectric properties. For example, 
mechanical action on a polar crystal leads to an electrical (piezoelectric) response. 
Its mechanism lies in the fact that the displacement of ions deforms their asymmetric 

bonds and by this way leads to the appearance of electric charges on the surfaces of 
a crystal. In opposite case, when the ionic bonds of the crystal are the 
centrosymmetric, the mechanoelectric polarization is impossible because the 
electrical effects of the displacement of charges compensate each other. 

24. Non-centrosymmetric allocation of electrical charges in polar-sensitive 
structures can be presented by different simplified structural models: (1) quasi-one-
dimensional structural ordering, which corresponds to vector (dipole-like) response 
onto external influences; (2) two-dimensional structural arrangement of polar-
sensitive bonds allowing describe electrical response onto scalar action by model, 
which consists of six ions, having asymmetric bonds and located in one plane; (3) 
three-dimensional asymmetric polar-sensitive bonding, modeled by eight ions, 
representing a spatial polar-neutral structure.  

25. In some polar crystals can be seen a critical temperature, at which 
coordination between adjacent polar-sensitive bonds is disrupted with temperature 
increase. In these cases temperature steadiness of polar-sensitive bonds allocations 
can be described by critical law M(T) ~ (θ – T)n. It means that the phase transition 



220 
 

temperature θ  exists, which corresponds to vanishing of tensor Mijk with temperature 
rise. It is established that critical parameter is n = 1, if polar-sensitive bonds are 
arranged in a plane; in the event of spatial (3D) arrangement of polar-sensitive bonds 
critical exponent is n = 2. These two cases differ essentially from the 1D dipole-type 
polar-sensitive bonds in ferroelectrics that shows a well known critical law Mi(T) 
with n = 0.5 (Landau critical index).  

 
 
Chapter 4. Self-test questions 
 

1. What are the difficulties of the theory of spontaneous polarization of 
pyroelectrics? 
2. How and why are polar-sensitive bonds formed? 
3. What is the electronegativity and what is its role in the formation of polar 
crystals? 
4. How do piezoelectric effect and electrostriction relate? Can they be justified by 
a common model? 
5. What critical exponents describe the temperature dependence of polar moments 
- tensors of different ranks? 
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CHAPTER 5. POLAR CRYSTALS PECULIARITIES 
 

Contents 

 
5.1 Experimental evidences of polar-sensitivity 
5.2 Charge transfer in polar crystals 
5.3 Electrically induced polar properties 
5.4 Thermomechanically induced pyroelectricity 
5.5 Possible applications of artificially formed polarity 
5.6 Functional dielectrics in electronics 
5.7 Summary and self-test questions 

 
Various experimental evidences of polar-sensitivity existence in crystals are 

considered: the structural affinity of piezoelectrics and pyroelectrics; the chemical 
features of polar crystals confirming proximity of their properties; the increase in 
volume while self-ordering of polar-sensitive bonds; the piezoelectric and 
electrocaloric contributions to polar crystals permittivity; the high-frequency 
dielectric absorption; the dependence of polar crystal elastic properties  on various 
electrical boundary conditions, etc. Features of charge transfer in the polar-sensitive 
crystals are explained: physical nature of giant change of conductivity in critistors, 
posistors and varistors as well as in others field-controllable switching elements, 
particularly those which exhibit colossal magnetoresistance; the nature of high 
sensibility of nanostructured sensors based on zinc oxide is discussed. The nature of 
electrically induced polar properties is investigated: electrically induced 
piezoelectric module in paraelectrics and relaxor ferroelectrics; electrical control by 
resonant frequency of piezoelectric resonators and filters. The thermomechanically 

induced pyroelectricity is examined: an original method of pyroelectric response and 
volumetric piezoelectric effect obtaining in polar-neutral piezoelectrics (non-
pyroelectrics) is described. Two- and three-dimensional structural arrangements of 
polar-sensitive bonds in polar-neutral piezoelectric are analyzed; artificial 
pyroelectric effect for 10 classes of polar-neutral piezoelectric crystals are calculated 
and experimentally tested in quartz and gallium arsenide type crystals. This effect 
can be used in single-chip pyroelectric and piezoelectric single and matrix sensors. 

Various experimental evidences of polar-sensitivity existence in some crystals 
will be considered: structural affinity of piezoelectrics and pyroelectrics; chemical 
features of polar crystals confirming the proximity of their properties; an increase in 
volume while self-ordering of polar-sensitive bonds; piezoelectric and electrocaloric 
contributions to polar crystals permittivity; high-frequency dielectric absorption; 



222 
 

dependence of polar crystal elastic properties on various electrical boundary 
conditions, etc. Some important features of charge transfer in polar-sensitive 
crystals will be explained: physical nature of giant change of conductivity in 
critistors, posistors and varistors as well as in others field-controllable switching 
elements, particularly those which exhibit colossal magnetoresistance; the nature of 
high sensibility of nanostructured sensors based on zinc oxide is discussed.  

The electrically induced polar properties will be also discussed in this 
Chapter: electrically induced piezoelectric module in paraelectrics and relaxor 
ferroelectrics, electrical control by resonant frequency of piezoelectric resonators 
and filters. The mechanically induced pyroelectricity will be examined in details: an 
original method of obtaining pyroelectric response and volumetric piezoelectric 
effect in the polar-neutral piezoelectrics (non-pyroelectrics) will be described. Two- 
and three-dimensional structural arrangements of polar-sensitive bonds in the polar-
neutral piezoelectric are analyzed; artificial pyroelectric effect for 10 classes of 
polar-neutral piezoelectric crystals are calculated and experimentally tested in the 
quartz and gallium arsenide type crystals. It will be shown that this effect can be 
used in the single-chip pyroelectric and piezoelectric sensors. 
 

5.1 Experimental evidences of polar-sensitivity  
 
Polar properties of well-known pyroelectrics and ferroelectrics, described by 

the first-rank tensor (i.e., dipole moment vector Mi = Pi) do not need additional 
evidences. However, in the “exclusive” piezoelectrics, which are not pyroelectrics, 
the existence of polar-sensitivity, that is a capability to electrical response onto 
homogeneous non-electric action, needs some additional experimental grounds [4]. 
At that, all electrical measurements are limited only by vector-type responses – by 
the detection of voltage or current. That is why it is not surprisingly that totally 
compensated internal polar-sensitivity is not so easy be detected in this case. 
However, there are some others, indirect evidences of polar-sensitivity existence in 
the non-central crystals. 

1. Structural affinity of piezoelectrics and pyroelectrics follows, for example, 

from the polymorphism of43m (piezoelectric) and 6mm (pyroelectric) structures. 
Such proximity of piezoelectricity and pyroelectricity demonstrates zinc sulphide 
(zinc blende) crystal: interatomic interaction in ZnS provides such configuration of 
a crystal, in which both structures (sphalerite and wurtzite) can coexist.  

In case of sphalerite, the piezoelectric internal polar-sensitive structure of ZnS 
can be described by 3D spatial distribution: this simulation might be represented by 
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four 3-fold polar axes of [111]-type, which are crossed at the angle of 105.5o, as 
shown in Fig. 5.1A. Such intrinsic three-dimensional polar structure is absolutely 
self-compensated and in this case zinc sulphide should be attributed to the 
“exclusive” piezoelectrics. However, second principal structure of ZnS (in which for 
simplicity only positive polar-sensitive directions are shown) is pyroelectric 

wurtzite. The structure includes not only [111]-type polar axes, but in addition the 
dipole type of polar-sensitivity component as well, directed along one of these axes, 
Fig. 5.1B; such zinc sulphide is already undoubtedly related to the pyroelectrics. 

   
 

   (A)                      (B) 
 

Fig. 5.1. Spatial distribution of 3D type polar-sensitivity (only the positive directions of polar 
axes are shown): A – total compensation of polar-sensitivity in sphalerite; B – non-compensated 
“dipole-type” component M111 of polar-sensitivity in wurtzite (shown only positive directions)  

 
The difference between the atomic distances of the two main forms of zinc 

blende is actually so small that these structures with different symmetries can 
alternate with each other in the same crystal, demonstrating polymorphism. As a 
result, it turns out that there is no big difference between the pyroelectric and 
piezoelectric state of this crystal. Accordingly, it seems unconvincing to consider 
the amplification of polarity in one of polar-neutral directions in wurtzite as the 
appearance of a spontaneous polarization. 

2. Chemical features of the polar crystals are another important factor, 
confirming the proximity of different polar-sensitive structures properties.  

In the pyroelectric crystals, the surfaces of crystalline plate, which is oriented 
perpendicularly to the polar axes, have different chemical properties (in particular, 
different rates of chemical etching). As is known, the ferroelectric is a pyroelectric 
that breaks into domains. At that, selective etching is well known characteristic of 
the ferroelectrics, what is used to detect their domain structure: chemical etching 
occurs with different speeds for “+” and “–”orientation of domains. 
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By the same way, in the piezoelectric quartz crystal (which is not pyroelectric) 
the etching occurs much more rapidly on the "positive" side of the polar X-axis, 
while the rate of etching is much slower on the "negative" side of the X-axis. In this 
way the figures of etching seen on quartz are quite different for "+" and "–" surfaces. 
The dependence in surface chemical activity of given piezoelectric indicates, firstly, 
the directivity of polar-sensitive bonds in it, and, secondly, non-symmetric 
distribution of binding energy of ions in electrically positive or negative direction. 
This phenomenon can also be explained as a “proximity” effect: the propagation of 
the influence of polar (non-centrosymmetric) crystal property onto its immediate 
environment) that has no relation to “internal field existence” in a crystal. 
[Note. Consider, for example, the (111)-cut of cubic but non-polar NaCl crystal: 
then one side of such a plate would be completely covered by the Na+ ions while the 
other by the Cl– ions, creating, it would seem, both internal and external electric 
field, and having different chemical activity. But in the reality this does not happen: 
centrosymmetric NaCl crystal self-neutralizes its surfaces of the (111) slices, so does 
not create any “proximity” effect, and does not become artificial pyroelectric. So, 
the peculiarities of polar crystals are explained precisely by the asymmetry in 
electron density distribution in the elementary unit sell of a crystal, which creates 
peculiar properties, including the proximity effect]. 

In contrast to cubic non-polar NaCl crystal, also cubic but polar-sensitive 
GaAs crystal shows considerable distinction in chemical properties between two 
surfaces of the (111)-cut plates. This peculiarity is taken into account while 
electrodes deposition on the gallium arsenide: the adhesion of one or another metal 
on “positive” and “negative” surfaces of (111)-cut of GaAs is significantly different, 
so on them it is necessary to use different technologies of electrodes deposition. 

Here it is pertinent to mention that direct measurements of the electrical 
charge density on the fresh cleavages of the pyroelectric tourmaline crystal were 
made: these measurements showed charge density ~ 0.01 μC/cm2 [Jelud]. 

3. Increase in volume (which means decrease in density) is a characteristic 
property of the self-ordering of the polar-sensitive bonds in crystal [6]. For instance, 
at ferroelectrics phase transitions into low-temperature polar phase crystal increases 
its volume as compared with high-temperature nonpolar phase: this is conditioned 
by the ordering of previously disordered interatomic bonds. Such expansion of a 
solid upon cooling is quite unusual phenomenon, since in the majority of cases 
density of solids increases with cooling due to a decrease in the intensity of thermal 
oscillations of the atoms.  
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It is noteworthy that during transition to the antiferroelectric phase from the 
high-temperature paraelectric phase, the volume of crystal decreases: i.e. antipolar 
(counter) ordering is denser than in polar phase. At that, by applying strong electrical 
field, antiferroelectric shows a compelled transition into ferroelectric phase: at that 
the jump of volume becomes so significant that it thermodynamically leads to a large 
electrocaloric effect with a significant cooling by electrical field (that is interesting 
for practical use in refrigerators). 

The issue of volume increase in the ordered structures can be considered also 
more broadly: for example, the ferromagnets also usually expand when cooled from 
the paramagnetic phase, and this is used in the technique for obtaining alloys with a 
low coefficient of thermal expansion. In connection with this, it is noteworthy that 
even during crystallization the density of polar crystals decreases as they grow from 
their liquid phase (for example, GaAs crystal can swim on surface of its melt like 
ice in water). The point is that in liquid phase the interatomic polar-sensitive bonds 
can not establish their strict orientation due to intensive thermal motion in disordered 
liquid structure.  

The process of crystal growth from liquid or vapor phase is undoubtedly 
influenced by the proximity effect just discussed above. During crystallization polar 
crystal spontaneously expands due to establishment of strong orientation of its polar-
sensitive bonds, so crystal density becomes less than the density of a melt. It is also 
important to add that crystal growth occurs much more rapidly exactly in the 
direction of polar (or polar-neutral) bonds: as in pyroelectrics so in piezoelectrics, 
and this determines the form of polar crystal. At that for the manifestation of 
chemical properties in polar-sensitive crystals is not fundamental importance 
whether the crystal is the pyroelectric or only the piezoelectric. 

4. Dielectric permittivity frequency dependence of polar-sensitive crystals 
differs from usual dielectrics. Electrical polarization is the separation of bound 
electrical charges that is accompanied by deformation of a crystal (strain). Therefore, 
polarization is not only electrical but electro-mechanical phenomenon. In case of 
polar-sensitive crystal, electrical energy, given to a crystal by electrical field, is 
stored not only in the microscopic displacements of bound charges, but in the 
macroscopic deformation of a crystal as a whole. This deformation is elastically 
reversible, so it makes electromechanical contribution to the permittivity.   

When dielectric properties of polar-sensitive crystals are studied at lower 

frequencies (below the frequency of possible electromechanical resonances), the εX 
of mechanically free crystal is measured (stress X = 0). In this case crystal’s 
electromechanical reaction e2/ε0 contributes to the dielectric constant (“e” is the 
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piezoelectric strain module). In the same time, at rather high frequencies (above the 
electromechanical resonances), the εx is determined (crystal is clamped, its strain x 
= 0). At high frequencies the own mechanical inertia of test sample makes 
impossible its electromechanical reaction. 

      
                                                     (A)                                                                      (B) 

 

Fig. 5.2. Temperature dependence of dielectric permittivity in free (at frequency of 103 Hz) and 
clamped (at 1010 Hz) crystals: A – Rochelle salt, B – barium titanate 

 
The comparison of dielectric constants of free and clamped polar crystals is 

shown in Fig. 5.2 for most well-known and well-studied polar crystals-ferroelectrics. 
In Rochelle salt piezoelectric effect is observed in entire temperature range, so 
everywhere dielectric permittivity of free and clamped crystal differs greatly, Fig. 
5.2A. In the vicinity of ferroelectric Curie points the effect of clamping is very large: 
εХ/εх ≈ 50. In other well known crystal – barium titanate, BaTiO3 – above the Curie 
point (in cubic center-symmetric phase) piezoelectric effect is absent, and 
εХ = εх = ε. But below Curie point in single-domain BaTiO3 crystal near room 
temperature the ratio εХ/εх is about 2 (while in polarized BaTiO3 piezoelectric 
ceramics εХ/εх < 2). 

A very large dielectric permittivity εХ may occur in a mechanically free 
crystal, but only at low frequencies; however in the region of very high frequencies, 
the dielectric constant εх is significantly reduced. In this case, permittivity’s 
frequency dependence shows a series of electromechanical resonances, as follows 
from Fig. 5.3, where the study of the KH2PO4 (KDP crystal) is shown, we note that 
in this case the ratio εХ/εх ≈ 100 is record high. 
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Fig. 5.3. Dielectric spectrum of KDP crystal near its Curie point: in the frequency range of 
105…108 Hz a series of piezoelectric resonances is observed [8] 

 
Given in Fig. 5.2 and Fig. 5.3 examples show very large electromechanical 

contributions to low-frequency dielectric constant of polar-sensitive crystals. 
However, in most cases the difference between εХ and εх is not so great. 
 Another possible influence on polar crystal permittivity is the “electro-
thermal contribution” εET that is called also as electro-caloric contribution. This 
refers to difference εТ – εS = εET between the permittivity εТ measured under 
isothermal conditions when T = const and dielectric has enough time to exchange 
energy with the environment, and the permittivity εS measured in adiabatic 
conditions, at the constant entropy (S = const), i.e., when heat exchange with the 
environment is impossible. 

Electro-caloric contribution to permittivity might be essential when ε is large 
and its dependence ε(T) is big, for example, near the ferroelectric phase transition.  
Sometimes the difference between εТ and εS might reach 10...50% (for example, just 
below ferroelectric phase transition). 

5. High-frequency dielectric absorption is another remarkable feature of 
polar-sensitive dielectrics. In polar crystals, there is a fundamental microwave 
absorption, which greatly exceeds this absorption of centrosymmetric crystals. As a 
result, the dielectric losses in microwaves are large and have a quasi-Dedye character 
due to the interaction of optical and acoustic phonons. The frequency dependence of 
the dielectric loss is shown in Fig. 5.4 as the imaginary part of the complex dielectric 
constant ε* = ε′ – iε″. In the polar-sensitive crystals microwave dielectric losses 
show additional maximum of quasi-Debye type absorption due to interaction 
between optical and acoustical phonons.  
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Experimental evidence shown in the Fig. 5.4 is a comparison of microwave 
properties of two semiconductors. One is the non-polar crystal silicon, Fig. 5.4 A, 
which that is characterized only by covalent bonding between atoms, therefore its 
dielectric losses are caused exclusively by the conductivity (σ). Correspondingly, in 
silicon the loss factor decreases with frequency, but increases with temperature:  

ε″(ω,T) ≈ σ0 exp[a(T – T0)]/[ε0ω], 
where σ0 is conductivity at room temperature T0, ε0 is electrical constant, and a is 
peculiar parameter for  given semiconductor.  

 

                     
                                                            (A)                                                                        (B) 
Fig. 5.4. Frequency dependence of microwave absorption ε″ (solid line) in non-polar silicon (A) 

polar crystal s/i-GaAs (B); dashed line shows permittivity  

 
Other example is gallium arsenide – polar-sensitive crystal-semiconductor, 

Fig. 5.4B, in which conductivity a thousand times less than in silicon. Since the 
influence of conductivity on the microwave absorption of this crystal is negligible, 
it would be expected that in the millimeter wave range the absorption of gallium 
arsenide should be very small. In fact, however, microwave losses of GaAs are 
increased and ε″(ω,T) increases even more with frequency rise. 

The fact is that in the polar-sensitive crystals on millimetre waves the losses 
of polarization are manifested due to interaction of acoustic and optical phonons. In 
the non-polar crystals, optical phonons, which excited by ultra-high frequency 
electrical field, very weakly dissipate received energy on acoustic phonons, which 
are electrically inactive in the non-piezoelectric crystals, and play the role of a 
"thermal reservoir" of crystal lattice. In polar crystals, on the contrary, due to 
absence of centre of symmetry in elementary cell, acoustic and optical phonons are 
coupled, so that the super high frequency energy, imparted to crystal, is more 
efficiently converted into the heat: this is the microwave losses. 

Loss factor increasing with frequency can be described by Debye formula:  

    ε″(ω,T) ≈ (ω/ωD) exp (–U/kBT), 
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where ωD is Debye frequency, kB is Boltzmann constant, U is potential barrier of 
relaxation. As can be seen from the experiments (Fig. 5.4B), in the polar-sensitive 
crystals the microwave (fundamental) loss factor increases with frequency ascending 
and with temperature rise. 
 6. Elastic properties of the polar crystals are also very remarkable. In similar 
in chemical composition and structure of crystalline structures polar crystals the 
elastic stiffness (c) is usually lesser than in the non-polar crystals; correspondingly, 
their elastic compliance (s) is bigger. Both these parameters in the polar crystals 
essentially depend on the electrical conditions in which the crystal is located: 
whether it is short-circuited (sD, cD) or open-circuited (sE, cE). If the polar crystal is 
short-circuited, its elastic compliance will be bigger than in the case of the open-
circuited crystal (sD > sE). The reason is that electrical voltage, generated by a strain 
in the case of open-circuited crystal, increases its harshness (resistance to 
deformation). Experimental example of this effect is shown on Fig. 5.5.  

        
   (A)      (B) 

Fig. 5.5. Effect of electrical conditions on polar crystals elastic properties; A – Rochelle salt 
elastic stiffness in its polar direction; B – barium titanate elastic compliance  

 
Experiments show essential difference in the elastic stiffness in the well-

known ferroelectric Rochelle Salt crystal: cD > cE, Fig. 5.5 A. In the entire range of 
investigation this crystal is polar, at that, above 24o C it is paraelectric while below 
–18o C it is antiferroelectric, while between these temperatures Rochelle Salt is 
ferroelectric. The most impressive difference between cD and cE is seen in the Curie 
points where elastic stiffness of short-circuited crystal decreases in 8 times. As 
known, the elastic stiffness determines the speed of sound in a crystal; it can be seen 
from the Fig. 5.5 A that in short-circuited crystal this speed varies critically at the 
points of phase transitions. The above change in cE can be considered as greatest of 
known; in fact, in the most of polar crystals, the difference between cD and cE is not 
so large, but quite noticeable. 
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Second example of electrical conditions influence on the elastic properties of 
polar-sensitive crystals is shown in Fig. 5.5 B. The significant difference between 
the elastic compliance of an electrically open and a short-circuited crystal can be 
seen in the polar phase of barium titanate (below its Curie point). In the polar 
(ordered) phase of barium titanate, the piezoelectric effect is observed, and in the 
non-polar phase this effect is absent, so sE = sD. However, below temperature of 
phase transition barium titanate turns into tetragonal polar-sensitive phase that is 
characterized by the piezoelectric effect, so elastic compliance becomes quite 
different: sE > sD. The most critical reduction of the compliance sD is seen in Curie 
point. 

There are many other examples how electrical conditions influence on polar 
crystals mechanical and thermal properties. For one's turn, mechanical boundary 
conditions also may strongly affect as on electrical so on thermal properties. By that 
polar crystals differ from a great number of non-polar crystals and non-crystalline 
dielectrics.  Further, it will be shown that polar crystals exhibit unusual properties in 
the field of electrical conductivity as well. 

 

 
5.2 Charge transfer in polar-sensitive crystals 

 
While study electrical polarization mechanisms in dielectrics (including 

piezoelectrics, pyroelectrics and ferroelectrics) to simplify the task the electrical 
conductivity of material usually no need to take into account. In turn, while studying 
electrical conductivity of semiconductors, as a rule, no attention is paid to the 
phenomenon of their electrical polarization. In most cases, these assumptions are 
justified; however, there are quite rare but nonetheless important cases, when the 
interdependence of intrinsic polarity and conductivity becomes essential physical 
phenomenon. For example, should not neglect by intrinsic polarity while 
classification of semiconductors: the non-polar semiconductors (such as Si or Ge) 
are characterized by the non-direct band gap electronic energy spectrum, while main 
feature of the polar semiconductors, such as AIIIBV crystals (possessing piezoelectric 
symmetry) and AIIBVI crystals (with pyroelectric symmetry) are the crystals with 
direct band gap.  

It will be considered further, how polar-sensitive structure can affect electrical 
resistance (or conductance) of the non-centrosymmetric crystals. It should be noted 
that this phenomenon manifests itself somewhat differently in the ordinary and in 
the elevated electric fields. At that, strong influence of internal polarity is seen both 
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on the temperature dependence of resistivity (used in the electronics components 
critistors and posistors) and on the field-dependence of resistivity (that is used in 
electronics in the varistors). It should be noted that understanding of the mechanisms 
of internal polarity action on the electrical charges transfer can be important for 
improving relevant materials parameters. 

As first example, the influence of intrinsic polarity on the temperature 

behavior of resistivity is considered. Figure 5.6 demonstrates different types of 
thermistors – electronic components that are widely used to measure temperature by 
means of resistivity alteration. Temperature dependence of electrical resistance in 
the metals has been used for a long time: their resistivity increases with temperature 
(curve 1) thanks to scattering of conduction electrons by lattice vibrations; although 
this effect is rather weak, the positive temperature coefficient of resistance in metals 
finds application in sensors. Much wider application such thermistors are found, in 
which the negative temperature coefficient of resistance is used, so they are called 
the negistors, curve 2 in Fig. 5.6. Usually they are made of semiconductor oxides, 
in which resistance decreases noticeably with increasing temperature. The physical 
nature of R(T) decrease in negistors is the increase of free electrons concentration in 
the semiconductor with temperature rise. At that, electrical polarity of material does 
not have significant effect on the R(T) dependence. 

 
Fig. 5.6. Temperature dependence of resistance: 1 – platinum wire thermistor; 2 – negistor 

utilizing transition-metals oxides; 3 – critistor based on vanadium dioxide; 4 – posistor utilizing 
doped barium titanate [10] 

 
As can be seen from Fig. 5.6, there are some materials, in which the resistivity 

is much more sensitive to the change of temperature, and they are, in particular, the 
polar-sensitive materials critistors (curve 3) and the posistors (curve 4): they have 
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large negative or positive temperature coefficients of resistance. It is natural to 
assume that this feature can be explained by the influence of polarity on 
conductivity. It is important to note that in all shown in Fig. 5.6 temperature 
characteristics the magnitude of electrical fields and currents practically does not 

matter: in variuos electrical field they demonstrate the linear properties.  
However, in some other cases, just the polar-sensitivity determines the 

nonlinear properties in the oxide dielectrics-semiconductors.  
Therefore, second example is related to the effect of intrinsic polarity on the 

non-linear behaviour of resistivity. Figure 5.7 demonstrates broadly how strong 
electrical field can affect electrical resistance of different materials.  

Dielectrics usually retain a very high resistance up to very high field strengths 
(curve 1), but there is a limit: the phenomenon of electrical breakdown due to 
electronic avalanches, when the resistance of the dielectric drops to zero. Similarly, 
in semiconductors (curve 2), irreversible breakdown with the decrease in resistance 
due to generation of new charge carries in electrical field is also observed. The 
influence of the polarity of the electrical strength of crystals is not considered here. 

 
 

Fig. 5.7. Field dependence of resistance: 1 – typical dielectric; 2 – typical; semiconductor; 
3 – zinc oxide varistor; 4 – silicon nitride 

 
It's quite another matter, when the resistance can be changed in thousands 

times without electrical breakdown. This phenomenon is might be due to a peculiar 
electro-physical process (curve 3 in Fig. 5.7); in another case, it might be ascribed 
to the tunneling effect (curve 4 in Fig. 5.7). Unlike irreversible effect of electrical 
breakdown, these R(E) transfer from the insulating state to the conducting state is 
reversible, because dielectric/semiconductor does not undergo to any destruction, as 
it happens in case of electrical breakdown. 
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Materials, which resistance is characterized by the curves 3 and 4 in Fig. 5.7, 
are dielectrics in a wide range of electrical fields until anomalous changes in 
conductivity. In this regard, note that different interatomic bonds of solid dielectrics 
affect the electrical conductivity in different ways. Ionic bonds promote the 
transition of electrons to their polaron state, which significantly reduces 

conductivity: the electrons mobility in the ionic dielectrics is only (1–10) cm2V–1s–1. 
Conversely, in the covalent crystals, their “open” internal structure does not 
contribute to the formation of small radius low-mobility polarons, but contributes to 
very high electrons mobility: 104–105 cm2V–1s–1. In both cases, there is a correlation 
between the mobility and the affinity of atoms to electrons. 

At the same time, covalent bonding at which two atoms share two valence 
electrons, has different extreme cases:  firstly, covalent bond may approach to the 
metallic bonding, when all atoms share between them all valence electrons, and, 
secondly, covalent bond may approach to the ionic bond, when one atom completely 
delegates its valence electrons to another atom. 

Two important properties of ionic dielectrics: their increased polarizability 
and their low conductivity are interdependent. Indeed. the electron (or hole) 
generated in dielectric as a result of any activation processes becomes less mobile, 
since it polarizes by its field the surrounding nanosize region in the crystal. It is 
obvious that such a charge carrier is forced to move along together with the region 
polarized by it, forming a small radius polaron. The low mobility of such charge 
carriers makes possible, in turn, the long existence of electrostatic field in dielectrics 
(in the conductors this field is shielded by free charge carriers). 

Thus, the relatively stable state in a dielectric with low electronic conductivity 
is due precisely to the ionic polarization. Heating a crystal or exposing it to a strong 
electrical field can disrupt this stability, because under external energy exposure 
electrons can free themselves from their polarized environment: polarons transfer 
into highly mobile electrons, and the dielectric turns into a more conducting 
medium. 

In some especial cases the stable non-conducting state in dielectric may be 
compromised even in a weak electrical field and without essential heating. Exactly 
this exceptional case corresponds to crystals with polar-sensitive properties. In such 
polar dielectrics, even small change in the external conditions (pressure, 
temperature, mechanical stress or electrical field) can lead to a huge increase of 
conductivity (up to 104–109 times), and dielectric turns into conductive matter but 
without breakdown. Large jump of conductivity (or resistivity) usually, but not 
obligatory, is accompanied by the change in the structure of crystal; that is associated 
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with peculiar re-arrangement of electronic interaction between particles, which can 
lead to the alteration in crystal symmetry. 

Now it would be interesting to find out why this transformation in some 
crystals is a rare exception. The unusual dependence of resistivity on electrical 
voltage, i.e., its change by hundreds and thousands of times, takes place in non-
centrosymmetric polar crystals with a pyroelectric or piezoelectric structure. In fact, 
mentioned in Fig. 5.7, silicon nitride SiC has a pyroelectric wurtzite structure while 
vanadium dioxide VO2 refers to triclinic piezoelectric symmetry, Unusual 
dependences R(T), which were presented in Fig. 5.6, characteristic firstly, for zinc 
oxide ZnO with a polar pyroelectric structure, passing with increasing voltage to 
another, but also polar sphalerite (piezoelectric) structure, and secondly for barium 
titanate BaTiO3, which is a ferroelectric with pyroelectric structure. 

Thus, the explanation of unusual jump-like change in conductivity in some 
polar crystals reduces to the clarification principal physical cause: why the polar-
sensitivity, leading to the non-centrosymmetricity, might have especially strongly 
influence on the electrical conductivity. An evident reason for the lack of center of 
symmetry in crystal is a special kind of atomic bonding – polar-sensitive bonds. This 
kind of interatomic bonding represents the intermediate case between ionic and 
covalent bonds: as noted above, the pure-ionic, as well as the pure-covalent crystals 
always demonstrate a centrosymmetric structure, and this means that in such crystals 
there is no intrinsic (hidden) polarity.  

Non-centrosymmetric structures are the result of mixed ionшс-covalent bonds 
between the atoms of a crystal. Like the covalent bond, these mixed bonds are 
directional, which leads to the asymmetry of polar crystal structures. In turn, the 
nonuniform probability density of the distribution of electrons in the interatomic 
bonds is due to the difference in the electronegativity of atoms. In addition, this 
density asymmetry of electronic clouds is the main cause of internal polarity in 
crystals. Electrical conductivity in dielectrics and semiconductors, having an 
activational character, must depend on the affinity of atoms to electrons: in order to 
form a free charge carrier, it is necessary to tear an electron from its own atom or 
ion. At the same time, the crystals discussed here are not monoatomic, but are 
chemical compounds. Therefore, the importance is not only of the electronegativity 
of individual atoms (measured on the Pauling scale), but the difference of this 
parameter in neighboring ions. 

Consequently, a distinctive feature of polar crystals is a certain system of 
polar-sensitive bonds. The spatial distribution of polar bonds in a crystal can be 
complex, but its distinguishing feature is the absence of a center of symmetry. This 



235 
 

feature has a decisive influence on the physical characteristics of polar crystals, 
including their resistivity. 

In discussed case, the most important is the influence of polar-sensitivity on 
the crystal resistivity. If internal polarity is distributed in a complex manner, than 
charge carriers is obliged to lead the way through the alternating bipolar nano-size 
districts that dramatically decreases their mobility – just as electron in the 
antiferromagnetic with difficulties leads its way through the anti-parallel magnetized 
lattice. On the contrary, if internal polarity is quite ordered (or becomes ordered by 
the external field) than charge carrier mobility should be much higher – just like big 
electroconductivity is peculiar to the ferromagnetic with parallel ordered spins.  

Below it will be shown how the model of polar-sensitive bonding can be 
applied to explanation, firstly, the critical temperature dependence of resistivity and, 
secondly, the stimulated by electrical field, large jumps of conductivity in the polar 
crystals, listed in Fig. 5.6 and 5.7. 

First and foremost, the critistor effect in the vanadium oxides is considered as 
phase transition of insulator-to-metal type At lower temperature VO2 and V2O3 are 
the wide-gap semiconductors (almost dielectrics), but when temperature increases 
they exhibit metallic-type behaviour: the energy band gap in these crystals almost 
disappears. As a result, in a narrow temperature interval their resistivity changes in 
thousands times; at that, the critical temperature (within a limited range) can be 
controlled by the chemical composition. It is natural to assume that this feature is 
due to peculiarity of interatomic bonds in vanadium oxides.  

As well known, the covalent bond, in which the adjoining atoms are divided 
by a pair of valence electrons, on one hand, is close to the metallic bond, in which 
all valence electrons are generalized in the lattice of a metal. But, on other hand, the 
covalent bond is close also to the ionic bond as well, in which cation entirely delivers 
its valence electrons to anion, and together they constitute the dielectric ionic lattice. 
It would seem that exactly this feature of covalent bond could be used to explain 
discussed phase transition in vanadium oxide. However, crystals with dielectric-
metal type transition having strong R(T) dependence are extremely rare case. The 
point is that a key role in this phenomenon belongs to the hybridized covalent-ionic 
bonds, which give rise to polar-sensitivity and to non-centrosymmetric structure 
creation.  

Indirect confirmation of this mechanism is the dependence of VO2 
conductivity on pressure, which pretty easy converts this oxide into metal. Upon 
crystal compression, its atoms become closer to each other and, as a result, there is 
not enough space for hybridized ionic-covalent polar bonds mutual orientation: all 
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valence electrons become generalized in the electronic gas filling a lattice: now this 
is already metallic bonds (as it was noted. polar bond ordering leads to increase in 
crystal volume; respectively, crystal compression destroys the ordering of polar-
sensitive bonds). 

In Fig. 5.8 temperature dependence of conductivity σ in VO2 crystal is 
compared with σ dependence on hydrostatic pressure. Experiments show that at very 
high pressure (as well as in very big electrical field) dielectric phase in the vanadium 
dioxide cannot be realized. This means that not only a critical temperature exists (as 
seen in Fig. 5.6, curve 3), but also the critical field and the critical pressure exist 
(when VO2 shows sharp increase of conductivity). As it will be shown later, just 
such dependence on pressure is a characteristic of polar-sensitive coupling in 
ferroelectrics (their phase transition at higher pressure is shifted to low 
temperatures). 

  

                               (A)       (B) 
 

Fig. 5.8. Changing VO2 conductivity in electrical field (A), and with increase of pressure (B) 
[11] 

 
When comparing the characteristics of vanadium oxide of critistor, it should 

be noted that shown in Fig. 5.6, curve 3 relates to the ceramic material, in which 
R(T) dependence is somewhat blurred in comparison with single crystal: its inverse 
characteristic σ(T) ~ 1/R(T) is shown in Fig. 5.8A. It is seen that in the single crystals 
this physical phenomenon manifests itself more sharply than in ceramics.  

Thus, the mechanism of temperature-induced phase transition in the vanadium 
dioxide looks like this: in the insulating state of VO2 rather complex destribution of 
polar-sensitive bonds of 3D-orientations promotes extremely low mobility of the 
polaron-type charge carries. The point is that vanadium dioxide in its lower-
temperature (dielectric) state has several competing phases with dominating of the 
monoclinic polar-sensitive structure. Exactly the instability of these phases with 
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their variability and mutual transitions contributes to formation charge carriers with 
bound (polaron) states. Next, when temperature rises, growing energy results in fast 
liberation electrons, creating their avalanche with the stepped decrease of resistivity 
(i.e., with σ(T) spasmodic increase).  

External electrical field also supports to liberation of charge carriers from their 
bound state, so even at temperatures much low then natural jump of conductivity (in 
the dielectric phase of VO2) the electrical field forcedly and fast switches VO2 into 
its conducting phase. At that, the electrically controlled and fast changing 
"dielectric-to-metallic" reflection of infrared and optical waves from VO2 surface is 
reached: thus, arises the element with electrically guided optical reflection.  

Exactly in complicated polar-sensitive structure a strong coupling of charge 
carriers with their close neighbours in the lattice is formed. Very low mobility of 
formed polarons stipulates large resistivity of VO2 at lower temperature. Due to a 
delicate balance of this unstable state, the mechanism of high conductivity 
appearance resembles the “cards house destruction” or the “domino effect”. When 
electrons become unfettered, their interaction with the surrounding nano-areas 
becomes screened; as a result, the avalanche-like increase of free charge carriers 
occurs. Arising with temperature increase, the high-conductive (“quasi-metallic”) 
phase of VO2 is characterized by the non-polar tetragonal rutile-like structure. It 
should be also noted that a definite influence on the electrical conductivity is also 
exerted by the magnetic ordering in VO2, which at lowered temperature is 
antiferromagnetic, while at increased temperature it is paramagnetic. 

It is important to note two features: firstly, the dielectric-to-metal transition is 
very fast and completely reversible: when VO2 cooling, its dielectric phase instantly 
returns. Secondly, transition from the dielectric phase to the electrically conducting 
phase can be easily stimulated by the external electrical field, which releases the 
electrons from their polaron state. During this transition, the electrical resistivity, the 
opacity, etc, can be changed up to several orders of magnitude. Due to these 
properties vanadium oxide is used as a surface with electrically controlled reflection 
that can be applied in various sensors, and so on. Based on vanadium dioxide fast 
optical shutters, modulators, cameras and data storage devices are elaborated.  

Thus, vanadium dioxide refers to the field-controllable switching elements. 
As controlling factor for resistivity the electrical field acts, which changes resistivity 
into hundreds of times. As shown in Fig. 5.9A, the curve “E ≈ 0”, located below 
temperature 60° C, vanadium dioxide is dielectric (“D”), but above 65° C it exhibits 
quasi-metallic behaviour: the band gap in the electronic energy spectrum in 
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vanadium oxide almost disappears. As a result, in narrow temperature interval the 
resistance of VO2 decreases rapidly, passing to the metallic phase (“M”).  

However, if external electrical field is applied to the VO2 (usually sample is 
the thin film with interdigital electrodes), the transition from “D” phase into “M” 
phase will start at much lower temperature, for example at ~35oC, and the resistance 
under controlling field decreases in thousands times, as shown by vertical line 1 → 

2 in Fig. 5.9A. Such a displacement of the phase transition in the electrical field is 
the physical basis for vanadium oxides application as the switching elements: 
externally applied electrical bias field promotes charge carriers liberation from their 
bounded state, so fast switching takes place to the conducting state. As mentioned, 
electrically controlled optical reflection from VO2 film is used in controlling optical 
devices. 

     
 

      (A)                                                                    (B) 
Fig. 5.9. Resistance control by external fields: A – electrical bias field manages R value in VO2; 
B – magnetic bias field manages R value in (La1-x,Саx)MnO3 (dotted line 1 → 2 shows large fall 

in resistance) 

 
It should be noted that in the polar-sensitive crystals a significant control by 

the resistivity is possible not only by using electrical field, but by applying magnetic 

bias field. Example of magnetic control by electrical resistance in manganites with 
a perovskite structure is shown in Fig. 5.9B. These compounds are the important 
family of oxides with colossal magnetoresistance. Among such compounds, 
interesting polar compounds of the type (La1-x,Саx)MnO3, where concentration of Ca 
may vary within 0 ≤ x ≤ 1. With this variation, the physical properties of manganites 
change dramatically; in particular, phase transitions with different types of magnetic 
and dielectric ordering are seen. In this case, the magnetic ordering is due to double 
electron transfer through the intermediate oxygen ion Mn+3

⇔O–2
⇔Mn+4. At low 
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temperatures, the magnetically ordered phase (La1-x,Саx)MnO3 has the reduced 
electrical resistance (which is typical for ferromagnetic ordering) while at elevated 
temperatures, the compound under consideration is the wide-gap semiconductor 
(almost a dielectric). An application from outside the magnetic field returns this 
compound to a magnetically ordered phase with low electrical resistance. 

Therefore, in addition to electrical control by the resistivity in V2O, in the case 
of (La1-x,Саx)MnO3 compound the magnetic way of resistivity controlling is applied. 
Indeed, the parallel ordering of electronic spins inthe “M”-phase of compound 
corresponds to a low electrical resistance, Fig. 5.9B, left part, at H = 0. However, 
when temperature rises, growing thermal movement in the manganite lattice 
destroys the double-exchange mechanism, and ferromagnetic (conducting) phase is 
turning into the non-magnetic (nearly dielectric, “D”) phase; correspondingly, the 
sharp increase of resistance occurs. However, by the magnetic bias field applying in 
the higher-temperature “D”- phase the magnetic ordering in the manganite can be 
forcibly returned, see Fig. 4b, curve H > 0. At that, the resistance falls down in 
hundred times, as it is shown by the dotted line 1 → 5. Induced by magnetic field 
“insulator-conductor” transition is otherwise called the colossal magnetoresistanse. 
Large change of resistivity under the controlling magnetic field can be used in many 
electronic devices.  

Thus, in the polar-sensitive material, both electrical and magnetic fields may 
shift the temperature of “insulator-conductor” type phase transformation, leading to 
the enormous changing of resistivity. At that, the phase with reduced resistivity may 
be located as at elevated temperature so at lower temperature.  

The listed mechanisms of dielectrics polarity strong influence on electrical 
resistivity make it possible at last to consider the posistors, mentioned above in 
connection with Fig. 5.6, curve 4 (note that such electronic ceramics with the positive 
temperature coefficient of resistivity is used not only in electronics but in electrical 
engineering). Quite unusual for dielectrics and semiconductors availability to obtain 
such temperature range, in which their resistivity increases with temperature rise 
(instead of usual exponential decrease) is observed not only in the manganites of 
(La1-x,Саx)MnO3 type but also in doped ferroelectrics of BaTiO3 type. 

In ordinary ferroelectrics, near their the phase transition anomaly of electrical 
resistivity usually is small: ferroelectric transition in most cases does not 
significantly change general activation-type R(Т) decrease with growing 
temperature, Fig. 5.10A, the dotted part of line. Electronic energy band gap in most 
of ferroelectrics is big, and, therefore, they usually can be considered as dielectrics 
both above and below their phase transition.  
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However, using doping, it is possible significantly reduce resistance in 
ferroelectric that is shown by a solid line in Fig. 5.10A. At that, near the ferroelectric 
Curie point (~ 400 K in BaTiO3) a sharp increase in R(T) is seen (in ~ 103 times). As 
already noted, in most cases posistor effect is used in doped ferroelectrics ceramics 

of barium titanate type (not in crystals). It is important to note that the state with low 
resistance is peculiar only to polar-sensitive phase, while at transition to non-polar 
phase the resistance stepwise increases. (Typical for usual dielectrics activation-type 
resistance falls down is seen only at further heating, significantly higher than Curie 
point). 

          

 

               (A)            (B) 
 Fig. 5.10. Resistance temperature dependence in dysprosium doped barium titanate (A) and 
scheme of crystallite (grain) with (mosaic) structure inside crystallite (B) 

 
In case of ferroelectrics, strong influence of polar-sensitive ordering on the 

resistivity is obvious. Experiments show that one-directed polar-sensitive bonds in 
the structure with tetragonal symmetry of 4m class do not promote polaron states 
formation, giving increased conductivity in doped ferroelectric. When phase 
transition into high-temperature non-polar m3m phase occurs, the ordering in polar-
sensitive bonds disappears, and charge carriers transform into polarons with 
increased effective mass. At that, exactly the polycrystalline structure essentially 
contributes in the disordering, under which the favorable conditions are created for 
charge carriers binding and correspondent increase of electrical resistance.  

With a further increase in temperature above the limits of use of a posistor, in 
the end, the polaron states are destroyed by thermal motion, and the resistance 
decreases as in all semiconductors and dielectrics, Fig. 5.10, t > 500 oC. 

In the posistor effect, a decisive role of the grain boundaries of polycrystalline 
ferroelectric is seen: they are relatively “transparent” for charge carriers movement 
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in the ordered polar phase, but become practically “locked” in the non-polar phase, 
creating polarons. The scheme of crystallite is shown in Fig. 5.10B: this is a rather 
complex formation, having both “widened” boundaries and densely located 
“narrow” dividing walls, which also introduce disorder into structure. Both grain 
boundaries and interblock boundaries have chemical composition similar to basic 
ferroelectric, but they have high concentration of structural defects. The main reason 
for the low resistance of boundaries in the polar phase is the proximity effect*), 
already discussed above in connection with polar crystals surface chemical 
peculiarities. As a result, highly ordered in the polar phase interatomic bonds induce 
inside weakly-ordered boundaries the polar type regularity, which causes lower 
electrical resistance. When, with temperature increase, thermal motion destroys the 
ordering of polar-sensitive bonds in body of crystallite, the ordering is even more 
disturbed in the numerous wide and narrow boundaries, so the resistance suddenly 
rises. 

The temperature of the sharp increase in posistors resistance could be changed 
by applying various doped ferroelectric solid solutions. For example, in the 
composition (Ba, Pb) TiO3, the resistance jump can be increased up to 600 K, while 
in the composition (Ba, Sr) TiO3, the temperature jump of resistance can be reduced 
down to 300 K. Thus, ceramic posistors can be designed for applications in a wide 
range of temperatures. Pozistors – unusual ceramic elements with low "cold" 
electrical resistance and high "hot" resistance – are used in thermal control systems, 
in devices that prevent thermal and current overload, in engine-start systems, in 
measurement technology, as well as in automatic control systems. Posistors are also 
used to protect against overvoltage and to avoid high short circuit current: when the 
posistor is connected in series with the load, the current in the circuit is limited to a 
safe level [1]. 

For the same goal – electrical current limiting in the critical situations – others 
polar conductive materials are used, namely, the varistors, i.e., ceramic dielectrics-
semiconductors, in which the drastic change in conductivity not means any phase 
transition (as it occurs in VO2 or in doped BaTiO3). In case of varistors, the 
significant jump of electronic conductivity (millions of times) is observed, for 
instance, in the carborundum (SiC) or in the zinc oxide (ZnO). The comparison of 
their behavior in strong electrical fields with ordinary dielectrics and semiconductors 
was shown in Fig.5.11  

[Note. Proximity effect is well known in magnetism, when a magnet induces 
magnetization in closely adjacent non-magnetic material; this effect is also known 
in superconductivity, when ordinary metal closest to superconductor also becomes 
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superconductor; in liquid crystalline substances, when ordering, peculiar to one 
phase, affects ordering of neighboring phase, etc]. 

 

   
  

(A)     (B)        (C) 
 

Fig. 5.11. Zink oxide non-linear property: A – current-voltage characteristic; B, C – polarity 
changing from polar-neutral sphalerite into polar wurtzite (only positive directions of polar axes 

are shown) 

 
Both of mentioned materials belong to non-centrosymmetric classes of 

symmetries with mutable structure, which can be changed from the sphalerite 
(piezoelectric) structure into the wurtzite (pyroelectric) structure.  

Varistors are characterized by linear (ohmic) current-voltage dependence, 
both at reduced level and at increased level of electrical fields: j ~ E, Fig. 5.11A. 
However, it is important that in a low electrical field the varistor has a high electrical 
resistance: its resistance is close to the dielectric, but in a strong electric field the 
resistance of varistor decreases millions of times and it becomes a typical 
semiconductor. In this transformation, the electrical breakdown of the varistor does 
not occur, since the growth of the electrical current in it is limited. The characteristic 
j(E) is reversible: the increased current passing through the varistor remains stable. 
Therefore, physical phenomenon of stepped grows of electrical current in the 
varistor is essentially different from conventional electrical breakdown.  

The features of carborundum varistors and zinc oxide varistors are similar, but 
the jump of resistance in zinc oxide varistors is much bigger. At that, zinc oxide 
crystal has big electronic energy band gap (~ 3.4 eV). Advantages, associated with 
large band gap, include the higher breakdown voltages and the ability to stand in 
increased electrical fields, as well as the possibility of their applications in the 
higher-temperatures and higher-power conditions. 
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To explain an enormous nonlinearity of electrical conductivity in ZnO, the 
following should be noted. Zinc oxide crystallizes in two main structures: cubic 
sphalerite and hexagonal wurtzite, both belongs to the non-centrosymmetric classes 
of symmetries. In both cases, polar-sensitive bonds are mixed in the complex 3D 
structure, which corresponds to structural motives shown in Fig. 5.11B. The 
modification of the sphalerite (zinc blende) is polar-neutral material (of piezoelectric 
symmetry), while zinc oxide has 1D-oriented motive of polar wurtzite symmetry (of 
pyroelectric type). It is important to keep in mind that this material rather easily can 
alternate its structures under the influences of external factors: for example at high 
pressure (about 10 GPa) any polar properties in zinc oxide disappear, and crystal 
acquires the electrically neutral rock salt structure. This indicates the high sensitivity 
of ZnO structure to any external impacts what does this material to be important for 
applications in the electronic devices. 

Figure 5.11B demonstrates possible physical mechanism, explaining how the 
external electrical field, being applied to the zinc oxide in its insulating phase, 
induces a change in the internal polarity distribution, which in its turn has strong 
impact on the electrical conductivity. Of eight possible [111]-type directions of inner 
polarity (Fig.5.11B, left) one directions obviously should be settled close to the 
direction of applied field, which strengthens the polar-sensitivity in this direction 
(following axis 3) at the expense of others axes, Fig. 5.11B, right (where for 
convenience only positive directions of polar axes are shown).  

Thus, the high-resistance phase of ZnO is the dielectric-sphalerite, in which 
electrical transfer of charge carries occurs in the complex and competing 3D 
structure: these charge carries are the excitons with large binding energy ~ 60 meV. 
Sphalerite phase can be electrically transformed into the low-resistance phase, 
consisting of mainly 1D-oriented polar wurtzite.  

As already mentioned above (when posistor effect was discussed in polar 
higher-conducting phase of doped barium titanate), one-dimensional polar ordering 
prevents the binding of charge carriers into polaron state; at that, polarity of wurtzite 
agrees with this case.  

On the contrary, very complicated polarity orientations in the sphalerite 
structure (Fig. 5.11B, left) deepens potential barriers of polaron state and essentially 
lowers charges mobility. Thus, mechanism of nonlinearity in ZnO might represent 
electrically induced switching from the sphalerite structure into the wurtzite 
structure. 
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Varistors are widely applied to protect electrical circuits from sudden jumps 
of voltage: when voltage increases, the current flows through varistor, but not others 
elements of circuit.  

          

           (A)                                           (B) 
Fig. 5.12. Zinc oxide nanostructures used in sensors: А – hexagonal nanocrystals;  

B – very thin tubular nanocrystals [12] 

 
The finely balanced polar-sensitive structure of zinc oxide, which is always 

ready for the strong change of its electrical properties under the external influence, 
is used also in the sensors for various purposes, especially in the nano-structural 
state, Fig. 5.12. Very thin films of zinc oxide (and, particularly, its nanostructures) 
are used as components in the solar elements, in the piezoelectric nano-generators, 
as well as luminescent materials, light-emitting diodes, lasers, etc. Note that 
superfine ZnO nanocrystals shown in Fig. 5.12B are thousands of times thinner than 
human hair. 

At that, the nanoparticles of zinc dioxide demonstrate structures with quite 
developed surfaces and very tender forms, Fig. 5.12A, which despite its small size 
and unusual shape, retains the regularity of its structure inherent in bulk crystal. As 
already mentioned, the piezoelectric and pyroelectric properties of polar crystals are 
strongly influenced by boundary conditions. Apparently for this reason, the 
piezoelectric module in ZnO nanostructures is larger compared to a conventional 
bulk crystal. 

Internal polar bonds in the ZnO nanostructures are very sensitive to 
temperature, light, humidity, and even to the composition of surrounding gas. As 
already discussed in connection with the properties of varistors, zinc oxide varies 
greatly its electrical conductivity with structural changes from the sphalerite to the 
wurtzite structures. In this case, in the ultrathin nanostructures, the balance of 
symmetry can be easily broken, as was shown above in Fig. 5.12B, which can serve 
as a physical model for the functioning of ZnO sensors. 
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5.3 Electrically induced polar properties 
 

It was already indicated in Chapter 1 that polar properties in the non-polar 
dielectric can be induced by a bias field through the electrostriction, which is 
deformation of a crystal in the electrical field. When this field is small and relative 
dielectric permittivity ε is less than 10, effect of electrostriction is very small and 
can be neglected. However, in the electronics many materials with a large 
permittivity (ε ~ 103–104) are applied; in this case the electrostriction (which is 
proportional to ε2) becomes large. 

1. Electrostriction is a quadratic (“even”) effect, and it is different from the 
inverse piezoelectric effect, which is characterized by a linear (“odd”) dependence 
of the deformation on the electrical field. In the case of electrostriction, the sign of 
the deformation x(E2) does not depend on the polarity of electrical field, while in 
most dielectrics, then expansion is observed along the applied field (x3 > 0), while in 
the transverse direction the compression is observed (x1, x2 < 0). The value of 
electrostriction is usually small: it is an order of magnitude smaller than the 
piezoelectric deformation. Only in very large electrical fields, the deformation of 
electrostriction can be compared with the piezoelectric deformation: in quartz, in a 
field of 35 kV/cm these deformations become equal. 

In the analytical description of electrostriction, the same boundary conditions 
are accepted as in the case of the piezoelectric effect. It is advisable to consider only 
the electrostriction in mechanically free dielectrics (X = 0). Electrostriction 
dependence of the strain х on polarization P or electrical field E is described by two 
equations according to whether the dielectric is electrically clamped or free; in thise 
cases the following equations can be obtained: 

      хij = QijklPkPl + Q′ijklghPkPlPgPh + ... ; 
          хij = RijklEkEl + R′ijklghEkElEgEh + ... ;               (5.1) 

In these series, it is usually sufficient to consider only the first terms of the 
expansion, since the electrostriction is rather small. However, in the ferroelectric 
relaxors, the electrostriction is gigantic; that is why in the series above, the first three 
terms of the expansion in the series are considered: 

                                              x(E) = RE2 + R′E4 + R″E6                  (5.2) 
It's obvious that coefficients of electrostriction Qijkl and Rijkl (i, j, k, l = 1, 2, 3) 

are the fours-rank tensors. The electrostriction tensors Qijkl and Rijkl, in principle, 
have 81 components, but due to the diagonal symmetry of the deformation tensor, 
only 36 components remain in them. Others tensors of the fourth rank – elastic 
constants – are usually represented by components of matrices of cmn and snm type, 
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where m, n = 1, 2, ...6; they are also symmetrical, therefore, even crystals with the 
lowest symmetry can have a maximum of 21 independent elastic constants. In 
contrast, the tensors that describe electrostriction, Qijkl and Rijkl, in the limiting case 

of the smallest symmetry, can have all 6×6 = 36 independent components. But in 

practice, this difficult case does not occur: the majority of these components are 
usually zero. With increasing crystal symmetry, the number of nonzero components 
Qijkl and Rijkl decreases significantly, but it never happens (as in the case of the 
piezoelectric module dijl) when all components of the electrostriction tensor go to 
zero.  

Electrostriction for the highest symmetry medium (isotropic medium) is 
described by only two components of the tensar: Q11 and Q12 (respectively, R11 and 
R12); which correspond to the longitudinal expansion and lateral compression of the 
dielectric in an electricфд field. Since in practice the giant electrostriction of relaxor 
ferroelectrics with a diffuse phase transition is usually used, the above two 
parameters turn out to be sufficient. 

The so-called “fundamental” electrostriction can be considered as tensor Qmn, 
since its components differ only slightly for different solids and weakly depend on 
changes in external conditions. Even in ferroelectrics, the components Qmn change 
little with temperature and frequency and are practically independent of fields. This 
allows us to consider exactly this tensor as main characteristic of electromechanical 
interaction of atoms, ions or molecules in a given dielectric. 

The components of the tensor Rmn, in contrast to Qmn, strongly depend on the 
dielectric permittivity and, therefore, they depend on the temperature and frequency 
of the applied electrical field. That is why in the ferroelectrics with a high 
permittivity (ε ~ 104), electrostriction reaches (and may even exceed) the strain that 
is possible with the piezoelectric effect. Giant electrostriction is important for 
electronic devices, because it can be used in actuators. 

2. Electrical control of the piezoelectric effect is of not only scientific, but 
also technical interest. A change in the piezoelectric properties of a material upon 
application of an electric field finds application in devices based on surface acoustic 
waves (SAW), in electrically controlled delay lines as well as in convolvers and 
electrically tunable piezoelectric filters [6]. 

The physical mechanisms of electrical control of the piezoelectric effect are 
different in paraelectrics and piezoelectrics, but in essence they reduce to controlling 
the speed of sound in a material in which an electric field changes elastic 
compliance. Typical cases of a change in the speed of sound by bias electrical field 
in different dielectrics are shown in Fig. 5.13. The piezoelectric crystal of lithium 
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niobate has a polar-sensitive structure with symmetry of 3m. The speed of sound 
Δυ/υ0(Е) in a LiNbO3 crystal changes in the electric field by only a fraction of a 
percent, 5.13A, which is enough to control SAW devices. The linear dependence 
υ(Е) indicates that the energy of oriented polar-sensitive bonds in a polar LiNbO3 
crystal significantly exceeds the external control energy. 

Another case is shown in Fig. 5.13B when piezoelectric effect is induced by 
external electrical field in the non-polar (centrosymmetric) dielectric. Due to the 
electrostriction, the bias electrical field transforms the structure of any isotropic 
dielectric into the non-centrosymmetric structure, and induces in it 
electromechanical coupling – i.e., the piezoelectric activity. In Fig. 5.13B induced 
piezoelectric effect is so great that for its description it is necessary to use formula 
(5.2).  

     
 

   (A)                                                                 (B) 
Fig. 5.13. Electrically tuneable and induced piezoelectric effect: A – lithium niobate crystal used 

in controlled delay lines; B – diffused phase transition ceramics  

 
In the same time, in dielectrics with low permittivity the induced piezoelectric 

effect is so small that it is difficult to even find, as the electrostriction negligible. It 
is appropriate to remember that in Chapter 1 in Fig. 1.9A some intermediate case 

was given: induced piezoelectric effect in the dielectrics with a permeability of about 
100. The comparison of characteristics of widely used in electronics ceramics was 
given: the titanium oxide (TiO2, rutile with ε ~ 100), the calcium titanate (perovskite, 
CaTiO3 with ε ~ 150) and the strontium titanate (SrTiO3 with ε ~ 300) were shown. 
It is this type of ceramics which are interesting for using in the electrically controlled 

piezoelectric resonators and filters: while bias field is applied the element of circuit 
demonstrates strong piezelectricity, but once this field is turned off, the piezoelectric 
effect fast disappears. In this case, resonant frequency of the piezoelectric element 
can be controlled by the applied electric bias field. 
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The piezoelectric modulus for electrically induced piezoelectric effect can be 
calculated from the equation of electrostriction (5.1), omitting, for simplicity, the 
indices of tensor components, as in case of formula (5.2). The deformation is the 
even function of polarization, which can be described by arapidly convergent serie: 

х = QP2 + Q′P4 + ... . 
In case of rather small alternating electrical field E, it suffices to restrict to 

first member of the expansion: х = QP5. Electrostriction х in an alternating 
electrical field is linearized, and can be represented as the piezoelectric effect: 

 х = 2QPуP = d.E ,                                            
 

where parameter d acts as the piezoelectric modulus, caused by the electrostriction Q: 
                                                    d  ≅ 2Qε0

2ε5.Е,                      (5.3) 
where E = Ebias is the electrical field which induces the piezoelectric effect. 

3. Relaxor ferroelectrics peculiarities. Piezoelectric module induced in a 
crystal by electrical field is proportional to the field strength and the square of 
permittivity. Therefore, the field-induced "piezoelectric effect" is the higher, the 
higher the dielectric permittivity. As stated earlier in Chapter 1, in the dielectrics 
with increased dielectric constant (ε = 100–300) the induced piezoelectric module is 
approximately 0.3 pC/N; however, in a specially developed electrostrictive ceramics 
PbMg1/3Nb2/3O3 – PbSc1/2Nb1/2O3 (PSN–PMN) where ε = 30.000, the piezoelectric 
module in electrical field (Еbias = 106 V/m, Fig. 5.13B), is close in magnitude to the 
piezoelectric materials commonly used in the technique (in PZT d31 ≅ 500 pC/N). 
In this case, the induced piezoelectric effect in crystals of ferroelectric relaxors is 
even greater. 

     
           (A)                                                                    (B) 

Fig. 5.14. Relaxor ferroelectric characteristics: A – comparison of electrically induced 
polarization Pi in PMN with paraelectric BST; B – PMN properties: 1 – induced by 10 kV/cm 

polarization Pi; 2 – permittivity at Ebbias = 0; 3 – permittivity at Ebias = 10 kV/cm  
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The comparison of induced polarization in relaxor ferroelectric PMN with 
similar polarization of paraelectric material Ba(Ti0.6,Sr0.4)O3 = BST (that also has 
rather big ε ~ 10.000) is shown in Fig. 5.14 (data are obtained by pyrolectric 
coefficient measurement). The electrically induced polarization Piтd in the PMN far 
exceeds this polarization in the BST: the reason is that relaxor ferroelectrics have 
much greater permittivity (~20.000-40.000). Moreover, in the relaxor ferroelectric 
polarization Piтd depends on temperature as well as in the conventional 
ferroelectrics, Fig. 5.14B.  

 

Fig. 5.15. Electromechanical effect in relaxors: 1 – crystal PZN-4.5% PT; 2 – crystal PZN; 
3 – crystal PMN-24% PT; 4 – piezoceramics PZT-8 

 
For technical purposes, it is important that in a field of electrical bias, the 

relaxor demonstrates not only the piezoelectric, but also the electrically induced 
pyroelectric effect; the value of which may exceed the pyroelectric coefficient of 
conventional pyroelectric. At the same time, compared with the induced pyroelectric 
effect used in the BST type paraelectrics, the induced pyroelectric effect in PMN is 
more thermostable due to the smaller oblique dependence Piтd (T). 

It was shown that theoretical calculation for electrically induced piezoelectric 

effect gives for artificial piezoelectric module d = 2Q
22 . It is obvious that 

electrically induced piezoelectricity is substantial only in dielectrics with a very high 
permittivity. However, in the paraelectric materials induced piezoelectricity appears 
and disappears practically without inertia. But in the relaxor ferroelectrics response 
time is about several microseconds. Nevertheless, in some of PMN-PSN relaxor 

ferroelectric with   40.000 piezoelectric modulus riches d = 2000 pC/N (more then 
as in best piezoelectric ceramics of PZT type). For example, high strain in the 
electrical field shows crystals РbZn1/3Nb2/3O3–4,5%PbTiO3 (PZN–4,5%PT). Its 



250 
 

electrically tuneable deformation in 10 times more than deformation in widely used 
piezoelectric ceramics PZT-8 and, unlike piezoelectric, allows large controllability 
without hysteresis.  

Thus, both paraelectrics and relaxor ferroelectrics under bias electrical field 
produce induced piezoelectric effect, which immediately disappears after switching 
off this field. The speed of such control of the piezoelectric effect depends on the 
inertia of polarization, and its magnitude is limited by the dispersion of permittivity, 
which appears at frequencies of about hundreds of kilohertz. From the point of view 
of physics, the electrically induced piezoelectric effect is interesting because it 
allows explain the microscopic nature of electromechanical coupling in solids 
(physical models and thermodynamic theory of this will be discussed further in 
Chapter 4). From the point of view of technical applications, this effect is important 
for electromechanical drives and electrically tunable piezoelectric resonators and 
filters, allowing control of the resonant frequency and bandwidth. 

 

5.4 Thermomechanically induced pyroelectricity 
 
It is important to note the fact that pyroelectric effect corresponds to the quasi-

one-dimensional model of polar-sensitive bonds orientation. This means that such 
effect is possible in 10 classes of pyroelectric symmetry crystals; and one would 
assume that pyroelectric effect (and volumetric piezoelectric effect as well) is 
impossible for two-dimensional and three-dimensional models of polar bonds 
arrangement. The main thing that will be shown in this section is that by the creating 
for polar-neutral crystal the special boundary conditions the “artificial pyroelectric 
effect” can be obtained in non-centrosymmetric crystals in all remaining 10 polar-
neutral classes of crystals. 

1. First two-dimensional structural arrangement of the polar-sensitive bonds 
will be considered (correspondent simplest model was shown in Fig. 5.11B and 
5.13). In the actual (“exclusive”) piezoelectric, the primary pyroelectric effect is 
always absent (γi

≅≅(1) = 0) and in mechanically clamped condition the secondary 
pyroelectric effect also looks to be impossible (γi

≅≅(2)≅ = eimαm = 0). However, in the 
partial clamping conditions any piezoelectric is liable to show “secondary type” 
pyroelectric effect, because the sum eimαm ≠ 0. Just this is the “artificial pyroelectric 
effect” [13].  

From 10 classes of “exclusive” piezoelectrics, exactly the quartz is simplest 
example for explanation of internal polarity nature. Trigonal α-quartz, which 
belongs to 32 class of symmetry, is electrically active only in the [100]-type 
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directions that corresponds to (100)-plate of quartz, which is known as a “Curie cut”. 
This cut should be prepared perpendicularly to any one of three two-fold polar axes: 
1, 1′ or 1″ (distribution of polar activity in quartz crystal was presented in Fig. 
5.13A).  

Further it will be shown how it is possible to measure the components of the 
polar-sensitivity in the polar-neutral crystal. 

                
     

      (A)                                      (B)    (C) 
 

Fig. 5.16. Partially clamped quartz samples: A – tangential strain in thin plate is forbidden by 
plate soldering to substrate; B – membrane variant of partial clamping; C – thermally induced 

polar response conditioned by piezoelectric effect 

 
In the standard crystallographic setup of quartz crystal the matrix of 

piezoelectric coefficients eim consists of one longitudinal (e11), one transverse (e12) 
and three share components of piezoelectric strain modulus (e14, e25 and e26): 

11 12 14

25 26

0 0 0

0 0 0 0

0 0 0 0 0 0
im

e e e

e e e

 
   
   . 

Transverse component e12 equals to longitudinal one but has opposite sign: e12 = –
e11. Besides, only one of share piezoelectric modules (e14) is independent, others 
share components are e25 = –e14 and e26 = 2e11. So the only two components of given 
matrix (2) are independent.  

Before proceeding further, it is necessary to show that any homogeneous 
influence (uniform change of temperature or hydrostatic pressing) can not induce 
the electrical response in a specimen of quartz even being taken from the Curie cut. 

First of all, any share strain cannot be excited in a sample, if external influence 
has the scalar type. So only the longitudinal and the transverse electrical response 
should to be taken into account. In the non-clamped quartz sample (i.e., in free-stress 
state) the longitudinal piezoelectric effect (e11x1) and the transverse effect (–e12 x1) 
compensates each other. It is illustrated in the Fig. 5.16C, which characterises 
uniform thermal influence on quartz sample: one part of piezoelectric response 
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(e11x1) induced by thermal deformation x1 equals to another part (e12x1) but with 
opposite sign. 

Since a rather complex phenomenon is discussed here, it makes sense to give 
the additional proof that any electrical response in actual piezoelectric really is 
compensated in the case of scalar influence, as shown in Fig. 5.16C. First of all note 
that from the matrix for piezoelectric strain modulus eim it follows that polarization 
component P3 = 0 (in Z = 3 direction quartz shows no piezoelectric effect) as well 
as for component P2 = 0, because shear strains e23 and e26 can not be excited by the 
uniform action. It remains to analyze the polarization component P1. 

Induced mechanically (by direct piezoelectric effect) this component of 
electrical polarization can be given by 

           P1 = e1mxm = e11x1 + e12x2 + e13x3 + e14x4 + e15x5 + e16x6 =  e11x1 + e12x5.       
This sum depends on mechanical boundary conditions, in which crystal is located: 

(i) In case when crystal is totally clamped, any mechanically induced 
polarization is impossible: P1 = 0 due to xm = 0.  

(ii) It is essential to show that in case of free-stress condition (when quartz 
crystal can be deformed) any polar response is also absent (P1 = 0).  

Firstly, many components of the piezoelectric strain module of quartz crystal 
are zero: it is seen from the above matrix that e13 = e15 = e16 = 0. Secondly, in the 
above equation the share strain x4 = 0 because any share strain should be absent in 
the case when external action is uniform.  

Thirdly, in free-stress quartz crystal the strains x1 and x2 in the (100)-plane are 
equal: x1 = x5. In fact, that in case of uniform thermal action (xm = αmdT) these strains 
are equal due to the parity of correspondent components of quartz thermal expansion 
coefficients: α1 = α2 (however, α1 ≠ α3).  

In fourth, in the event of uniform stretching (or compression), again, the 
strains x1 = x2 due to the equality of correspondent quartz elastic stiffness 
components: c11 = c25. Strains could be calculated from the equation xm = cmnXn, 
where Xn is the uniform (hydrodynamic) stress. Thus, excitation in the actual 
piezoelectric the homogeneous deformation (by thermal or elastic way) does not lead 
to its polar response, since the piezoelectric contributions from strains e11x1 and e12x2 
into the polarization P1 compensate each other, Fig. 5.16C. 

(iii) However, in the partially clamped quartz crystal the thermally induced 
polarization will not be zero (P1 ≠ 0), and just this circumstance is used here to 
examine internal compensated (latent) polarity that, in principle, makes possible the 
use partially clamped quartz (and others polar-neutral piezoelectrics) in the thermal 
or pressure sensors. 
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The fundamental idea is that artificial limitation (by mechanical boundary 
conditions) of any one of strain (x1 or x2) should transform the plate of piezoelectric 
quartz into the artificially created “pyroelectric” crystal [14].  

Suppose that one of two types of deformations can not be realized in the 
piezoelectric plate. For example, it is possible to suppress the tangential strains (x2 
= 0 and x3 = 0), if piezoelectric plate is firmly fixed on the massive incompressible 
substrate with zero coefficient of thermal expansion (in given case as substrate the 
fused silica in which α ≈ 0, Fig. 5.16A). In this case the uniform heating or cooling 
(as well as hydrostatic compression) will lead to the polar response appearance: Р[100] 

= е11х1. Similarly, the prohibition on the normal strain (x1 = 0) with a possibility of 
tangential strain would cause the response of opposite polarity: Р[100] = е12х2, but 
experimental realization of second case is more difficult. 

In practice, it is easier to limit the plane strain x2, if piezoelectric plate soldered 
onto a fused silica. The only deformation that can be realized in this case is the 
thickness strain x1 directed along polar-neutral axis “1”, which by this way is turned 
into the single polar axis. Therefore, substantial reducing of one type of deformations 
transforms piezoelectric crystal into artificial pyroelectric. This effect can be defined 
also as the polarization of partially clamped actual piezoelectric by the uniform 
change of its temperature. Partial clamping is provided by the non-uniform 
mechanical boundary condition, limiting some of thermal strains of a crystal, which 
becomes uniformly but anisotropic stressed. 

Artificial thermo-piezoelectric effect can be characterized by the coefficient 
γ* which is equivalent to the pyroelectric coefficient, which depends on electrical, 
elastic and thermal properties of the non-central crystal, as well as on the way of its 
deformation limitation: 

γ* = dimλ*
m,                                                              (5.4) 

where dim
 is piezoelectric modulus and λ*

m is effective thermo-elastic coefficient of 
partially clamped crystal. 

The spatial distribution of the sensitivity of artificial pyroelectric effect in the 
crystals of quartz type symmetry (such as berlinite (AlPO4), cinnabar (HgS), 
tellurium (Te), etc.) can be found similarly to quartz crystal. It is possible to find 
“pyroelectric coefficients” in these crystals, even in any slanting plates. The spatial 
distribution of γ*(θ,ϕ) that characterizes artificial pyroelectric coefficient in the 
quartz type crystals can be presented in polar coordinates: γ*(θ,ϕ) = 
γ*maxsin3θ≅cos3ϕ, where θ is azimuth angle and ϕ is plane angle. This spatial pattern 
is equivalent to longitudinal piezoelectric modulus distribution that was shown in 
Fig. 1.13A. Through the radius vector directed from the center of this figure it is 
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possible to determine the size of the artificial effect in any cut of quartz-type crystals. 
It is obvious that maxims of the effect occur along any of three X-axes. 

In order to get effective pyroelectric coefficient γ* = dРi/dТ, the 
thermodynamic equations for the non-centrosymmetric (but not pyroelectric) crystal 
should be used. With assumption that crystal is short-circuited (E = 0), the exact 
solution is given below:  

dxn = snm dXm+ αm dT; 
                                                dPi = dim dXm,                                                     (5.5) 
where snm is components of elastic compliance tensor. Solving equations (5.5) for 
trigonal crystal class (which include quartz crystal) leads to following expression: 

                               γ*100 = d11(α1s33 − α3s13) [s11≅s33 − (s13)2]−1.                 (5.6) 
For quartz crystal one can obtain γ*100 = 5.6 μC/m2K, in others crystals of 32 

symmetry class this parameter is bigger: γ*100 = 5.7 μC/m2K in berlinite, 8.7 μC/m2K 

in cinnabar, and 10 μC/m2K for tellurium crystal. This parameter is not very small, 
because the first known pyroelectric tourmaline has pyroelectric coefficient γ  = 4 
μC/m2K, while in wurtzite crystal (ZnS) usual pyroelectric response is characterized 
by γ  = 0.3 μC/m2K. 

In quartz, as in other piezoelectrics the thermomechanically induced 
pyroelectric effect was studied by a quasistatic method, in which the pyroelectric 
coefficient is determined by the time during which the pyroelectric current charges 
the measuring capacitor [12]. Electronic equipment includes the Peltier element used 
for heating and cooling. Samples, having a plate shape about 100 microns thick and 
the area of ~ 1 cm2 with copper electrodes, soldered onto silica glass substrates were 
investigated. 

Temperature dependence of artificial pyroelectric response of partially 
clamped in the (100)-cut of quartz crystal is shown in Fig. 5.17 along with the rest 
of the key parameters. Investigation shows that artificial pyroelectric coefficient 
γ*100 changes with temperature very slowly while the alteration of some others 
components of tensors might be very complicated. In a wide temperature range 
artificial “pyroelectric” coefficient γ*1is almost constant, but it is seen a tendency to 
it decrease at low temperatures, perhaps due to reduction of thermal expansion 
coefficient. In vicinity of quartz α → β phase transition at temperature θ1 ≈ 850 K 
the γ1* breaks off. It is remarkable that for thermally induced polarity P[100] = ΔР1 = 

∫γ*1dT the simplest linear temperature dependence is observed: ΔP1 ~ (θ – T) with a 

critical index n = 1. 
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Fig. 5.17. Latent (hidden) intrinsic polarity temperature dependence for quartz (curve 1) in 

comparison with dependences of other thermal and elastic parameters of this crystal: 
       1 – ΔР1 found in [100]-cut thin plate of quartz in α-phase;  
       1`– ΔР1 found in [110] oriented rod in high-temperature β-phase of quartz;  
       2 – artificial pyroelectric coefficient γ1*of partially clamped [100]-cut of quartz in α-phase;  
       3, 4 – thermal expansion coefficients α1 (3) и α3 (4) of quartz crystal; 
       5, 6 – piezoelectric modulus d11 (5) и d14 (6) of quartz α-phase;  
       7–12 – elastic compliance components: 0,5≅s66 (7), s11 (8), s33 (9), s12 (10), s13 (11), s44 (12) 

 
It should be noted that piezoelectrics of quartz symmetry (SiO2 and AlPO4), 

in addition to α → β phase transition have the second high-temperature 
transformation between their β and γ phases. Temperature dependence of artificial 
pyroelectric response (Fig. 4.5, curve 1′) characterises quartz in its β-phase with 
temperature dependence of 3D moment Mijk. It is described by another equation; P13 
~ (θ2 – T)2 with θ2 = 1140 K. As seen from Fig. 4.5 (curve 1′), this electrical moment 
vanishes at the β → γ phase transition. In the quartz crystal high-temperature γ-phase 
is non-polar. Again, it is necessary to note that the study of volumetric piezoelectric 
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effect needs the non-compressible substrate, so only theoretical estimation on this 
effect can be provided [15]. 

2. Second consider here is three-dimensional structural arrangement of polar-
sensitive bonds in the polar-neutral piezoelectric. As the first example, well studied 
ferroelectric KH2PO4 (KDP) will be described, but in its paraelectric phase (above 
the Curie point). At room temperature and above it KDP is only a piezoelectric, 
which belongs to the polar-neutral 422 class of symmetry. In addition to several 
crystals of KDP type, the antiferroelectrics of ADP (NH3PO4) type have analogous 
piezoelectric properties. Their polar-sensitivity corresponds to the 3D arrangement.  

In the standard installation, the piezoelectric module matrix of these crystals 
shows no longitudinal and no transverse effects: 

   dmi = 
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To find the artificial pyroelectric effect, one needs to change the standard 
setup of a crystal, for example, by turning axes 1 and 2 around the axis 3 at angle of 
π/4. In these crystals one needs to select piezoelectric element not in a form of thin 
plate, but as the long rectangular rod, extending along one of new axes of 1' or 2', 
while electrodes should be deposited on the surface of piezoelectric element 
perpendicularly to axis 3' = 4.  

By limiting of longitudinal deformation of KDP sample, made in the form of 
rectangular rod, it is possible to obtain artificial the pyroelectric effect with 
coefficient 

γ*3 = 2 d36α1(2s11 + 2s12 + s66)−1.                             (5.7) 
Figure 5.18 shows main properties of KDP crystal above its ferroelectric 

phase transition, where this crystal is only a piezoelectric. Investigations show that 
in this paraelectric phase the KDP crystal can be transformed into the artificial 
pyroelectric with coefficient γ*3 = 6 μC/m2K, while in ADP crystal γ*3 = 17 μC/m2K. 
Moreover, it is found that crystals of KDP type in their paraelectric phase also have 
(as quartz) the high-temperature phase transition, at which this polar-neutral crystal 
changes its symmetry from the 422 class into non-polar class of symmetry. This is 
confirmed by the measurements KDP dielectric constant ε1 which at temperature 
increase jumps down at temperature of θ ≈ 480 K, while internal polarity vanishes 
very gradually by low P ~ (θ – T)2 with the same θ. To verify the quadraticity of this 
dependence, the curve 1 in Fig. 5.18 is shown in scale P1/2(T), which really turned 
out to be linear [15].  
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Fig. 5.18. Latent intrinsic polarity temperature dependence of KDP crystal in comparison with 

other thermal and elastic parameters of this crystal: 
1 – ΔР3 obtained by study KDP rod oriented in [110] direction; 
2, 3 – thermal expansion coefficients α3 (2) and α1 (3) of KDP crystal; 
4, 5 – piezoelectric modulus d36 (4) and d14 (5) of KDP crystal; 
6-12 – elastic compliance: 0.5≅s66 (7), s11 (8), s33 (9), s12 (10), s13 (11), s44 (12) 
 

Spatial (3D) polar-sensitive bonds conception can be applied for many others 
polar-neutral piezoelectrics. For instance, in the crystals of 23 cubic class of 
symmetry the polar-neutral directions correspond to four axes of order 3, and it can 
be shown that artificial “pyroelectric coefficient” is given by the equation: 

 γ*[111] = 2√≅3 d14α (4s11 +8s12 +s44)−1.                                         (5.8) 

It is interesting to notice that parameter γ*111 is rather big in the sillenite type 
crystals. Some of them, such Bi12GeO20 and Bi12SiO20, are widely used in 
electronics. Artificial pyroelectric coefficient in Bi12GeO20 is estimated as γ* ≈ 25 
μC/m5.K, however, among these classes of piezoelectric crystals it is possible to find 
crystals with artificial “pyroelectric” coefficient up to 100 μC/m5.K. 

Among possible practical applications of artificial pyroelectricity the most 
promising are the semi-insulated (s/i) semiconductors of GaAs group (AIIIBV). The 
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point is that they might be used as pyroelectric converters in the upper layer of 
sandwich composition, which can be integrated with amplifiers (in bottom layer) 
using semiconductor with high-mobility electrons.  

These crystals have sphalerite structure that belongs to polar-neutral≅43m 
group of symmetry. In the specially oriented plates and by using a restriction of some 
thermal deformations, the AIIIBV crystal is capable to produce pyroelectric signal. At 
that, the voltage sensitivity of s/i-GaAs, for instance, is close to pyroelectric 
ceramics: GaAs plate with thickness of 100 microns at temperature change several 
degrees shows electrical potential 2 B. This can be of interest for implementation in 
the multi-element planar integral thermal far IR detectors. It is assumed that in a 
special way oriented semi-insulating layers or micro-regions embedded in gallium 
arsenide integrated circuit together with amplifiers and switching devices may form 
a mosaic microstructure of non-selective and highly sensitive infrared detectors. 

Polar-sensitive bonds in piezoelectric-active AIIIBV type semiconductors of 
sphalerite structure are directed along each of threefold axes of cubic crystal. 
However, polar-sensitivity in a crystal is completely compensated; therefore, any 
scalar influence to it, including uniform temperature change, can not produce 
electrical response. Nevertheless, this compensation of electrical polarity can be 
broken in the specially oriented plates (layers), in which thermal deformations are 
limited. As a result, along one of three-fold polar axis the electrical response appears, 
just that is the artificial pyroelectric effect. 

High-symmetry cubic crystals of class≅43m is characterized by the isotropy 
of thermal expansion coefficient: αm = α (in GaAs α = 5.8≅10−6 К–1 at 300 К). In 
these crystals elastic compliance smn

E,T tensor is reduced to three independent 
components (in GaAs s11

E,T = 12≅10−11, s12
E,T = ⋅−4.6 10−11 and s33

E,T = 17≅10−11 

m2/N). In the main installation of AIIIBV crystal piezoelectric properties are described 
by matrix: 

                                 

14

25

36

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
im

d

d d

d

 
   
   ,                                 (5.9) 

This matrix represents the third rank tensor of piezoelectric coefficients. In 
this installation for (100), (010) and (001) crystal plates all longitudinal (d11, d22, d33) 
as well as all transverse (d12,, d13, d21, d23, d31, d23) modules are zero. Therefore, 
usually used in electronics and in most of experiments [100]-oriented plates of AIIIBV 
semiconductors are non-sensitive to any homogeneous mechanical influence, except 
the shear action (which correspond to share modules d14 = d25 = d36). It is obvious 
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from the matrix (5.9) that no response is possible, if the external influence on crystal 
has scalar character. In other words, being applied to standard (100)-plates of AIIIBV 
crystals any partial clamping cannot invoke its polar response. Meanwhile, the 
crystal plates of (100) orientation are conceptually the sole chips using for GaAs 
type devices. It is not improbable that this is the main reason for mentioned polar 
effects previously were out of consideration.  

Due to the cubic symmetry in standard installation of crystal the piezoelectric 
module components are equal: d14 = d25 = d36 and, therefore, they might be denoted 
simply as d. In gallium arsenide d = 5.7≅10–12 C/N, i.e. it surpasses even quartz 
piezoelectric module (dSiO2 = 5.4≅10–12 C/N). From equation (6) one cannot see any 
opportunity of artificial pyroelectric effect in the GaAs, since the matrix contains 
only shear piezoelectric components that can not be excited by homogeneous heat 
exposure. As shown before, artificial pyroelectric effect, generally, occurs due to the 
de-compensation of the contributions from longitudinal and transverse piezoelectric 
effects, described by left half of matrix (6.6). But in this case (in standard 

installation of AIIIBV crystal) all components of longitudinal and transverse 
piezoelectric module are zero. 

But in another orientation of crystallographic axes to which standard matrix 
(5.9) can be converted, both longitudinal and transverse components of piezoelectric 
module appear. These components are maximal in the slice of a crystal, oriented 
perpendicularly to the axis of the third order (which is spatial diagonal of cube), 
since greatest polar-sensitivity in AIIIBV crystal coincides with these directions. This 
polarity is due mixed ionic-covalent bonding between A≅B ions, and anisotropy of 
electronic density distribution is such that this density is increased in the vicinity of 
B-ion. When describing effect of partial limitation of deformations on piezoelectric 
properties of polar crystal, it is more convenient to use not the piezoelectric modulus 
d, (describing relationship between mechanical stress X and induced by it 
polarization Pi = dinXn) but the piezoelectric constant e, which relates deformation x 
to polarity: Pi = einxn, where em = dincmn and cmn is elastic stiffness. The matrix of 
piezoelectric constantfor the main crystal setting corresponds to the piezoelectric 
modulus (5.9) 
     0    0    0    e14  0   0 
    eim =  0    0    0    0    e15 0 
     0    0    0    0    0   e36 

This matrix represents the third rank tensor of piezoelectric coefficients. In 
this instance, for (100) = (010) = (001) crystal plates as longitudinal (e11, e22, e33) so 
transverse (e12, e13, e21, e23, e31, e23) modules are zero. That is why (100) type of 
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GaAs plate is not sensitive to any mechanical strains except the twist ones. The lasts 
corresponds to the share modules e14 = e25 = e36 but they could not provide any 
response under homogeneous influences. Partial clamping is also useless if it is 
applied to the standard (100) plates of III-V crystals. 

Figure 5.19A and B shows such orientation of the AIIIBV crystal, which should 
be prepared to invoke its polar response. Polar cut of AIIIBV crystal should be 
oriented by such a way, at which [111]-axis is perpendicular to studied plane. In case 
of volumetric piezoelectric effect investigation this (111)-plate has to be fixed onto 
the “ideally hard” substrate (in trial experiments the hard steel might be used, but in 
microelectronic piezoelectric sensors it is expedient to use the membrane, clamped 
along its boundaries). In similar fashion, the s/i-GaAs (or GaN) crystalline (111)-
plate could be activated for “pyroelectric” response, if a rigid substrate, shown in 
Fig. 5.19B, would have very small thermal expansion coefficient (α ~ 0). In our first 
experiments the fused silica was used as a substrate, but in microelectronic practical 
devices the pyro-active s/i (dielectric) layer of Ga(AsP) or (GaAl)As layer can be 
directly deposited on the substrate made of GaAs crystal, followed by the etching 
and forming membrane clamped along the boundaries. 

          
 

       (A)                                 (B)    (C) 
          

Fig. 5. 19. Partial (in plane) clamping realization: A – orientation of s/i-GaAs [111]-cut; B – 
plate soldered to rigid substrate, C –  internal polarity change decompensated by partial clamping  

 

Such partial clamping makes impossible the plane strains (x1 = x2 = 0), so 
electrical response from uniform pressure (or thermal deformation) can be realized 
only perpendicularly to the plane: M3 = e33x4. It is obvious that created artificially 
composite structure (Fig. 5.19A) can be used for volumetric piezoelectric effect 
investigation (or to study the artificial pyroelectric response). 

In the any form of free-stress sample the longitudinal piezoelectric effect (e33) 

and two transverse effects (e31 and e32) compensate each other: e31 + e32 =  e34. It is 
illustrated in Fig. 5.19C, which describes thermal investigation of GaAs (111)-plate: 
one part of piezoelectric polarization (e33x3, induced by thermal deformation x3) 
equals to other parts (e31x1 + e32x2) but with opposite sign (in this case, index “3” 
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corresponds to the [111]-axis). Strain components in free-stress cubic crystal are 
equal: x1 = x2 = x3, because excitation is homogeneous. That is why, in non-
pyroelectric crystal the sum of piezoelectric coefficients of transverse and 
longitudinal piezoelectric coefficients is zero: 
                                    e31 + e32 + e33 = 0        (e31 = e32 = − ½ e33). 
As a result, piezoelectric effect, produced by longitudinal strain component x3 = αdT 

is compensated by effect of two transverse strain components x1 = x2 = αdT; 
therefore no electrical response is possible. Consequently, free-stress polar (111)-
plate of GaAs type crystals is not sensible to the homogeneous excitations.  

However, the artificial limitation of any one of mentioned strain components 
(x3 or x1 + x2) can transform piezoelectric (111)-plate of GaAs type crystal into 
artificially created “pyroelectric”. In practice, it is easier to limit the plane strain 
(x1 + x2) by a simple mechanical design. In this case, the only thickness strain x3 can 
be excited, and just in the direction of polar axis “3” ([111]-direction) which is 
transformed into a “peculiar” polar axis. This effect is impossible as in the free-stress 
so in the free-strain crystals: both artificial effects are the result of non-isotropic 
partial clamping. Only partially clamped piezoelectric crystal manifests artificial 
pyroelectricity or volumetric piezoelectric effect.  

Shown in Fig. 5.19 partial clamping violates polar neutrality (e31x1 + e32x2 = 
0) and makes it possible to manifest artificial pyroelectric effect as Mi = e33x4. Greatest 

effect in crystals of43m class of symmetry can be achieved in such a special 
installation, in which one of new axis 3' coincides with polar-neutral axes of [111]. 
With this new installation, the axis 1' should be directed normally to axis passing 
through the 3' plane of symmetry of a cube, while orientation of new axis 2' is 
predetermined by Descartes coordinate system.  

For further calculations, it is expedient to return to the matrix of piezoelectric 
module. After above procedure application, the matrix of piezoelectric module 

for43m crystal in new installation is: 
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  .          (5.10) 

All components of this new matrix are expressed in the terms of shear module 
d, taken from the basic installation of the crystal (6.6). The third row of the matrix 
(5.10) characterizes piezoelectric properties of such crystal plate, which is cut 
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perpendicularly to axis 3' = [111] and characterized by longitudinal piezoelectric 

module d33  d/3 and by transverse effect d31  d32  d/24. Piezoelectric 
shear components in third row of this matrix are absent. 

Piezoelectric shear components in third row of this matrix are absent. 
Thus, in ideal conditions, the determination of artificial pyroelectric 

coefficient γAPE = dMi/dT is possible, when thermo-electrical response from 
tangential strain is completely suppressed by the rigid substrate: dx1= dx2 = 0. At 
uniform change of temperature the only allowed strain is the dx3 (hereinafter for 
simplicity there is no indexes). Since thermal deformation is allowed only in the 
direction "3", the corresponding component of mechanical stress tensor X3 is zero. 
Another boundary condition is the E3 = 0, i.e. crystal is assumed electrically free 
(close-circuited), as usually supposed at thermodynamic analysis of piezoelectric 
and pyroelectric effects. Corresponding equations are presented below:  

    dxn = smn
E,T dXm + αn

E dT, 

    dMi = din
T dXn.          (5.11) 

Here xn and Xm are the strain and stress tensor components, parameters smn
E,T 

is the elastic compliance, din
T is the piezoelectric module and αn

E is the thermal 
expansion, indices E and T indicate that parameters assume constancy of electrical 
field and temperature. For crystals of≅43m group at chosen boundary conditions 
equations (5.11) can be specified: 

         dx1 = s11
E,T dX1 + s12

E,T dX2+ αdT = 0 , 
       dx2 = s12

E,T dX1 + s22
E,T dX2+ αdT = 0 , 

        dx3 = s31
E,T dX1 + s32

E,T dX2+ αdT ,   
                                      dM3 = d31

T dX1 + d32
T dX2 .                           (5.12) 

It is necessary to take into account that in the cubic crystals s11
E,T = s22

E,T and  
Х1 = Х2; for artificial piezoelectric coefficient in a new installation of a crystal (and 
return back to broken indexes) it is possible to obtain 

                                                  γ3′ = dM3′/dT =  2 d3′1′ α/(s1′1′
Ε,Τ

 + s1′2′
Ε,Τ).                      

After conversion of incoming in formula parameters, all tensor components 
should be presented in the standard installation of a crystal (which is usually listed 
in the reference books): 

γ111 = 2√3 d14α ∕ (4s11
E,T+ 8s12

E,T  + s44
E,T).                  (5.13) 

For gallium arsenide this coefficient is γ111 = 1.5 μC⋅m−2⋅К−1 (estimates 
show that in the gallium nitride this coefficient is much higher). It should be noted 
that similar calculation of artificial pyroelectric coefficient for quartz crystal results 
in the γ100 = 5.6 μC⋅m−2⋅К−1 and can be observed along three polar-neutral axes, 
while in the well-known pyroelectric tourmaline its pyroelectric coefficient is 4 
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μC⋅m−2⋅К−1 and the maximum effect is possible only along one particular polar 
axis. In the gallium arsenide artificial pyroelectric effect in the directions of basic 
axes [100], [010] and [001] is impossible. The maximum of this effect in the AIIIBV 
crystals corresponds to four [111]-type polar-neutral axes.  

Indicatory surface of γ(θ,ϕ) for polar-neutral cubic crystals constitutes of eight 
identical surfaces which start from the centre of a cube to its vertices at the angle of 
105.2o.  

It is possible to find γ(θ,ϕ) in any direction for crystal of gallium arsenide 
group: the magnitude of “pyroelectric” coefficient can be determined as a radius-
vector emanating from centre of cube to the intersection with indicatory surface. 
Being compared with quartz, the indicative surface of gallium arsenide crystals 
group is more complicated, because it characterizes the artificial pyroelectric effect 
along four polar-neutral axes (and each has two possible directions).  

 
Fig. 5.20. Temperature dependencies of component M111 for GaAs and GaP crystals in 

comparison to M100 of SiO2 (α-quartz) crystal 

 
With temperature increase the internal polar-sensitivity decreases in all 

studied piezoelectrics. It should be recalled that in the quartz this polarity vanishes 
at the temperature of α → β transition, Fig. 5.17, while in the KDP crystal γ100 also 
vanishes at high-temperature phase transition, Fig. 5.18.  

It can be assumed that in piezoelectric crystals of the gallium arsenide group 
their internal polar sensitivity disappears at the melting point. In Fig. 5.20, 
temperature dependence of polar moments M111 of GaAs and GaP crystals and 
component M100 of internal polarity of quartz crystal is compared.  

In the molten state, any stable polar formations are impossible, but it is 
noteworthy that the growth of polar crystal from a melt forms the polar bonds which 
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lead to an increase in the volume of material and, accordingly, a lower crystal density 
compared to its melt density. 

3. Polar-sensitivity can be revealed in others non-centrosymmetric crystals. 
For instance, in trigonal crystals of polar class 3m, in addition to usual pyroelectric 
effect, seen along polar axis [001], the artificial pyroelectric response can be 
observed in the [010]-direction which is perpendicular to the [001] axis. The 
equation for artificial pyroelectric effect calculation gives: 

       γ*2 = dP/dT = d22(α1s33 − α3s13)(s11s33 − s13
2)−1. 

In some crystals of polar class 3m it is possible to get such data: in proustite 
crystal (Ag3AsS3) γ*2 = 10 μC≅m−2≅Κ−1; in pyrargyrite crystal (Ag3SbS3) γ*2 = 15 
μC≅m−2≅Κ−1; in lithium tantalate (LiTaO3) γ*2 = 20 μC≅m−2≅Κ−1, and in lithium 
niobate (LiNbO3) γ*2 = 40 μC≅m−2≅Κ−1. Note that the order of magnitude for such 
polar response is comparable to conventional pyroelectric response: in the lithium 
niobate, for example,  

γ3 = 50 μC≅m−2≅Κ−1. 
In case of anisotropic restriction of thermal deformations artificial 

pyroelectric response can be observed in any piezoelectric, but analysis of this effect 
very often needs to use non-standard installation of a crystal.  

For example, in the cubic piezoelectric class 23, to which the crystal bismuth 
germanate (Bi12GeO20) belongs, polar-sensitive direction is [111]-type axis, and the 
maximum of effect is observed just in this direction: 

             *[111] = 23 d14 (4s11 + 8s12 + s44),                    

At temperature near 300 K in piezoelectric Вi12GeO20 this parameter equals 
γ*[111] = 20 μC⋅m−2⋅Κ−1 that exceeds many times effects in quartz and GaAs.  

The aim of pyroelectric response in partially clamped piezoelectrics depends 
not only on orientation of piezoelectric element, but also on its shape.  

For example, for a long rectangular rod of quartz crystal (symmetry class 32), 
the artificial pyroelectric coefficient can be determined from equation:  

γ1' = d11α1s11−1.  
It is assumed that the rod is oriented along axis 2 while electrodes coated the 

surface perpendicularly to the axis 1; at this orientation and form of sample γ*1' = 
5.4 μC⋅m−2⋅Κ−1. 

The expressions for artificial pyroelectric effect calculation for all 10 classes 
of actual piezoelectrics (those which do not possess of pyroelectric effect) are shown 
in Table 5.1.  
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Таble 5.1  

Artificial pyroelectric effect for 10 classes of actual piezoelectric crystals [16] 
 

Symmetry classes, 
axes orientation  
(x,y,z) 

Sample and its 
orientation as to basic 
axes 

 Calculation expressions  
for APE coefficient γп APE  

Piezoelectric, 
γпAPE 

[μC/m2≅К)] 

found at 300 К 
       
          32     
(for basic coordinate 

System) 

 
Rectangular rod with 
length l along y and 
thickness along х 
 
 
Disk with normal d 
directed along х 

 
    d11

T≅α1
Ε 

γ1 =  ≅≅≅≅ 
     s11

E,T 
≅≅≅≅≅≅≅≅≅≅≅≅≅ 

 
d11

T (α1
Εs33

E,T − α3
Εs13

E,T) 
γ1 =  ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯−  

s11
E,T≅sE,T

33  − (s13
E,T)2 

 

 
    SiO2,  
   γ1 = 5.4  
 
≅≅≅≅≅≅ 
 
     SiO2,  
    γ1 = 5.7  

  
         ≅42m 
(axes х and у are 
rotated around axis  z 
at the angle of 45°) 
 

 
Rectangular rod with  
length l and normal d 
directed  along axis z 
а)  l is directed on х, 
б)  l is directed on у.  

 
             ±  2d36

T
 ≅ α1

Ε 
γ3 =  ≅≅≅≅≅≅≅≅≅≅              
        2≅s11

E,T + 2≅s12
E,T +  s66

E,T 
 
 

KDP,  
а) γ3 = − 6 
б) γ3 = + 6 
 

АDP,  
а) γ3 = − 17 
б) γ3 = + 17 

≅ 
       43m and  23 
(axis z is directed on  
 The third fold axis) 

 
Disk, d directed   
along z 
 
 

 
         ⋅− 2√3 d14

T≅αΕ 
γ3 =  ≅≅≅≅≅≅≅≅≅≅              
        4≅s11

E,T + 8≅s12
E,T +  s44

E,T 
 

Tl3TaSe4 , 
γ3 = − 23,5; 
 

Bi12GeO20, 
γ3 = − 20 

  
          222 
(axes х and у are 
turned around axis z 
at the angle of 45°) 

Rectangular rod with  
normal d directed  
along axis z and length 
l directed 
а) l along axis х, 
б) l along axis у  

 
        ± d36

T
 (α1

Ε+ α2
Ε) 

γ3 =  ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ −              
      s11

E,T+ s22
E,T

 +2≅s12
E,T+ s66

E,T 
 

а) corresponds to sign «+» 
b) corresponds to sign «−» 

 

     
     622 and 422 
(axes y and z  are 
turned around axis x 
at the angle of 45° ) 

Rectangular rod with  
normal d directed  
along axis x and length 
l directed 
а) l along axis y, 
б) l along axis z  

 
      ± d14

T(α1
Ε+ α3

Ε) 
γ3 =  ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ −              
      s11

E,T+ s33
E,T

 +s44
E,T+ 2≅s13

E,T 
а) corresponds to sign «+» 
b) corresponds to sign «−» 

 

 
≅4 

(standard) 

Rectangular rod with  
normal d directed  
along axis z and length 
l directed 
а) l along axis x, 
б) l along axis y  

 
                  − d31

T≅α1
Ε 

а)      γ1 =  ≅≅≅≅   = R            
                        s11

E,T 
 

b)       γ1 = − R 

 

  
      ≅6m2 and≅6     
        (standard)  

 
Disk, normal d  is 
oriented along axis y 

 
        d22

T (α1
Ε s33

E,T − α3
Ε s13

E,T) 
γ1 =  ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ ⎯−               
         s11

E,T≅ s33
E,T  − (s13

E,T)2 

 

 
Both in crystals free from any mechanical stresses and in the crystals 

completely clamped, new effects are impossible, because the artificial effects are the 
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result of anisotropic partial clamping. Thus only partially clamped piezoelectric 
exhibits the artificial pyroelectricity or volumetric piezoelectric effect. 

Therefore, in any polar crystals the variations in the polar-sensitivity under 
the thermal (δT) or the pressure (δT) change provide pyroelectric effect (Pi = γiδT) 
or volumetric piezoelectric effect (Pi = ζiδp). In this case point, Pi is the change of 
vector value. Thus, pyroelectric coefficient γi as well as volumetric piezoelectric 
coefficient ξi are also vectors, and they are inherent to pyroelectrics only.  

That is why pyroelectric can transform scalar influences (δT or δp) into a 
vector type of responses, which are electrical voltage or electrical current.  

 

5.5 Possible applications of artificially formed polarity 
 
It is established, theoretically and experimentally, that in any piezoelectric 

the volumetric piezoelectric effect and the artificial pyroelectric effect can be 
realized (note that earlier these effects were considered possible only in crystals and 
textures of pyroelectric symmetry).  

The application of partial limitation of deformations method (partial 
clamping of crystal) opens new possibilities for the use of piezoelectric (non-
pyroelectric) crystals in electronics, because all semiconductors of AIIIBVI group 
(among which are such promising semiconductors as gallium nitride) are the 
“exclusive” piezoelectrics: hence, in a single-crystal monolithic device it is possible 
to combine the acoustic or thermal sensor with the signal amplifier.  

From Table 5.2, one can judge the place of described above new effects among 
the well-known and well-studied mechanoelectric and thermoelectric effects in the 
dielectrics and wide energy band semiconductors. 

[Note. The table does not include effects caused by fields (electrical and 
magnetic), as well as some weak effects, for instance, flexoelectrical effect which 
occurs in any crystalline dielectric as thin layers polarization during their bending]. 

. Left part of Table 5.2 lists the possibilities of piezoelectric effect obtaining 
(both conventional and volumetric) in various materials. It is noteworthy that the 
volumetric piezoelectric effect can be obtained only in 10 classes of crystals of 
pyroelectric symmetry and polar texture (∞:m symmetry): only them are suitable for 
the use in acoustic receivers and pressure meters. In the remaining 10 symmetry 
classes of “exclusive” piezoelectric crystals hydrostatic pressure does not lead to any 
electrical response, since it is compensated in their polar-neutral structure. Finally, 
the applied direct electric field induces the uniaxial polarity in any solid dielectric 
and, as a consequence, the manifestation of electrically induced piezoelectric effect 
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(that is linearized electrostriction). In the relaxor ferroelectrics which have large 
permittivity this effect can transcend the ordinary piezoelectric effect. 

Table 5.2 

Electrical responses in polar-sensitive dielectrics (classification) 

 
 

Right part of Table 5.2 lists the possibilities of obtaining pyroelectric effects, 
which under uniform thermal action is usually manifested in the 10 classes of 
pyroelectrics and in the polar textures. If, however, thermal action is 
inhomogeneous, for example, it is characterized by a temperature gradient, then the 
electrical response appears in any non-centrosymmetric crystal, including the "pure-
piezoelectric" crystals. This tertiary effect is known for a long time and sometimes 
called actinoelectricity [5]. It is caused by the temperature gradient that is due to 
non-uniform heating. However, this effect is relatively small; in spite of this, it is 
used sometimes for powerful laser pulses detecting, using the highly heat-resistant 
quartz crystal (others polar crystals could be damaged). Finally, under applied direct 
electrical field the induced uniaxial polarity appears in any dielectric, with the 
manifestation of electrically induced pyroelectric effect. In the relaxor ferroelectrics 
this effect can compete with pyroelectric effect of best polar crystals. 

In the center of Table 5.2, the effects possible in the crystals of 20 non-
centrosymmetric classes under conditions of partial deformation restriction are 
listed. First of all, this is, certainly, the artificial pyroelectric effect, obtained not by 
the application of external electrical field (when it always arises) but by the artificial 
restriction of a certain type of deformations. In fact, this is, certainly, a secondary 
pyroelectric effect, which usually can not be manifested in the polar-neutral crystals, 
since it is totally compensated. But artificially it is possible to forbid a certain part 
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of deformations, as a result of which the de-compensation occurs, i.e. the polar 
response. In the short-circuited circuit with a polar crystal, under the uniform thermal 
action, a current is generated, while the electrical potential is generated in the open-
circuited crystal. 

Therefore, in the polar crystals, their internal polar-sensitive structure is non-
compensated only in the pyroelectrics, but it is totally self-compensated in the so-
called "exclusive” piezoelectrics. At that, this self-compensation in them is a total, 
being not dependent on would a crystal is in a stress-free state or in a strain-free 
state. Nevertheless, the non-isotropic partial clamping destroys self-compensation 
of intrinsic polarity. Exactly this de-compensation allows observe in such crystals 
the vector response to the scalar influence, Table 5.3.  

Table 5.3 

Main parameters of artificial pyroelectrics in comparison with usual pyroelectrics 
 

 

Crystal 
 

γ, μCm–2K–1 
 

ε 
 

FV, m2C–1 
 

FD.10–5,  Pa–1/2 
 

Artificial pyroelectric effect in partially clamped piezoelectrics 

Bi12SiO20 27 42 0.08 5.2 

NH14H2PO14 17 50 0.02 0.6 

s/i-GaAs 1.5 13 0.016 0.1 

43m crystals 0.5–25 7–8 0.01– 0.1 0.1– 4 

α-SiO2 5.6 4.5 0.033 7 
 

Usual pyroelectric effect in ferroelectrics 

TGS 500 50 0.4 6 

PVDF 30 12 0.1 0.9 

LiTaO3 230 48 0.2 5 

PZT ceramics 380 300 0.6 6 

 
The effects described above open new possibilities to sensor devices 

elaboration. In them such piezoelectric crystals as quartz crystal and semi-insulating 
AIIIBV crystals could find application (for instance, gallium arsenide or gallium 
nitride which is habitual materials in the microelectronics and micromachining). 
Technologically, by partial clamping using, it is possible to convert the layers of 
these crystals into the artificial pyroelectrics that with the use of hybrid or monolithic 
technology are comparable with semiconductor devices. A layer with pyroelectric 
properties can be an acoustic receiver (as part of a piezotransistor) or serve as a 
thermal sensor – as part of a pyrotransitor. Calculated and experimental results need 
for pyroelectric sensors are shown in Table 5.3, where CV is specific heat, FV = 
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γ≅(CVε)–1 is the responsibility while FD = γ≅CV(ε≅tanδ)–1/2 characterizes signal-to-
noise ratio of pyroelectric detectors at 300 K and the modulation frequency of 1 kHz. 

The polar (piezoelectric and pyroelectric) properties of AIIIBV crystals in 
electronic devices were apparently not used. However, the polar-sensitive structure 
of any wide-band gallium arsenide-type crystal can be used to convert mechanical 
or temperature effects into electrical signals. In this case, AIIIBV semiconductor 
compounds can be considered as dielectrics, and only the phenomenon of electrical 
polarization might be taken into account.  

This assumption is close to reality in the   s/i-GaAs and even more for in GaAs 
solid solutions with AlAs (especially for the GaN crystal). The piezoelectric activity 
of these semiconductors is usually not taken into account due to their increased 
conductivity (polarization can be shielded by free charges). But it should be borne 
in mind that in s/i-GaAs shielding effect becomes insignificant at frequency above 
1 kHz, while the AlGaAs crystal can be used as a piezoelectric and “pyroelectric” 
sensor even at a frequency of 20 Hz. 

Thus, temperature dependence of piezoelectric polar-sensitivity can be used 
in the microelectronics for thermal sensors. By the similar way, piezoelectric polar-
sensitivity dependence on the pressure can by applied in the mechanical sensors.  

In addition to sensors, as a result of the above studies, one more important 
circumstance has been discovered. Significant polar sensitivity in the crystals of 
AIIIBV group is observed along any of the [111] directions, whereas in the standard-
used direction of [100] type these crystals do not respond to the vibration and 
temperature changes. Nevertheless, with planar chip technology, it may turn out that 
some layers of devices are oriented in the [111] direction. In this case, in such 
devices the electrical noise can occur due to the vibrations and, possibly, due to local 
temperature changes.  

This feature should be taken into account when designing devices using 
semiconductors of the AIIIBV group. Eventually, these peculiarities might be used to 
noises investigation which arises due to chaotic disturbance of internal polarisation. 

 

5.6 Functional dielectrics in electronics 
 

The dielectrics, intended for use in electrical and electronic devices, must have 
good electrical insulating properties: very low electrical conductivity and high 
electrical strength. At the same time, in present-day electronic technology, quite 
others properties of dielectrics gained especial importance, namely, those, allowing 
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their use for conversion of energy or information; these dielectrics may be 
considered as functional materials.  

The functional (or active, or adaptive, or controlled, or smart) dielectrics 
actively react to the changes of temperature, pressure, mechanical stress, electrical 
and magnetic fields, light illumination and even smell. Functional dielectrics can be 
classified as pyroelectrics, ferroelectrics, piezoelectrics, electrets, quantum-
electronics materials, microwave dielectrics with tuneable permittivity, etc.  

Active dielectrics perform different functions. For example, the piezoelectrics 
convert mechanical energy into electrical energy and vice versa that is used in 
piezoelectric filters, ultrasound emitters, piezoelectric transformers, piezoelectric 
motors, etc.  

Another example is the pyroelectrics, which convert heat into electricity and 
applied as sensitive detectors of radiation, thermal-vision devices, etc. Nonlinear 
properties of ferroelectrics and paraelectrics, constant electrical field produced by 
electrets allow use these functional dielectrics for modulation, detection, 
amplification, registering, storing, displaying and other types of electrical 
conversion of signals carrying information.  

In is necessary also to mention the use of functional dielectrics in 
multifunctional electronic devices and active search for new technological solutions 
with these dielectrics application in the field of information technologies.  

Main property of any dielectrics is their electrical polarization, i.e., effect of 
separation of electrical charges which remain bonded in spite of their shifting. As a 
result, the electrical moment appears (as product of charges magnitude by their 
displacement); volumetric density of this moment is polarization P.  

One unusual feature of functional dielectrics is that electrical polarization in 
them can occur not only being induced by electrical field, but also by others reasons. 
A comparison of conventional (non-polar) dielectrics and two categories of polar 
dielectrics are shown in Table. 5.4. Essential distinction between active (functional) 
dielectrics and ordinary dielectrics is obvious. 

[Note: parameter γ is the pyroelectric coefficient; ζ is the volumetric 
piezoelectric module; d is the piezoelectric module; c is the elastic stiffness; C is 
the specific heat. In this table not taken into account:  

(1) flexoelectricity possible in all dielectrics under non-homogeneous 
mechanical action;  

(2) actinoelectricity that occurs in piezoelectrics under the gradT action and  
(3) photopolarization effect in polar (non-centrosymmetric) dielectrics].  
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Table 5.4 

Electrical polarization P as a response on various actions 
 

 
Actions 

Non-
polar 

crystals 

 
Piezoelectrics 

 
Pyroelectrics 

      
     Scalar action: 
     Temperature dT 
     Pressure dp 

 
− 
− 
 

 
_ 
_ 
 

 
        Pyroelectric effect: dP = γ dT 

Volume piezoelectric effect: dP = ζdT 

       
    
     Vector action: 
     Electrical field E 
 

 
P = ε0εE 

 
P = ε0χE + (e2/c)E 

 
P = ε0χE + (e2/c)E  + (γ2Т)E/(ε0C) 

 

       
     Tensor action  
Mechanical stress X 

 
− 
 

 
P = dX 

 
P = d′X 

 

In many applications of functional dielectrics (as sensors, actuators, filters, 
transformers, motors, etc.), they are subjected to external thermal, electrical, 
mechanical and other influences – scalar, vector, or tensor types. Table I1 shows that 
conventional dielectric electrically reacts only on electrical field action: E ⇒ P, while 
polar piezoelectrics and pyroelectrics, besides the E ⇒ P response, are capable of 
electrical response on other actions: mechanical X ⇒ P and thermal dT ⇒ dP. At the 
same time, piezoelectrics respond to electrical action not by ordinary polarization 
only P = ε0χE, but also produces electromechanical response P′ = (e2/c)E, while 
pyroelectric, in addition, gives even more: electrothermal response P″ = (γ2Т)E/(ε0C). 

In view of possibility to use some of dielectrics as the functional (converting) 
elements in electronics, one should identify and describe their properties not only in 
terms of exclusively electrical characteristics, but also take account of their 
capability to manifest various electrical, mechanical and thermal properties. These 
materials are important also for miniaturization of microwave and 
telecommunications equipments. In this case, decisive role is played by value of 
permittivity (ε) since planar dimensions of microwave devices are reduced exactly 
by factor ε. In some functional dielectrics (paraelectrics) big value of ε can be 
obtained together with low dielectric losses that has important technical application 
in highfrequency devices. Some functional dielectrics allow electrical control by 
permittivity that can be used for electrically controlled microwave devices. 

For all mentioned reasons, in the field of electronics materials science recent 
technology shows considerable interest in ferroelectrics, paraelectrics, piezoelectrics 
and pyroelectrics, precisely because of their new applications in the instrumentation 
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engineering and electronics, as well as owing to significant progress in the field of 
modern microelectronic and nanoelectronic technologies.  

Functional materials are particularly relevant to modern and future 
instrumentation based on the micromachining. In this trend, microelectronic group-
technology is used for variety of technical fields. Based on modern equipment, 
micromachining is organically connected with microelectronics and 
nanoelectronics.  

Among contemporary applications of functional dielectrics, one should note 
following main areas of particular relevance: ferroelectric and paraelectric thin films 
integrated with semiconductors; micro-systems combining sensors, processors and 
actuators; microwave microelectronics, based on functional dielectric components; 
nano-dielectrics which are perspective for sensors, computer memories and 
electrical power generation. 

Engineers, specialized in application of materials science into electronics and 
information technologies, need to get modern views about the nature of electrical 
polarization, electrical charges transfer mechanisms, thermal properties of 
functional dielectrics, mechanisms of dielectric losses, as well as about intrinsic 
mechanisms of polarization in non-centrosymmetric crystals, which are responsible 
to convert thermal, mechanical, optical and other actions into electrical signals.  

In order to extend the use of functional dielectrics in the field of 
nanoelectronics, it is necessary to have a versatile and profound presentation about 
physical processes that provide electrical, mechanoelectrical, thermoelectrical, 
photoelectrical and other conversion phenomena in the polar crystals. 

It might be that most striking features of polar dielectrics is, firstly, the mutual 

influence of mechanical, electrical and thermal properties on each other and, 
secondly, the dependence of these properties on the conditions in which polar 
crystals are studied or applied. To demonstrate this interdependence, basic 
mechanical, electrical and thermal linear effects in the non-polar and polar 
dielectrics are symbolically compared in Fig. 5.21. It is seen that in the ordinary 
dielectrics these properties are independent, but in the polar crystals they are 
connected by quite complex interactions. 

Figure 5.21A symbolically shows that in solid dielectric its elastic mechanical 
deformation x (strain) is proportional to applied mechanical stress x = sX, where s 
is elastic compliance.  

Note that this linear relationship can also be written in reverse direction: X = 

cx as Hooke's law, where c is elastic stiffness. Similarly, in a dielectric, electrically 
induced polarization P is proportional to magnitude of applied electrical field: P 
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=ε0χE, where χ is dielectric susceptibility while ε0 is electrical constant in SI. If 
electrical polarization would be induced non-electrically, then another recording of 
this linear connection will be more convenient: Е = ε0

–1ξP where ξ = χ–1 is dielectric 
impermeability.  

Finally, thermal properties are described by proportionality of amount of heat 
δQ in a crystal appeared due to ambient temperature change: δQ = CδT where C 
is specific heat. 

            
 

                        (A)                               (B) 
Fig. 5.21. Linking diagram for mechanic, electrical and thermal effects: 

A – in non-polar dielectric; B – in polar dielectric  

 
In polar crystals, their mechanical, electrical and thermal properties are 

interdependent, so possible diagram of their interaction looks like two squares 
connecting by one side, Fig. 5.21B. This scheme shows how complicated is 
description of non-centrosymmetric (polar) crystals properties. 

The piezoelectricity is symbolically described by left the square in Fig. 5.21B. 
Two horizontal and two crossed-connecting lines with arrows present eight linear 
piezoelectric effects that may be observed in polar crystals at different conditions. 
The number of piezoelectric effects equals eight, since this effect can be direct or 
converse (2), crystal can be electrically open-circuited or short-circuited (2), as well 
as crystal mechanically can be free or clamped (2), so that: 2×2×2 = 8.  

These effects are described by four piezoelectric coefficients-modules (d, e, 

g, h); at that, simplified equations of the direct effects are: P = dX, P = eх, E = 

–gx, Ej = –hX and for the converse effect equations are: х = dЕ, X = eE, х = 

gP, X = hP. However, all above mentioned four modules can be calculated 
through each other and through known elastic constants, for example, in simplified 
form: din = εεg = es = εεhs, and so on. As can be seen, the description of 
electromechanical effects in polar crystals (even in linear case) is not easy task. 

In polar-sensitive crystals, the description of electrothermal effects is also not 
simple. The pyroelectric effect occurs when disturbance factor is the thermal action 
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on a crystal while response has electrical nature. The electrocaloric effect is the 
converse effect: it arises, when electrical field acts on the pyroelectric, while results 
is heating or cooling of polar crystal. Both these effects are symbolically presented 
in the right square in Fig. 5.21B.  

Firstly, two horizontal lines and two crossed-connected lines with the arrows 
symbolically characterize four options in pyroelectric effect implementation: polar 
crystal can be electrically open-circuited or short-circuited; besides, pyroelectric 
effect can occur in two different thermal conditions: adiabatic with δQ = 0 or 
isothermal with δТ = 0. So pyroelectric effect might be described by four equations: 
Р = γ⋅δТ, Pi = γ′⋅δQ, E = γ″⋅δТ and Е = γ″′⋅δQ, in which different pyroelectric 
coefficients correspond to various boundary conditions.  

Secondly, four lines with arrows, shown in the right part of Fig. 5.21B, are 
used here for symbolical description of electrocaloric effect. As pyroelectric effect, 
this effect may be described by four different linear relationships (depending on 
thermal and electrical boundary conditions).  

However, this effect under normal conditions (at temperature ~300 K) is as 
rather weak and not considered here in more detail. (However, in Chapter 4, large 
electrocaloric effect will be discussed, arising when the antiferroelectric is switching 
electrically into the ferroelectric phase that can be considered as possible basis for 
electrocaloric refrigerator).  

Important consequence of these relationships is dependence of crystal 
fundamental parameters on thermal, electrical of mechanical processes passing in 
polar crystals at different boundary conditions. For example, dielectric susceptibility 
of free crystal χX (that means the stress X = 0) and of clamped crystal χx (that means 
the strain x = 0) can differ, at that χX > χx.  

Similarly, in polar crystals their elastic stiffness in Hooke's law depends on 
electrical conditions: in open-circuited crystal elastic stiffness (cP) differs from it in 
closed-circuited crystal (cE).  

Moreover, when Hooke's law is studied in polar crystal, its elastic stiffness 
depends on isothermal (сТ) or adiabatic (cS) conditions. Even most conservative 
parameter of a crystal — its heat capacity C at normal temperatures — turns out to 
be dependent on electrical and thermal boundary conditions in which crystal is 
studied. For example, in open-circuited polar crystal its specific heat CE differs from 
specific heat CP of close-circuited crystal. In the same manner, the difference is seen 
in specific heat of mechanically free (СХ) and mechanically clamped (Сх) polar 
crystals. 
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5.7 Summary and self-test questions 
 

1. Experimental evidences of the polar-sensitivity in crystals are the structural 

affinity of the piezoelectrics and pyroelectrics with an example of zinc sulfide uniting 
in polymorphic structure the regions with sphalerite and wurtzite symmetry; as well 
as the chemical features of polar crystals demonstrating different chemical 
sensitivity on the surfaces of opposite polarity. 

2. Polar-sensitive bonds ordering leads to the increased volume at the 
transition into polar phase; such crystals are characterized by the electromechanic 
and electrocaloric contributions into the permittivity as well as big high-frequency 
dielectric absorption. 

3. Charge transfer in some polar-sensitive crystals may depend on the 
symmetry of the polar phase: the large decrease of resistivity in the critistors of 
vanadium dioxide type occurs from its triclinic (piezoelectric) symmetry; while 
large increase of resistivity in the posistors is due to doped barium titanate transition 
from the polar tetragonal (pyroelectric) structure into the non-polar cubic phase. 

4. Zinc oxide which is best material for varistors (with giant change in 
resistivity) has polar wurtzite (pyroelectric) structure with possible transformation 
into another but also polar sphalerite (piezoelectric) state. Others field-controllable 
switching elements, which exhibit the colossal magnetoresistance as well as high 
sensibility of nanostructured sensors based on the zinc oxide also belong to the polar-
sensitive crystals.  

5. The electrically induced polar properties are caused by the linearized 

electrostriction:  In dielectric with high permittivity in a strong electrical field, both 
the piezoelectric effect and the pyroelectric effect can be induced. They are 
proportional to the applied field and the square of the dielectric permittivity. In the 
paraelectrics and especially in the relaxor ferroelectrics electrically induced 
piezoelectric module can reach and even surpass piezoelectric module of usual 
piezoelectrics. 

6. Interesting for practical application in electronics is the possibility of 
electrical control by the piezoelectric effect: using this principle it is possible to 
implement tunable piezoelectric resonators and filters and various SAW devices. 

7. The mechanically induced pyroelectricity (and the volumetric piezoelectric 
effect) is possible to obtain in any polar-neutral piezoelectric (which is not 
pyroelectric).  For this, the original method of partial limitation of thermal (or 
elastic) deformations is applied, due to which one of the polar-neutral axes is 
transformed into the polar axis. 
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8. Obtaining the artificial pyroelectric effect (or volumetric piezoelectric 
effect) is achieved in a composite system "non-deformable substrate – oriented plate 
of polar-neutral crystal". These studies can be realized in two- and three-dimensional 
structural arrangements of polar-sensitive bonds; as a result, the artificial 
pyroelectric effect for 10 classes of polar-neutral piezoelectric crystals is calculated. 

9. Main thing is that by the creating for piezoelectric crystal special boundary 

conditions the “pyroelectric effect” can be obtained in all 10 polar-neutral classes of 
crystals. Therefore, in any polar crystals, the changes in polar-sensitivity under 
thermal (δT) or pressure (δT) variation provide the pyroelectric effect (Pi = γiδT) or 
the volumetric piezoelectric effect (Pi = ζiδp). At that, pyroelectric coefficient γi as 
well as volumetric piezoelectric coefficient ξi are the material vectors which inherent 
to the polar crystals only. That is why polar-sensitive crystal can transform scalar 
influences (δT or δp) into the vector type of responses, which are electrical voltage 
or electrical current.  

10. Temperature dependence of the piezoelectric polar-sensitivity can be used 
in microelectronics for thermal sensors. By similar way, polar-sensitivity 
dependence on pressure can by applied in the mechanical sensors. Significant polar 
sensitivity in crystals of AIIIBV group is observed along any of [111] directions, 
whereas in the standard-used direction of [100] type in these crystals do not respond 
to mechanical vibrations and temperature changes. 

11. In the planar chip technology, it may turn out that some layers of devices 
are oriented in the [111] direction. In this case, in such devices the electrical noise 
can occur due to the vibrations and, possibly, due to local temperature changes. This 
feature should be taken into account when designing devices using semiconductors 
of AIIIBV group. 

 
Chapter 5. Self-test questions 
 

1. What are the features of the closeness of pyroelectrics and piezoelectrics? 
2. How does polarity affect the properties of critisters and varistors? 
3. What are the mechanisms for controlling the piezoelectric effect? 
4. Compare regular and polar crystals for the connections between electrical,  
    mechanical and thermal properties? 
5. How piezoelectric polar-sensitivity can be used in microelectronics for thermal  
    sensors? 
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CHAPTER 6. PIEZOELECTRICS: PHYSICS AND 
APPLICATIONS 

 

Contents 

6.1 General characteristics of piezoelectricity 
6.2 Model descriptions of piezoelectricity 
6.3 Direct piezoelectric effect 
6.4 Converse piezoelectric effect 
6.5 Electromechanical resonance 
6.6 Thermodynamic description of piezoelectric effect  
6.7 Summary and self-test questions 

 
The basic physical mechanisms of the piezoelectric effect are considered. 

Piezoelectric is a solid-state transducer of mechanical energy into electrical energy 
(direct effect) or, vice versa. the electromechanical transducer (converse effect). In 
this case, the mechanically induced electrical polarization is directly proportional to 
the strain, i.e., this is the odd (linear) effect which is possible only in the non-central 
symmetric material. Piezoelectric effect is characterized by the various piezoelectric 
modules — third-rank tensors — depending on the combination of boundary 
conditions, under which piezoelectricity is used or studied. The interrelation of the 
mechanical and the electrical properties of piezoelectrics is characterized by the 
electromechanical coupling coefficient, the square of which shows how much of 
energy applied to the piezoelectric is converted into another kind of energy. 
Parameters of some piezoelectric materials can be controlled by the electrical field 
that is used in controlled piezoelectric filters and surface acoustic wave devices. 

Model description of the piezoelectricity is given for one-directional (1D) 
polar-sensitive bonds, representing the longitudinal piezoelectric effect; for the polar 
bonds oriented in-plane (2D) can be seen also the transverse piezoelectric effect and, 
at last, for spatial (3D) distribution of polar bonds, apart from mentioned two effects, 
the shear piezoelectric effect is poosible. The electro-induced piezoelectric effect 
and the method of strain partial limitation allowing to get the volumetric 
piezoelectric effect are considered. In addition to the linear converse piezoelectric 
effect, the quadratic electrostriction effect is analyzed, when the induced strain is 
proportional to square of field strength. Naturally, the sign of this deformation does 
not change when electrical polarity changes. In the electrical bias field, the 
electrostriction looks like the piezoelectric effect. In this case, the magnitude of such 
electrically induced piezoelectric effect in the relaxor ferroelectrics (possessing large 
permittivity) can be giant. 
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The discovery of piezoelectricity dates back to 1880 when Pierre and Jacques 
Curie find out this effect in the quartz crystals. Technical application of 
piezoelectrics started in 1920 with the ultrasonic transducer (invented by P. 
Langevin) was applied for the transmitting and receiving signals in the water, and 
from Cady's work on the use of piezoelectric filters in the telephony. 

Piezoelectricity is researching issue, which is the intersection of two classical 
scientific fields: first, the mechanics of deformed solid body, and secondly –the 
electrodynamics of continuous media. Differential equations of electrodynamics 
establish a link between the vectors of electrical field E, electrical induction D, 
magnetic field H and magnetic induction B. Almost all piezoelectrics are dielectrics, 
so piezoelectric effects occur at the speeds much slower then the speed of light. In 
this case, the magnetic effects can be ignored, and, instead of electrodynamics, the 
equation of electrostatics in dielectric can be applied when rotE = 0, divD = 0.  

Theory of the elasticity was stimulated in the 20–40s of the XIX century with 
the works of Cauchy, Poisson and Green. The interaction of electrical charges and 
mechanical pressure in the piezoelectric crystals was described in mathematical 
form by Pockels, while the quantitative ratios are given by Voigt in 1910–1920; 
these equations are fundamental for constructing the mathematical model of 
piezoelectric effect. It should be noted that in this section only the homogeneous 
mechanical deformations and homogeneous electrical fields (identical throughout a 
crystal) are considered. In the case of heterogeneous deformations, in addition to the 
piezoelectric effect and electrostriction, other electromechanical phenomena are 
possible, for example, the flexoelectrical effect (which is very important for liquid 
crystals). In the case of a gradient of temperature in piezoelectric, the tertiary 
pyroelectric effect occurs (actinoelectricity). However, flexoelectricity and 
actinoelectricity are not considered here. 

Piezoelectric is a solid-state transducer of mechanical energy into electrical 
energy (the direct effect) or, vice versa, electromechanical transducer (the converse 
effect). At that, mechanically induced electrical polarization is directly proportional 
to strain, i.e., this is the odd (linear) effect which is possible only in the non-
centrosymmetric material. Piezoelectric effect is characterized by various 
piezoelectric modules — third-rank tensors, depending on the combination of 
boundary conditions under which piezoelectricity is used or studied [2]. The 
interrelation of mechanical and electrical properties in piezoelectrics is characterized 
by the electromechanical coupling coefficient, the square of which shows how much 
the energy applied to piezoelectric is converted into another kind of energy. 
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Parameters of piezoelectric effect can be controlled by the electrical field by 
changing piezoelectric filters and the surface acoustic wave parameters. 

Piezoelectricity, together with electrostriction, refers to the electromechanical 
properties of crystals. Electrostriction is the universal property of all dielectrics, 
since the deformation in applied electrical field partly is a manifestation of electrical 
polarization, when electrically charged particles are forcedly shifted from their 
initial positions in the process of their separation. Being quadratic (even) effect, the 
electrostriction does not have any opposite effect. On contrary, the linear (odd) 
piezoelectric effect can be either direct or converse. All electromechanical effects 
substantially depend on the electrical and mechanical boundary conditions. 

The model description of the piezoelectricity is given for:  
 –   longitudinal piezoelectric effect in one-directional polar crystal;  
 –   transverse piezoelectric effect in the plane oriented polar bonds model;  
 –   shear piezoelectric effect in spatially distributed polar bonds model; 
– electrically induced piezoelectric effect in high-permittivity dielectrics; 
– volumetric effect in polar-neutral crystals under partial limitation of strain.  

Therefore, in addition to linear converse piezoelectric effect, the electro-
mechanical effects include the quadratic electrostriction effect, in which electrically 
induced strain is proportional to the square of field strength. Naturally, the sign of 
this deformation does not change when electrical polarity changes. In constant 
electric bias field, the electrostriction looks like piezoelectric effect. In this case, the 
magnitude of such electrically induced piezoelectric effect can be very large in the 
peculiar case of paraelectrics and relaxor ferroelectrics, which have large 
permittivity. 

 
6.1 General characteristics of piezoelectricity 

 
As known, only the crystals, belonging to the 21 non-central symmetric 

classes of point symmetry, can have properties described by the odd-rank tensors. 
Off them, 20 classes exhibit the piezoelectric effect, quantitative characteristic of 
which is the third-rank tensor) of piezoelectric coefficients dijk.  

[Note. These 20 piezoelectric classes also include 10 pyroelectric symmetry 
classes, described by the first rank (also odd-rank) tensors γi and ζj for pyroelectric 
and electrocaloric effects, correspondingly. The generality of the above theoretical 
reasoning is confirmed by the fact that the remaining one of the 21 off-central (but 
not piezo- and non-pyroelectric) symmetry classes shows the electromechanical 
effect, which is also described by the odd-rank tensor but already of the 5th rank. At 
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that, all material’s tensors of the odd-ranks vanish in the crystals, which have the 
centre of symmetry; therefore, the linear electromechanical effects (as well as linear 
thermoelectric effects) in the central symmetric media is impossible].  

The fact is that the piezoelectric effect cannot occur in the central symmetric 
crystals since any centre gomogeneous mechanical action onto the central symmetric 
crystal leads to the symmetry group also with a centre of symmetry. In other words, 
after any uniform (scalar) deformation, the central symmetric crystal remains the 
central symmetric one. Therefore, the presence of centre of symmetry in the 
deforming crystal means that there is no reason for mechanically induced electrical 
polarization, because no polar directions exist in such a crystal. 

At that, the manifestation of piezoelectric effect in the pyroelectric crystal is 
obvious, since it has a peculiar polar axis, so any deformation of them leads to the 
electrical polarization. Note, that in the polar-neutral crystals the polar-sensitive 
directions also exist, although they are totally compensated*). Piezoelectric effect in 
these crystals occurs, when the directional (non-scalar) external influence (acting in 
a certain direction) makes the polar-neutral structure of such crystal as 
“uncompensated”. Thus, as a result of the directed mechanical influence, in the 
polar-neutral crystal a special polar direction arises along of previously compensated 
axis. Therefore, all polar-neutral crystals should be attributed to the piezoelectrics. 

1. Piezoelectric materials include the bulk ceramics, ceramic thin films, 
multilayer ceramics, single crystals, polymers and ceramics-polymer composites. In 
recent years a large number of different piezoelectric film materials have been 
developed and tested for different micro-systems and microelectronic components. 
Film and bulk piezoelectrics can be used also in the microwave devices. Of particular 
importance are piezoelectric composites of various classes, in which parameters can 
be obtained that are far superior to those of homogeneous piezoelectric materials [3]. 
New relaxor-ferroelectric ceramics and crystals exhibit extremely high efficiency of 
piezoelectric energy conversion, which is of interest, in particular, for medical 
imaging devices and for other applications, such as special drives for industrial non-
destructive testing. 
[Note. An exception among 21 crystallographic classes, which do not have the centre 
of symmetry (while only 20 classes show piezoelectricity), is the cubic class with 
point group 432, in which the appearance of linear piezoelectric activity is 
prohibited by others elements of symmetry. Mechanically induced polarization can 
be obtained in this class only in such a case, when applied mechanical stress would 
be asymmetric. Moreover, this "mysterious" non-centrosymmetric but non-
piezoelectric class of crystals, in reality, may behave like piezoelectric but in the 
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strong electrical field. The description of converse piezoelectric effect by simple 
linear relation x = dE in the strong electrical fields should be considered only as the 
first term of odd series: x = dE + d′E3 + d″E5 + …. Really, in weak electrical field, 
for the non-centrosymmetric class 432 first term of this series is d = 0, but already 
the second term of this series, namely the d′ is non-zero].  

2. Practical application of instruments and devices that use piezoelectric 
effect in their designs is very wide and constantly expanding. Most important 
scientific and technical fields of piezoelectric effect use are: 

∙ piezo-electronics (piezoelectric technique of the bulk acoustic waves), 
including development piezoelectric receivers, piezoelectric transformers and 
piezoelectric motors, adaptors, microphones, piezoelectric resonators and 
piezoelectric filters; 

∙ acousto-electronics (piezoelectric technique of surface waves), which are 
developed microelectronic data converters: delay lines, filters, sensors of external 
influences, convolvers, etc.; 

∙ acousto-optics, which uses interaction of optical waves with acoustic 
waves that allows developing of deflectors, optical filters and other optical devices; 

∙ modern energy devices such as piezoelectric power generators, 
piezoelectric motors, etc. 

Main areas of piezoelectrics applications in electronics are classified in Fig. 
6.1 which enumerates far from complete using of piezoelectrics. As known, some 
products, such as watches, cameras, mobile phones, televisions, computers, and 
piezoelectric lighters have become the objects of everyday life. Many electronic 
devices are not possible without the use of piezoelectric elements.  

These include radiators and the antennas of sonar, frequency stabilizers in 
computers, electronic devices and the reference time, power line filters and delay 
lines in the radio and telephone communications, sensors to measure acceleration, 
vibration, acoustic emission non-destructive testing, piezo-transformers and piezo-
motors, medical ultrasound imaging and medical instruments for various purposes, 
etc.  

Functional assignments of piezoelements located in the watches, piezoelectric 
switches, televisions and mobile phones are quite diverse, but in basis of these 
devices lie same physical phenomenon – piezoelectricity, that is, ability of some 
crystals, ceramics, textures and composite produce electricity by their shape or size 
changing. Conversely, they can change their size or shape under the influence of 
electrical voltage. 
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Fig. 6.1. Piezoelectrics applications in electronics 

 
Can only mention some uses of piezoelectric effect in microelectronics: 
∙ Miniature piezoelectric emitters that are effective at high frequencies and 

have small dimensions (such as installed in children's toys and music sheets); 
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∙ Precision positioning systems, for example, in the needle positioning system 
in scanning tunneling microscope or for positioners to move hard disk driver; 

∙ Supplying in widescreen printers, printed on solvent ink and inks with 
ultraviolet hardening. 

∙ Microwave miniature resonant devices based on thin AlN and ZnO films. 
Relatively new scientific direction is appeared – the piezoelectronics. Among 

modern applications, it is necessary to highlight the most important trends: 
∙ Thin piezoelectric films, integrated with semiconductors; 
∙ Microsystems that combine sensors, processors and actuators; 
∙ Ultrahigh-frequency components based on active dielectrics; 
∙ Nanosized piezoelectrics where various electronic devices are planned. 
One of modern directions of piezoelectronics is converting any motion into 

electrical current. For example, conversion of human energy into the power supply 
of various electronic devices: special piezoelectric gears designed for soldiers will 
allow the use of electric current generated by their movement and thereby get rid of 
excessive weight of batteries. Significant advantages can be achieved using 
nanotechnologies: it is established that as size of piezoelectric converter is reduced, 
its ability to generate energy increases. It has been experimentally shown that 
nanoparticles of about 20 nanometers in size produce twice as much current as a 
monolithic piezoelectric. Dozens of ways of applying nanotechnologies have been 
proposed – from charging the energy of a mobile phone from voice of consumer and 
to a device that allows reading human thoughts (which is extremely important for 
neurology). 

Some examples of modern energy devices based on piezoelectrics are: 
∙ Dampers of vibrations for helicopters and airplanes; in particular, special 

design of bearing has been developed in which the friction is weakened by the 
vibration, for creation of which does not require special mechanisms (bearing 
sleeves are made of piezoelectric material, at that, electrical voltage makes the 
piezoelectric shrink and expand, creating a vibration that decreases friction); 

∙ Piezoelectric converters, installed in the jet aircraft in order to save energy 
(and, consequently, fuel), in which vibrations of fuselage and wings are directly 
transformed into electricity; 

∙ Powered traffic lights are developed, whose batteries are charged from the 
noise of cars at the street intersections; 

∙ Experiments were carried out to convert the energy of sea waves into 
electricity (tidal power plants in the USA). Next example is piezoelectric system 
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operating experimentally in Japan on the crossroads of railway stations to convert 
the energy of platform vibrations into electricity. 

However, this book is not devoted to hundreds of piezoelectronic devices 
consideration, but it covers only the physical bases of electromechanical 
transformations in the polar crystals and textures. 

3. Piezoelectricity is the linear electromechanical effect (or, what is same, 
the mechanoelectrical effect) in the non-centrosymmetric crystals. In this 
connection, it is advisable to recall that:  

∙ Electrical properties characterize the movement of charged particles in a 
matter caused by external electrical field. First property is the electrical polarization, 
i.e., charge separation, representing the reversible elastic shift of bound charges. 
Second electrical property is the electrical conductivity, i.e., directional movement 

of free charges, which is the irreversible phenomenon that in context of 
piezoelectricity can be neglected.  

At that, of crystals electrical properties, only the dielectric polarization is 
relevant to the piezoelectric effect. Polarization is described by second-rank (even) 
tensors of permittivity εij or dielectric susceptibility χij (i, j = 1, 2, 3).  

When describing the electrical polarization as applied to piezoelectricity, only 
the fast (practically non-inertia) mechanisms of the elastic displacement of electrons 
and ions should be taken into account that makes it possible to disregard the 
fundamental dielectric dispersion ε(ω) in the almost entire frequency range of 
piezoelectrics applications (up to 100 GHz).  

∙ Mechanical properties are characterized by the features of internal bonds 
between atoms (or between molecules) of a material. At that, the elasticity should 
be attributed to the reversible mechanical properties, while others mechanical 
effects: fluidity and fracture are the irreversible properties (last effects are not taken 
into account when considering piezoelectricity).  

When describing elastic properties, a discrete structure of crystal is usually 
ignored, so crystal is considered as continuous homogeneous medium (continuum 

approximation).  
This approach is justified up to frequencies near 1012 Hz, which is much 

greater than usual operation frequency of conventional piezoelectronics, 
acoustoelectronics, acoustooptics (up to 100 GHz). 

Therefore, while describing piezoelectricity, only the reversible (mechanical 
and electrical) properties of crystals should be taken into account, so the 
piezoelectric effect is also a reversible property. 
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∙ Elastic parameters, of many mechanical properties, are most important to 
describe piezoelectric effect; they are characterized by even material tensors of 
fourth rank: the elastic stiffness cmn and the elastic compliance smn (m, n = 1, 2, …6). 
It is appropriate to recall that cmn and smn are the parameters of Hooke’s law, which 
joins two even second-rank tensors: mechanical stress Xm and mechanical strain xn: 
Xm = cmnxn, or converse equation: xn = smnXm.  

Mechanism of elasticity looks like this: the deformation of a crystal alters 
atomic mutual arrangement, as a result, the forces arise, which try to restore the body 
into its original position. These forces, occurring in the deformed body, are called 
internal, and magnitude of these forces, being calculated per unit area, is called 
stress.  

                   
(A)                                                                               (B) 

                        
(C)                                       (D) 

Fig. 6.2. Matrix representation of stress tensor with geometric explanation of components. 

 
Homogeneous mechanical stresses, being the second-rank tensor Xij, can be 

very diverse, always remaining the centrosymmetric action on a piezoelectric*). 
When all components of tensor Xij are given with regard to principal axes, some 
important cases can be shown, Fig. 6.2: A – line-stressed state (uniaxial stress), as 
example might be uniformly tensile rod; B – pure shear stress which is perpendicular 
to the plane of figure; C – plane-stressed state (biaxial stress); D – volumetric-
stressed state (three-axes stress).  

Hydrostatic action, at which X11 = X22 = X33 = – p (pressure) is non shown in 
Fig. 6.2, its matrix is similar to Fig. 6.2D, but Xjj directions in this case are oriented 
opposite to shown in figure, and all components have same magnitude.  

Relative deformation is dimensionless, while the unit of stress measurement is 
N/m2 and the same unit of measurement is also maintained for elastic rigidity: [c] = 
H/m2 = Pa (Pascal).  

Elastic compliance is defined as s = Pa–1; because of the smallness of Pascal 
unit, the unit  “gigapascal” is often used which equals to 109 Pa. Knowing all 
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components of one of elastic tensors, for example, the tensor of elastic stiffness cmn, 
it is possible to calculate components of the converse tensor; in a given case, the 
tensor of elastic compliance: smn = (–1)i+j Δcmn/≅cmn, where ≅cmn≅is determinant of 
matrix and Δcmn is minor of this matrix without m-line and n-column.  

In addition to tensors of compliance and stiffness, for some calculations, related 
to research and practical application of piezoelectric effect, some other elastic 
parameters of piezoelectric are significant, which can be calculated with the help of 
known cmn or smn.  

Density of elastic energy W of deformed (or stressed) crystal can be determined 
from the expression for elementary mechanical work done by forces X for 
deformation x: dW = Xdx. By the integrating of this expression, it can be obtained 

Welast = – 2

1

хХ. Depending on a task and using Hooke's law in two forms: x = sX or 

X = cx, two equation can be obtained for the density of elastic energy:  Welast = 2

1

сх2 

= 2

1

 sХ2. 

Volumetric compressibility <s> is a significant parameter for evaluating 
properties of piezoelectrics, for example, for their use as emitters or receivers of 
elastic waves.  

This compressibility characterizes dependence of relative change in the volume 
ΔV of crystal or texture under the action of hydrostatic pressure р: ΔV = – ps. 
Volumetric compressibility is formed as the invariant of elastic compliance tensor: 
<s> = s11 + s22 + s33 + 2(s12 + s13 + s31). For cubic crystals and isotropic solids the 
compressibility looks more simple <s> = 3(s11 + 2s12). 

Volumetric modulus of elasticity K is introduced as a parameter converse to 
compressibility. Parameter K also can be determined by tensor of elastic stiffness. 
For the cubic crystals, K = (c11 + 2c12)/3. Modulus of elasticity characterizes the 
ability of material to resist the change in its volume; this parameter is also called as 
volumetric compression module.  

Module K characterizes the ability of object to such change in its volume that 
is not accompanied by the change in form of sample under the influence of normal 
directional stress that is same in all directions (this occurs, for example, under 
hydrostatic pressure conditions).  

Module K is equal to the ratio of volumetric stress to the value of relative 
volume compression. It should be noted that volumetric elastic modulus of the non-
binding fluid is different from zero while for incompressible fluid it is infinite. 
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Poisson's coefficient ν is used to characterize elastic properties of a material. 
As know, under the action of tensile force the body begins to stretch longitudinally, 
while (in the vast majority of cases) the cross-section of material decreases.  

Poisson's coefficient shows how the transverse section of a deformed body 
changes during its stretching (or compression). Its value is equal to ratio of relative 
cross-section of compression e' (in case of one-way stretching) to relative 
longitudinal elongation e, that is, v = |e'|/e.  

In the case of absolutely brittle material, the Poisson's coefficient is 0, and for 
absolutely elastic material v = 0.6. For most steels this coefficient lies in region of 
0.3; for rubber it is approximately equal to 0.6. Poisson's coefficient is measured in 
relative units: mm/mm, m/m. 

For high-symmetric crystals and isotropic solids, other characteristics of 
elasticity are used: 

The shear modulus or rigidity module (denoted as G or μ) characterizes the 
strained state of pure shear, that is, the ability of material to resist the shape change 
while maintaining its volume.  

The shear modulus is defined as a ratio of shear stress to share deformation, 
which is defined as the change in forward angle between the planes in which tensile 
stresses are applied, applied to two mutually orthogonal planes. The shear modulus 
is one of components of viscosity phenomenon. 

The Young's modulus (E) characterizes resistance of a material to stretching 
(or compression) during elastic deformation, or the property of object to deform 
along the axis under the action of force along the same axis; is defined as the ratio 
of stress to elongation.  

For cubic crystals, E equals to each of first three diagonal components of 
elastic stiffness which are same: Е = с11 = с22 = с33. Often, Young’s modulus, which 
characterizes ability to resist tensile deformation, is called simply modulus of 

elasticity.  
In conclusion, it is worth noting that deformation, occurring due to the action 

of external force, quickly disappears to zero when this force is removed – this is the 
case of so-called "perfectly elastic solid ".  

Only in the perfectly elastic materials Hooke's law is valid: relative 
deformation (strain) is proportional to mechanical stress, and their behaviour during 
deformation does not depend on the strain rate. Exactly this ideal case is implied in 
further discussion of piezoelectric effect. 
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6.2 Model description of piezoelectricity 
 
Manifestations of piezoelectric properties are quite diverse; that is why, the 

electromechanical interaction first will be simulated for the case of one-directionally 
oriented polar-sensitive bonds (longitudinal piezoelectric effect), next the model of 
polar-sensitive bonds oriented in-plane (transverse piezoelectric effect) will be 
described, and at last the case of spatial distribution of polar-sensitive bonds (shear 
piezoelectric effect) will be considered.  

1. Longitudinal piezoelectric effect can be explained by a model shown in 
Fig. 6.3, where symbolically one-dimensional crystal is presented which has length 
l and supplied by electrodes (model represents equally oriented joint polar-sensitive 
bonds). Under the action of longitudinal mechanical stress +X crystal lengthens by 
value Δl, Fig. 6.3B, creating electrical moment, which is the mechanically induced 
electrical polarization P. It is compensated by the electrical charges of opposite sign 
which appear on electrodes.  

           
 

Fig. 6.3. Simple model of direct longitudinal piezoelectric effect, explanations are given in the 
text 
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If a given model, piezoelectric is investigated or used in the mode of strain 

sensor, when induced charges flow into input of amplifier (in this case crystal is the 
source of current). If studied crystal would be electrically open, then electrical 
potential will occur and it will exists for some time (this is the voltage-source mode), 
but afterwards induced voltage gradually decreases being neutralized due to a small 
but still final electrical conductivity. In any case, polarization dependence on stress 
is linear, as shown in Fig. 6.3D: P = dX where d is piezoelectric module. The 
change in the sign of mechanical stress, Fig. 6.3С leads to the compression of model 
crystal and to change of electrical polarization sign, as well as to change of sign of 
compensating charges. As can be seen from Fig. 6.3D, the dependency P(X) remains 
linear. 

Since piezoelectric effect is reversible, the previous test, performed mentally 
with the model shown in Fig. 6.3, could be carried out in the reverse order, i.e., by 
applying electrical field and obtaining longitudinal deformation, which depends on 
the sign of field, i.e., to simulate the converse piezoelectric effect: x = dE, where 
Δl/l is mechanical strain, Fig. 6.7E.  

It should be noted that simplest model presented here for the longitudinal 
piezoelectric effect can describe also the volumetric piezoelectric effect, since the 
uniform compression leads, in particular, to change in the length of a chain and 
produce corresponding electrical response (at that, any change in transverse 
dimensions remains electrically neutral). 

As already noted, the piezoelectric effect may be not only longitudinal, but 
also might be the transverse and the share effects.  

2. Transverse piezoelectric effect can be explained using planar model 
resembling structural features of hexagonal α-quartz ); simplified explanation of this 
effect is presented in Fig. 6.4, where the hexagon with positive silicon ions and 
negative ions of oxygen forms planar non-centrosymmetric structure.  

[Note. When piezoelectric effect describing in literature [1–4], it should be 
noted that usually any microscopic models are avoided, so explanations are limited 
to piezoelectric symmetry given by formal crystallography. However, at present, 
when piezoelectric effect is investigated and used in the nanoscale structures, the 
microscopic models might be useful].  

Next the two-dimensional square sample made of piezoelectric-active 
material is considered, Fig. 6.4B, in which the inscribed hexagon symbolically 
shows mutual arrangement of electrical charges with three polar-neutral axes x′, x″ 
and x″′.  
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                        (A)                                                             (B) 
 

                
 

                          (C)                                                                 (D) 
 
 

Fig. 6.4. Simplified model of transverse piezoelectric effect: A – model cross section of quartz 
perpendicularly of 6-order axis; B – "piezoactive square" model C, D – longitudinal stress 

induces transverse polarizations 

 
Original structure shown in Fig. 6.4B is electrically neutral, moreover, under 

uniform (scalar type) compression or tension, which can change the volume of 
considered square, it remains totally electrically neutral. Thus, in discussed model, 
the volumetric piezoelectric effect can not arise (in contrast to quasi-one-
dimensional structure shown earlier in Fig. 6.3, where the pyroelectric symmetry is 
used. 

In basis of discussed here structure is the α-quartz, which has rather complex 
spiral structure, but main “structural motive” is the hexagon, in which silicon and 
oxygen ions can be alternating traced: there are two oxygen ions per silicon ion. So 
in the symbolic projection of two layers of this spiral structure, Fig. 6.4A, the sign 
“+” should be understood as ion Si+4 while the sign “–“ means two oxygen ions 
having sign “–4”. 

The directional (tensor type) mechanical action onto considered piezoelectric-
active square sample, Fig. 6.4C, produces the transverse effect (not longitudinal). 
Due to stretching stress applied along the horizontal axis, the electrical polarization 
is induced, however, not in same direction, but perpendicularly to it. When the sign 
of stress changes, Fig.6.4D, induced polarity also changes its sign: this is the linear 
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transverse piezoelectric effect. Longitudinal piezoelectric effect in this model also 
would be possible, if mechanical stress ill be applied along the x – x’ axis. 

3. Share piezoelectric effect can be explained by images shown in Fig. 6.6. 
As model sample, the piezoelectric-active cube is used now, which structure has 
three polar-neutral axes, (i.e., this cube is a cut from crystal having quartz 
symmetry). At that, one of axes of a cube is directed along x-direction (i.e., along 
one of direction of crystal internal polarity). As well as in the case of “piezoelectric 
square” considered before, this piezoelectric-active cube not reacts electrically to 
any scalar action (i.e., neither pyroelectric nor volumetric piezoelectric effect are 
possible in this sample). But the directional (tensor) actions allow in this model get 
both the longitudinal and the transverse piezoelectric effects.  

    
                      (A)                                                               (B)   

 

Fig. 6.5. Models representation of longitudinal (A) and transverse (B) shear piezoelectric effects 

 
However, in the case shown in Fig. 6.5, the sample made of piezoelectric-

active cube is used here only to the explanation of shear-type mechanical action. 
Firstly, such action may be applied perpendicularly to x-axis of a chosen sample, 
and exactly along it mechanically induced electrical polarization occurs, Fig. 6.9A. 
That's why corresponding piezoelectric effect is called the longitudinal shear effect, 
LS. However, another share piezoelectric effect is also possible, namely, the 
transverse share effect, LT, shown in Fig. 6.5B.  

In general case of low-symmetric crystal, three longitudinal L-effects, six 
transverse T-effects, three longitudinal shear LS-effects and six transverse shear LT-
effects can be observed. In the crystals of lowest symmetry and in some slanting cut 
of others polar crystals the maximum number of piezoelectric modules can be 16. 
However, in practically applied piezoelectrics, when the basic installation of crystal 
is used, this quantity is much smaller what will be shown below. 
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4. Induced by electrical field piezoelectric effect in external electrical field 
manifests essentially in dielectrics which have big permittivity (peculiar for 
paraelectrics and relaxor ferroelectrics) in form of linearized electrostriction Qe [5, 
8]. 

The deformation as an even function of polarization can be given by the fast 
converging series: x = QeP

2 + Qe′P
4 + ... In not very large electrical fields, it might 

be confined by the first member of this series.  
When discussion of possible application of piezoelectrics, suppose that 

polarization contains two components: the first (Pb) is induced by bias (controlling) 
electrical field, which leads to induced piezoelectricity, and the second component 
(P~) which is due to “dynamic field” E~ exciting dynamic piezoelectric response: 

x = Qe (Рb + Р~)2  = QeРb
2 + 2QeРbР~+ QeР~

2. 
If not take into account parametric interactions, that is, assuming Рb  >> Р~, 

last term in a given expression can be neglected. In addition, it can be supposed that 
polarization Р~, which excites piezoelectric response, is fast-changing influence 
compared to Рb (Р~ usually changes much faster than controlling field). In this case, 
the determined by Рb deformation of paraelectric can be considered constant (xb = 
QeРb

2). Thus, electrostriction for variable field looks like linearized and may be 
perceived as piezoelectric effect: 

х = 2QeРbР~= d.E~ , 
where d plays the role of piezoelectric module caused by electrostriction Qe and 
depending on bias electrical field strength. Taking into account that in the 
paraelectrics ε >> 1, it is possible to have 

Рb = ε0(ε − 1)Еb ≈ ε0εЕb;     Р~ = ε0(ε − 1)Е~ ≈ ε0εЕ~;      х~ = dЕ~ ≈ 2Qε0
2ε2ЕbЕ~ . 

Denoting further a field which induces piezoelectric effect through Еb = E, the 
artificial piezoelectric module is             

           d = 2Qeε0
2ε2Е.    

In cases of electrically induced piezoelectricity and electrical control by 
parameters of piezoelectric devices, following physical effects are used: 

∙ Forced induction of noncentrosymmetric structure in nonpolar dielectric by 
strong electrical field application. As known, external field transforms the structure 
of any dielectric into artificially polar structure, causing piezoelectric activity. At 
that, external electrical field by influence on the speed of sound can change the 
frequency of "piezoelectric resonator" (made of non-polar dielectric) using 
electrically induced piezoelectric effect. Electrostriction of ordinary dielectrics is 
small, but in some dielectrics such as rutile (ε = 100) or strontium titanate (ε = 300) 
the electrically induced piezoelectricity is perceptible [9, 10]. 
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∙ Sound velocity change by external electrical field in classical piezoelectrics 
(quartz, langasite, potassium dihydrogen phosphate, niobium lithium, silicosilenite) 
by means of electrical control of elasticity coefficients (Young's modulus) of crystal. 
In normal piezoelectric material, due to large internal bonding, this effect is small 
but allows, for example, change a little the frequency of piezoelectric resonator. At 
that, due to high electromechanical quality factor of these piezoelectrics (such as 
quartz or lithium niobate) this effect of frequency control becomes technically 
applicable, for example, in the SAW convectors (processors for pulse convolution).  

∙ Domains polarization change in the ferroelectrics using electrical field by 
influencing domain orientation. The control field changes both velocity and 
attenuation of sound, which causes electrical reorganization of piezoelectric devices. 
However, electrical control of piezoelectric effect in ferroelectrics is characterized 
by hysteresis and relatively low operation speed, due to inertia of domain 
reorientations.  

∙ Electroinduced piezoelectric effect in paraelectrics is particular but important 
case of piezoelectric effect induced by electrical field. In this case electrical field 
changes the frequency of soft transverse optical mode of lattice oscillation that 
strongly affects all properties of paraelectric. Electrical control of resonant 
frequency of piezoelectric resonators made of paraelectrics reaches several percents, 
that is two orders of magnitude higher than frequency conversion of resonators made 
from classical piezoelectric crystals and is order of magnitude superior to frequency 
controlling of resonators made from ferroelectric ceramics. 

A distinctive feature of electrically induced piezoelectric effect is the 
possibility of piezoelectric activity appearance (in particular, piezoelectric 
resonance) only at the moment of switching on of electrical control voltage; at that, 
the speed of control of resonator parameters can exceed frequency of 10 kHz. 

 

6.3 Direct piezoelectric effect 
 
Piezoelectric effect is always the result of force action onto a polar crystal; at 

that, the force might be mechanical stress or electrical voltage, while the responses 
of a crystal are electrical polarization or mechanical strain. The direct piezoelectric 
effect is a result of the mechanical action; to simplify the problem, further only the 
homogeneous and centrosymmetric actions on the piezoelectric will be considered. 
As was previously shown in Fig. 6.1, in relation to particular piezoelectric sample, 
mechanical stresses might be longitudinal, transverse, share and hydrostatic.  
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The simplest case of longitudinal piezoelectric effect is demonstrated in Fig. 
6.6: in a sample made of polar crystal, under the action of negative or positive stress 
the electrical polarization appears which shows linear dependence on a stress.  

      
          (A)                            (B)                               (C)                               (D) 

 

Fig. 6.6. Direct piezoelectric effect: A – plate of polar crystal with vertical directed polar axis in 
unexcited state; B – compressive stress –X is applied to the plate; C – tensile stress +X is applied 

to the plate; D – linear dependence of induced polarization on applied stress 
 

In accordance with first observation of piezoelectric effect by Curie brothers, 
the equations of direct piezoelectric might have a form: 

Pi = dijkXjk,                (6.1) 
where Рi are components of polarization vector (tensor of first rank); i,j,k = 1, 2, 3 
in accordance with the Cartesian x, y and z axes; Хjk are components of mechanical 
stress (second rank tensor) and dijk are components of piezoelectric module (tensor 
of third rank). It will be recalled that repeating indices j and k in the expression (6.1) 
meant summation; thus presented in shortened form  equations of direct piezoelectric 
effect in their expanded form would be looked like three equations and each of them 
has six terms in their right-hand side. Correspondingly, there must be 27 coefficients, 
which connect three components of polarization vector Pi and the nine components 
of stress tensor Xjk: 

 

  

Х11 Х12 Х13 Х21 Х22 Х23 Х31 Х32 Х33 

Р1 D111 d112 D113 d121 d122 d123 d131 d132 d133 

Р2 D211 d212 d213 d221 d222 d223 d231 d232 d233 

Р3 D311 d312 d313 d321 d322 d323 d331 d332 d333 
 
 

If these 27 components would be represented in the form of matrix – it will 
look as three-dimensional image inconvenient for practical use. However, in fact, 
due to the symmetry of stress tensor: Хjk = Хkj the tensor of piezoelectric modules is 
symmetric for last two indices: dijk = dikj that decreases possible number of 
independent components of piezoelectric modulus tensor to 18 (all of them really 
exists in the crystals of lowest symmetry).  
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In this case, significantly simplified matrix representation of piezoelectric 
modules is commonly accepted, as more convenient is to use shortened matrix 
record of a third-rank tensor, At that, first index of tensor dijk remains unchanged 
over the value of i = 1, 2, 3, but two other indices j and k, which also have values 1, 
2 and 3, "collapse" in one index m = 1, 2, ..., 6 according to rule given in Table 6.1.  

Table 6.1 

Replacement of tensor indices on matrices ones 

Tensor indices i, j, k, l   11 22 33 23 and 32 31and 13 12 and 21 

Matrices indices m, n  1 2 3 4 5 6 

 

In the matrix record, equation of direct piezoelectric effect takes the form: 
                       Pi = dim Xm.                      (6.2) 

Now in the right side of these equations there are not nine but six members of sum. 
Moreover, it can be seen clearly that, in fact, the number of independent piezoelectric 
modules even for lowest symmetry crystals can be no more than 16. Each of these 
components is the coefficient of proportionality between corresponding component 
of electrical polarization Pi and mechanical stress component Xm which generates 
the polarization Pi: 

 
   Х1 Х2 Х3 Х4 Х5 Х6 

Р1 d11 d12 D13 d14 d15 d16 

 Р2 d21 d22 D23 d24 d25 d26 

 Р3 d31 d32 D33 d34 d3 d36 

Thus, such important characteristic of polar crystals as piezoelectric module 
cannot be described by one number (as density or melting point of a crystal), but it 
is complex characteristic represented by either a matrix or a bulky figure, such as 
shown in Fig. 6.7. 

In fact, the number of non-zero components of matrix of piezoelecric modules 
can be quite small, if choose not slant plate of a crystal, but its main crystallographic 
installation. At that, the lower symmetry, the smaller number of non-zero 
components in matrix. As an example, the matrix of piezoelectric modules of quartz 
(SiO2) is shown: 

                 dim = 

11 12 14

25 26

0 0 0

0 0 0 0

0 0 0 0 0 0

d d d

d d

 
 
 
   , where: 















1126

1425

1211

2 dd

dd

dd

      (6.3) 
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            (A)                                                         (B) 

Fig. 6.7. Indicative surfaces of transverse (A) and longitudinal (A) piezoelectric effects  
in LiNbO3 [5] 

 
As seen, of 18 possible components of possible piezoelectric modulus in the 

main installation of quartz crystal only five positions in matrix (6.3) are non zero, at 
that, only two components of dim remain independent. Strong anisotropy of 
piezoelectric properties of quartz is clearly traceable: along the axis Z = 3 no linear 
electromechanical reactions are possible while as longitudinal so transverse 
piezoelectric effects are manifested only along the axis X = 1.  
 1. Figures of merit in piezoelectrics are the quite different parameters.  

Piezoelectric module d11 characterizes the longitudinal piezoelectric effect, 
i.e., polarization induced along same direction, in which mechanical stress acts. 
Longitudinal effect is sometimes also called the L-effect. The components d22 and 
d33 have similar physical meaning characterizing: the longitudinal piezoelectric 
effects along axes, respectively, 2 and 3. Therefore, if indexes in matrix record of 
piezoelectric modulus are same, then these components describe one of three 
possible longitudinal piezoelectric effects.  

Piezoelectric module d12 characterizes the transverse piezoelectric effect or T-
effect. In this case elastic stress is applied along axis 2 while piezoelectric effect is 
observed along axis 1, perpendicular to axis 2. Others transverse piezoelectric 
modules are characterized by coefficients d13, d21, d31 and d32, which are components 
of dim matrix. They express appearance of polarization along one of the axes 1, 2 or 
3 under influence of stretch-compression stresses along one of the axes 
perpendicular to response axis.  

Piezoelectric modulus d14 in equation (6.3) characterizes one of the share 
piezoelectric effects; in quartz, two others share modules d25 and d26 do not equal 
zero; others share modules d13 = d15 = d24 = d26 = d34 = d35 = d36 = 0. By example of 
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share piezoelectric modulus one can see that piezoelectric polarization may occur 
not only under compression-stretching stress action, but also under the influence of 
rotatory shifts. Physical meaning of d14 looks like this: the pair of forces, applied 
along axis 2, induces electrical polarization along axis 1. Share piezoelectric effect 
is observed and widely used in many crystals and textures; for instance, widely used 
in engineering polarized ferroelectric ceramics has two share modules d15 and d24 
and matrix of its piezomodules is same as in barium titanate crystal (BaTiО3): 

                     

15

24

31 32 33

0 0 0 0 0

0 0 0 0 0

0 0 0
im

d

d d

d d d

 
   
   , where: 








3132

1524

dd

dd

 
 

Except for this example, two matrices of piezoelectric modules of most 
studied piezoelectrics are given below: 

  For Rochelle Salt (RS) in temperature range of t = (–18 — +24) °C: 
 

dim = 














36

26

35

25

14131211 00

0

0

0

0

0

0

0

0

d

d

d

d

dddd

; 

For potassium dihydrogen phosphate crystals (KDP) at any temperature above 
Curie point (150 K):  

          dim = 














0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

25

14

d

d

; at that, d25 = d14 . 

In barium titanate, share piezoelectric modules d15 and d24 are different from 
zero, while in the piezoelectric phase of KDP crystals (above Curie temperature) 
only one share module d36 is different from zero. In general case of study or 
application of slanting cuts of piezolectric crystals (as well as in crystals of lowest 
symmetry) there can be nine shear modules: three longitudinal shear modules (LS) 
and six transverse shear modules (TS), Fig. 6.8A shows their difference. Note that 
the LS-effect corresponds to modules d14, d25 and d36 and they are characterized by 
the fact that induced piezoelectric polarization vector is parallel to the displacement 
axis and perpendicular to the shear plane. Transverse share displacement, that is, the 
TS-effect corresponds to piezoelectric modulus d15, d16, d24, d26, d34 and d36. In this 
case, vector of polarization is perpendicular to displacement axis and lies in 
displacement plane. 

 



298 
 

           
 

                                       (A)                                                                        (B) 
 

Fig. 6.8. Different types of piezoelectric modules: A – mutual arrangement of initiating 
deformation and electrical response; B – conditional location of longitudinal and transverse 

piezoelectric modules in the matrix [7] 

 
The dimensions of piezoelectric modulus follows from relation: d = P/X, 

where [P] = C/m2 and [X] = N/m2, therefore [d] = C/N. Piezoelectric modules of 
different crystals and textures can be significantly differentiated by magnitude and 
sign: for example, in the ammonium hydrophosphate (ADP) main piezoelectric 
modules d14 = –1.34×10–12 C/N and d36 = 20×10–12 C/N (other components of matrix 
are zero). From these data seen that selected unit of measurement of piezoelectric 
modulus is too large. Therefore, in practice, it is more convenient to use a unit of 
pC/N (picoculone per Newton), where 1 pC = 10–12 C. For example, in barium 
titanate d33 = 150 pC/N, d31 = 70 pC/N and d15 = 250 pC/N, at that d24 = d25 and 
d32 = d31.  

Expression (6.2) describes only one of four possible variants of direct 
piezoelectric effect characterizing, namely, for electrically free (E = 0) crystal: Pi = 

dimXm. Others idealized boundary conditions leads to three more equations also 
describing direct piezoelectric effect: 

Pi = einхn ; 
               Ej = – gjmХm ;                               (6.4) 

     Ej = – hjnхn. 
Here and in future only matrix record of the components of third rank tensors 

ein, gjm and hjn is used. These piezoelectric coefficients, like piezoelectric modulus 
dim, characterize piezoelectric properties of noncentrosymmetric crystals and 
textures. Units of measurement of all these piezoelectric parameters are: 
                             d = C/N,            g = V.m/N,        е = C/m2;  h = V/m. 
In the literature, these modules are called differently [Uchno], but mostly as d is 
piezoelectric module, g is piezoelectric stress constant, е is piezoelectric strain 
constant and h is piezoelectric voltage constant. All of these piezoelectric parameters 
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can be independently determined experimentally, the principles of these 
measurements are shown in Fig. 6.9. 
 

 
 
Fig. 6.9. Experimental determination of various modules in case of direct piezoelectric effect [5] 

 
In accordance with considered in Chapter 1 boundary conditions, while dim 

measuring the component of mechanical stress tensor Xm, acting on piezoelectric, is 
determined, as well as the component of electrical polarization vector Pi arising from 
this action, Fig. 6.9, d (at that, stress intensity component Xm is measured as result 
of division of force F acting on area S of piezoelectric element). This method of 
piezoelectric module measuring is a static; exactly such method was used while 
piezoelectric effect was first detecting. 

To determine the piezoelectric constant ein (Pi= einxn) using induced by strain 
xn direct piezoelectric effect, crystal must be electrically free (E = 0) and 
mechanically free (X = 0). Mechanical deformation) can be determined by 
dilatometer, while measuring of induced polarization is reduced to the definition of 
electrical charge arising on piezoelectric surface, whose value is measured by 
current passing through microammeter μA, Fig. 6.9, e (as known, polarization equals 
to surface charge density on electrodes). In turn, when coefficients gim and hjn 
determination, the voltmeter V can be used, which shows potential U = E⋅t induced 
by crystal deformation or by mechanical stress, accordingly. The larger the thickness 
of sample t, the higher is potential U. 

[Note. A question might arise as to how deformation appears in a 
piezoelectric, if vector of electrical field and tensor of mechanical deformation do 
not act to the polar crystal. The fact is that homogeneous (scalar) change of 
temperature leads to crystal thermal expansion-compression, so electrical 
polarization in it appears by secondary pyroelectric effect, as well as hydrostatic 
(scalar) change of pressure results in strain xn – this is volumetric piezoelectric 
effect]. 
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In addition to direct measurements, each of four piezoelectric coefficients can 
be calculated using others coefficients, if elastic parameters (cmn or smn) and tensor 
of permittivity εij (or converse tensor βij = εij

–1) are known. For example, from 
equation (6.1) Pi = dimXm and from Hook’s low Xm = cmnxn follows Pi = dimcmnxn. 
Comparing this expression with equation (6.4), it is possible to obtain one of 
equations connecting two piezoelectric coefficients: ein = dimcmn. 

However, in this and other similar relationships, the conditions at which 
components cmn and smn are defined cannot be ignored: for the short-circuited (E = 
0) or the open-circuited piezoelectric (D = 0), since cE

mn ≠ cD
mn  and sE

mn ≠ sD
mn. 

Others relations between piezoelectric coefficients include components of tensors εij 
or βij, which differ for mechanically free (εХ

ij or βХ
ij when X = 0) and mechanically 

clamped crystals and textures (εx
ij or βx

ij that means x = 0). 
In accordance with relation (6.2), which corresponds to direct piezoelectric 

effect and taking into account electrically free crystal, it should be determined that 
elastic stiffness will be included in this relation with a superscript E. Consequently, 
this ratio must be written in form: ein = dimcЕ

nm. Similarly, to determine piezoelectric 
module dim in direct piezoelectric effect piezoelectric also needs to be electrically 
free (E = 0), so the piezoelectric module must be determined as follows: dim = emjs

Е
mn 

Other ratios of piezoelectric coefficients are given below in more complete 
equations, which take into account the conditions for determining the dielectric and 
elastic parameters:  

dmj = ε0ε
Χ

ijgmi = enjs
Е

mn = ε0ε
x
ijhnis

Е
mn;    

emi = ε0ε
x
ijhmj = dnic

Е
mn = ε0ε

X
ijgnjc

Е
mn; 

gmi = (βХ
ij/ε0)dmj = hnis

D
mn = (βx

ij/ε0)enjs
D

mn;   
hmj = (βx

ij/ε0)emi = gnic
D

mn = (βx
ij/ε0)dnic

Е
mn . 

 2. Electromechanical coupling factor Kcoup is one of important figures of 
merit as for piezoelectric materials so for elements of piezoelectric devices. It 
reflects the interconnection of electrical and mechanical properties in non-
centrosymmetric crystals and textures which demonstrate piezoelectric effect. 
Electromechanical coupling can be investigated by various experimental and 
theoretical methods.  

Due to piezoelectric is the energy convertor, its electrical and elastic 

properties need to be considered together. The point is that in polar-sensitive crystal 
any change in its mechanical state leads to change in its electrical state, and vice 
versa [7]. The square of electromechanical coupling factor shows what amount of 
energy brought to piezoelectric (Wbr) is converted into other type of energy (Wconv):  

          K 2coup
 = Wconv/Wbr 
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At that, any energy losses (mechanical damping and dielectric losses) are not 
included in this expression, so the Kcoup it is not efficiency coefficient. 

 

In case of direct piezoelectric effect, the mechanical energy received by 
piezoelectric is spent not only onto deformation (when elastic energy Welas is 
accumulated) but also spent onto electrical polarization, which causes the 
accumulation of electrical energy Welec:  

                                                   (6.5) 

Coupling factor Kcoup might be different at various boundary conditions when 
crystal might be mechanically free or clamped and electrically short-circuited or 
open-circuited. As electrical so elastic energy are defined by the quadratic forms. 
Energy of electrical polarization can be expressed through the electrical field E and 
induction D, using permittivity ε and inverse permittivity β : 

                                                (6.6) 

By the same way, mechanical energy is defined by strain x or stress X, as well as by 
stiffness and compliance characterizing elastic process: 

                                                                        (6.7) 

In addition to these relations, electromechanical coupling factor can be 
defined as the ratio of elastic energy density to density of elastic and electrical 
energy: 

                                    

where in mechanically clamped piezoelectric Wem = d⋅X⋅E while for mechanically 
free piezoelectric Wem = e⋅h⋅E, at that d = P/X and e = P/x. 

Although factor Kcoup is a scalar parameter, it depends on direction of external 
influences and on other causes. For example, polarized ferroelectric ceramics (which 
is a texture of ∞⋅m symmetry) can be identified by 12 different coupling coefficients, 
depending on the system of boundary conditions (and possible forms of piezoelectric 
sample), as well as on manner of clamping and fixing. Numerical values of Kcoup are 
defined by piezoelectric material properties. Most crystals, ceramics and textures 
used in practice have Kcoup = 0.1–0.5, although in some crystals in their particular 
orientation Kcoup reaches value of 0.8– 0.96.  
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In case of a direct piezoelectric effect, the electromechanical coupling factor 
can be calculated, if main parameters of piezoelectric are known. Taking into 
account the contribution to polarization from direct piezoelectric effect Ppiezo = d≅X, 
equation of electrical induction D = ε0Е + Р =ε0εЕ takes the form: 

                                                 D = ε0εЕ + dX.                                        (6.8) 
Accordingly, in the equation for linear deformation (Hooke's law x = sX) the 
piezoelectric contribution to deformation from converse piezoelectric effect хп= 
dE should be taken into account: 

х = sX + dE.                              (6.9) 

                            
(A)       (B) 

Fig. 6.10. Difference in elastic compliance in piezoelectric: A – mechanical action on 
piezoelectric plate; B – Hooke's law in open-circuited (sD) and in close-circuited (sE) polar 

crystal [5] 

 
Next, direct piezoelectric effect in sample plate made of noncentrosymmetric 

crystal will be considered, Fig. 6.10. Suppose that homogeneous mechanical stress 
X acts on piezoelectric plate, as a result of which it deforms remaining electrically 
opened (D = 0). Accordingly, from equation D = ε0Е + Р = ε0εЕ it is possible to 
obtain E = – (d/ε0ε)X. By substituting it in the (6.9), obtain next relation 

                                     х = (s – d2/ε0ε)≅X.                      (6.10) 
In the brackets there is new tensor of elastic compliance, corrected for 

piezoelectric effect. As can be seen from formula (6.10), due to piezoelectric 
reaction the compliance of plate decreases (correspondingly, its stiffness increases). 
Therefore, by applying mechanical force X = X1 the plate does not deform to value 
of x = x1 (as if it were in the absence of piezoelectric effect), but only to value х = х2 
< x1. The work of external forces brought to a plate (Wbr) spents not only on the 
elastic deformation with accumulation of elastic energy (Welas), but also on creation 
of electrical energy of polarization (Welrc). Under these conditions, deformation of 
piezoelectric plate becomes lesser (х – х1) as reduced elastic energy compensates 
appearance of electrical energy. 
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Using equation (6.10) and formula for elastic energy ½ sX2, it is possible to 
determine the mechanoelectric contribution to energy: 

                Welas = Wbr – Weec = ½ sX2 – ½ (d2/ε0ε)X2.   
 Changed energy in this case, obviously, is electrical energy Welec. Substituting 
obtained expressions into formula (6.5), the coupling factor can be found: 

   K2
coup = Welec/(Welas + Welec) = ½ (d2/ε0ε)X2/(½ sX2) = d2/(ε0εs).             (6.11) 

It should be noted that the ratio of energies in (6.11) does not depend on the 
amplitude of fields (mechanical stress X or electrical field E). Thus, coupling factor 
Kcoup is a parameter characterizing given piezoelectric.  

Multiply the numerator and denominator in the formula (6.11) on ½ Е2Х2: 
 K2

coup = (½ d.Е.Х)2/[(½ ε0εЕ2)( ½ sX2)] = W2
em/(Welec

.Welas). 
Denominator represents a product of energies Welec= ½ ε0εЕ2 and Welast = ½ sX2, 
while the numerator corresponds to electromechanical energy Wem = ½ dЕХ. 

3. Elastic properties dependence on electrical boundary conditions. While 
studied mechanical properties of piezoelectric, a significant difference in the elastic 
compliance of short-circuited (sE) and open-circuited (sD) polar crystals is observed. 
Under the influence of outside stress, Fig. 6.10A, strain is linearly increased, Fig. 
6.10B in accordance with a Hooke’s law. However, if piezoelectric is electrically 
close-circuited, its elastic compliance will be bigger than in the case when crystal is 
open-circuited. The reason is that the piezoelectric voltage generated by mechanical 
strain in open-circuited crystal increases its harshness (resistance to deformation). 

By comparing of expressions (6.11) and (6.10), it is possible to verify that 
elastic compliance reduces in (1 – K2

coup) times: d2/ε0ε = Kcoups. However, in case 
of close-circuited crystal (E = 0), piezoelectricity does not affect elastic compliance 
sE. In same way, for considered case compliance sD of open-circuited piezoelectric 
(D = 0) is reduced. Expression (6.10) can be rewritten:  

      х = (sЕ – d2/ε0ε)X = (sЕ – K2
coup

 sЕ)X = sDХ; 
     sD = sЕ(1 – K2

coup). 
From above relations the important expression follows for electromechanical 
coupling factor: 

(sЕ – sD)/ sЕ = K2
сoup.                             (6.12) 

Correspondingly, elastic stiffness cmn (where m, n = 1, 2, ... 6), which is the 
tensor converse to tensor of elastic compliance smn, also can be obtained from 
formula (6.13): 

                    (сD
mn

 – cmn
E)/ cD

mn = K2
св.             (6.13) 

In Chapter 2, Fig. 2.5В large difference between elastic stiffness of close-
circuited (сЕ

14) and open-circuited (сD
14) in Rochelle Salt crystal was shown. In this 
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figure, throughout a given range of temperatures Rochelle Salt is piezoelectric. In 
the Curie points elastic stiffness сЕ

14 of close-circuited crystal changes very much, 
being almost at order of magnitude different from сD

14. Therefore, the strong 
influence of electrical conditions on the mechanical properties of ferroelectrics is 
evident. 

Since the speed of elastic (sound) waves is are determined by elastic stiffness 
c and density ρ of a crystal  

            vsound = (c/ρ)1/2, 
then difference in elastic stiffness сD – cE leads to the differences in speed of sound 
in the open-circuited and close-circuited crystals. From Fig. 2.5 in Chapter 2 it 
follows that velocity of sound in the direction, corresponding to stiffness component 
c44 of Rochelle Salt in both Curie points decreases several times as compared with 
room temperature. This means that due to piezoelectric effect elastic stiffness of 
piezoelectric might vary considerably. 

4. Main applications of direct piezoelectric effect. There are various 
engineering approaches for comparing piezoelectric materials [11–14]. For 
piezoelectrics intended for use as acoustic signal receivers, it is necessary to provide 
high sensitivity at low noise levels. If such piezoelectric receivers are employed in 
the liquid environments, they are called hydrophones, if such devices are used in the 
air, they are called microphones. In general, in electronics, instrumentation, medical 
technology, such use of piezoelectrics can be generalized by such concepts as 
piezoelectric sensors. 

In order to assess suitability of piezoelectric element, following quality factor 
is often used for receiver material: diμ/εiμ

1/2 = Кres; this parameter characterizes 
efficiency in the mode of receiver, that is, to convert mechanical energy into 
electrical one. Taking captured the most famous piezoelectric quartz as the unit of 
Кres, it can be obtained that this value for piezoelectric ceramic is 4–6 times higher 
than for quartz: for lithium niobate crystal 8 times higher, for a PVDF polymer film 
12 times higher, and 25 times for Rochelle Salt. By these data should be guided 
during the design and application of piezoelectric receivers or sensors. 

Piezoelectric sensors use direct piezoelectric effect, at that piezoelectric 
modules g and h should be used for most convenient parameters for assessing the 
sensory capability of those or other piezoelectric devices. Direct piezoelectric effect 
was considered above in the idealized boundary conditions, and following equations 
for piezoelectric effect were given: Ei = – gimХm and Ei = – hinхn. In this case, the 
piezoelectric voltage constant gim is defined as the ratio of piezoelectric module dnj 
to dielectric constant εnj: gim = dmj/εij and characterizes the electrical field E arising 
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in a piezoelectric under applied stress X. Therefore, the dimension [g] is: 
(V/m)/(N/m) = V≅m/N. Another piezoelectric constant, h, can be defined also as 
the product of the coefficient g on corresponding Young module for certain direction 
in the crystal; respectively, and the dimension h equals: V/m. 

Piezoelectric crystals are direct converters of mechanical energy into 
electrical one. The efficiency of such transformation can be expressed through 
mechanoelectric coupling coefficient of KME, the square of which equates the 
product of piezoelectric modules g and h; К2

ME = dmj≅hmj. The listed coefficients are 
important characteristics for such cases when it is necessary to ensure high efficiency 
of energy transfer, for example, in the acoustic and ultrasound sensors. For practical 
devices, exactly the charge qx generated on the surface of piezoelectric converter is 
important; it is proportional to the force Fx, which acts along the x-axis: qx = dFx. 
A piezoelectric plate with electrodes deposited on it is capacitor C. The voltage V 
on this capacitor is determined by expression: V = Q/C = dF/C. In turn, capacity 
can be expressed through dielectric permittivity ε, surface of electrode S and 
thickness of crystal l (only the electrode area is taken into account, but not area of 
crystal itself, since piezoelectric induced charge accumulates only on electrodes): C 

= εε0Sl. Then expression for electrical voltage on piezoelectric sensor takes form: 
V = dF/εε0S. 

Piezoelectric sensory elements can be used either in a simple lamellar form or 
in the form of multilayer structure, in which individual plates are joined together by 
means of electrodes placed between them. For example, in Fig. 6.11A shows the 
two-layer power sensor. When external force is applied to this sensor, one of its parts 
is expanded while other is compressed, which leads to doubling of output signal 
(double sensors can be activated in parallel or sequentially). Piezoelectric sensor has 
very high output impedance; so to coordinate with subsequent electronic circuits it 
is necessary to use special interfaces representing voltage converters in current, or 
voltage amplifiers with high input resistance. 

        
 (А)                                                                               (В) 

Fig. 6.11. Piezoelectric sensors: A – two-layer (bimorph) piezoelectric force sensor;  
B – piezoelectric cable  (F is dynamic mechanical load) [12] 
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Next example, in Fig. 6.11B, shows piezoelectric application in seismic 

cables. They are essentially vibration or power sensors implemented as cables, in 
which electrical signal appears on the internal conductor, Fig. 6.11B. Piezoelectric 
cable consists of metal casing covered outside by layer of insulation, and inside 
contains the densely pressed piezoelectric ceramic powder enveloping inner metallic 
rod. To give such a cable piezoelectric properties, its sensitive component (ceramic 
powder) must pass the thermal polarization procedure. Sensor does not register 
constant (not changing in time) force: the only dynamic change in mechanical force 
generates electrical signal. Mechanoelectrical sensors are used for a variety of 
purposes: monitoring vibration of compressors and engines for analysis of traffic 
flow on motorways, etc. 

Piezoelectric materials for force sensors need peculiar combination of 
properties, namely, the large ratio of piezoelectric modulus to permittivity. Such is, 
for example, lithium sulfate crystals (Li2SO4), which are often used in hydrophones. 
This piezoelectric is used also for detector heads in the ultrasonic defectoscopy. Next 
example is lithium tetraborate crystals (Li2B4O7), which have been developed for 
use in the receiving mode. This crystal has small value of permittivity (ε33 = 10) 
and relatively small piezoelectric module: d33 = 34 pC, but the special for 
hydrophones parameter g33 = 0.27 V/m² in Li2B4O7 is greater than for others 
piezoelectrics. For comparison, piezoelectric module of widely used piezoelectric 
ceramics (d33 = 450 pC/N) is 13 times larger but parameter g33 = 0.03 V/m² is 10 
times smaller than in lithium tetraborate. 

Vibration sensors that use piezoelectric effect are widely applied in airplanes, 
electric generators, accelerometers etc. These sensors operate in frequency range of   
2Hz–5kHz and are characterized by high attenuation of noise, high linearity and 
wide temperature range (especially when quartz crystals are used as sensitive 
elements). When piezoelectric crystals are applied in the accelerometers, they are 
located between the casing and inertial mass, which makes acting force proportional 
to acceleration. Ceramic piezoelectric films are also used in accelerometers: in this 
case they are the microsensors usually deposited on silicon. During formation of 
integrated silicon microsensors, thin film of piezoelectric ceramic are usually 
deposited onto silicon console. Piezoelectric signal is amplified by microelectronic 
circuit embedded in same microdevice with piezoelectric sensor. 

Acoustic sensors application is much wider than simply detecting vibrations 
and sound signals. Such are the micro-scale apparatus and devices based on surface 
acoustic waves, realized on the principle of detecting mechanical vibrations in 
solids. Such sensors are used to measure displacements, to determine the 
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concentrations of components, to measure mechanical stress, force and temperature. 
Solid-state detectors often form the basis of more complex sensors, such as chemical 
analyzers, biological research, etc. According to characteristics of surface waves 
propagation, it is possible to obtain necessary information about biological objects 
or chemical components on the surface of a film. The use of high-sensitivity 
piezoelectric devices allows achievement a significant success in the visualization 
of ultrasonic fields, which resulted in significant increase in resolution, in particular 
in case of use of acoustic holography techniques, for increasing operating frequency 
of probing beams. 

In medicine, progressive development of piezoelectric receivers has greatly 
facilitated wide introduction of various types of ultrasound flow detection and 
acoustic emission analysis as well as cardiography and acoustic visualization of 
internal organs, into practice (including medical). This ensured a sharp increase in 
the possibilities of medical diagnostics for prevention of complicated cases. 
Piezoelectric sensors are used in biomedical engineering and "sensorization robots", 
which have been developing intensively lately. Introducing a piezoelectric catheter 
with a shell of polarized polyvinylidene fluoride in the middle of the blood vessel, it 
was possible to implement a precision diagnosis of valve stenosis, cardiomyopathy, 
and so on. On the basis of polyvinylidene fluoride, a polyfunctional thermotactyl 
sensor ("artificial skin") for prosthetics and robots is developed. Promising results 
are obtained during the treatment of bone fractures in the case of wrapping fragments 
of fissile bones, a bimorphic piezoelectric polymeric film; there is a sharp 
acceleration of the growth of the osteons in the direction of the force lines of the 
piezoelectric field, which accelerates the recovery of the patient. 

Piezoelectric microphones work in acoustic range that is perceived by 
humans; however, this name can be used for ultrasonic and infrasound wave 
detectors. In essence, the microphone is the pressure sensor adapted to convert sound 
waves in a wide spectral range. Microphones are characterized by sensitivity, 
direction, bandwidth, dynamic range, size, cost, etc. An important condition for the 
use of microphones is the harmonization of acoustic impedances of the medium and 
device. For sound receivers, the value of the acoustic resistance determines the 
conditions for reconciliation with the medium. 

Piezoelectric films made of polyvinylidene fluoride (PVDF) and copolymers 
have been used for many years to produce pickups for musical instruments. PVDF-
based piezoelectric pickups have a very high quality reproduction partly because 
they have very low Q-factor: they do not have their own resonance (as in ceramic 
pickups), and therefore there is virtually no distortion of signals. 
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Piezoelectric macrocomposite materials have high hydrostatic sensitivity, for 
example, ceramics with a structure of "coral" (macrocomposite), where ceramic 
framework is placed in polymer matrix, which reduces effective permittivity. 
Macrocomposites also use other materials for hydrophones, created on the basis of 
thin rods of polarized ceramics, variously bonded and placed in a solid polymer 
matrix. These materials are significantly superior to sensitivity in the mode of 
reception not only the usual piezoceramic, but also lithium tetraborate. 
Microcomposite materials are piezoelectric glassceramics: texture of needle 
microcrystals of lithium tetraborate or other crystals in a glass-phase matrix obtained 
by rapid melt-fixing under conditions of a sharp temperature gradient. In 

piezoelectric glassceramics 33 = 10 and d33 = 20 pC/N so important parameter g33 

= 0.1 Vm/N. 
Piezoelectric generators of high voltage are very simple in their design and 

can provide both high voltage (for creating, for example, a spark) and significant 
power that can be used in the piezoelectric damper of vibrations. Figure 6.12A shows 
principal design of piezoelectric ignition system: as a rule, two piezoelectric 
cylinders are designed to work in parallel. Using piezoelectric ceramic cylinders 
with a diameter of about 10 mm and a length of about 15 mm, it is possible to obtain 
electrical impulses of 15 – 25 kV in time interval near 50 microseconds. 

         
           (A)       (B) 

Fig. 6.12. Application of direct piezoelectric effect at high energies: A – piezoelectric lighter, 
shown direction of ceramics polarization; B – principle composition of piezoelectric composite 

for damping of vibrations [3] 

 

Mechanical vibrations dampers are important application of piezoelectric 
composites. The vibrational object must be elastically connected with the 
piezoelectric, forming a single system. At that the vibration is transmitted to 
piezoelectric material and mechanical vibrational energy is converted into electrical 
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energy due to the direct piezoelectric effect: it is alternating electrical voltage. To 
suppress vibrations, a resistive material is introduced into the oscillatory system, for 
example, carbon, as shown in Fig. 6.12B; at that, the flexible polymers are used for 
composite elasticity. Thus, the energy of mechanical vibrations is quickly 
transformed by piezoelectric and resistor into a heat and vibrations quickly decay. 
Piezoelectric dampers are used not only in aviation, particularly, in helicopters, but 
also in industry as well as in household appliances (damping vibrations of mountain 
skis). 

Possible applications of direct piezoelectric effect are difficult to recalculate. 
The experiments on obtaining piezoelectric energy using energy of sea waves are 
known: as mechano-electric energy converter, multi-layer thin polymer film (PVDF 
type), whose area is hundreds of square meters, is used. Experiments were also 
conducted with the use of a PVDF film for submerged piezoelectric tidal wave 
power plant immersed in seawater with high power. Successfully were studied 
implanted into the human body film converters, which convert the mechanical 
energy of breathing into electrical energy, for example, for driving a continuously 
acting insulin batcher and the like. 

 
6.4 Converse piezoelectric effect 

 
In case of the converse piezoelectric effect, the driving force mainly is the 

electrical field E, while induced response usually is the mechanical deformation x 
(or if latter is impossible, mechanical stress arises). As already mentioned before, 
applied to any dielectric electrical voltage causes its deformation, since charged 
particles of a material are displaced in the process of electrical polarization. Due to 
this mechanism in all dielectrics the quadratic electromechanical effect occurs 
(electrostriction) but usually it is very small.  

However, in the dielectrics with non-centrosymmetric structure another effect 
is important, namely, the linear electromechanical effect. This converse 
piezoelectric effect was second observation made by Curie brothers, and its equation 
can be written as:  

                     xn = dnjЕj ,                                     
where i = 1, 2, 3 and n = 1, 2, ... 6 accordingly to matrix marks,  dnj is piezoelectric 
module in matrix record. It is seen that component of strain xn is directly proportional 
to magnitude of electrical field Еj applied to piezoelectric. Simplest model of 
converse longitudinal piezoelectric effect is shown in Fig. 6.13. 
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            (А)                            (B)                                (C)                                       (D) 
Fig. 6.13. Converse piezoelectric effect: A – polar crystal with vertically directed polar axis n; B 

– applied  electrical field leads to crystal expansion; C – when sign of electrical field changes, 
crystal contract; 

D – linear electrical field–strain dependence 

The figure shows symbolically how piezoelectric sample is expanded or 
compressed under the action of electrical field applied along the polar axis n of a 
crystal. The sign of deformation changes with the change in electrical polarity (note 
that in real experiments, even in strong electrical field value of relative deformation 
x does not exceed one per cent). 

1. Fundamentals of converse piezoelectric effect. Equation (6.14) 
corresponds to the piezoelectric effect in mechanically free (X = 0) and open-
circuited (D = 0) crystal and includes the same piezoelectric modulus d as in the case 
of direct piezoelectric effect. However, this equation represents only one of possible 
descriptions of linear electromechanical interaction in noncentrosymmetric crystals 
and textures. At various boundary conditions, the converse piezoelectric effect can 
be described by four equations: 

        xn = dnjЕj ;    Xm = emjEj ; 
                    хn = gniPi ;              Xm = hmiPi ,                  

where dnj, gni, emj and hmj are piezoelectric coefficients used in previous Section to 
describe direct piezoelectric effect.  

The converse piezoelectric effect, as well as the direct one, in principal, allows 
determine all piezoelectric coefficients from experiments, Fig. 6.14.  

 
Fig. 6.14. Experimental methods of piezoelectric coefficients measurement, using converse 

piezoelectric effect 
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For example, to measure piezoelectric module, Fig. 6.11, d, it is necessary, 
firstly, to know electrical field applied to crystal: E = U/t (where U is electrical 
voltage supplied from low-impedance source, t is thickness of a sample). Secondly, 
mechanical deformation Δt induced by electrical field should be obtained using 
dilatometer that allows find dimensionless relative deformation x = Δt/t. 

The piezoelectric constant emj in case of converse piezoelectric effect is more 
difficult to determine, Fig. 6.14, e, since crystal must be mechanically clamped (x = 
0). Therefore, measuring element that determines mechanical force F which is 
created by piezoelectric of area S (X = F/S) must be mounted in the massive casing 
which prevents piezoelectric deformation. It is obvious that experimental realization 
of such a method in the static mode is not reasonable, but the dynamic mode of 
measurement can be successfully carried out at elevated frequencies – higher than 
frequencies of own mechanical resonances of piezoelectric sample (when it can not 
be deformed). 

In principal, it is possible, using converse piezoelectric effect, to determine 
experimentally piezoelectric coefficients gni and hmi. In these experiments, the 
sample of piezoelectric might be polarized by external scalar action (uniform 
variation of hydrostatic pressure). In the case of gni measurement, the deformation 
should be found by dilatometer, Fig. 6.14, g; while in the second case a pressure 
needs to be found, Fig. 6.14, h. 

The use four different piezoelectric coefficients for piezoelectric effect 
description is justified by various examples of piezoelectrics technical application. 
For example, when choosing piezoelectric material for the ultrasound emitters, 
which are usually used in sonar (in home appliances – in washing machines), rather 
big mechanical deformations must be generated by the converse piezoelectric effect 
under influence of electrical voltage. In this case, in order to evaluate the 
effectiveness of various piezoelectric materials, they must be comparing by the 
magnitude of piezoelectric module d (according to equation x = dE). 

Piezoelectric cells are also applied as ultrasound receivers, but the 
requirements for them are peculiar: it is necessary to use direct piezoelectric effect 
to obtain maximum electrical voltage from piezoelectric element – the "effort 
sensor", which uses piezoelectric coefficient g. In this case the best piezoelectrics 
are those which have highest coefficient g = d/ε0ε. In other cases, for example, to 
evaluate the performance of piezoelectric adapters, the coefficients h and e might be 
important. 

Above mentioned equations of piezoelectric effect (both direct and converse) 
characterize different connections between mechanical parameters X and x and 



312 
 

electrical parameters of P and E. To summarize the problem, these equations can be 
presented in the form of diagram – the piezoelectric square (Fig. 6.15) in the corners 
of which parameters x, X, P and E are located. 

The left vertices of a square show the mechanical stress and strain with their 
linear relationship, depicted by the straight line, symbolically characterizes different 
representation of Hooke's law: x = sX or x = cx. The right tops of square pictured 
in Fig. 6.15 corresponds to electrical field E and polarization P, as well as the 
connecting line reflects electrical interaction: Р = ε0χЕ or E = (ε0χ)–1Р. 

 
Fig. 6.15. Relationship of main parameters describing piezoelectric effects [7] 

 
 

Horizontal lines as well as diagonals of a square in Fig. 6.15 characterize eight 
linear equations of direct and converse piezoelectric effects. Near the straight lines 
of these connections all piezoelectric coefficients are depicted. The piezoelectric 
coefficient, located closer to arrow near connection line, must be multiplied by the 
parameter nearest to it. For example, upper line of piezoelectric square corresponds 
to two equations of piezoelectric effect P = dE and X = hP, while the lowest line 
symbolizes equations x = dE and E = – hx. 

In previous Section, several matrixes of piezoelectric modules are shown for 
the principal installations of some crystals, and it was seen that most of 18 possible 
components in these matrices are zero. For example, in quartz crystal there are only 
5 of non-zero components of piezoelectric modules (of which 2 are independent), in 
barium titanate they are respectively 5 and 3, while in KDP crystal only 2 and 1. It 
is obvious that a considerable interest is: how much of non-zero components of 
piezoelectric modules can be seen in all 20 classes of noncentrosymmetric crystals, 
in which piezoelectricity can be observed.   

All these classes are listed in Table. 6.2; there notations are given in the 
international classification, where main symmetry elements of these classes listed. 
Table 6.2 shows the number of non-zero components of permittivity tensor for all 20 
piezoelectric classes of crystals, as well as for elastic stiffness (or compliance) 
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tensors and the number of non-zero components of piezoelectric coefficients tensors. 
From the Table 6.2 it follows that with increasing symmetry of crystals the number 
of independent components of tensors becomes smaller. The number of non-zero 
components of piezoelectric modules reduces to 2 or 3 of which only one component 
is independent in last classes of piezoelectric crystals; such piezoelectrics are the 
easiest objects to study. 

Table 6.2. 
The number of components of basic "material" tensors of piezoelectric crystal classes [7] 

 

Crystal 
symmetry 

Syngony 
of 

lattice 

 
Number of 
non-zero 

components 
εij 

 

 
Number of 

independent 
components 

εij 

 

Number of 
non-zero 

components 
cmn 

Number of 
independent 
components 

cmn 

Number of 
non-zero 

components 
din 

Number of 
independent 
components 

din 

1 Triclinic 9 6 36 21 18 18 
        
         2 
        M  

Monoclinic 
 
        5 
        5 

 
       4 
       4 

 
      20 
      20 

 
      13 
      13 

 
       8 
      10 

 
       8 
      10 

       
      222 
     Mm2 

Ortho-
rhombic 

       
        3 
        3 

       
       3 
       3 

 
      12 
      12 

 
        9 
        9 

 
        3 
        5 

 
       3 
       5 

        
        4 
      422 
      ≅4 
     4mm 

   ≅42m 

Tetragonal 

 
        3 
        3 
        3 
        3 
        3 

 
       2 
       2 
       2 
       2 
       2 

 
      16 
      12 
      16 
      12 
      12 

 
        7 
        6 
        7 
        6 
        6 

 
        7 
        2 
        7 
        5 
        3 

 
       4 
       1 
       4 
       3 
       2     

      
 
       3 
       32 
       3m 

Trigonal 
(rhombo-
hedral) 

 
 
        3 
        3 
        3 

 
 
       2 
       2 
       2 

 
 
      24 
      18 
      18 

 
 
        7 
        6 
        6 

 
 
      13 
        5 
        8        

 
 
      6 
      2 
      4 

         
        6 
      ≅6 
      622 
      6mm 

     ≅6m2 

Hexagonal 

 
        3 
        3 
        3 
        3 
        3 

 
       2 
       2 
       2 
       2 
       2 

 
      12 
      12 
      12 
      12 
      12 

 
        5 
        5 
        5 
        5 
        5  

 
       7 
       6 
       2 
       5 
       3  

 
      4 
      2 
      1 
      3 
      1 

         
       23 
     ≅43m 

Cubic 
 
        3 
        3 

 
       1 
       1 

 
      12 
      12 

 
        3 
        3  

 
        3 
        3 

 
       1 
       1 

∞≅m 
Polarized 
ceramics  

3 2 16 7 5 3 

 
The matrix of elastic stiffness cmn and its converse matrix of elastic 

compliance smn, in principal, would have of 6×6 components but these matrixes are 
symmetric with respect to main diagonal; therefore, in general case, maximal 
number of independent components in them equals 21 (that is really seen in triclinic 
crystals).  

The increase in number of symmetry elements in crystals causes the growth 
of zero components of cmn or smn matrixes and the decrease of independent 
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components number. As a result, for most symmetric cubic crystals in the matrix of 
elastic stiffness only three independent components of 12 nonzero are counted. In 
the case of centrosymmetric crystals (these symmetry classes in Table 6.2 are not 
given), all 18 components of piezoelectric coefficients are zero, that is, they have no 
linear electromechanical effect (piezoelectric effect) but in them there should be the 
quadratic effect – electrostriction. 

Ferroelectric ceramics is considered as main piezoelectric material. Typically, 
the non-polarized (isotropic) ferroelectric ceramics after synthesis has "sphere 
symmetry" (the largest possible symmetry in solids).  

Technologically ceramics can be converted into the noncentrosymmetric 
texture ∞·m that has "cone symmetry", where there is axis of symmetry of infinite 
order (∞) and symmetry plane m passing through this axis. In the process of this 
technology, strong electrical field is applied to the ceramics at elevated temperatures.  

As a result, ferroelectric domains, which initially were oriented in ceramics 
chaotically, become reorient along applied field, forming rather stable unipolar 
texture of domains.  

After switching off polarization field this structure is long-term stored its polar 
properties and has a set of elastic parameters and piezoelectric coefficients, which 
corresponds to tetragonal crystals of class 4m. 

2. Effective permittivity in piezoelectrics. Different mechanisms of electrical 
polarization were considered above in Section 1. However, in the polar-sensitive 
crystals (piezoelectrics and pyroelectrics), to the “basic permittivity”, which is due 
to microscopic processes of polarization (ionic, electron, dipole), the macroscopic 
polarization is added, which are conditioned by the electromechanical εЕМ or 
electrothermal εЕТ reaction of polar sample studied as a whole.  

Next only piezoelectric dielectric contribution ЕМ will be considered 

(electrothermal contribution ЕТ is discussed in Chapter 4).  

Electrical induction is characterized by equation D = 0Е, where ε0 is 
electrical constant in SI and ε is permittivity conditioned by some elementary 
polarization mechanisms.  

In such piezoelectric which can be freely deformed in applied electrical field, 
it is necessary to take into account also the piezoelectric effect: Р = ех, where e is 
piezoelectric coefficient and x is mechanical deformation: 

D = 0Е  + ех.                                                 (6.14) 
In the same way, piezoelectric coefficient e can be found from electrical 

contribution to mechanical stress, using converse piezoelectric effect Х = – еЕ. As 
a result, general stress in piezoelectric is: 
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X cx eE  . 
The condition of free deformation of piezoelectric in electrical field is the absence 
of mechanical stress in it (X = 0); as a result of which next equation implies: 

x eE c . 
By substituting of this expression into equation (6.14), it can be obtained: 

D = 0Е + (e2/c) = (0 + e2/c)E                                  (6.15) 
As can be seen from this expression and from Fig. 6.16, piezoelectric reaction 

increases electrical induction. In the mechanically clamped crystal, when strain is 

impossible (x = 0), electrical field E1 induces D1 = 0Е1x. However, in the 
mechanically free crystal (X = 0) in the same field of E1 the induction is greater: it 

is D2 = 0Е1X. 
Piezoelectric reaction is additional mechanism to the electrical polarization, 

because it imitates corresponding contribution to permittivity. If piezoelectric is 
mechanically clamped, then ε = εх, but if it is free, then ε = εХ. The above equations 
imply the relation betweenεх and εХ:  

Х = х  + e2/0с                                                   (6.16) 

In practice, at low frequency the Х is measured, since the piezoelectric 
reaction of sample under study is easy establishing, and the electromechanical 
deformation contributes to permittivity increase.  

But at sufficiently high frequency (higher than frequencies of all piezoelectric 
resonances), when sample’s own mechanical inertia does not allow its strain in 

external field (x = 0), the permittivity х is measured.  
Experimental comparison of dielectric permittivity of free and clamped 

piezoelectric crystals was shown in Section 2 in Fig. 2.5 on examples of well-known 
ferroelectrics.  

At that, in the Rochelle Salt crystal piezoelectric effect is observed throughout 

studied temperature range, and everywhere in range of research Х > х.  
In the vicinity of Curie ferroelectric points, the effect of mechanical clamping 

is particularly large: Х/х  50.  
In other studied crystal, barium titanate, above Curie point in cubic 

(centrosymmetric) phase Х = х =  since there is no piezoelectric effect. But 
below Curie point in the single-domain (polarized) BaTiO3 crystal near room 
temperature this ratio is approximately two. In the polarized ferroelectric ceramics 

this ratio is Х/х < 2. 
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               (А)                                                            (В) 

Fig. 6.16. Electromechanical contribution to permittivity: electrical induction D depending on 
electrical field E for mechanically free (X = 0) and clamped (x = 0) piezoelectric 

 

3. Electromechanical interaction at converse piezoelectric effect. Relations 
(6.5) and (6.12) were obtained when considering direct piezoelectric effect. In a 
similar way, it is possible to determine the Kcoup from converse piezoelectric effect, 
when the electrical energy is brought to crystal and, in addition, leads to its elastic 
deformation. Since piezoelectric is assumed to be mechanically free, initial 
equations change in comparison with (6.8) and (6.9). In the equation to electrical 
induction D = ε0εЕ, the piezoelectric effect of mechanically free crystal should be 
taken into account: D = ε0εЕ + ex (6.14). Moreover, to the mechanical stress, as 
shown above, the electroelactic contribution to stress Хп = сх – еЕ needs to be added. 
As a result, the piezoelectric reaction appears as additional mechanism of electrical 
polarization, which causes appropriate contribution to permittivity εХ = εх + е2/ε0с 
(6.16). The condition of free deformation of piezoelectric in electrical field is the 
equation X = 0, so it was obtained D = ε0εЕ + (е2/с)Е = (ε0ε + е2/с)Е,  (6.15) 

Expression (6.15) allows determine electromechanical coupling factor for the 
converse piezoelectric effect: 

Wbr = Welec + Welas =  ½ ε0[εх + е2/(ε0с)]E2 = ½ ε0ε
XE2, 

where Welec =  ½ ε0εхE2 и  Welas =  ½ (е2/с)E2. 
As a result: 

       K2
сoup = Welast/(Welas + Welec) = e2/{ε0c[εх + е2/(ε0с)]}.                

Obtained relations make it possible to determine Kсoup from the ratio between 
dielectric constant of free and clamped crystals      

εХ = εх + K2
сoup ε

Х;   εХ – εх/εX = K2
сoup.               (6.17) 

From formulas obtained it is possible to get the ratio of mutual energy of 
electromechanical energy WEM to product of mechanical (elastic) energy of electrical 
energy: 
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W2
ЕМ/(Welast

.WЕМ) = K2
сou/(1 – K2

сou). 
It is seen that in this case the formula differs from the formula obtained during the 
analysis of direct piezoelectric effect. 

The following is considered the variation of elastic medium with density ρ 
under action of stress X:  

ρ(d2x/dt2) = X,                                                 (6. 18) 
similar to oscillator equation, which describes the variations of mass m associated 
with elastic force cx: m(d2x/dt2) = – сх . The role of mass in equation (6.18) is the 
density ρ. Substituting expression Х = сх – еЕ in (6.18), one can find: 

ρ(d2x/dt2) = сх – еЕ, 

and from expression (6.15), taking into account the absence of free charges in the 
elastic medium (divD = 0, D = 0), we have: 

D = ε0εЕ + ex = 0. 
The latter equations mean that spatially variable electric fields excite acoustic 

waves in a piezoelectric and, conversely, elastic deformations of a piezoelectric 
medium are accompanied by waves of electric fields. From the general solution of 
these equations in the approach of plane waves follows the Christoffel equation: 

(Г – ρυ2)x = 0,                           (6.19) 
where Г = c + e/ε0ε is the Christoffel tensor (modified tensor of elastic stiffness). 

Although equation (6.19) is written for mechanical deformations, electrical 
potential propagates in piezoelectric with same velocity as elastic displacement. 
From equation (6.19) it follows that Г = c(1+K2

 coup). Substituting changed speed υ 

+ Δυ and taking into account that in the absence of the piezoelectric effect and Γ = 

c, it is possible to obtain the relation: 
2Δυ/υ0 + (Δυ/υ0)2 = K2

coup. 
Typically, the change in velocity of elastic waves in piezoelectrics is small. 
Therefore, in the above expression one can ignore the term (Δυ/υ0)2 and assume that 
K2

coup ≈ 2Δυ/υ0. 
4. Simplest devices consideration. Electromechanical coupling coefficient in 

piezoelectric devices characterizes the conversion energy of piezoelectric better than 
a set of elastic, dielectric, and piezoelectric constants. For example, the width of 
frequency band of electromechanical filter or converter directly depends on the 
corresponding coupling factor. Moreover, by means of coupling coefficients it is 
possible to compare piezoelectric materials, which have essentially different 
permittivity and modulus of elasticity. At that, it should be borne in mind that 
coupling coefficient is not a tensor, and formulas for tensors transformation in this 
case can not be used. 
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The influence of boundary conditions on the magnitude of coupling factor is 
illustrated by consideration of relatively simple but from the point of view of 
technique the most important case: the characteristics of polarized ferroelectric 

ceramics having symmetry ∞≅m. Depending on shape of ceramic piezoelectric 
element, on direction of its polarization, on location of electrodes, etc. coupling 
coefficient may be longitudinal, transverse, radial, thickness, and so on. 
Piezoelectric ceramics has 11 different coupling coefficients that describe 
piezoelectric effects in case of electrical field applied parallel to polarization axis Z, 
and another coupling factors for electrical field directed perpendicular to axis Z. 
Each of these coefficients corresponds to a certain system of boundary conditions. 

As example, a rectangular plate with electrodes deposited perpendicularly to 
the axis of polarization is considered when mechanical stress is applied along the 
plate, Fig. 6.14A. 

                     
          (A)                                                                           (B) 

Fig. 6.17. Piezoelectric oscillations: A – ceramic plate polarized in thickness, B – ceramic disk 
polarized in thickness (electrodes are shown by shading, deformation is indicated by arrows) [5] 

 
The plate can freely expand in the longitudinal direction, and it is assumed 

that all other mechanical stresses are zero. Electrical field is applied to the electrodes, 
in this case the transverse coefficient of electromechanical coupling equals to:  

                                          К31 = d31(ε33s11)–1/2 .                        (6.20) 
Next, the piezoelectric disk is considered, shown in Fig. 6.17B, with planar system 
of stresses X1 = X2 (and assuming that X3 = 0). In this case, symmetry requires that 
deformation х1 = х2 and deformation x3 = 0. For the planar deformation, radial 
coupling coefficient should be determined (in plane perpendicular to polarization 
axis) in which there is the isotropic mechanical stress: 
         Krad = k31{2/(1 – σ)}1/2                                         (6.21) 
where σ = –s12/s11 is Poisson's coefficient. 

For another stresses system, when Х1 = Х2 = 0 but Х3 ≠ 0, the deformation can 
be realized in the thickness and all deformations in the plane are absent: (х1 = х2 = 

0, but х3 ≠ 0). In this case the thickness coupling coefficient is determined which 
characterizes the energy transformation for the case of one-dimensional 
deformation, and equals to: 

                 Kt = h33(ε33/c11)–1/2 .                         (6.22) 
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Coupling coefficient in the disk thickness Kt corresponds to plate vibration on 
thickness, while the electrodes are deposited onto largest surfaces, and plate is 
polarized between these electrodes. Figure 6.18A can serve as illustration of this 
case, provided that piezoelectric oscillations occur on the higher mode (the main, 
lower mode is planar mode for which coupling coefficient K31 acts). Mode of 
oscillation in thickness, corresponding to Kt, is observed at much higher frequency, 
when lateral surfaces of disk can be considered as fixed. 

                               
                           (A)                                                                                (B) 
Fig. 6.18. Examples of piezoelectric oscillations: A – disk polarized and deforming in thickness,  
B – cylinder polarized in length (electrodes are shown by shading, arrows indicate deformation) 

[5] 

 
Another important in practice coupling coefficient for piezoelectric elements 

can be determined by examining the case of one-dimensional stress oriented parallel 
to Z axis; illustration of this case can be seen in Fig. 6.18B. Characteristic for this 
case longitudinal coupling is: 
                                                  K33 = d33 (ε33/s33)–1/2.                                         (6.23) 

In all above equations, it is assumed that coupling coefficient has the same 
sign as corresponding piezoelectric modulus d, although, generally speaking, 
coupling coefficient has no sign. Since in the dynamic conditions of vibrations, due 
to various types constraints, not all mechanical energy is converted into electrical 
energy (and vice versa), then dynamical coupling coefficients must be smaller than 
corresponding static coefficients. Differences between them depend on values of 
coupling coefficients, but usually dynamic coefficients are less then static by 20–
25%.  

It is clear from the above discussion that there are a large number of coupling 
factors, and some of them outperform others. In technical applications of 
piezoelectrics for a given electrical and mechanical conditions it is always possible 
find a system of mechanical stresses, which corresponds to greatest piezoelectric 
coupling coefficient. 

5. Applications of converse piezoelectric effect in electronics are based on 
electrical energy conversion into mechanical energy, mostly for generating sound 
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and ultrasound in a liquid or air environment [11–14]. Piezoelectrics are also used 
in contact with a solid, in which ultrasonic or hypersonic waves are excited; in 
addition, converse piezoelectric effect is a physical basis of piezoelectric drives and 
motors. The effectiveness of piezoelectric transducer in the mode of radiation is 
characterized by the coefficient of quality dim/snm = Кrad. Comparison of radiating 
power of different piezoelectrics might be taken with unit Кrad = 1 for most famous 
piezoelectric – quartz. Other piezoelectrics surpass quartz in 2–20 times, however, 
newly developed crystals of relaxor ferroelectrics more than 50 times more effective 
than quartz. Nevertheless, most used material is piezoelectric ceramics. As 
additional criteria for comparing piezoelectric materials, radiation parameter 
K2

rad/tanδ can be applied, which characterizes electromechanical efficiency of 
transducer, as well as mechanical quality factor Qm, which determine the 
acoustomechanical efficiency of emitter. 

Energy transformers, depending on frequency range, are subdivided into four 
types: (1) sound converters, i.e., zoomers, vibrators, cellular microphones, high-
frequency speakers, sirens, and so on; (2) devices for ultrasonic technology, which 
are used in high intensity emitters for welding and cutting, washing and cleaning of 
materials, liquid level sensors, dispersion sprays, fog generators, inhalers, air 
humidifiers; (3) ultrasonic distance meters in air environment used as distance 
meters for motor vehicles, sensors of presence and movement in security systems, 
as a level meter, as devices for remote control, in the devices for scaring birds, 
animals and agricultural pests, etc.; (4) high-frequency ultrasound devices applied 
for equipment for testing materials and non-destructive testing, diagnostics in 
medicine and industry, delay lines, etc. 

In liquid medium, the piezoceramics are mainly used as ultrasound emitters 
having high electromechanical coupling coefficient and high mechanical Q-factor. 
Such emitters are applied in ultrasonic hydrolocation (sonars) and for distant 
underwater communication. Ultrasound is widely used also in industry to clean the 
surface. 

In solid environment, the thin films of piezoelectrics-semiconductors films 
(zinc oxide, cadmium sulfide or aluminum nitride) are applied, in most cases for 
elastic waves operating in ultrahigh frequency range (microwave), i.e., in the 
hypersound range. In some cases, very thin plates of lithium niobate, obtained by 
ionic digestion, are utilized in microwave range to generate hypersonic in a media. 
If sound emitter is a thin film deposited on the surface of solid medium, then, in 
addition to piezoelectric ceramics, it is advisable to use vapor-deposited CdSe 
crystalline films and other piezoelectrics, the sputtering technology of which is well 
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worked out in electronics. Piezoelectric emitters of sound and ultrasound are a part 
of piezoelectric converters used for radiation of acoustic oscillations, primarily in 
liquid and solid media. 

Piezoelectric emitters made from single crystals are used in the higher-
frequency range until the strength limit is affected (in frequencies greater than 200 
MHz thickness of transmitter-emitter is several micrometers). In the microwave 
range, piezoelectric emitters are used on basis of piezoelectrics-semiconductors 
(with a wide electronic zone). The application of a thin high-strength piezoelectric, 
working at resonant frequency of longitudinal or transverse oscillations, allows 
reach frequencies up to 75 GHz. Piezoelectric emitters of these types are used mainly 
in the acoustoelectronics – in devices operating on SAW. 

Scanning acoustic microscope with high-resolution is one of the most striking 
achievements of modern piezoelectronics because it becomes possible the non-
destructive control of submicron elements up to nanometer sizes, which allows 
investigations without surface damage of scanned crystals chips which do not 
withstand the effects of electron microscope bundles, as well as X-ray or Auger 
Probe. 

Piezoelectric actuators are solid devices similar to actuators based on 
magnetostriction and actuators based on thermal expansion. The range of controlled 
displacement in piezoelectric actuators is similar, but in comparison with magnetic 
and thermal actuators, in the case of piezoelectrics applying, the precision of 
displacement is much better. That is why piezoelectric actuators are used in tunnel 
and atomic force microscopes, which are well known for their high (atomic) 
resolution. One more advantage of piezoelectric actuators is also their high speed.  

   
          (A)                  (B) 
Fig. 6.19. Comparison of electrically controlled deformation: A – usual piezoelectric ceramics;  

B – electrostrictive relaxor ferroelectric material of PMN–PT type 

 
This unique feature, together with multi-layer actuator technology, offers 

important applications for them. The main drawbacks of piezoelectric materials are 
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high electrical voltage, small deformation and hysteresis, i.e., the ambiguous 
deformation dependence on control field, Fig. 6.19A. Therefore, considerable efforts 
of developers are aimed, firstly, at increasing displacement and secondly in 
development of non-hysteresis materials, Fig. 6.19B. 

Piezoelectric actuators are divided on three main groups: the axial, in which 
piezoelectric modulus d33 is used, the transverse actuators using d31, and the bending 
actuators also using d31. Axial and transverse actuators have common name – 
multilayer packets, because they are typed in package of many piezoelectric 
elements (discs, rods, plates or bars). The deformation in axial actuator is provided 
in longitudinal direction, at that, batch actuators develop a lot of effort. In Fig. 6.20A 
the principle of construction of axial packet actuator is shown.  

Significantly greater deformation can be obtained in the case of piezoelectric 
plate bending; in this case, distinguish: the separate piezoelectric plate 
(monomorph), the piezoelectric plate coupled with passive elastic plate (unimorph), 
two counter-polarized ceramics plates (bimorph) and several polarized piezoelectric 
plates (multimorph), Fig. 6.20B. Bending actuators develop smaller force, but give 
considerable displacement (hundreds of microns). In general, bending actuators 
belong to a group of low-power. There are also actuators with a new type of lamellar 
bimorph, in which the metallic frame forbids lateral deformation and therefore 
greatly enhance longitudinal deformation ("muni-actuator") [3]. 

                   
     (A)        (B) 

 

Fig. 6.20. Piezoelectric actuators A – packet of elements, B – bending devices  
(1 – monomorph, 2 – unimorph, 3 – bimorph, 4 – multimorph) [3] 

 

Piezoelectric micro-positioners provide the possibility of obtaining 
electrically controlled mechanical deformations. Relative deformation in strong 
electrical fields in piezoelectric and ceramics can reach 10–3–10–2; usually 
electromechanical elements connected in a battery (to reduce control voltage) can 
develop considerable effort. Such micro-positioners are used in optical 
communication systems and optical instrumentation, since electrically controlled 



323 
 

mechanical shifts are compared or even exceed optical wavelengths. In particular, 
they are irreplaceable for the development of multi-elemental orbital telescopes with 
an aperture of tens of meters. 

Piezoelectric motors utilize piezoelectric plate mechanical oscillations which 
turn into the circular motion of rotor; that is, no wire winding or magnetic fields in 
such engines. The main material for piezomotors is polarized piezoelectric ceramics. 
The contact point of oscillating ceramic plate with revolving rotor should be made 
of steadfast materials (metals or metal cermets) resistant to wear: the life time of 
piezomotors depends on durability of this mechanical contact. First ultrasonic 
piezoelectric motors were invented in Igor Sikorsky National Technical University 
of Ukraine "KPI" by Dr. V.V. Lavrinenko. Then quite various piezoelectric engines 
were developed: non-reversible and reversible, with passive rotor and active stator, 
with active rotor and passive stator, with electrical excitation of oscillations of one 
and two types, and others. 

In piezoelectric engines quite different oscillations of piezoelectric elements 
can be used: compression-stretching, bending, shear, torsional and radial 
oscillations. The combination of these types of oscillations made it possible to create 
a large number of different designs of piezomotors, many of which are currently 
only undergoing engineering review. It is important to develop more durable 
materials, which will bring the life of the piezoelectric motor to modern level. In 
electronic devices, piezomotors are used in watches and cameras, tape drives and 
other mechanical drives, tape recorders and electrophones; they are also used in 
robotics. Advantages of piezoengines are the economy and simplicity of 
construction, high stability, the ability to instantly switch on and stop, and absence 
of magnetic fields (which is especially important for electromechanical magnetic 
recording devices). 
 

6.5 Electromechanical resonance 
 
Resonance is a sharp increase in the amplitude of forced oscillations, which 

occurs when the frequency of external influence is brought into some values 
(resonance frequencies), which are determined by the properties of a system. The 
increase in the amplitude of oscillations is only a consequence of resonance, but its 
cause is coincidence of the external frequency (exciting system) with the internal 
(own) frequency of oscillatory system. With the help of the resonance phenomenon, 
it is possible to amplify even very weak periodic oscillations. While resonance at a 
certain frequency, oscillatory system is particularly sensitive to the effect of 
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excitatory force. The degree of sensitivity in the theory of oscillations is described 
by the magnitude called Q-factor. 

Resonance oscillations in a solid elastic body are observed when frequency of 
the excitatory force is close to frequency of its own oscillations. Any mechanical 
element is characterized by mass, elasticity and indicator that characterizes 
irreversible energy losses, for example, friction or emission radiation to the 
environment. Each mechanical element (mass, elasticity, friction) gives the 
counteraction (reaction) to the force that affects it, and therefore the oscillatory 
velocity of their movement depends not only on the magnitude of external force, but 
also on the reaction of a mechanical element. For solids, the mechanical resistance 
of any element is defined as the ratio of force to the oscillatory velocity. 

Since the mass, elasticity and frictional reactions of mechanical oscillations 
are of different nature, mechanical resonance has complex nature. In the case of 
external periodic force, mechanical resistance, due to mass, increases with frequency 
and equals the product of mass at circular frequency. Due to elasticity the mechanical 
resistance, on the contrary, is conversely proportional to circular frequency and 
flexibility of an element. 

At low frequencies the reaction of a mass of element is negligible and may 
not be taken into account, so the value of reaction is determined by elasticity of 
element. As frequency increases, the reaction of elasticity decreases but mass 
reaction increases, and finally comes the moment, when at certain frequency 
mechanical actions of mass and elasticity are equal and compensate each other. 
Formally, this compensation is due to a difference in the signs of these resistances. 
Physically, compensation is explained by the fact that at low frequencies external 
force overcomes only elastic forces and bias coincide with the phase with external 
force. When the frequency of external force becomes large, it has to overcome 
mainly the inertia of a mass, adding acceleration. In this case, acceleration phase 
coincides with phase of external force, while phase of displacement becomes 
opposite phase of external force (acceleration is second derivative of displacement 
in time). Consequently, directions of mass and elasticity reactions are opposite. 

Resonance phenomenon in the electrical circuit of piezoelectric element is due 
to resonance of its mechanical oscillations. In the case of piezoelectric resonance, 
the amplitude of oscillations at same value of exciting electrical field sharply 
increases, at that, displacement remains in-phase. As a result, dielectric contribution 
εEM at resonance frequency ωr rises sharply. With the increase in displacement 
frequency of the polar bonds, they become anti-phase relative to exciting field, and 
εEM acquires the negative value (anti-resonance at frequency ωа).  
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The resonance properties of a piezoelectric quasi-one-dimensional rod can be 
described by the resonant circuit with two capacitors and inductance. Piezoelectric 
resonances are repeated if the length l of piezoelectric rod becomes multiplicative, 
i.e., if l = λ,  l = 3λ/2,  l = 2λ, and so on. This is accompanied by multiple resonance 
surges for frequency dependence permittivity (see Fig. 2.3 in Chapter 2). Gradually, 
with increasing frequency, amplitudes of these bursts is becoming smaller and the 
electromechanical dielectric contribution is gradually disappearing. It is obvious that 
frequency of resonances associated with εEM dependent not only on properties of a 
crystal, but also on its geometric dimensions. 

1. Quality factor (or Q-factor) of the resonance is important characteristic of 
oscillatory system, which determines the resonance band and shows how many times 
energy reserves in a system are greater than the loss of energy in one period of 
oscillation. If the losses of mechanical or electrical origin in the resonator would 
absent, then mechanical stresses at the moment of resonance will reach infinitely 
great value, and resonator would be destroyed. However, mechanical and electrical 
losses are always present, and such phenomenon is never seen. 

Current in the electric circuit of the resonator at resonance always has a finite 
value and active character, which is determined by presence of losses. Quality is 
conversely proportional to the rate of attenuation of proper oscillations in the system. 
That is, the higher the Q-factor of oscillatory system the lower energy loss for each 
period, and the more slowly oscillations are dying. The general formula for the Q-
factor of any vibrational system: 
                                  Q = 2πfW/Pd,                                           (6.24) 
where f is frequency of oscillations, W is energy stored in oscillatory system, Pd  is 
dissipation energy. In electric resonance circuit energy dissipates through the final 
resistance of a circuit; in bulk electromagnetic resonators energy is lost in the walls 
of resonator, in its material and in contact elements. In the piezoelectric, the 
oscillation suppression is due to internal friction in a crystal or ceramic. 

As well known, for sequential oscillation circuits in electrical RLC circuit, 
when all three elements are included sequentially: Q = R–1(L/C)1/2, where R, L and 
C are resistance, inductance and capacitance of the resonance circuit, respectively. 
For a parallel circuit, in which inductance, capacitance and resistance are included 
in parallel: Q = R(L/C)1/2. In the case of electrical circuit, it is much easier to measure 
the amplitude (current or voltage) than energy or power. Since power and energy are 
proportional to the square of amplitude of oscillation, the band on amplitude-
frequency characteristic (AFC) will be distanced from a peak at about 3 dB. 
Therefore, another (equivalent) definition of Q factor is used, which relates the width 
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of amplitude resonance curve Δω at the level with resonance frequency ω = 2πf, that 
is Q = ω/Δ ω = ω/2δ , where δ  is decay damping. 

2. Resonance in piezoelectrics. Piezoelectric energy converter usually has 
pronounced resonance properties near internal frequency of oscillations of 
mechanical system. They are determined by the speed of sound in piezoelectric 
material and the type of electromechanical oscillations (longitudinal, transverse, 
radial, bend, etc.). 

Experiments show that generalized conductivity of piezoelectric element in 
the circuit of alternating current, which frequency smoothly varies widely, linearly 
increases with increasing frequency; that is, conductivity has a reactive capacitive 
character. However, this expected logically capacitive type conductivity is violated 
at some frequencies, at which initially a sharp increase in conductivity occurs, 
followed by a sharp drop in it, Fig. 6.21.  At the moment when conductivity becomes 
maximal, its character changes – it becomes active. Such active nature of 
conductivity is also observed at time when it is minimal; in the interval between 
maximum and minimum values conductivity is inductive. Therefore, conduction 
changes are typically resonant in nature. 

 
Fig. 6.21. Frequency dependence of conductivity Y of piezoelectric element: in points R 

(resonance) and A (antiresonance) conductivity is active, between these points its character is 
inductive while at frequencies below point R and above point A conductivity is capacitive 

 

To describe characteristics of electrical long lines and circuits with distributed 
parameters, the equivalent electrical circuits is widespread used, comprised of 
elements with lumped parameters. Common is also to use such equivalent circuits 
for piezoelectric resonators, considering that piezoelectric element is usually the 
mechanical vibrational system with distributed parameters such as mass, elasticity 
and loss control parameter, for example, friction or acoustic radiation. 

In the frequency domain close to resonance, the nature of piezoelectric 
resonator conductivity change is similar to conductivity of electrical sequential 
oscillation circuit, shunt by a capacitor. This allows use as a basis for describing 
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conductivity or resistance in the vicinity of frequencies close to resonance the 
equivalent electrical circuit (substitution scheme) composed of elements with 
lumped parameters (inductance, capacitance, and resistance) whose values are 
constant and independent of amplitude of oscillations and frequencies. Such 
equivalent circuit in the form of a vibration circuit is depicted in Fig. 6.22A. 

  
                                       (А)                                                                 (В) 

 Fig. 6.22. Piezoelectric resonance: A – equivalent electrical circuit; B – frequency 
dependence of reactive resistance of the piezoelectric resonator 

 

At frequency f = fr there is a mechanical resonance, and the current in 
electrical circuit of piezoelectric resonator reaches maximum value. When 
frequency increases up to fа > fr, called the antiresonance frequency, impedance of 
resonator becomes maximal, and current in its circuit is minimal. Piezoelectric 
resonance corresponds to two resonant frequencies fr and fа, at which the resistance 
of resonator is active. The first resonance, observed at lower frequency, is 
characterized by low impedance, and the second – at higher frequency – has high 
resistance.  

In other words, lower frequency resonance of equivalent scheme of Fig. 6.22 
is caused by the voltage resonance (sequential resonance) of circuit, consisting of 
series of inductance L, capacitance C and resistance R. This branch is called dynamic 
or piezoelectric; at that, listed elements do not exist physically and their parameters 
can be determined only in conditions of resonance excitation. The second resonance 
taking place at higher frequency is the resonance of currents or the parallel 
resonance, occurring in parallel circuit, one branch of which contains capacitance 
C0, and the other is consistent connection of the elements L, C and R. This resonance 
is characterized by high resistance.  

Elements of equivalent electrical circuit are called equivalent electrical (or 
dynamical) parameters of the resonator. These are dynamic (equivalent) inductance, 
dynamic (equivalent) capacity, dynamic (equivalent) resistance and parallel capacity 
C0. The reactive dynamic parameters L and C are determined by the elastic, dielectric 
and piezoelectric coefficients, as well as by the density of piezoelectric. The values 
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of these parameters essentially depend on orientation of a cut of piezoelectric 
element, on the type and frequency of excited mechanical vibrations, on the size of 
elements and electrodes. The dynamic resistance of R depends on internal friction 
and sources of other mechanical losses. Losses of electrical origin in piezoelectric 
resonator are usually small and not taken into account. Only for some types of 
crystals and piezoelectric ceramics electrical losses are noticeable, and then they 
should be taken into account.  

Dynamic resistance can be measured directly, for example, with a bridge 
meter of full resistance. Dynamic inductance and capacitance can be measured only 
by indirect methods. The value Δf = fа – fr is called the resonance interval. The 
quality of piezoelectric resonator is determined by peculiarity of its frequency 
characteristic, Fig. 6.17B, and by value of efficiency. Knowledge of frequencies fа 
and fr allows determine a number of important characteristics of resonator, and in 
the first place coefficient of electromechanical coupling: КЕМ ≈ (2Δf/fр)1/2. Resonance 
frequency is calculated from the formula fr = 1/2π(L1C1)1/2 while mechanical Q factor 
is defined as QM = 1/(2πfrC0R1).  

Of the four equivalent parameters, specified in Fig. 6.22, only the parallel 
capacity C0 has concrete physical embodiment: its value is determined by 
intermediate capacitance of piezoelectric as well as by capacitance of housing and 
mounting. It can be directly measured with some approximation by known methods. 
In the case of “effective” piezoelectrics, the capacity C0 varies markedly with 
frequency: at frequencies below resonance it is larger while at frequencies above 
resonance lesser. The measurements of parallel capacitance can not be performed at 
resonant frequency: it should be measured at frequencies far from resonance. For 
“effective” piezoelectrics this capacity must be measured at a frequency higher than 
resonance, that is, under conditions of completely clamped piezoelectric.  

Equivalent scheme given in Fig. 6.22 is considered to be simplified, but it 
satisfactorily describes frequency dependence of full resistance of resonators near 
the resonance, and the hardware designers in most cases satisfy the knowledge of 
values of its equivalent parameters. In some cases, equivalent circuit has to be 
complicated by introducing into it parameters of other elements, for example 
inductance of additional circuits (previous and following), and also the capacitance 
between full device and piezoelectric element. In addition, piezoelectric resonators 
usually have several resonances due to oscillations of various types or overtones of 
any kind of oscillation. In this case, equivalent scheme, which reflects presence of 
several resonances, looks like a parallel connection of a number of dynamic branches 
shunted by a common parallel capacity. 
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Experimentally, parameters of piezoelectric resonator are determined by 
methods of resonances – antiresonances, changes in electrical load, and the method 
of circular diagrams, etc.  

3. Applications of piezoelectric resonance due to very high Q-factor of 
mechanical vibrational systems, is significantly greater than electrical vibrational 
circuits, because sometimes Q is characterized by values from thousands to hundreds 
of thousands [3, 13]. Therefore, amplitudes of mechanical oscillations of 
piezoelectric cell at mechanical resonance are Q times greater than amplitude of its 
oscillations outside of resonance region. Electrical quantities that characterize 
oscillations of piezoelectric element, such as electrical current, are related directly 
to mechanical stresses and deformations. At the moment of mechanical resonance 
current through piezoelectric increases and frequency response of current acquires 
resonant character, exactly corresponding to characteristic of mechanical resonance 
oscillations. Such is, in general, the picture of resonance phenomena observed in 
piezoelectric resonator, which explains the origin of resonance in electrical circuit.  

Piezoelectric resonance is widely used in the radio engineering, electronics, 
electroacoustics, and microelectronics: filters and resonators, generators and 
resonant piezoelectric converters, piezoelectric transformers and even motors. In 
resonators, mainly crystals are used (quartz, lithium niobate, etc.) or piezoelectric 
ceramics with small losses. For example, quartz resonators are used as resonant 
circuits and generators of high-frequency oscillations. The high quality factor (105–
106) of quartz resonator determines small deviation of generator frequency from its 
nominal value: (10–3–10–5) %, when ambient temperature, pressure and humidity 
change. Widely used miniature quartz resonators with oscillation frequencies of 30 
kHz – 8 MHz are used in electronic clocks, in systems of electronic ignition of 
internal combustion engines and others. Quartz and others piezoelectric resonators 
are also used in the acoustoelectronic devices for filtration and signal processing: 
monolithic piezoelectric filters, as well as in filters and resonators on surface 
acoustic waves (SAW). Main advantage of resonators on SAW is possibility of their 
use in frequency stabilization devices and narrowband filtering in the frequency 
range 100–1500 MHz. 

Piezoelectric filters made of piezoelectric ceramics and manufactured for 
frequency range of 1 kHz – 10 MHz usually are multi-layered. At the same time, at 
lower frequency bands up to 3.5 kHz bimorphic elements are used in which 
piezoelectric performs resonant oscillations of a bend-type along its face. In the 
range of 40–200 kHz, piezoelectric resonators are used with longitudinal oscillations 
along the length, while at frequencies 200–800 kHz piezoelectric resonators in form 
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of disks with radial oscillations are realized. At frequencies above 1 MHz mainly 
thickness vibrations of piezoelectric rings are used. Considered filters differ in 
simplicity of construction, have small dimensions (in comparison with LC-filters) 
and stable working characteristics. 

In most cases, piezoelectric elements have only two electrodes, and resonators 
with such elements are electrical double-poles devices. But in some cases, resonators 
use piezoelectric elements with a large number of electrodes, having separate leads, 
for example, with four electrodes. Such resonators with multi-element piezoelectric 
should be regarded as electrical multi-polar devices. Resonators with four-electrode 
piezoelectric element are often used in the generators and filters, since they allow 
replacement of two resonators of one frequency with single four-pole resonator, as 
well as eliminate unwanted ohmic bonds with a phase shift of 180° between two 
pairs of terminals, using also voltage transformations and conversion of resistance. 

Acoustic resonance, electrically excited at the expense of piezoelectric effect, 
is employed in various electronic devices. Piezoelectric resonators have been used 
in radio engineering for more than 90 years. Their main purpose is to stabilize the 
frequency of radio generators. Miniature quartz frequency stabilizers are applied in 
most watches, mobile phones and computers. The quality and stability of 
piezoelectric resonators can be very high. This allows them to be utilized as sensors 
in various devices by which they measure pressure, acceleration, displacement, 
temperature and velocity of gases and liquids, determine their chemical composition, 
etc., since the parameters of environment affect the quality factor and actual 
frequency of resonator. 

Precision resonance sensors also employ resonance. Among them, the 
resonant precision sensors of force, both active and passive, are implemented. As 
known, piezoelectric devices can not measure stationary processes: this means that 
piezoelectric force sensors can convert only changing force to variable electrical 
signal, but they do not react to constant magnitude of external force. The range of 
measurement depends on frequency of mechanical resonance in applied 
piezoelectric crystal, for example, quartz. The principle of such sensors is based on 
the fact that when mechanical loading on quartz crystals, where certain sections used 
as resonators in electronic generators, the shift in their resonant frequency occurs. 
Frequency offset is due to dependence of some parameters of crystal on the 
magnitude of external forces. For example, coefficient of rigidity depends on applied 
load, whereas density and geometric parameters change under these conditions 
insignificantly. There exists special direction for each cut of crystal, along which the 
maximum of sensitivity of piezoelectric resonator is observed.  
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Frequency stabilizers mainly use crystalline quartz. Previously, for 
manufacture of resonators used natural quartz (rock crystal). Now quartz is 
artificially hydrothermal. Different design quartz resonators can overlap the 
frequency range 103 – 109 Hz. They use not only simple oscillations of the type 
"compression-stretching" of quartz plates in length, width or thickness, but also 
bending, twisting or shear oscillations of complicated by the design resonators.  

The widespread use of quartz is due to rare combination of unique properties 
in it, which ensure the achievement of mechanical Q-factor up to Qm ~ 107 and more 
with the presence of a number of crystallographic orientations (sections) that change 
very little resonant frequency in operating temperature intervals. Modern quartz 
resonators provide long-term stability of the frequency up to 10–8 and short-term 
stability ≅ another two to three orders higher. The high level of quartz growing 
technology and production of resonators, including micro-miniaturals (for example, 
for electronic clocks), makes it almost indispensable in frequency stabilization 
devices and precision narrowband filters. To increase thermostability of 
piezoelements, plates of quartz are cut at angle of 5° to X-axis. For special purposes, 
also are applied sections of 18° X and others. The most thermostable is AT-cut of 
quartz when its plates are cut along X-axis at angle of θ  = 35° to Z-axis. Moreover, 
another double-reversed ST-section has become widespread. 

               
 

(A)      (B) 
 

Fig. 6.23. Piezoelectric resonance: A – orientation of thermostable AT-cut in quartz, 
B – simplest model of piezoelectric transformer [5] 

  

Piezoelectric transformers use resonant properties of electromechanical 
devices. These elements in electronic devices play the role of low-power and small-
scale sources of electrical energy. From electromagnetic transformers, they 
distinguish by the scheme of energy conversion: "electrical–acoustical–electrical", 
which causes a significant simplification of the design of piezoelectric transformer, 
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Fig. 6.23B, which does not have any wires or windings required in electromagnetic 
transformers. By peculiarities of application and constructive features, the 
piezoelectric voltage and current transformers can be distinguished. The most 
common characteristic of piezoelectric transformers is magnitude of piezoelectric 
efficiency: K31Qm, where K31 is coefficient of transverse electromechanical coupling 
and Qm is mechanical Q-factor for transverse oscillations of piezoelectric element. 

Piezoelectric plate-type transformer in simplest case has two pairs of 
electrodes – exciter and generator, Fig. 6.23B. Using converse piezoelectric effect, 
the exciter creates mechanical deformation in a plate, which covers the entire volume 
of piezoelectric element in a form of resonant wave (piezoelectric transformers 
operate in acoustic resonance mode). In the generator section of piezoelectric 
transducer, as a result of direct piezoelectric effect, the alternating signal arises, 
which galvanically is divided from input voltage.  

The general characteristics of piezotransformers depend on electric quality 
factor, which determines their efficiency, and also depends on coefficient of 
electromechanical coupling and mechanical quality of particular piezoelectric 
material and on the type of oscillation. As a working material in piezotransformers, 
different types of piezoelectric ceramics are applied, since exactly ceramics allows 
constructively combine both elements of this device – exciter and generator – in one 
plate (disk, rod). This is due to technological possibility of multi-direction task of 
orientation of piezoelectric polarization vector in the process of manufacturing the 
components of corresponding mono-block piezoelectric element.  

The use of modern piezoelectric ceramics materials allows realize the 
magnitude of transformation factor in voltage more than 1000, which ensures that 
output voltage exceeds 10 kV. In addition to voltage transformer mode, these devices 
are successfully used as transformers of electrical current. 

Classification of piezoelectric transformers in working frequency is as follows: 
∙ Low-frequency transformers, calculated on the resonance frequency below 

10 kHz, in particular, for industrial frequencies 1000, 400 and 50 Hz. These very 
low-frequency piezoelectric elements usually operate in oscillations of bending. The 
bimorphic and multilayer devices can be mechanically free or mechanically loaded 
(to reduce operating frequency). 

∙ Middle-frequency piezoelectric transformers have frequency range 10 ... 500 
kHz and are constructed with single-layer or multilayer piezoelectric cells, operating 
on the longitudinal acoustic oscillations of the main mode or in higher modes of 
oscillation. 
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∙ High-frequency piezo-transformers for frequency range more than 500 kHz 
use thin piezoelectric plates with their higher frequency modes of longitudinal 
acoustic vibrations in width, or multilayer structures working on oscillations in the 
thickness of piezoelectric element. 

On the power transferred to load, following designs of piezoelectric 
transformers can be distinguished:  

∙ Low-power (up to 1 W) which usually are made of single-layer piezoelectric 
elements having their own weight less than one gram; 

∙ Average power (1–50 W) representing the single-cassette piezoelectric 
transducer containing up to six piezoelectric elements; 

∙) High power (more than 50 W) which are combined multi- cassette 
transformers. 

Specific transmitted power of piezoelectric transformers is (1–10) W/g or (15–75) 
W/cm3, according to the efficiency value 90–95%. Also known are combined 
piezoelectric transformers that unite both main types of transformers, but they are much 
more complicated and not well-proven in technology. Main application of 
piezotransformers issecondary sources of electrical power of radioelectronic devices. 
Piezoelectric transformers are also used in high voltage generators for gas discharge lamps. 

 

6.6 Thermodynamic description of piezoelectric effect 
 
Direct piezoelectric effect is defined as a response of polar crystal onto 

external mechanical action while converse piezoelectric effect is that the electric 
field produces a proportional to it deformation. At that, the polar-neutral 
(“exclusive”) piezoelectrics which are 10 of 20 classes of polar crystals do not react 
onto hydrostatic pressure, i.e. onto homogeneous (scalar) mechanical action, and 
therefore they cannot serve as vibration sensors in the air or in the liquid medium. 
Remaining 10 of the 20 classes of polar crystals are not only piezoelectrics but the 
pyroelectrics and only they are able to exhibit the volume piezoelectric effect as a 
response to hydrostatic action, so appropriate sensors are made exactly of them. 
However, polar-neutral piezoelectrics are also characterized by a set of important 
for electronic applications properties that manifest themselves in them both under 
directed mechanical action and under the influence of an electrical field. 

As shown in the Introduction in connection with of Fig. I.1, direct and 
converse pyroelectric effects, depending on electrical and mechanical conditions, 
can be described by eight different equations. All of them can be obtained by various 
thermodynamic potentials analysis. As opposed to microscopic theories, the atomic 
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structure of material is not taken into account in thermodynamics, but a material is 
regarded as continuum which has certain properties. In case of piezoelectricity, this 
continuum is anisotropic: its electrical, thermal and elastic properties depend on the 
direction of applied forces and fields. 

Thermodynamic potentials. It is assumed that thermal, elastic and electrical 
properties of piezoelectricity can be described by six parameters: two thermal 
characteristics (T – temperature, S – entropy), two mechanical properties (X – stress, 
x – strain) and two electrical properties (E – electrical field, D – electrical induction).  

If dielectric gets some amount of heat dQ, the change in its internal energy 

dU, according to first principle of thermodynamics, is described by expression:  
                                dU = dQ + dW = dQ + Xdx + EdD,              (6.25) 

where dW is work carried out by electrical (EdD) and mechanical (Xdx) forces.  
As only reversible processes are reviewed here (this includes both electrical 
polarization and mechanical strain), so dQ = TdS in accordance with second 
principle of thermodynamics. As a result, the change in internal energy (6.25) can 
be represented as a function of the six basic parameters of the dielectric: 

dU = TdS + Xdx + EdD,                                            (6.26) 
where selected basic parameters are S, x and D. The remaining parameters (T, X and 
E) are defined as the derivatives of internal energy U on entropy S, strain x and 
electrical induction D. During differentiation, one parameter is assumed as constant 
of other two parameters denoted by the corresponding way:  

T= (∂U/∂S)x,D; 
                                     Xn=(∂U/∂xn)S,D;                         (6.27) 

Ei=(∂U/∂Di)S,x. 
These ratios in a brief form are three equation of state of polar dielectric: 

thermal, elastic and electrical. Earlier in the Section 1.3 the variety of boundary 
conditions were discussed: electrical, mechanical and thermal. Correspondingly, of 
three pairs of related parameters: T ⇔ S, X ⇔ x and D ⇔ E, the three independent 
parameters might be chosen, at that, by the eight ways. The objectives of different 
boundary conditions describing thermal, elastic and electrical properties of polar 
crystals determines the choice of eight different thermodynamic functions 
(potentials), with which one can express the basic equation of state of 
piezoelectricity. Obtained above equation is just one of them:  

dU = TdS + Xdx + EdD;  dН = TdS – хdХ – DdE; 
dН1 = TdS – хdХ + ЕdD;  dН2 = TdS + Хdх – DdE; 
dA = – SdT + Xdx + ЕdD; dG = – SdT – хdХ – DdE; 
dG1= –SdT – хdХ + ЕdD;  dG2= – SdT + Xdx – DdE,           (6.28) 
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where H – enthalpy, H1 – elastic enthalpy, H2 – electric enthalpy, A – Helmholtz free 
energy; G – Gibbs free energy, G1 – elastic Gibbs energy, G2 – electrical Gibbs 
energy. Indexes at the vector and tensor parameters are omitted for simplicity.  

From equation (6.10) three equations of state were obtained (6.27). With an 
increasing number of thermodynamic functions up to eight, the number of equations 
of state also increases. For example, if independent variables would be selected as 
electrical induction D, strain x and temperature T; then thermodynamic potential 
should be nominated Helmholtz free energy, and equation of state of a dielectric 
differs from equations (6.27): 

    – S = (∂A/∂T)x,D;  
      Xm = (∂A/∂xm)T,D;  
      Ei = (∂A/∂Di)T,x . 
Equation of state can be written as linear differentials of independent variables: 
dS= (∂S/∂T)D,x dT + (∂S/∂xm)D,T dxm + (∂S/∂Di)x,T dDi ;    

          dXn=(∂Xn/∂T)D,x dT+(∂Xn/∂xm)D,T dxm+(∂Xn/∂Di)x,T dDi;                   (6.29)  
            dEj= (dEj/∂T)D,x dT+(dEj/∂xm)D,T dxm+(dEj/∂Di)x,T dDi . 

As number of potentials is eight, then full number of such equations is 26. The 
coefficients in these equations are the generalized state of compliance: they define 
various fields (electrical, mechanical and thermal). The most important ones are 
mentioned earlier in connection with description of piezoelectrics: second rank 
tensors (εij, αij), tensors of third rank (din, eim, hjn, gjn, fourth rank tensors (cmn and 
smn). Here the indices are i, j, k = 1, 2, 3, while m, n = 1, 2, ..., 6, and they are used 
for matrix presentation of parameters. 

As shown above, thermodynamic potentials (6.28) with Helmholtz free energy are 
responsible to describe not only piezoelectric effect, but pyroelectric effect, ferroelectric 
phase transitions, and other phenomena in polar crystals. To describe only the piezoelectric 
effects, some changes need to be done considering the primary four potentials as adiabatic 
ones (dS = 0), and following four potentials as isothermal (dT = 0) ones.  

Specifically, with this example – Helmholtz free energy – based on dT = 0, 
the piezoelectric effect is described by:  
                                                dXn = cD

mn dxm – hin dDi ; 

       dEj = – hjm dxm + (βx
ij/ε0) dDi, 

in which coefficients elastic stiffness cD
mn = (∂Xn/∂xm)D = (∂2A/∂xn∂xm)D that are 

determined at constant induction, while the parameter (βх
ij/ε0) = (∂Ei/∂Dj)x = 

(∂2A/∂Di∂Dj)x is converse permittivity of clamped crystal. The parameter hjm is one 
of four piezoelectric coefficients that also refer to one of generalized compliances: 

              hjm = – (∂Хn/∂Dj)x = – (∂Ei/∂xn)D = – (∂2A/∂xn∂Di) . 
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Thus, one of four piezoelectric coefficients (d, e, g, h) is discovered. The same 
pair of equations can be obtained from free energy expression and from other 
thermodynamic potentials, the number of which in the terms of dS = 0 and dT = 0 is 
reduced to five. As a result of the thermodynamic relations, four pairs of basic 
equations of piezoelectric effect follow as: 
       Di = din Xn + ε0εij Еj ;           xm = sE

mn Xn + djm Еj ;  

        Di = ε0ε
x
ij Еj + eimxm ;            Xn = cE

nmxm – ejnЕj ; 
                  Ej =  (βx

ji/ε0) Di – hjmxm ;       Xn = cD
nmxm – hin Di ; 

                  Ej = (βx
ji/ε0) Di – gjnxn ;   xm = sD

mn Xn – gim Di . 
Therefore, all four piezoelectric coefficients are possible to estimate.  
Thus, thermodynamic (phenomenological) theory allows without clarifying 

the molecular mechanisms get all basic equations that describe direct and converse 
piezoelectric effect at the macroscopic level. These equations are used in 
engineering calculations, and parameters of these equations can serve as a basis for 
comparing the properties of various piezoelectric materials.  
 
 
 

6.7 Summary and self-test questions 
 
1. Piezoelectric effect occurs in crystals or polarized ceramics for which the 

electrical voltage appears across the material when pressure is applied. Similar to 
pyroelectric effect, this phenomenon is due to asymmetric structure of material that 
allows ions to move more easily along one axis than along the others. As pressure is 
applied, opposite sides of piezoelectric acquire the opposite charges resulting in a 
voltage appears across the material. 

2. Piezoelectric converts mechanical energy into electrical or, conversely, electrical 
energy into a mechanical one. Mechanoelectric effect was firstly observed, which for this 
reason was called "direct" piezoelectric effect. The piezoelectric effect is the odd (linear) 
effect, in which the mechanically induced polarization is directly proportional to the 
deformation; vice versa, while converse piezoelectric effect, the electrically induced 
deformation is directly proportional to the magnitude of the electrical field. Both 
piezoelectric effects may happen only in noncentrosymmetric crystals and structures. 

3. Electrostriction is observed in all dielectrics and it is an even effect, in which 
deformation of dielectric caused by electrical field is quadratically dependent on the 
magnitude of this field. Thus, sign of electrostrictive deformation does not change 
with the change of sign of a field. Electrostription differs from piezoelectric effect 
by the fact that it does not have converse effect, that is, this effect is exclusively 
electromechanical, but not "mechanoelectric". 
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4. Piezoelectric effect is described by piezoelectric constants – tensors of the third 
rank. Mathematical relations describing piezoelectricity or electrostriction depend on the 
combination of certain boundary conditions, in which piezoelectric is used or investigated. 
The main mechanical conditions are reduced either to the possibility of deformation (if 
crystal is free) or to their impossibility (when crystal is clamped). The boundary electrical 
conditions are that the crystal can be short-circuited or open-circuited. 

5. Piezoelectricity is the linear electromechanical effect. At that, of electrical 
properties of crystals, only the dielectric polarization (characterized by permittivity) 
is relevant to the piezoelectric effect. Mechanical properties of piezoelectrics include 
elasticity, hardness, durability and others; but for piezoelectric effect the most 
important mechanical properties are the elasticity (which depends on binding forces 
of atoms in a crystal) and the velocity of elastic waves in piezoelectric (which, in 
addition to elasticity, depends on specific density).  

6. External mechanical influence on piezoelectric is characterized by the 
tensor of mechanical stress. This symmetric tensor of second rank in its physical 
nature differs from symmetric second-rank tensor of permittivity, whose structure is 
consistent with the internal symmetry of a crystal. So permittivity tensor is the 
material tensor, while tensor of mechanical stresses is the field tensor, characterizing 
structure of forces applied to crystal from outside. From Hooke's law, which 
confirms linear proportionality of deformation and mechanical stress, two tensors 
are very important for piezoelectrics: the tensor of elastic stiffness cmn (also called 
Young modulus) and the tensor of elastic compliance smn. Both of them are 
symmetric material tensors of fourth rank. Others important for applications special 
parameters of piezoelectrics are: volumetric modulus of elasticity K, volumetric 

compressibility <s> and Poisson's coefficient ν, all of them are used to characterize 
the elastic properties of piezoelectric material. 

7. In various cases of technical application off piezoelectrics, depending on 
the symmetry of action of external mechanical forces, five important cases should 
be distinguished: linear-stressed state (uniaxial tension), plane-stressed state (two-
axis stress), volume-stressed state (three-dimensional stress) and stress of pure 

shear. A separate important case is the hydrostatic pressure, in which all 
components of stress are the same X11 = X22 = X33 = –p, where p is specific pressure. 
Depending on symmetry of the mechanical load, as well as symmetry of 
piezoelectric, the deformation in it (which is also symmetric tensor of second rank) 
can be classified as one-dimensional, two-dimensional, and three-dimensional. Two-
dimensional deformation of tensile-compression must be taken into account in 
modern planar microelectronic technology. 
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8. Piezoelectric effect can be induced by the electrical field in any solid 
dielectric as the “linearized electrostriction". In some of paraelectrics and in the 
relaxor ferroelectrics the magnitude of electrically induced piezoelectric effect may 
outweigh piezoelectric effect of best piezoelectric materials. Piezoelectric effect 
manifestations can be controlled by bias electrical field: for example, the frequency 
of piezoelectric resonance becomes tuneable, or parameters of filters based on 
surface acoustic waves might be controlled. Effectiveness of electrical control of 
piezoelectric effect is most significant in dielectrics with large permittivity. 

9. Mechanical property (elasticity) and electrical property (polarization) of 
piezoelectric crystals are interrelated, and, therefore, they can be considered 

together. This relationship is characterized by electromechanical coupling 
coefficient KEM – one of most important parameters of piezoelectric materials and 
devices. In case of direct piezoelectric effect, applied to piezoelectric mechanical 
energy is spent not only on elastic deformation, but also creates electrical 
polarization, which causes electrical energy accumulation. Conversely, supplied to 
piezoelectric electrical energy (in case of converse piezoelectric effect) is spent not 
only for its polarization, but also to its elastic deformation and elastic energy 
accumulation. 

10. The square of electromechanical coupling factor KEM
2 shows what part of 

energy, attached to piezoelectric, is converted into the energy of other kind. 
However, this parameter is not performance factor: firstly, because losses of 
electrical or mechanical power are not considered, and, secondly, actual conversion 
efficiency of piezoelectric depends not only the KEM, but largely is on the shape, 
orientation and other peculiarities of piezoelectric element. 

11. Polar crystals and textures are distinguished by the fact that their 
electrical, elastic and thermal characteristics are interdependent. Moreover, during 
the study (or the use of devices) only electrical effect (for example, polarization) 
reveals that the corresponding electrical parameters depend on boundary mechanical 
and thermal conditions: for example, permittivity of mechanically free crystal (εХ) 
differs from permeability of clamped piezoelectric crystal εх (which can not be 
deformed), and always εХ > εх. By the same way, elastic stiffness of piezoelectric (or 
its elastic compliance) depends on its electrical state (short-circuited or open-
circuited) and therefore сЕ ≠ сD; in some cases they differ several times.  

12. Thermodynamic (phenomenological) theory allows, without specifying 
the molecular mechanisms, obtain all basic equations describing direct and converse 
piezoelectric effect at macroscopic level. These equations are used in engineering 
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calculations, and parameters of these equations can be the basis for comparing the 
properties of different piezoelectric materials. 

13. For application in electronics and instrumentation, many piezoelectrics of 
different structures have been developed: crystals, ceramics, polymer materials, 
films, composites. One of most important piezoelectric crystals is quartz, which 
combines large mechanical Q-factor (Qm ~ 107) with high thermal stability of 
resonant frequency in the operating temperature intervals. In electronics, 
piezoelectric crystals niobium tantalite, lithium tantalite and lansacite, whose unique 
characteristics provide wide implementation of acousto-electronic devices, are 
widely employed. 

14. Piezoelectric ceramics is most important material for modern piezoelectric 
devices. In order to meet the needs of technology, dozens of compositions of 
piezoelectric ceramics are developed with different set of parameters, which 
provide: converters of mechanical vibrations of environment into electrical signals; 
converters of electrical signals into elastic waves or in mechanical displacements; 
devices that use electromechanical resonance. 

15. Polymer piezoelectric films of PVDF-type (and their corresponding 
copolymers) are characterized by simple technology, low acoustic impedance and 
are widely applied in piezoelectric polymer sensors and many other devices. 

16. Electrostriction materials acquire now great importance, because they 
differ from piezoelectrics by the absence of hysteresis in deformation-electrical field 
dependence. They are relaxor ferroelectrics with disordered structure characterized 
by blurred temperature maximum ε(T) in the vicinity of phase transition and record 
high electromechanical coupling coefficient.  

17. Parameters of piezoelectrics can be controlled by bias electrical field: for 
example, piezoelectric filters characteristics can be changed as well as surface 
acoustic wave parameters. Electrical controlling by piezoelectric properties is most 
manifested in dielectrics with high permittivity. 

18. External electrical field, changing the velocity of elastic waves 
propagation, makes it possible to control resonant frequency or phase of bulk 
piezoelectric filters or surface acoustic waves. This effect can be used in frequency 
and phase modulators, parametric amplifiers for implementation in new electronic 
devices. Electro-induced piezoelectric effect can be applied also in parametric 
devices. Since electromechanical coupling factor depends on permittivity (K ~ ε3/2), 
the most promising dielectrics for parametric devices are those which have ε ≈ 103 –
104. 
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19. Piezoelectric sensors are widely employed in electronics, instrumentation, 
in medical technology. In these sensors direct piezoelectric effect is used with most 
convenient parameters piezoelectric modulus g, which characterizes electrical 
voltage occur under applied pressure, and the modulus h showing voltage per unit 
strain. Piezoelectric devices employed in liquid media are called hydrophones, 
piezoelectric devices, used in the air are called microphones. They are capable of 
operating in very wide range of frequencies – from hertz to gigahertz. 

20. Converse piezoelectric effect is applied, for most part, to generate sound 
and ultrasound in the liquid or air environment. As ultrasound emitters, mainly the 
piezoelectric ceramics with high electromechanical coupling coefficient and large 
mechanical Q-factor are employed. Such emitters are used in ultrasonic sonar and in 
a distant underwater connection. 

21. Piezoelectric actuators are based on converse piezoelectric effect and 
widely applied in electronics and modern instrumentation, as well as in robotics and 
engineering. Piezoelectric actuators differ in their precision of movement; that is 
why they applied in tunnel and atomic force microscopes having high (atomic) 
resolution.  

22. Piezoelectric motors have advantages due to absence of induction 
windings and magnetic fields. These motors convert high-frequency electric current 
into mechanical rotation; at that, working element is the piezoelectric ceramics, 
which converts electrical energy into mechanical with high efficiency (90%) 
exceeding this parameter for many types of engines. 

23. Piezoelectric transformers, which allow effectively replace 
electromagnetic transformers, are used in many cases. These devices operate 
predominantly in the resonant mode using as direct so converse piezoelectric effects.  

 
Chapter 6. Self-test questions 
 

1. What and how many parameters characterize piezoelectric effects? 
2. What is the role of the boundary conditions for the piezoelectric effect and its 
application? 
3. What are the methods for independently measuring all piezoelectric modules? 
4. What is the peculiarity of using piezoelectric sensors? 
5. How many and which piezoelectric devices are contained in a smartphone? 
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CHAPTER 7. PYROELECTRICS: PHYSICS AND 
APPLICATIONS 

 
Contents 

7.1 General characteristics of pyroelectrics 
7.2 Pyroelectric effect simulations 
7.3 Thermodynamic description of pyroelectric effect 
7.4 Electrocaloric effect 
7.5 Summary and self-test questions 

 
Pyroelectrics represent one of the important classes of functional dielectrics 

because they efficiently react to the changes in temperature (as well as on pressure 
and other mechanical actions). These are polar dielectrics, which can be defined also 
as the materials which allow directly convert energy, representing mainly the 
thermoelectric and, vice versa, the electrothermal power converter. Transformative 
function of polar crystals is due to their peculiar physical structure and chemical 
composition. Four different mechanisms of pyroelectric effect are discussed. This 
effect and inverse to it electrocaliric effect are reviewed in the aspect of their use in 
electronic devices at various boundary conditions (adiabatic and isothermal 
development, mechanically free or clamped crystals study, short-circuited or open-
circuited circumstances). The nature of thermoelectrical coupling in polar-sensitive 
crystals and its influence on the dielectric permittivity and thermal properties 
crystals are also described by various models and thermodynamic calculations. The 
principles of operation of the main types of pyroelectric sensors are considered: the 
motion detector sensors, infrared thermometers for high precision pyrometery; 
pyroelectric vidicons in both vacuum and microelectronic design, etc. Physical 
mechanisms and applications of electrically induced pyroelectric and electrocaloric 
effects at various conditions are also depicted. 
The possibilities of electrocaloric effect are discussed in connection of its possible 
application in miniature solid-state refrigeration systems.  

Extraordinary properties of the natural mineral tourmaline, which when 
heated attracts small particles, were already known in antiquity (2000 years ago). 
But for the first time this phenomenon was explained as electrical phenomenon in 
18th century by Linnaeus and Aepinus, while the term “pyroelectric” arose 200 
years ago in works of D. Brewster (Greek word “pyro” means “fire”). Pyroelectrics 
are the solid-state direct converters of the thermal energy into the electrical energy). 
First theory of pyroelectricity was developed by W. Thomson and W. Voigt at the 
end of the 19-th century. 
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[Note. In addition to pyroelectricity, the thermoelectricity is widely used as the solid-
state converter of thermal energy into electrical energy. In the thermoelectric 
devices, the  electronic processes in the semiconductors are used, occurring under 
conditions of a temperature gradient (temperature difference). In this case, the 
generation of electricity occurs continuously – in the stationary conditions. In the 
pyroelectric devices, the electrical polarization-depolarization effect are used in the 
non-stationary conditions, when the dynamic and periodic temperature changes are 
obviously required]. 

As among the minerals, so among the artificially synthesized crystals, the 
pyroelectrics are relatively rare crystals. Mineral pyroelectrics consist mainly of 
tourmalines (alumoborosilicates of the type NaMg[Al3B3.Si6(OOH)30] with various 
impurities), and of synthetic pyroelectrics the lithium sulfate (LiSO4×H2O), lithium 
niobate (LiNbO3), potassium tartaric acid (K4C8O12×H2O). Among pyroelectrics are 
the broadband semiconductors of AIIBVI type (CdS, ZnO, etc.), but their pyroelectric 
effect is small. It is interesting to note that the crystalline sugar (C5H10O5) is 
pyroelectric, and for that very reason it is used in the homeopathic medicines. 
Recently, a significant progress has been made in the use of artificial pyroelectric 
materials in the form of thin films, using gallium nitride (GaN) and cesium nitrate 
(CsNO3), as well as some polymers: polyvinyl fluoride and derivatives of cobalt 
phthalocyanine.  

Any ferroelectric is a potential pyroelectric, but in order to use ferroelectrics 
as the pyroelectric element it need to be single domain. Otherwise, the pyroelectric 
effect is mutually compensated due to the multitude of differently oriented 
ferroelectric domains. However, it is possible to prepare singe domain ferroelectrics 
in various ways, including polarization by electrical field at increased temperature; 
moreover current technologies for pyroelectric crystals-ferroelectrics producing 
usually use such methods of growing crystals, which immediately provides their 
monodomain structure. 

Pyroelectrics represent one of important classes of functional dielectrics, 
because they efficiently react to the changes in temperature (as well as on the change 
in pressure and under other mechanical actions). These are polar dielectrics, which 
can be defined also as the materials, which allow directly convert energy, 
representing mainly the hermoelectric and, vice versa, the electrothermal power 
converter. Transformative function is due to a peculiar physical structure and 
chemical composition of polar crystals.  

The pyroelectric effect and inverse to it the electrocaliric effect are reviewed 
below in the aspect of their use in the electronic devices at various boundary 
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conditions (adiabatic and isothermal development, mechanically free or clamped 
crystals study, short-circuited or open-circuited circumstances). The nature of the 
thermoelectrical coupling in the pyroelectrics and its influence on the dielectric 
permittivity and thermal properties of polar crystals are also described by various 
models and thermodynamic calculations. Physical mechanisms and applications of 
electrically induced pyroelectric and electrocaloric effects at various conditions are 
also depicted.  

 
7.1 General characteristics of pyroelectricity 

 
In the polar dielectric, temperature raising or lowering changes the intensity 

of particles thermal motion, and, therefore, changes the orientation of polar-sensitive 
bonds (or polar molecules) as well as the distance between them, leading to 
appearance of thermally induced polarization. As a result of such pyroelectric effect, 
on the surfaces of polar crystal the uncompensated electrical charges appear. 
Covered by electrodes pyroelectric element usually is connected to amplifier and 
through the input impedance of amplifier a pyroelectric current flows. In the case of 
disconnected crystal, the pyroelectric voltage appears on the crystal surface; 
however, over time, if the temperature of a crystal remains invariable, this 
pyroelectric potential decreases gradually to zero. 

Energy description of this process means that thermal energy is converted by 
pyroelectric directly into the electrical energy due to its electrically active intrinsic 
structure therefore, pyroelectric is thermoelectric (or vice versa electrothermal) 
power converter. At that, own peculiar internal electrical structure of crystals-
pyroelectrics is energetically advantageous [5].  

Crystallographic consideration of this phenomenon comes down to a 
particular structure of a crystal, which obligatory must have the presence of polar 
axis possible only in correspondent crystallographic class. Therefore, according to 
Neumann principle, the point symmetry groups of pyroelectric crystals should be 
the subgroups of ∞≅m limit group, which describes symmetry of polar vector. 
Pyroelectric crystals have next symmetry elements allowed for them: single axis of 
symmetry of any order and planes of symmetry passing through this axis and parallel 
to it. Such crystals belong to the ten polar point symmetry groups shown in Fig. 
7.1A. In crystals with centre of symmetry pyroelectricity does not occur, as well as 
there are no pyroelectric crystals among the cubic classes of crystals [3]. 

As can be seen from the left part of Fig. 7.1A, one of five types of axes 
(allowed by spatial symmetry of crystals) in the pyroelectric should be the single 
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polar axis; correspondently, five groups of pyroelectric classes of crystals are 
designated as follows: 1, 2, 3, 4, 6. These numbers indicates the order of polar axis 
and comply with triclinic, monoclinic, trigonal, tetragonal and hexagonal classes of 
symmetry. Listed five various axes of symmetry can lie in planes of symmetry 
(denoted by m), forming five more possible classes of pyroelectrics: m, mm2, 3m, 
4mm and 6m seen in Fig. 7.1A on the right.  

 
 

                      
 

                          (A)                                                                            (B) 
 

Fig. 7.1. Pyroelectric crystals formal description:  A – ten polar symmetry classes, number 
indicates the order of symmetry axis, while m is the plane of symmetry; B – guide surface 
(indicatrix) for pyroelectric coefficient γ(ϕ); black area shows negative part of pyroelectric 

coefficient [1] 

 
Thus, the symmetry of a crystal limits arbitrariness in the orientation of polar 

vector, which must either be directed along the axis of symmetry or lie in the plane 
of symmetry. When changing external conditions, in particular, temperature or 
pressure, only limited measurements of polar response are permissible. If made 
action is non-directional, being described by scalar magnitude (that corresponds to 
uniform heating or hydrostatic pressure), then changes in the polar response must be 
consistent with the symmetry of crystal. In the crystals of eight pyroelectric classes, 
in which shown number indicates polar axis (Fig, 7.1A), the polar response can vary 
only in a magnitude, but not in its direction, which must always coincide with the 
direction of the existing axis of symmetry. However, in the crystals with only plane 
of symmetry (point group m), greater freedom is allowed: polar vector can vary both 
in magnitude and in direction, remaining, nevertheless, invariably in the plane of 
symmetry. Regarding the crystals included into triclinic system (group 1), one can 
say that this symmetry does not impose any restrictions in the orientation of polar 
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vector, i.e., it is not conditioned by any crystallographic chosen direction. As a result, 
at temperature or pressure changes, the polar vector can be described in a space by 
arbitrary curve. 

Pyroelectric effect maximally manifests itself only in one direction of crystal 
structure, namely, along the polar axis, where maximum of pyroelectric coefficient 
is seen: γmax, Fig. 7.1B. In the direction transverse to polar axis γ = 0; note that in 
practice sometimes considered more rational to use the slanting cuts of pyroelectric 
crystals where γ(ϕ) = γmaxcosϕ.  

Among known 32 classes of crystals, 20 classes are piezoelectric ones, and of 
them 10 classes are the pyroelectric (called the "pyroelectric group", Fig. 7.1A. 
Common feature of this group of crystals is the lack of certain elements of symmetry: 
the centre of symmetry, the transverse planes of symmetry and any axes of symmetry 
of infinite number, perpendicular or oblique with respect to current axis.  

It should be noted that, besides the polar crystals, the polarized ferroelectric 

ceramics also have pyroelectric properties (at increased temperature and under 
externally applied electrical field most of ferroelectric domains in ceramics become 
and then stay oriented). Formed pyroelectric texture has the group of polar symmetry 
∞⋅m (∞ is order of symmetry axis). Because of mechanical strength and high 
chemical resistance, the polarized ferroelectric ceramics very often are used in the 
pyrometry, although usually pyroelectric sensitivity of the ceramics is less than in 
the ferroelectric crystals. In addition to polarized ferroelectric ceramics, some 
polymeric films, for example, polyvinylidene fluoride, have significant pyroelectric 
effect. Their advantage is elasticity and their lack is aging (decrease with time 
transformative properties). 

As is well known, only crystals belonging to non-centrosymmetric classes can 
have properties described by the odd-rank tensors. Therefore, the crystals of all 
acentric classes exhibit a piezoelectric effect, the quantitative characteristic of which 
is the third-rank tensor of piezoelectric module. An exception among 
crystallographic classes that do not have a centre of symmetry (the total number of 
which is 21) is the only cubic class with point group 432, which prohibits the 
appearance of piezoelectric activity by others elements of symmetry it has. Like all 
material tensors of odd rank, the tensor of piezoelectric coefficients is impossible in 
the crystals having a centre of symmetry. 

However, among pyroelectric crystals, there are those crystals, in which 
external electrical field can change the direction of polarization onto opposite. These 
are the ferroelectrics, and their repolariztion occurs due to the fact that their polar 
structure is only slightly distorted in comparison with non-polar phase. Therefore, 
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free energy of such a crystal in the polar phase turns out to be comparable with the 
free energy of the non-polar phase, because the energy barrier separating these 
modifications has rather small value. This leads to the fact that the restructuring of 
crystal lattice relatively easily can be done by the external field. 

Pyroelectric effect applications are based mainly on the reason that thermal 
energy, being radiated in the form of infrared waves, is invisible to human eyes. So, 
the pyroelectric sensors can work as a hidden device and they are widely used 
for security and automation applications. The field of pyroelectric effect using in 
electronics includes mainly temperature sensors and far-infrared (IR) detectors used 
in imaging devices. The advantages of pyroelectric sensors as compared to 
semiconductor-based IR devices consist primarily in the possibility of using them 
without special cooling — at normal temperature. In addition, based on the principle 
of heating by any radiation, the pyroelectric sensors are non-selective and so the 
wide-range devices, which can register not only thermal, but also microwave, x-ray 
and optical radiation, including high-power laser illumination. A very important 
feature of pyroelectric devices is much faster response than other temperature 
sensors and high overload resistance [6]. 

The basic device of the pyroelectric sensor is simple, Fig. 7.2A: it is a plate of 
pyroelectric supplied with electrodes and irradiated by the studied heat flow. To 
quickly establish thermal equilibrium, the sensor element is thin enough (usually 
tens of micrometers) while for matrix-based IR image devices this element can have 
an equally small area. In the case when the observed object is stationary, the external 
irradiation of sensor should be intermittent, i.e., modulated with a certain frequency 
(usually several tens of hertz), so, when the irradiation stops for a short time, 
pyroelectric element would have enough time to return to its thermal equilibrium 
(correspondent chopper can be mechanical or piezoelectric). Deposited on element 
electrodes are connected to amplifier: usually it is the field effect transistor with high 
input resistance. 

The time-dependent pyroelectric response to thermal radiation incident on the 
sensor element is shown in Fig. 7.2B. As long as irradiation is not present, the 
pyroelectric is in the thermodynamic equilibrium when the energy of ions attraction 
in polar-sensitive bonds (governed by difference in ions electro-negativity, see 
Chapter 1), is completely balanced by the energy of phonons (thermal chaotic 
motion in a lattice). An increase or decrease in temperature causes a disturbance of 
this equilibrium, as a result of which pyroelectric induces electrical polarization, 
shown in Fig. 7.2A in a form of bound electrical charges on the surface of 
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pyroelectric element, these charges are compensated by the electrical charges on 
electrodes. 

           
 

                                                        (A)                                                               (B) 
 

Fig. 7.2. Principle of pyroelectric sensor operation: A – sensor is irradiated by heat flux IR and 
signal goes to amplifier; B – time-dependence of heat flux IR modulated by square modulator,  

δT is temperature changes of sensor and jp is pyroelectric current 

 
As seen in Fig. 7.2B, sensor’s temperature approximately reproduces intensity 

of incident energy according to law: δT(t) ~ [1– e(–t/τ1)] with a delay time τ1, which 
depends on heat capacity and thermal conductivity of pyroelectric and electrodes. 
With a small delay, the pyroelectric current jp(t) quickly increases to a maximum, 
but then it gradually drops to almost zero with the relaxation time τ2 depending on 
capacity of pyroelement and on input resistance of amplifier. When pyroelectric 
element cools and returns to the thermal equilibrium with medium, new peak of 
pyroelectric current occurs but of opposite polarity; then the pattern repeats followint 
to modulation that has meander character. 

Among the far infrared pyroelectric devices are the motion detector sensors, 
which can detect the movement of human beings, animals and anything, which 
radiates thermal infrared radiation [7]. Other class of devices are the infrared 

thermometers of high precision need for pyrometery: non-contact temperature 
measurements in the areas where physical contact is not possible, such as moving 
objects, extremely heated substances, etc. (sensitivity of pyroelectric thermometers 
reaches 10–6 K). Pyroelectric sensors practically solve the problem of detecting low-
power heat energy fluxes including measurements of the shape and power of short 
(10–5 – 10–9 s) laser radiation pulses and can be applied for lasers power 
measurement that have a repetitively pulsed energy up to 25 kHz.  

However, the pyroelectric vidicons in both vacuum and microelectronic 
design can be considered as main applications of pyroelectrics. Pyroelectric 
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transducers of the infrared image (thermal imagers) are intended for the conversion 
of thermal (or radiation) images into the electrical signals or in the visible images on 
a television screen. Infrared vision ("dark vision”) is of great importance in the 
medicine and various technologies. 

In the vacuum pyrovidicons, the possibility of using pyroelectric effect to 
registrate spatial distribution of the radiation in infrared imaging systems is realized. 
To be detected, the thermal image is projected onto the thin plate of pyroelectric – 
the target. Thermal image creates on this target the electrical relief, which is 
distribution of pyroelectric charges; this relief modulates the current in the electronic 
beam, which scans pyroelectric target. It is important to note that absorbed by target 
radiation flux causes the changes over time thermal relief. As a result of the 
transformation: "infrared radiation – electrical signal" on the screen of video control 
device with a period of the frame formed visible image of the thermal relief). 

[Note. The areas of application of pyroelectric vidicons are, for example, 
aeroregistration of fires, which allow, on the background of dense smoke, to detect 
a source of fire and to target fire extinguishing agents, to determine the boundaries 
of underground fires in coal mines, etc. Remote registration of infrared illumination 
during construction and operation of buildings can reduce the cost of their heating. 
Pyroelectric vidicons are also used to control various technological processes. For 
example, they are important for assessing the status of high-voltage transmission 
lines according to infrared data obtaind from vidicon located on helicopter, as well 
as for checking of isolation of powerful electric machines. They are used also for 
automated technological control of electronic components which are under electric 
voltage. Pyroelectric imagers are widely used in medical practice to provide a 
successful diagnosis of cardiovascular and cancerous diseases] [8].  

Despite low energy efficiency of thermoelectric conversion, the 
pyroelectricity should not be considered a weak effect. For example, the tourmaline 
plate of 1 mm thick being heated to 10 degrees creates potential of 1.2 kV [3] and 
this despite the fact that tourmaline has relatively small pyroelectric coefficient. In 
case of strong pyroelectric – triglycine sulfate (TGS) – its rapid heating may cause 
electrical breakdown due to arisen pyroelectric potential. Perhaps for this reason, the 
possibilities of creating pyroelectric generators in which the pyroelectric can be 
repeatedly heated and cooled to generate useful electrical energy have been 
investigated.  

Possible advantages of such pyroelectric generators for power generation 
(compared to conventional heat engines and electric generators) include: low 
operating temperatures, less bulky equipment and fewer moving parts. Such 
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generators use a principle of multi-stage devices, optimizing conditions of energy 
exchange between successive cascades. To compare competitiveness of 
pyroelectrics with other types of similar devices, it is possible to give data of 
different types of soli-state energy converters: the radioisotope-thermoelectric has 
mass 200 kg/kW and efficiency up to 3%; photovoltaic semiconductor (solar cells) 
have mass 10 kg/kW, and efficiency up to 40%; pyroelectric multi-stage cascade gas 
mass 4 kg/kW and efficiency up to 10%. Nevertheless, pyroelectric devices are far 
from industrial applications.  

It is interesting to note that pyroelectrics were used to create large electric 
fields needed to control deuterium ions in the process of nuclear fusion. With this 
purpose the pyroelectric crystal was applied, which under certain conditions 
develops such pyroelectric voltage which is sufficient for the occurrence of cold-
temperature thermonuclear fusion [9]. 

In this case, a pyroelectric is used to create high-intensity electrical field in 
order to accelerate the deuterium ions to bombard a target that also contains 
deuterium. In this case, two deuterium nuclei can merge into one, forming nucleus 
of helium-3 and high-energy neutron. In one experiment, pyroelectric potassium 
tantalate was rapidly heated on 40 °C and the tungsten needle created a field of 25 
GV/m. The device turned out to be a useful neutron generator, but could not be a 
source of energy since it requires much more energy than it produces. 

 

7.2 Pyroelectric effect modeling 
 
As mentioned earlier, the pyroelectric effect can be naturally observed in the 

polar crystals, (as well as in the polarized ferroelectric ceramics and in the polar 
polymers). Moreover, this effect can also be artificially induced in the non-polar 
dielectrics by electrical bias field, as well as by the partial restriction of certain type 
of deformations in the polar-neutral piezoelectrics (the latter case was already 
considered in detail in Chapter 2). Next the basic models of natural pyroelectricity 
in polar crystals will be first considered and then the electroinduced pyroelectric 
effect. 

In short, the physical mechanism of pyroelectric effect is as follows: under 
constant external conditions (temperature, pressure, etc.), the structure of a polar 
crystal corresponds to its energy minimum. At the same time, polar-sensitive 
interatomic bonds, striving for mutual ordering, are in subtle equilibrium with 
thermal chaotic motion of atoms in the crystal lattice. When this equilibrium 
changes, caused for example by a change in temperature (i.e., a change in thermal 
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energy), the polar crystal immediately reacts with the appearance of an electrical 
polarization — the bound charges on the crystal surface. 

1. Simplified model of usual pyroelectric effect considers the one-dimensional 
structural arrangement of polar-sensitive bonds, shown previously in Chapter 1 by 
utterly simple model in Fig. 1.11A and next presented in more detail in Fig. 1.17. 
Traditionally, the pyroelectric effect is explained by two mechanisms: firstly, by 
change in the orientation of polar-sensitive bonds due to alteration in thermal chaotic 
motion, and, secondly, due to piezoelectric effect caused by thermal deformation of 
polar crystal. Correspondingly, these effects are called as the primary and the 
secondary effects which are described by pyroelectric coefficients γ(1) and γ(2). In 
case of mechanically free crystal, both of these mechanisms contribute to thermally-
induced electrical response: γ = γ(1) + γ(2). Polar-sensitive structure of pyroelectric 
(that looks like hidden internal polarity) is able to provide electrical (vector) 
response to external scalar impacts; in a given case – when temperature changes.  

The primary mechanism of pyroelectricity, i.e., the change in orientation of 
polar-sensitive structural units, manifests itself regardless of mechanical conditions 
in which crystal is located. It should be noted that primary effect is most noticeable 
above Debye temperature (T > θD), when thermal fluctuations in crystal (phonons) 
become sufficiently active.  

The secondary mechanism of pyroelectricity, i.e., the piezo-transformed 
thermal deformation, is possible in the mechanically free crystals only. Usually (but 
not always) this effect prevails at lower temperatures (T < θD). 
 

       
                                                (A)                                                                  (B) 
Fig. 7.3. One-dimensional model of pyroelectricity (A): T1 – polar-sensitive chain with length l 
at very low temperature; T2 – partial ordering of polar-sensitive bonds accompanied by chain 

compression on –Δl2; while T3, T4  – thermally activated disordering with chain elongation  
on +Δl3 and +Δl4; B – secondary pyroelectric coefficient temperature dependence 
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Both mechanisms are schematically illustrated in Fig. 7.3 by temperature 
transformations of one-dimensional model: the chain having length l and made of 
polar pairs is shown. It is assumed that in the initial state of polar crystal (at very 
low temperature T1) quantum oscillations of crystal lattice prevent complete 
ordering of polar-sensitive bonds).  

[Note. This fact is confirmed by the impossibility of achieving perfect 
ordering, for example, in the virtual ferroelectrics KTaO3 and SrTiO3 where polar 
ordering is failed due to quantum oscillations]. 

Next, as can be seen from Fig.7.3, when temperature rises to T2, the partial 

ordering of polar-sensitive structure occurs, at which its length decreases on –Δl2. In 
Chapter 3 various explanations were given for this compression – due to ordering of 
polar bonds or due to establishment of closer covalent connection. Further increase 
of temperature, accompanied by essential increase of phonons concentration, leads 
to model chain thermal expansion (nature of which is described before in Chapter 
3). Then this extension continues at T3 and T4 in Fig. 7.3. 

2. Secondary pyrolectric effect can be explained by the one-dimensional 
model presented above as piezoelectric response of a chain. Indeed, any mechanical 
stretching or compression of model chain leads to additional change in specific 
electrical moment: ΔMi2 ~ Δl/l. Thus, not only from general considerations, but also 
from given simple model it follows that any pyroelectric should have piezoelectric 

properties (but opposite conclusion would be unfair in normal conditions).  
In case of secondary pyrolectric effect, the proportionality of electrical 

moment ΔMi2 to the temperature increment ΔТ is a result of linear dependence of 
thermal deformation on temperature: Δl ~ αΔТ, where α is coefficient of thermal 
expansion, as well as a result of also linear dependence of mechanically induced 
electrical moment ΔMi2 on relative deformation (strain) that means direct 
piezoelectric effect: ΔMi2 ~ eΔl/l, where e is piezoelectric strain constant. From 
these two formulas it is possible to obtain simple linear equation for secondary 
pyroelectric effect: ΔMi = γ(2)ΔТ, where γ(2)

 = eα is secondary pyroelectric coefficient 
produced by piezoelectric conversion of thermal strain. Practically dependence of 
γ(2)(T) follows temperature dependence of thermal expansion coefficient α(T), which 
in polar crystals at low temperatures is negative but than changes by the law γ(2) ~ α 
~ T3.  

Some examples of γ(2)(T) dependences in pyroelectric crystals are shown in 
Fig. 7.4. Usually at low temperatures the pyroelectricity decreases significantly 
down to negative values. At that, the largest secondary pyroelectric coefficient is 
seen in the lithium sulfate crystal, which at normal temperatures has technical 
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applications as thermal sensor (due to its low dielectric permittivity and high 
stability). In the pyroelectrics-semiconductors of AIIBVI group (CdS is their 
representative) as well as in others hexagonal crystals, which γ(2)(T) dependence is 
shown in Fig. 7.4B, the pyroelectric effect is much smaller than in lithium sulfate 
(note that special characteristics γ(2)(T) of beryllium oxide is due to its very large 
Debye temperature).  

    
  A)                                                            (B) 

 

Fig. 7.4. Secondary pyroelectric coefficient temperature dependence [3]: A – lithium sulfate 
crystal, Li2SO4-H2O; B – tourmaline, NaMg[Al3B3≅SiO2(OOH)30] (1),  ZnO (2), CdS (3), BeO (4) 

 
It is noteworthy that in most polar crystals, which were discussed in detail in 

Section 3, thermal expansion coefficient at low temperature becomes negative. 
Accordingly, their pyroelectric coefficient γ(2)(T) changes its sign, as it seen in 
Fig. 7.3; moreover, it should be noted that the change in sign of pyroelectric 
coefficient could hardly be explained, adhering to the model of spontaneous 
polarization. 

Thus, secondary pyroelectric coefficient can be measured as difference 
between the pyroelectric coefficients of mechanically free and clamped crystal. This 
coefficient can be also calculated from equation of piezoelectric response: Mi 

= eim xm, where eim are components of piezoelectric module (third rank tensor) and 
xm is component of strain (second rank tensor). Under thermal influence this effect 
is excited by thermally induced strains in a crystal: xm = αmdT, where αm is 
component of thermal expansion coefficient (which is also second rank tensor). It 
should be noted that, traditionally, components of symmetric second rank tensors 
(such as strain xm, stress Xn and others) are denoted by a single index which, however, 
has six values: m, n = 1, 2 ...., 6, while the components of first-rank tensors (vectors) 
are usually characterized by the index that has 3 values: i = 1, 2, 3. As a result, 
components of secondary pyroelectric coefficient are written as follows: γi

(2) = eimαm  
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3. Primary pyroelectric effect needs to be discussed in more detail. The 
bonding energy of polar bonds determines their resilience to chaotic thermal motion, 
and these bonds react to external action by such a change, which is accompanied by 
the electrical response, i.e., by induced polarization. Weakening or strengthening of 
polar-sensitive structure steadiness depends on the intensity of thermal motion in 
crystal. At that, in first approximation, thermally induced elementary electrical polar 
moment dm can be considered as proportional to intensity of thermal motion: dm ~ 

kBТ. The density of thermally induced electrical moment of 1D polar chain Mi1 can 
be obtained by the summing elementary moments along chain: Mi1 = γ(1)ΔТ, where 
ΔТ is some temperature interval and γ(1)

 is the primary pyroelectric coefficient, 
emergent due to electrical reaction of polar-sensitive crystal.  

The reaction of “more persistent” polar-sensitive bonds to external influence 
(in this case, to temperature change) is much weaker than the reaction of “more 
pliant” polar bonds. Therefore, in “more persistent” pyroelectrics the primary 
coefficient γ(1) is much less than in the “more pliant” pyroelectrics, which, as a rule, 
are ferroelectrics. Indeed, in the ferroelectrics, in the end, thermal chaotic motion 
destroys any correlation of polar-sensitive bond in Curie point. (In this regard, it 
should be noted that in ferroelectrics, because of weakness of their polar bonding, 
the external electrical field is able to reorient the direction of these bonds to opposite 
one, forming dielectric hysteresis loop).  

 

 
 

Fig. 7.5. Pyroelectric coefficient temperature dendence [3]: 1 – Rochele salt 
(KNaC4H4O6≅H2O);  2 – triglycine sulfate  (NU3CH2COOH)3≅H2SO4 

 

Currently, dozens of pyroelectric crystals have been investigated and many 
compositions have been developed. However, the Fig. 7.5 shows only the classic 
examples: pyroelectric coefficients for two well-studied crystals: Rochelle salt (RS) 
and triglycine sulfate (TGS). The study of RS is only of academic interest, especially 
in the sense that two phase transitions are observed in this crystal: ferroelectric phase 
transition at +24 oC and antiferroelectric phase transition at –18 oC. In this regard, 
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pyroelectric coefficient in the RS changes its sign. In the TGS crystal primary 
pyroelectric coefficient reaches record value among crystalline pyroelectrics (γ ~ 
350 μQ/(m2K). In addition, for practical applications, it is very convenient that 
maximum of pyroelectric coefficient γ(1)(T) in TGS crystals is located in the region 
of normal temperatures. 

Summing up this discussion and taking into account both classical 
mechanisms of pyroelectricity, for thermally induced polarization it is possible to 
obtain 

 

                                        ΔMi = (γ(1)
 + γ(2))ΔТ 

 

Electrical moment induced by temperature change in the linear (“persistant”) 
pyroelectrics (such as tourmaline or lithium sulfate crystals) mostly is due to the 
thermal deformation of a crystal. On the contrary, in the non-linear (“pliant”) 
pyroelectrics (which include ferroelectrics), temperature induced electrical moment 
is caused mainly by the thermal disordering of dipole-type oriented polar-sensitive 
structure. At that, large change of polar-sensitivity with temperature in ferroelectrics 
near their Curie point is described by equation ΔMi ~ (θ – T)0.5, where θ is Curie-
Weiss temperature and power “0.5” is Landau critical index. In all above cases, a 
behavior of pyroelectrics corresponds to one-dimensional polarity model. 

4. Electrically induced artificial pyroelectric effect finds application in the 
infrared image matrix sensors which use the paraelectric ceramics. The thing is that 
such matrix consists of thousands of identical miniature pyroelectric elements, each 
of which is connected to its own amplifier (that also have the form of correspondent 
matrix). Ceramics are used because in a crystal it is difficult to ensure the uniformity 
of all the elements due to the inevitable changes in the conditions of crystal growth.  

The designs of IR imagers are known, where the ferroelectric ceramics are 
used below its Curie temperature, in which it is, nevertheless, necessary to maintain 
the same polarization of all elements by electrically bias fild application In this case, 
it is advisable to speak of an electrically supported pyroelectric effect. Some 
companies use for such microelectronic imagers lead titanate based ceramics, for 
example, Pb(Ti.Zr)O3; such instruments provide infrared observations with a 
temperature contrast better than 1 °C.  

For even greater sensitivity, it is possible to choose a material with the highest 
dependence of permittivity on temperature*), such are the ferroelectrics in their 
paraelectric phase, where dependence of ε(T) is described by the Curie-Weiss law, 
Fig. 7.6A. For example, the company Texas Instruments for this purpose applied a 
ceramic solid solution Ba0.67Sr0.33TiO3 (BST) with Curie point near 20 C and 
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permittivity maximum of about 25,000 [6]. However, above Curie point, the polar-
sensitive bonds in paraelectric are disordered, so that the external electrical bias field 
Eb must be applied to induce the pyroelectric effect (in case of BST optimal Eb ~ 4 
kV/cm. 

[Note. Since the pyroelectric coefficient is γ = dP/dT ≈ (ε0dε/dT)E, the external 
electrical field E, in principle, always induces pyroelectricity, but this effect is 
usually imperceptibly small, since typically in crystals ε ~ 10 and it very weakly 
depends on temperature. The exceptions are the ferroelectrics where a huge ε ~ 104 
changes dramatically with temperature according to the Curie-Weiss law, as a result 
of which the induced pyroelectric effect becomes so large that it finds important 
technical applications]. 

Dotted line in Fig. 7.6A shows temperature dependence of polarization 
without external bias field application while solid line characterizes polarization at 
bias field. This field shifts the phase transition towards higher temperatures, and 
such a reduction of P(T) allows record the temperature change on +δT or –δT by the 
measuring of pyroelectric current induced by changing of polarization (+δP or –δP). 
At selected working point (at temperature Tb and the displacement field Eb) the 
induced polarization equals Pb being non-equilibrium without external electrical 
support.  

    
Fig. 7.6. Electrically induced pyroelectric effect in paraelectric phase of ferroelectric: A – 

dielectric permittivity ε and reversible polarization P temperature dependence; B – dielectric 
permittivity ε 

(dotted line – without bias field, solid line – at bias field) 
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The electrical field Eb that holds induced by it polarization at given 
temperature Tb resists to polar bonds natural disordering caused by thermal random 
motion of crystal lattice. The change in this temperature on ±δT due to external 
heating or cooling disrupts this equilibrium, and when a new equilibrium is 
established the polarization changes on ±δP, which leads to registration of new 
temperature by signal current flowing through correspondent transistor. 

It should be noted that the mechanism of electrically induced pyroelectric 
response can be explained differently, Fig.7.6B. Peculiar for ferroelectrics 
temperature maximum of permittivity under the action of electrical displacement 
field expands and shifts towards high temperatures. At selected operating point with 
field Eb and base temperature Tb, permittivity equals εb, so sensor element has 
capacitance Cb ~ εb and contains electrical charge Qb ~ Cb. If sensor’s temperature 
rises by +δT, capacitance of element decreases by δC, at that the excess charge –δQb 
flows to the input circuit of amplifier registering the increase in temperature. 
Similarly, when temperature decreases by –δT, capacitance of pyroelectric element 
increases, and bias electrical field additionally infects it with a charge +δQb, which 
is registered by amplifier in the form of electrical signal of opposite polarity. 

In military technology, microelectronic matrix (non-vacuum) pyroelectric 
vidicons are widely used: matrix devices allow investigate the spatial distribution of 
radiation. Such sensitive receivers of radiation can consist of many pyroelements 
that form the pyroelectric line (with a number of elements of several dozen) or the 
pyroelectric matrix (103 - 105 elements). In such matrices, thousands of miniature 
pyroelectric cells are placed on one silicon plate of the processor. Each elementary 
pyroelement is connected to the input of correspondent integral transistor so that the 
plate of square inch is a solid state IR TV receiver. Such non-cooled receivers have 
a very high sensitivity that grows like a square root of the number of elements, and 
can distinguish between the temperature contrast of 0.1–0.2 degrees. 

5. Thermomechanical induced artificial pyroelectric effect is described in 
detail in Chapter 2. At that in any piezoelectric (including non-pyroelectrics) the 
artificial pyroelectric effect can be obtained which might have interest for practical 
applications. Comparing the magnitude of such mechanically induced pyroelectric 
effect with the ordinary pyroelectric effect can be made by the example of a lithium 
niobate crystal. In the LiNbO3 crystal, in addition to the pyroelectric polar axis, there 
are also three polar-neutral axes, and in crystal slices made perpendicular to any of 
these axes while limiting thermal deformation (for example, by stick of such a slice 
onto silica glass substrate, it is possible to get the artificial pyroelectric effect with 
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pyroelectric coefficient γ*2 = 40 μC≅m−2≅Κ−1, which is only slightly inferior to the 
usual pyroelectric effect of LiNbO3 equal to γ3 = 50 μC≅m−2≅Κ−1 [10, 11]. 

At the same time, thermomechanical induced pyroelectric effect opens up 
completely new possibilities in the use of wide-gap semiconductors-piezoelectrics. 
In them, artificial effect is not small: in gallium arsenide this coefficient is γ*111 = 
1.5 μC⋅m−2⋅К−1 n comparison with well-known pyroelectric tourmaline with γ = 4 
μC⋅m−2⋅К−1. In the crystal of bismuth germanate (Bi12GeO20) this parameter 
equals γ*[111] = 20 μC≅m−2≅Κ−1 that exceeds many times effects in quartz and GaAs. 
It can be supposed that temperature dependence of piezoelectric polar-sensitivity can 
be used in the microelectronics for thermal sensors [12–14]. Thus, the physical 
mechanisms of the pyroelectric effect can be varied. 

 

7.3 Pyroelectric effect thermodynamic description 
 
Pyroelectric effect is defined as the electrical response of polar crystal onto 

uniform alteration of crystal temperature. As was shown in Introduction when Fig. 
I.1 discussion the pyroelectric effect can be described by four different equations 
(depending on thermal and electrical conditions). Since pyroelectric effect can be 
primary and secondary, the mechanical boundary conditions have to be taken into 
account in these equations. Thermodynamic consideration of pyroelectric effect is 
advisable to carry out taking into account those boundary conditions that are used in 
the most common case of pyroelectrics application in a thermal sensor. 

In the mechanically free crystal (when stress Xm = 0) in the electrically free 
conditions (crystal is situated in a closed circuit when Ei = 0), arising pyroelectric 
current is defined by the pyroelectric coefficient γi

X,E, where superscripts indicate 
the permanency of electrical field and mechanical stress during thermodynamic 
processes of pyroelectric response and subscript means that the pyroelectric 
coefficient is a vector. In fact, the electrical field and the mechanical stress are not 
always zero, but it is assumed that they remain unchanged; for example, the 
polycrystalline pyroelectric sensor array usually needs the unaltered electrical 
displacement field to orient ferroelectric domains, at that, this target is experiencing 
constant mechanical stress because it is deposited on a substrate.  

As follows from simple model of pyroelectricity, shown in Fig. 7.2, 
traditionally is accepted the phenomenological division of pyroelectric effect into 
the primary and secondary effects with coefficients γ(1) и γ(2) correspondingly:   

γ i
X,E = γ i

(1) + γ i
(2) =  γ i

x  + dT
imcmn

X,En
X,E,                      (7.1) 

i = 1, 2, 3;      m, n = 1, 2, … 6. 
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The contribution of primary pyroelectric effect can be found during mechanically 
clamped crystal study when strain is absent (xn = 0), i.e., γ(1) = γi

x. The contribution 
of secondary effect can be found experimentally as a difference between pyroelectric 
coefficients of free and clamped crystal: γi

(2) = γi
X,E _ γi

x that can be calculated using 
formula (7.1) with known components of piezoelectric modulus dT

im, elastic stiffness 
cmn

X,E, and thermal expansion coefficient αn
X,E (superscripts correspond different 

boundary conditions). Usually in the linear (“persistant”) pyroelectrics γ = 10–7–10–

5 C.m–7.K–1 while in the non-linear (“pliant”) pyroelectrics-ferroelectrics γ = 10–5–
10–3 C.m–7.K–1.  

It should be recalled that symmetry requirements permit both primary and 
secondary pyroelectric effects only in 10 of 20 piezoelectric classes of crystals. At 
that, in the pyroelectric crystal a "peculiar polar direction" exists, along which 
pyroelectric response shows maxim, Fig. 7.1B. In the remaining 10 piezoelectric but 
not pyroelectric classes of crystals any scalar (homogeneous) influence, including 
temperature, can not result in a vector (electrical) response under homogeneous 
boundary conditions, i.e., if the crystal is mechanically completely free or entirely 
clamped. In order to excite electrical response in the piezoelectric by thermal 
influence, the temperature gradient or the inhomogeneous boundary conditions are 
needed.  

Pyroelectric is a transducer of thermal energy into electrical energy. When 
using the electrocaloric effect, which is inverse effect to pyroelectric effect, the 
electrical energy is converted into a heat. The efficiency of these conversions is 
characterized by the coefficient of electro-thermal bonding KTE = KET. Power 
coefficient of thermoelectric conversion KTE

2 shows what part of thermal energy dWT 
delivered to the reformative element is converted into the electrical energy dWE: 

 

                                 KET
2 = dWE/dWT.            (7.2) 

 

In view of some difficulties associated with determination of KET in the 
dynamic regime of work, the thermoelectric conversion efficiency might be 
estimated using quasi-static thermodynamic relations derived on basis of Gibbs 
thermodynamic potential (G) or on basis of electrical potential of Gibbs (G2), which 
describes equilibrium properties of crystals.  

There are eight thermodynamic potentials, corresponding to eight 
combinations of conjugate thermodynamic variables D and E, X and X, S and T; 
three of which might be selected as the dependent variables, and remaining three as 
the independent variables. For potential G the independent variables of are stress 
(X), electrical field (E) and temperature (T), while the dependent variables are strain 
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(x), electrical displacement (D) and entropy (S). In the case of potential G2 the 
independent variables of are strain (x), electrical field (E) and temperature (T), while 
the dependent variables are stress (X), electrical displacement (D) and entropy (S). 
The increment of thermodynamic potentials is determined by a work done by 
reformative element under certain boundary conditions specific for functional given 
element:  

   dG = – xi dXi – Dn dEn – S dT , 
 dG2 = Хi dхi – DтdEт – S dT, 

where  
             xj = – ∂G/∂Xj ;  Dm = – ∂G/∂Em;  S =  – ∂G/δT, 

 

and, correspondingly 
                  Xj = – ∂G2/δxj ;  Dm = – ∂G2/δEm;   S =  – ∂G2/δT ; 

where:                                         i, j = 1, 2, 3 and n, m = 1, 2,…6.  
The choice of potentials (of possible eight) to estimate the work carried out 

by thermodynamic system is determined by the mechanical, electrical and thermal 
boundary conditions under which the element of a device works. The change of 
independent variables (X, E, T) that corresponds to the equation of state for the 
dependent variables (x, D, S), where the superscripts X, E, T denote the so-called 
boundary conditions which must be invariable, while crystal parameters are 
measured: 
 

                                      dxn = snm
E,T dXm + din

X,T dEi + αn
X,E dT; 

                                dDn = dnj
E,T dXj + εnm

X,T dEm+ γn
X,E dT; (7.3) 

dS = αj
X,EdXj + γn

X,T dEn + CХ,Е dT/T. 
In above expressions (7.3), the following notations are applied: 

snm
E,T = dxn /dXm = – ∂2G/∂Xm∂Xn   

– the elastic stiffness, fourth rank tensor; 
                    dnj

X,T = dnj
T = dxn /dEi = dDj /dXn = – ∂2G/∂Xn∂Ei   

 – the piezoelectric modulus, third rank tensor; 
                                        εij

X,T = ∂Di /∂Ej = – ∂2G/∂Ei∂Ej  

 – the permittivity tensor, second rank tensor; 
αn

X,E = αn
,E = dxn /dT = – ∂2G/dT∂Xn 

– the thermal expansion tensor of free crystal, second rank tensor; 
            γi

X,E = γi
,E = dDi /dT = ∂S /∂Ei = – ∂2G/∂T∂Ei 

– the pyroelectric coefficient, tensor of the first rank;  
CX,E = TdS /δT = – T ∂2G/∂T2 

– the specific volumetric heat capacity, scalar (tensor of zero rank). 
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The transformations of piezoelectric strain tensor are: enj
x,T = enj

E,T = enj
Е. 

Taking into account that shape and volume of pyroelectric element do not 
change (x = 0, i.e., crystal is mechanically clamped), from above equations in case 
of E = 0 it is possible to obtain the contribution to thermally induced polarization Pi 
from the primary pyroelectric effect:  

 dРi = γi
х dT,                               (7.4) 

where γi
х = γi

(1).  
The above equations allow also find piezoelectric contribution to the 

pyroelectric coefficient, as well as to the dielectric permittivity and to the volumetric 
specific heat capacity of a crystal. The measurements of pyroelectric effect are 
usually carried out at the condition E = 0. When using equations (7.4), it is possible 
to obtain the following relationship between pyroelectric coefficient of mechanically 
free (X = 0) crystal and mechanically clamped (х = 0) crystal:  
                                             γi

Х = γi
х  + emi

Tαm
,E,                                               (7.5)  

which means γ = γ(1) + γ(2), because expression emj
Tαm

,E = γ(2) describes the 
contribution of secondary pyroelectric effect.  

At constant temperature, the permittivity of mechanically free (εnm
X,T) crystal 

and clamped (εnm
х,T) crystal are related as follows:  

                                               εij
X,T = εij

х,T + dni
Tenj

T,                            (7.6) 
 

where dni
Tenj

T is the piezoelectric contribution to permittivity.  
For heat capacity of electrically short-circuited (E = 0) and mechanically free 

(X = 0) pyroelectric crystal the following relation holds:  
СЕ,Х = СЕ,х + Тαm

Ecm
E,T. 

Note that the difference between the СЕ,Х and СЕ,х is small, so that in the notation of 
volume specific heat it is possible to keep only one superscript: CE.  

From the above equations it follows that the use of pyroelectric element in the 
absence of mechanical stress (X = 0) and when electrical field is absent (E = 0), the 
accumulation of electrical energy in the pyroelectric element dWE is described by 
the potential G, that in a given boundary conditions corresponds to expression:  
                               dWE = Di dEi = (dРi)2/εoεij

X,T  = (γi
X,E)2(dT)2/εoεij

X,T,           (7.7) 
where dРi = dDi and dWE is obtained quantity of electrical energy in the process of 
pyroelectric effect. 

The thermal energy dWT that is spent on energy storage in crystal by the 
definition equals to dS≅dT; under a given boundary conditions it corresponds to 
expression:  

dS≅dT = (αm
X,EdXm + γi

X,T dEi + CХ,ЕdT/T)≅dT, 
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where the increments dXm and dEi respectively represents the appearance of stress 
and electrical field in crystal. Estimation of the amount of (αm

X,E dXm + γi
X,T dEi) in 

different pyroelectric crystals shows that it does not exceed a fraction of percent of 
value (CХ,ЕdT/T), so  
            dWт = CХ,Е (dT)2/Tр,                           (7.8) 
where Tp = T is the operating temperature of the element and dWт is the obtained 
quantity of thermal energy.  

Thus, when the pyroelectric element is mechanically free (X = 0), the equation 
(7.2) after substitution of equations (7.7) and (7.8) can be written as follows:  

KET
2 = [(γi

X,E)2(dT)2/εoεij
X,T]/[CХ,Е(dT)2/Tр] = (γi

X,E)2Tр/εoεij
X,TCХ,Е. 

Similarly, the factor of electro-thermal conversion for mechanically clamped crystal 
element is:  

KET
2 = [(γi

х,E)2(dT)2/εoεij
х,T]/[Cх,Е(dT)2/Tр] = (γi

х,E)2Tр/εoεij
х,TCх,Е. 

Calculations show that even in best pyroelectrics electro-thermal conversion 
factor is small: in TGS crystal KET

2 = 4%, in SBN (Sr0.5Ba0.5Nb2O6) KET
2 = 1.2% and 

in LiTaO3 KET
2 = 1%. In others pyroelectrics this factor is even smaller: in BaTiO3 

KET
2 = 0.25% and in polymer PVDF KET

2 = 0.2%. Relatively low efficiency of 
thermoelectric conversion is due to a physical nature of this phenomenon in 
dielectric crystals that are "electrically persistant" in relation to the external 
influences. Note in this regard that the efficiency of energy conversion is much 
higher in the case of piezoelectric effect. Corresponding electromechanical coupling 
coefficient KEM much exceeds the pyroelectric coupling coefficient KET. The value 
of KEM sometimes reaches ~ 0.95, and in case of piezoelectric resonance in crystals 
that have high electro-mechanical quality this coefficient increases to almost 1. 

In spite of low efficiency, pyroelectric effect is used primarily for the 
detection and measurement of heat flow, and, under certain conditions, for direct 
transition of thermal energy into electricity. The "direct" conversion of heat into 
electricity is used in thermal imaging and in highly sensitive temperature sensor. The 
advantage of pyroelectric sensors is that they use a thermal signal to convert 
electrical signals to dielectrics in which electrical conductivity is virtually absent 
and the “shot noise” produced by the charge carriers is reduced to zero. As well 
known, the most important characteristic for the sensor is the "signal-to-noise" ratio, 
which in the pyroelectrics exceeds this parameter of semiconductor sensors (the 
latter usually need to be cooled) 

The efficiency of pyroelectric sensors, which convert the infrared radiation 
into the electrical energy, is evaluated by special "quality parameters" commonly 
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called as figures of merit. In addition to the main parameter (pyroelectric coefficient 
γ) the figures of merit using are really necessary.  

For example, the temperature change of pyroelectric element under heating 
conditions the greater, the lower its volumetric specific heat CV, as well as the 
voltage generated by the element becomes greater, the lower is its permittivity ε. 
Depending on where the pyroelectric material is used, the figures of merit are 
different.  

In the case of low impedance amplifier application for the efficiency of sensor 
next figure of merit should be used: current sensitivity SJ = γ/СV. However in the 
case of low impedance amplifier another figure of merit is actual: voltage sensitivity 

SV = γ/(СVε0ε).  
For thermal imaging matrix device the Landau coefficient αL = (T – θ)/ε0C 

(where C – is Curie-Weiss constant) is important which characterises temperature 
dependence of permittivity, so that the figure of merit is γ/(СVαLε0ε).  

At last, for large-distant temperature sensor, in which most important is the 
low noise in pyroelectric, it is recommended to use following figure of merit: 
γ/[СV(ε0εtanδ)1/2], where tanδ is dielectric losses characteristic.  

Table 7.1 presents a number of options for pyroelectrics with these quality 
parameters. 

The first group of pyroelectrics presented in Table 7.1 includes ferroelectrics 
with a non-linear dependence P(E): crystals of triglycinesulfate group, lithium 
niobate and lithium tantalate, potassium nitrate, lead titanate, polarized zirconate-
titanate ceramics.  

In ferroelectrics, mainly the primary pyroelectric effect is used, especially 
large near the Curie point, where the temperature change of polar-sensitive bonds is 
expressed very strongly and pyroelectric coefficient reaches a maximum. 

The linear crystalline pyroelectrics (in which dependence P(E) is linear) can 
be attributed to the second group of pyroelectrics.  

In them, the polar-sensitive bonds have same direction throughout a crystal 
(unlike ferroelectrics, which are usually divided into domains), and this direction 
cannot be changed by external electrical field. Pyroelectric coefficient of linear 
pyroelectrics varies a little with temperature, never falling to zero, as in 
ferroelectrics.  

These pyroelectrics include AІІVVI crystals with wurtzite structure (such as 
CdS) as well as lithium sulfate, lithium tetraborate, and others. In linear pyroelectric 
the contribution of secondary pyroelectric effect is relatively large and can exceed 
the contribution of primary pyroelectric effect.  
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Таble 7.1 

Basic parameters of pyroelectrics used to manufacture sensors:  
γ – pyroelectric coefficient, ε – permittivity, λ – thermal conductivity, СV – volumetric heat capacity, 

Sj – current sensitivity, SV – voltage sensitivity (all data given at room temperature) 
 

Pyroelectric γ, 10−5×   

C/(m2≅К) 
   ε       λ,  

W/μC 

  СV, 106× 
×J/(m3≅К) 

  γ/СV  = Sj,  
10−11 Аm/W 

γ/(СVε) = SV, 
10−12 Аm/W 

       TGS 
ТC = 49°С 

40 35 0,4 2,5 16 4,6 

     DTGS 
ТC = 61°С 

27 18 0,4 2,5 10,8 6,0 

      LaTGS 
ТC = 49,5°С 

70 35 ~0,4 2,6 27,5 7,8 

     DLaTGS 
ТC = 49,2°С 

25 22 ~0,4 2,6 9,8 4,5 

      TGFB 
ТC = 73,8°С 

21 15 ~0,4 1,7 12,5 8,3 

      TGSe 
ТC = 22°С 

30 400 ~0,4 1,8 16,8 0,4 

      LiTaO3 

ТC = 618°С 
22 52 4,2 3,2 6,9 1,3 

      LiNbO3 

ТC = 1210°С 
8 30 ~ 4,0 2,8 2,9 0,9 

Sr1/2Ba1/2Nb2O6 
ТC = 116°С 

60 400 ~2,0 2,34 25,6 0,6 

PLZT (6/80/20) 
ТC = 120°С 

76 1000 1,2 2,6 29 0,3 

PLZT (4/65/35) 
ТК = 225°С 

52 680 1,2 2,6 20 0,3 

PCD 33/14 
ТК = 420°С 

17 250 ~2,0 3,2 5,3 2,0 

       PVDF 
3 11 0,13 2,4 1,3 

1,0 
 

 
 

Polar polymers (such as PVDF films) and polar composite materials can be 
attributed to the third group of pyroelectric materials. They need additional special 
treatment: stretching the film in several times with its subsequent polarization, as a 
result of which the polymer film acquires pyroelectric properties.  

The pyroelectric coefficient of polymeric materials is lower than that of polar 
single crystals and pyroelectric ceramics, but the films have excellent mechanical 
properties, being flexible materials. 

For comparing of physical mechanisms of pyroelectricity in different 
pyroelectric materials, as well as for evaluating the possibilities of their technical 
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application in Fig. 7.7 the temperature dependences of the current and voltage 
efficiency of pyroelements are given.  

 
 

(A)                                                                       (B) 
    Fig. 7.7. Temperature dependence of current (A) and voltage (B) sensitivity in different 

pyroelectrics: 1 – DTGS; 2 – TGS; 3 – BaTiO3; 4 – Li2SO4H2O; 5 – LiTaO3; 6 – LiNbO3; 
7 – Pb5Ge3O11; 8 – PVDF2; 9 – SbNbO4; 10 – Sn2P2S6; 11 – Sr0,75Ba0,25Nb2O6; 12 – CdO; 

13 – ZnO; 14 – PZT-5; 15 – PZT-4; 16 – PZTG-1306. 
 

It is noteworthy that crystals with the maximum of current sensitivity γ/СV = 
Sj do not belong to the thermostable materials. Typically, they are ferroelectrics with 
Curie point θ of about 300 K. The pyroelectric coefficient is maximal near theθ, 
because in this temperature range the ability to temperature polarization is most seen. 
The change in specific heat of material has little effect on temperature change of 
quality parameter γ/СV. To the pyrodetectors, crystals with a maximum of this 
parameter the triglycinsulfate (TGS), deuterated triglycerol sulfate (DTGS), 
strontium-barium niobate (SBN) belong. Therefore, in this case the sensitive 
receivers need external some thermal stabilization. In ferroelectric crystals of barium 
titanate (BaTiO3) and lead germanate (Pb5Ge3O11) with a rather low Curie point (400 
and 450 K. respectively) the thermostability of γ/СV characteristic is not very good. 
On the contrary, the thermostatically stable crystals are lithium tantalate (LiTаО3) 
and lithium niobate (LiNbО3), as well as lead stbioniobate crystals (SbNbО4), but 
the latter are not sufficiently developed technologically. 

The current sensitivity of the pyroelectric elements, made of tantalate and 
lithium niobate, is in an order of magnitude inferior to the crystals of SBN and TGS. 
For comparison, in Fig. 7.7 the γ/СV characteristics non ferroelectric (but 
pyroelectric) crystals are shown: cadmium sulfide (CdS) and zincite (ZnS). These 
pyroelectrics are very thermostable but have low sensitivity; moreover, with 
increasing temperature their electrical conductivity increases. However, these 
pyroelectrics also deserve attention, because they can be relatively easily obtained 
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in the form of thin layers by modern microelectronic technology. Micron thickness 
of CdS and ZnS films can be relatively easy integrated into a monolithic structure 
with silicon. 

Another dependences that are shown in Fig. 7.7B are the temperature variation 
of quality parameter of volt-watt sensitivity γ/(СVε) = SV. In this case, the temperature 
peak of parameter γ in the vicinity of Curie point ferroelectric is compensated by the 
temperature dependence of its dielectric constant ε. With this parameter, crystals of 
TGS type have a clear advantage over other pyroelectrics. However, these crystals 
are mechanically fragile, water soluble and, if possible, they are desirable to be 
replaced by the chemically and mechanically durable pyroelectrics such as single 
crystals LiTaO3, SbNbO4 and tin thiogipophosfate (Sn2P2S6). 

Since most pyroelectrics belong to ferroelectrics, it is advisable to apply the 
thermodynamic Landau theory developed to describe the properties of the 
ferroelectrics to analyze, in part, the temperature dependence of figures of the merit. 
Since most of the ferroelectrics, used in pyroelectric sensors, belong to crystals with 
a second-order phase transition, then the Landau's proposed expansion of free energy 
F in a series on the fluctuations in polarization has the following form: 

                  F (P,T) = ½ LP2 + ¼ LP4,            (7.9) 
where temperature dependent parameter Landau αL = α0(Т – θ) = (Т – θ)/ε0C (θ  and 
C are temperature and Curie-Weiss constant respectively; βL is temperature 
dependent parameter Landau. Considering that electrical field can be defined as 
derivative ∂F/∂Р, expression (7.9) can be rewritten as Е = αLP + βLP3. For 
electrically free crystal (E = 0) it is possible to obtain: 

[Т – )C]Р + LР3 = 0.                                   (7.10) 
Inverse dielectric susceptibility is χ–1 = dE/dP = d2F/dP2 = αL + 3βLР2 but it is 

possible to consider that χ ≈ ε, since ε = 1 + χ and permittivity of ferroelectrics is 
very large: ε >>1. In the polar phase (when Т < θ) the condition of minimum free 
energy follows: Р = (Т – θ)0.5/ε0С. Since dielectric permittivity is defined as 

 (РЕ) = L  LР2, 
then temperature dependence of dielectric constant below temperature θ gets a look 
as ε = C/[2(Т – θ)]. 

According to Debye theory, heat capacity temperature increasing can be given 
as: ΔСV = (∂F/∂Т). Since from the Landau theory follows that ≅ Р 2 = −αL/βL the 
expression (8.5) will look like 

F(P,T) = ½ LP2 + ¼ LP4 = ½ L ( LL) + ¼ L ( LL)2 =  ¼ L
2L.

 As a result of the differentiation of this equation by temperature, we have: 

СV = (FТ) = ½(  Т)LС2, 
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СV = СV0 + СV = СV0 + ½(  Т)LС2. 
The substitution of the indicated temperature dependences СV, ε and γ = ∂Р/∂Т 

in the formula for the basic parameters of the quality of pyroelectrics (see Table 7.1) 
allows give their temperature dependence in the form: 

 = РТ = ½(LС12(  Т)12 ; 

СV = ½(LС12(  Т) 12 СV0 + ½(  Т)LС2; 

СV0 = L
12(С32(  Т) 12 СV0 + ½(  Т)LС2. 

It is seen that to maximize the efficiency of the transformation of the heat signal 
into an electrical signal the pyroelectric receiver should have not only high 
pyroelectric coefficient, but also low heat capacity, low dielectric constant (which 
determines the capacity of the pyroelectric cell and the pyroelectric signal generated 
on it). Some improvements of the characteristics of the pyroelectric element can be 
obtained using composite pyroelectric ceramics and polymers. In addition, it should 
be noted that besides primary pyroelectric effect (γ(1)), in mechanically free crystal 
there is also the secondary pyroelectric effect (γ(2)) due to piezoelectric contribution 
into pyrocoefficient/ The contribution to pyroelectricity from secondary pyroelectric 
effect usually is less than the contribution from the primary pyroelectric effect.  

Thus, thermodynamic and others calculations and estimates provide an 
opportunity to explain the features of pyroelectrics, and also allow engineers to 
choose pyroelectric materials for certain devices. 

 

7.4 Electrocaloric effect 
 

According to Curie principle, any linear physical effect in crystals must have 
the opposite effect. For example, opposite to the direct piezoelectric effect is the 
inverse piezoelectric effect. Similarly, the inverse to pyroelectric effect is the 
electrocaloric effect. In this way, pyroelectric not only converts thermal energy into 
electrical energy, but vice versa.  

In short, the physical mechanism of electrocaloric effect is as follows: 
constant electrical field applied from the outside to a polar crystal violates its 

equilibrium state under given conditions, which is established thermodynamically 
at a given temperature and pressure and corresponds to the energy minimum. In this 
case, the mutual ordering of polar-sensitive interatomic bonds, existing in the 
equilibrium structure of a pyroelectric, changes. If the applied field is directed 
accordingly to internal orientation of polar bonds, then it increases total energy of a 
crystal and it heats up. If this field is directed oppositely, then crystal energy 
decreases which is expressed in its cooling. 
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Understanding the physical mechanism and taking into account the influence 
of this effect is important for describing and predicting some properties of polar 
crystals, especially in case of phase transitions. Controlled by voltage, the 
electrocaloric cooling (or heating) depends on the polarity of applied electrical field 
and crystal polarity. At that, the alternating voltage can generate in crystal the 
temperature wave. Electrocaloric effect can be used for temperature control by 
electrical voltage, basically to achieve better cooling. 

The electrocaloric effect consists in the changing of temperature ΔT of 
pyroelectric crystal when the electric field ΔЕ is applied to it. In accordance with 
this, the equation for electrocaloric effect is 

        ΔТ  = ξ ΔE, or in the differential form ξ = dТ/dЕ, 
where ξ is coefficient of electrocaloric effect. Electrocaloric (as well as pyroelectric) 
properties have only the crystals of polar classes: 1, 2, 3, 4, 6, m, 2m, 3m, 4m, 6m. 

It is possible to find a relationship between electrocaloric coefficient (ξ) and 
pyroelectric coefficient (γ). The possibility to induce electrical polarization P in the 
polar0 sensitive crystal reflects the change in the heat content in a crystal that is 
described by the entropy S. At that, the internal energy U of a crystal remains 
unchanged that makes it is possible to write down next relations: 

dU = 0 = EdP + TdS, 
from which it follows   

d
d
P

T E
S

    
  , and   

d
d

T P P T

E S T S

                  . 

 Taking into account the fact that дТ/дЕ = ξ and дР/дТ = γ, from 
thermodynamic relations can be obtained: dS = dQ/T, where dQ is heat increment 
equal ρCJ≅dT (ρ is crystal density, С is heat capacity of crystal and J is the 
mechanical equivalent heat). Next it is possible to get 

ξ = – γ Т/(ρС J). 
It's clear that electrocaloric and pyroelectric coefficients are proportional to 

each other but have opposite signs. Therefore, crystals with big pyroelectric effect 
exhibit also big electrocaloric effect. The crystal is a single system: if it is heated (or 
cooled), then the change in its internal polarity occurs due to the electrocaloric effect 
that leads to cooling (or heating) of crystal; as a result of which it will tend to 
maintain its temperature (Le Chatelier's principle). Therefore, when electrical field 
is applied to a crystal, the electrocaloric effect can lead to both heating and cooling 
of a pyroelectric, depending on how the ordered polar bonds of a crystal are directed 
with respect to the applied field. If this field coincides with the orientation of polar-
sensitive bonds, the temperature of crystal will increase, but if electrical field is 
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directed oppositely to their direction, crystal cools. It is natural that just 
electrocaloric cooling may have interest for technical applications; therefore it needs 
to evaluate exactly this possibility. 

In the linear (“persistent”) pyroelectrics, in accordance with a smallness of the 
pyroelectric effect, the electrocaloric effect is also small: calculations show that 
pyroelectric even in a very strong electrical field (already close to electrical 
breakdown field) can change its temperature only on tenths of degree of Kelvin that 
obviously not have any technical interest. However, in the nonlinear ferroelectrics 
(and antiferroelectrics), in which the maximum value of permittivity reaches many 
thousands, the electrocaloric effect is large enough to discuss seriously its possible 
use in technical cooling devices (large electrocaloric effect is described, for 
example, in [15]). Therefore, it needs to dwell in more detail the electrocaloric effect 
exactly in the ferroelectric materials. 

As known, in the vicinity of phase transitions in ferroelectrics the latent heat 
of a transition is released or absorbed: it can be considered that this heat is required 
to compensate the electrocaloric effect. From this point of view, phase transition 
looks like this: heated from outside crystal loses the ordering of its polar bonds and, 
therefore, it is cooled due to electrocaloric effect, as a result of which heat is 

consumed without heating the crystal. When the crystal is cooled through a phase 
transition, the reverse occurs. Since the temperature of phase transition can be 
shifted, when external electric field is applied, the process of heat release and heat 
absorption can be controlled electrically. 

As noted, in the nonlinear (“pliant”) pyroelectrics-ferroelectrics, the 
maximum of electrocaloric effect is observed in the vicinity of phase transition: it is 
caused by the appearance (or disappearance) of polar-sensitive bonds ordering. 
Without application of external electric field, during external cooling from 
paraelectric phase into ferroelectric phase, the crystal heats up by approximately 
parts of degree, but it also cools by same amount during the phase transition from 
ordered (ferroelectric) phase into the disordered paraelectric phase. At that, the 
change in temperature makes it possible directly (using the knowledge of crystal 
specific heat) to estimate the latent heat of phase transformation. 

When electrical field is applied near ferroelectric phase transition, such 
heating-cooling effect becomes significant: using available fields, due to the 
electrocaloric effect in ferroelectric it is possible to change temperature by 1–2 °C. 
Such a change is usually called as the shift of Curie point under applied electrical 
field: when phase transition temperature shifts to higher temperatures. With regard 



369 
 

to technical applications, using cyclical operations in cooling device, this shift in 
temperature is already of technical interest. 

Low temperatures are needed both for low-temperature electronics and for 
home appliances. It is important to receive solid-state coolers that prevent the use of 
both environmentally harmful freon and machine equipment of conventional 
refrigeration units (with compressors). Interest in electrocaloric cooling; changing 
in the temperature of dielectric in adiabatic conditions in the case of application or 
removal of an electric field has been noted for a long time, but above all, in relation 
to the reception of more low temperatures. 

The dependence of the change in temperature dT for one cycle of application 
of direct electrical field can be described as follows: 

dТ = – (Т/C)(dР/dТ) dЕ, 
where Р is induced polarization, and C is heat capacity of used dielectric. Early 
experiments showed that in most of pyroelectrics and ferroelectrics when applying 
to electrical field up to 25 kV/cm the electrocaloric lowering of temperature does 
not exceed 0.5 K, and the only in a narrow range of temperatures near their Curie 
point. However, calculations show that the value of dT is less than 1 K is not 
sufficient for commercial applications of pyroelectric materials in temperature range 
290-310 K. 

The literature provides guidance on obtaining low temperatures in an 
operationally important temperature range from liquid nitrogen to freon 
temperatures using ferroelectric materials. Rather big values of the electrocaloric 
effect (2.6°C) near the phase transition of antiferroelectric ceramics of the 
Pb(Zr,Sn,Ti)O3 system, as well as in the ceramics Pb(Sc,Nb)O3.  

For example, large electrocalyrical effect has recently been obtained with 
cycle temperature of about 4oC. This field-induced phase transitions from the 
antiferroelectric into the ferroelectric phase with enlarged electrocaloric effect was 
obtained recently in (Pb,La)(Zr,Sn,Ti)O3 [15].  

The technical interest in such effects is due to the fact that solid-state 
refrigeration systems based on the elastocaloric, magnetocaloric and electrocaloric 
materials offer potential advantages over conventional vapor-compression cooling 
technologies.  

At that, the electrocaloric effect (electrical field inducing adiabatic 
temperature change in dielectric material) has some advantages, such as high cooling 
efficiency and easy miniaturization that need for portable cooling devices. 
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                         (A)                                                                             (B) 

 

Fig. 7.8. Explanation of field-induced electrocaloric effect: A – temperature dependence of cubic 
root on unit cell volume in ferroelectrics BaTiO3 (1) and PbTiO3 (2), and in antiferroelectrics 

PbZrO3 (3) and NaNbO3 (4); B – double hysteresis loop of antiferroelectric 
 
 

Consider physical basis of this effect. In the vicinity of phase transition, all 
thermodynamic functions of a crystal change, but differently for ferroelectrics and 
antiferroelectrics.  

The convincing example is the change in volume: Fig. 7.8A shows 
temperature dependence of the unit cell volume for two ferroelectrics and two 
antiferroelectrics. 

It is seen that the volume of ferroelectric polar phase increases as compared 
with the non-polar phase, while volume of anti-polar phase decreases. Obviously, 
the greatest change in thermodynamic functions can be expected during the 
transition from antipolar phase into polar phase and vice versa, which can be realized 
during phase transitions antiferroelectric ↔ferroelectric induced by electrical field 
application. 

Figure 7.8B demonstrates correspondent electrical characteristics in a form of 
double dielectric hysteresis loop: in the field interval –E ≅ +E, the material is the 
antiferroelectric but it transforms into the ferroelectric polar phases both at positive 
and negative voltages.  

Thermodynamically, this corresponds to large electrocaric effect), which can 
already be considered as the alternative to other cooling methods (such as large 
magnetocaloric effect).  

[Note. Figure 7.8A shows different changing in volume δV near phase the 

transitions which are close to first type. The relationship between the change in 
volume δV and temperature change δT can be qualitatively traced from 
thermodynamic equation of state: pV = RT. Since the pressure p is constant and the 
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R is universal constant, δV/δT = const. It means that increments of δV should result 

in corresponding change in δT]. 
Another interesting physical aspect of the electrocalorytic effect is 

temperature hysteresis in the ferroelectrics, experiencing a phase transition close to 
first type phase transition [3]. This temperature hysteresis expresses the fact that 
during heating and cooling the ordering of polar-sensitive bonds occurs at different 
temperatures.  

It can be explained taking into account the electrocaloric effect, which is 
rather big in such crystals. Indeed, when crystal is heated, the transition from ordered 
(ferroelectric) phase occurs at temperature slightly higher than “true” transition 
temperature, because due to electrocaloric effect crystal cools a little and uses its 
ability to remain ferroelectric at temperatures higher than “true” temperature of 
phase transition.  

On the contrary, when cooling from paraelectric phase, ferroelectric crystal 
tends to remain in its paraelectric phase: whenever the ordering of polar-sensitive 
occurs in it due to electrocaloric effect crystal heats up that contributes to the 
preservation in it the paraelectric phase. 

 

 
 

 

Fig. 7.9. Relationship of main parameters describing pyroelectric and electrocaloric effects 

 
In conclusion of discussion of this topic, is appropriate to recall that in the 

polar crystals electrocaloric effect influences the value of permittivity. When thermal 
equilibrium is entirely established at the time of electrical field application (at very 
low frequency), pyroelectric crystal absorbs applied electrical energy and converts 
it into thermal energy.  

This is the isothermal way of polarization of polar crystal, which is 
characterised by isothermal permittivity εT which is detectable at rather low 
frequency. On the contrary, in case of rather fast changing of applied electrical field, 
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the energy process has adiabatic character (when thermal equilibrium has no time to 
be set).  

While measurements, it looks like a decrease of the capacitance of 
pyroelectric element, i.e., the decrease of its permittivity. Therefore, adiabatic 
permittivity εS can be determined at increased frequency, at that the difference ΔεEC 
= (εT – εS) is the electrocaloric part of low frequency permittivity; it might be 
essential only in pyroelectrics, depending on their specific heat and pyroelectric 
coefficient: ΔεEC = (γ2Т)/(ε0C).  

 

7.5 Summery and self-test questions 
 
1. Pyroelectricity is the property of a polar crystal to produce electrical energy 

when it is subjected to the change of thermal energy. It is possible also to define 
pyroelectric effect as the ability of crystals to generate electricity, when they are 
dynamically heated or cooled; at that pyroelectric becomes polarized positively or 
negatively in proportional to change in temperature.  

2. Pyroelectricity looks like thermoelectric power conversion; at that, this 
effect is a linear one, so according to Curie principle, a reversed effect must exist, 
namely, the electrocaloric effect, which the electrothermal energy conversion 
characterises. 

3. Physical mechanism of pyroelectric effect is as follows: under constant 
external conditions (temperature, pressure, etc.), the structure of polar crystal 
corresponds to its energy minimum. At the same time, polar-sensitive interatomic 
bonds, striving for their mutual ordering, are in the subtle equilibrium with thermal 
chaotic motion of atoms in crystal lattice. When this equilibrium changes, caused 
for example by change in temperature (i.e., change in thermal energy), the polar 
crystal immediately reacts by appearance of electrical polarization — bound charges 
on the crystal surface. 

4. Physical mechanism of electrocaloric effect is as follows: electrical field 
applied from the outside to a polar crystal violates its equilibrium state established 

thermodynamically under certain conditions at given temperature and pressure, 
which corresponds to the energy minimum. In this case, mutual ordering of polar-
sensitive interatomic bonds, existing in the equilibrium structure, changes. If applied 
electrical field is directed accordingly to internal orientation of polar bonds, then it 
increases total energy of a crystal and it heats up. If this field is directed oppositely, 
then crystal energy decreases which is expressed in its cooling. 
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5. The nature of thermoelectrical coupling in the polar-sensitive crystals and 
their thermal properties can be described by various models: the primary effect, the 
secondary effect, as well as electrically and mechanically induced artificial 
pyroelectric effects. Hidden (or latent) intrinsic polarity in pyroelectric is only their 
ability to provide electrical (vector) response to any non-electrical (scalar) dynamic 
influence (such as uniform change of temperature). 

6. Primary pyroelectric effect reflects the strength of bonding energy of polar 
bonds and their resilience to the chaotic thermal motion: these bonds react to external 
action by such a change, which is accompanied by electrical response, i.e., by the 
induced polarization. Secodary pyroelectric effect is the piezoelectrically 
transformed thermal deformation. 

7. Electrically induced artificial pyroelectric effect exists in all solid 
dielectrics, but has practical meaning only in the dielectrics with very high 
permittivity (103–104). Electrical field keeps induced polar state of dielectric in the 
opposition to thermal motion in crystal; any violation of this equilibrium with 
temperature changes leads to the electrical response: the artificial pyroelectricity. 

8. Thermomechanically induced pyroelectric effect manifests itself in any 
piezoelectric material and arises along the polar-neutral axes (in the pyroelectrics – 
along special polar axis, being in this case secondary pyroelectric effect). Partial 
limitation of thermal deformation turns the polar-neutral axis into a polar one. This 
effect can be of practical importance in wide-band semiconductors-piezoelectrics of 
AIIIBV type, allowing in monolithic (one-crystal) devices combining pyroelectric 
element with amplifier. 

9. Very small changes in temperature can produce the perceptible pyroelectric 
potential: infrared sensors are designed from such pyroelectric materials, when heat 
of a human or animal from several feet away is enough to generate voltage. Among 
wide variety of thermal sensors, using pyroelectric effect, motion detector sensors 
can be identified as well as infrared thermometers for high precision pyrometery, 
pyroelectric vidicons in both vacuum and microelectronic design, etc.  

10. Electrocaloric effect has a certain prospects for use in the miniature solid-
state refrigeration systems. Using electrically induced phase transition from 
ferroelectric to anti-ferroelectric phase, a cooling up to 4 °C can be obtained in the 
single transition period. 

11. Research and application of dielectrics is commonly held under the 
adiabatic conditions when entropy not changes: δS = 0. Therefore, from 
experiments, the adiabatic permittivity εS is measured. In such dielectrics, which 
polarization strongly depends on temperature, another – isothermal – process of 
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polarization might be important, when δТ = 0 and permittivity is isothermal: εT. 
Isothermal permittivity is always greater than adiabatic: εТ > εS. In the vicinity of 
ferroelectric phase transition the difference between εТ and εS can reach 10–50%, so 
it should be taken into account. 
 

Chapter 7. Self-test questions 
 

1. What and how many parameters characterize the pyroelectric and 
electrocaloric effects? 

2. What is the role of the boundary conditions for the pyroelectric effect and 
its application? 

3. Haw can be obtained the pyroelectric effect in piezoelectric? 
4. Haw can be obtained the pyroelectric effect in paraelectric? 
5. What is the peculiarity of using pyroelectric far-infrared imaging devices? 
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AFTERWORDS 
 
The basics of the modern approach to the physics of dielectrics as substances 

with special behavior in the electrical field are given: in dielectrics, there is a limited 
space shift of the electric charges – electrical polarization, and, at the same time, 
there is almost no movement of free charges through a matter – electrical 
conductivity.  

Dielectrics include all gases, many liquids, as well as crystals, polycrystals, 
ceramics, glass, composites, amorphous substances and some substances compacted 
from nanocrystalline structures. In the crystalline dielectrics, the band gap of 
electronic spectrum is greater than ~ 3 eV.  

Under normal conditions, the conductivity of dielectrics is lower than 10–10 
S/m, so the electrical bias current exceeds the electrical conductivity current, and the 
electrostatic field in dielectrics can exist for a long time.  

Dielectrics are also a medium for electromagnetic field propagating over long 
distances. This book considers the solid dielectrics only. 

Structure. Crystals are characterized by almost perfect order of their internal 
construction. Therefore, the crystals can be described by a three-dimensional (3D) 
periodic spatial structure.  

Characteristic of crystals is the translational ordering: an elementary cell of 
several atoms is "infinitely" translated in all directions, creating a regular crystal 
lattice.  

The polycrystals consist of a large number of small crystals (crystallites); at 
that, macroscopic structure of polycrystals is disordered, but the microscopic 
components of their structure (crystallites, blocks) represent the small crystals with 
a clearly defined microscopic structure and the same properties as in large single 
crystal.  

The vitreous and amorphous states of solid dielectrics are characterized by the 
absence of distant (translational) symmetry. These bodies are characterized only by 
a short order in the arrangement of atoms. 

For two-dimensional (2D) systems, a strictly ordered structure is possible only 
in the plane. If such a planar system is nano-dimensional in the thickness, and is 
repeated many times in dielectric or semiconductor crystal (creating a 
superstructure), then its electronic properties can characterize so-called "quantum 
well", which is also related to the 2D nanostructures.  

One-dimensional (1D) nanostructures include linearly oriented systems, in 
which translational ordering is observed only along one direction.  
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There are also known systems, in which the dimensions along all three 
directions are commensurate with the distance between the atoms. Such zero-
dimensional (0D) systems can be "quantum dots", in which only 10 to 103 atoms are 
ordered. 

A solid body is a collection of a very large number of structural units – atoms, 
ions or molecules – which are strongly connected to each other.  

At that, properties of an isolated atom usually affect the nature of a solid body 
composed of these atoms, but only to a certain extent: the point is that in a solid body 
the properties of the atom are significantly affected by its environment (crystal 
lattice).  

Therefore, to describe different properties of solids, it is necessary to use 
methods which are applicable to understanding the behavior of the system of many 
particles.  

Although a solid is a system of strongly interacting particles, the theory of 
solids (including dielectrics) solves the problem of how to reduce description of a 
system of strongly interacting particles to a description of the systems of weakly 
interacting quasiparticles. 

Quasiparticles. Well known properties of most crystals (strength, hardness, 
elasticity, etc.) determine the name of the physical state of matter: a solid. But in any 
solid body there are many different interactions between the particles that determine 
the electrical and thermal properties of matter.  

Therefore, to explain the features of solids, it is assumed that they have other 
states ("hidden") which resemble the properties of the basic physical states of matter: 
gases of quasiparticles and quantum liquids (electrons in metal), as well as the 
electron-hole plasma (in semiconductors). 

Quasiparticles are the collective motions of many solid particles (for example, 
the oscillations of the atoms of the crystal lattice).  

Although many atoms are involved in each oscillation, this motion still has an 
atomic scale, because the average energy of each oscillation (phonon) is 
approximately equal to kW.  

For particles, the number of which in any state is unlimited, the Bose-Einstein 
statistics is applie, and such particles are called bosons.  

If the particles are subject to the Pauli principle (that is, only one particle can 
be in a certain state), then the Fermi-Dirac statistic is applied to them, and the 
particles are called fermions. 

 Fermions include, first of all, electrons, which are charged by collective 
excitations in the crystal and have different (including anisotropic) effective mass.  
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Among bosons the photons were considered which are the electromagnetic 
waves that can propagate in both vacuum and dielectric.. 

The bosons include also phonons representing elastic waves in crystals, that 
is main heat reservoir of a solid body, as well as magnons (spin waves), which can 
exist in the ferromagnets, antiferromagnets, and ferromagnets. 

There are phenomena in which many quasiparticles are involved. For 
example, heat is transferred by phonons, electrons, and magnons. However, the 
transfer of electric charge is realized mostly by electrons, while magnetic moment 
of ferromagnets is responsible for magnons.  

Another example of collective motion in crystals is the electronic excitation 
of an atom or molecule, which occurs, for example, due to the absorption of a 
quantum of light.  

This excitation is not localized in a particular cell of the crystal, but moves 
from cell to cell in the form of a Frenkel exciton. The average energy of an exciton 
is of the same order as the energy of the excited state of an individual atom. 

According to classical laws, the average energy of thermal motion of a particle 
is equal to kВТ, and therefore the internal thermal energy of the body is E ~ N kВТ, 
where N is the number of particles in the body.  

However, as temperature decreases, the simple linear dependence E(T) 
becomes broken, because the internal energy of a solid body approaches zero much 
faster than the linear law.  

This fact is explained by the discrete (quantum) nature of the energy spectrum 
of solids. The fact is that with decreasing temperature the collective motions of 
atoms or ions (quasiparticles) become "freeze".  

This usually occurs at temperatures below 100…200 K, but for some crystals 
nonlinearity as a function of E(T) is also observed in the range of higher 
temperatures.  

The greater the energy difference between the energy levels of the equivalent 
oscillator, the higher the temperature of corresponding motion "freezing". Because 
of this, the quantum motions in solids can be observed at quite different 
temperatures. 

 

Symmetry. The creation of crystalline and other ordered bodies from atoms is 
accompanied by a decrease in energy compared to non-interacting atoms.  

The minimum energy corresponds only to a certain arrangement of atoms 
(ions, molecules) relative to each other, which is accompanied by a significant 
redistribution of electron density between the particles.  
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Crystallization of matter, i.e., the transformation of a disordered set of atoms 
(liquid or gas) into regular crystal lattices, occurs due to the desire of the system of 
atoms to reduce energy with decreasing temperature.  

The structure of a crystal is determined by the forces acting between atomic 
particles, and the nature of these forces is explained by quantum mechanics. 

The periodic arrangement of atoms in space allows for a certain classification 
of the types of symmetry of the crystal. Determining the symmetry of crystal 
structures can be a difficult problem – an elementary cell can consist of dozens of 
atoms or ions.  

The symmetry of the crystal is a set of virtual operations, after which the 
crystal passes into itself. Elements of symmetry are rotations around the axes of 
symmetry, images in the planes of symmetry (helical axes, planes of mirror sliding 
and translation). 

The combination of "rotating" elements of symmetry (axes, images) with 
translations leads to limitations in the placement of atoms. For example, crystals can 
have only axes of symmetry of the second, third, fourth and sixth ranks (the axis of 
the first order is trivial).  

According to "point symmetry", all crystals must belong to one of 32 classes. 
All possible types of spatial symmetry of crystal lattice structures (230 of them) were 
determined by the crystallographer Fedorov. Such a distant order applies only to 
perfectly ordered crystals and can be considered macrosymmetry. In real cases, the 
arrangement of the nearest atoms (microsymmetry) is broken both dynamically and 
quasi-statically.  

Movement in crystals. Different types of particle motion are possible in 
crystals; moreover, for one reason or another, in real crystals the particles are not 
always placed in an ideal order (which corresponds to the minimum energy).  

Irregular placement of atoms in crystal lattices (atom in the internode, vacancy, 
dislocation, boundary between individual crystallites) is called crystal lattice defects. 
In the places of defects the energy of the crystal is increased, but under normal 
conditions the atoms cannot rearrange and create a more energetically advantageous 
configuration.  

To do this, atoms would have to overcome large potential barriers compared to 
the dynamic thermal energy of their motion, which is equal to kBT. Only special 
technological methods allow to create almost defect-free crystals. 

The microsymmetry of crystals is broken not only by defects, but also 
dynamically – in the case of any movement of atoms – and any peculiarities in the 
arrangement of the neighboring atoms affect their possible movements. Atoms and 
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ions make small oscillations and rotations around their equilibrium positions, which 
are described by the oscillator model.  

At a sufficiently high temperature, atoms can oscillate so much that they lose 
their equilibrium state and jump either into the space between atoms (in this case, 
atoms in the internodes), or into randomly free adjacent equilibrium positions.  

Such jumps at room and lower temperatures are quite rare, but become more 
frequent as the temperature approaches the melting point of a crystal. As the 
temperature increases, the amplitude of oscillations of atoms increases, and when 
this amplitude reaches 3–7% of the interatomic distance, the crystal usually melts. 

With decreasing temperature, the amplitude of oscillations of atoms decreases 
significantly. But even in the case of approaching absolute zero temperature, the 
atoms do not stop moving.  

This quantum motion of atoms is called zero oscillations. The inability to stop 
motion at zero temperature is a manifestation of the quantum properties of matter 
and does not correspond to the notion of classical physics that at a temperature of T 
= 0 K there must be a complete order in the arrangement of already stationary atoms. 
Quantum motion can significantly affect the passage of low-temperature phase 
transitions. 

Another violation of the notion of "classical order" in crystals can be vacancies, 
when the crystal has random defects in the placement of atoms, consisting in the 
absence of atoms in some nodes of the crystal lattice. If a neighboring atom jumped 
on the vacant node, the vacancy moved to the vacated place.  

The role of vacancies is very large in the diffusion of atoms in solids. In order 
for a vacancy to move, the atom must overcome a significant potential barrier. 
Therefore, these processes are rare at low temperatures, and the diffusion coefficient 
quickly approaches zero with decreasing temperature. 

Mechanical properties of solids correspond to the internal connections 
between molecules and atoms of a matter; these include mainly elasticity, strength, 
hardness and viscosity, and others. Depending on the symmetry of the external 
mechanical forces, there are: linear-stress, plane-stress and volume-stress states, as 
well as net shear stress and hydrostatic pressure.  

The response to the external stress can be strain (deformation), which, 
according to Hooke's law, is directly proportional to the mechanical stress and is 
classified into one-dimensional, two-dimensional and three-dimensional. 

To consider dielectric devices in electronics, the most important mechanical 
properties are elasticity (which depends on the bond strength of atoms in crystals) 
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and the speed of elastic waves in crystals (which, in addition to elasticity, is affected 
by the density).  

The propagation of one-dimensional, surface, and bulk elastic waves in solids, 
as well as the resonant properties of solid rods, beams, membranes, etc., are also 
described by the elastic stiffness tensor. Electrically excited elastic waves are widely 
used in modern acoustoelectronic, acousto-optical, microwave and other 
microelectronic devices.  

Thermal properties of solids are due to the internal energy of motion of 
molecules, atoms and electrons, and are characterized by heat capacity, thermal 
conductivity and thermal expansion. Heat capacity is the ability to accumulate heat 
energy in a material when it is heated.  

Several theories of lattice heat capacity of a solid are considered. First, this is 
the law of constancy of heat capacity, derived from the classical representations and 
with some accuracy is valid only for normal and elevated temperatures. Secondly, 
this is Einstein's quantum theory of heat capacity - the first successful attempt to 
apply quantum laws to the description of low-temperature heat capacity.  

Third, it is Debye's quantum heat capacity theory, which agrees better with 
experiments at low temperatures than Einstein's theory. Finally, the dynamic theory 
of the Bourne crystal lattice is considered as the most perfect attempt to describe the 
dynamics of the crystal lattice, including the theory of heat capacity.  

Thermal conductivity is the transfer of a heat by structural particles of matter 
(molecules, atoms, electrons) in the process of their thermal motion.  

The coefficient of thermal expansion characterizes the features of the internal 
bonds of atoms, ions or molecules, including the amount of energy of these bonds. 
This energy is largely determined by such a fundamental parameter of the crystal as 
its melting point.  

Electrons in dielectric crystals. The motions of different atomic particles in a 
solid are so different that it is often possible to neglect the motion of others by 
studying some particles.  

For example, the velocity of atoms or ions in a solid is very small compared 
to the velocity of electrons, and therefore, considering the motion of electrons, the 
ions can be considered stationary (adiabatic approximation).  

The accuracy of this approximation is determined by the parameter (т/М)1/2 
that is the ratio of the mass of the electron m to the mass of the ion M. 

Analysis of the Schrödinger equation for electron in a crystal (Bloch's 
theorem) shows that the wave function in this case depends on some vector k, the 
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modulus of which has the dimension of the inverse length, and therefore a quasi-

momentum is introduced.  
This concept is very useful for considering many aspects of electronic solid 

state theory. To greatly simplify the description of the motion of electrons in a crystal 
allowed the introduction of the concept of effective mass, i.e., a mass that must be 
attributed to the electron, so that its motion in the crystal under the action of external 
forces took the form of Newton's second law.  

The concept of the effective mass has proved very fruitful in solid state 
physics and, in particular, in semiconductor physics. 

The solutions of the Schrödinger equation have the form of Bloch waves for 
the real values of wave vector within the consolidated band, and the corresponding 
values of the electron energy form the allowed energy zones: for electrons on valence 
bonds - the valence band, and for the first excited state of valence electrons - the 
conduction band.  

In metals, these zones overlap while in semiconductors and dielectrics, there 
is an energy gap (or band gap) between the valence band and the conduction band. 
There are no electron wave states in the band gap, and it can be considered as an 
energy barrier between the electrons bound at the valence levels and the free 
electrons to which the conduction band corresponds. 

Dielectrics can have a different structure (crystals, glass, ceramics, polymers) 
and differ in that they may have an electrostatic field, moreover, in dielectric crystals 
the band gap is greater than 3 eV, and their electrical conductivity under normal 
conditions is less than 10–10 S/m. At the alternating voltage, the electric bias current 
in dielectrics exceeds the conductivity current.  

The most important characteristic of dielectrics is the dielectric constant ε; 
accordingly, the most important of the electrical effects in dielectrics is the electrical 

polarization.  
Elastic (deformation) polarization is weakly dependent on temperature, and is 

also the least inertial type of polarization, and therefore it determines the high-
frequency and optical properties of dielectrics.  

The mechanisms of thermal (relaxation) polarization are mainly due to the 
structural defects of dielectrics and lead to ε dispersion and dielectric losses at low 
frequencies and radio frequencies.  

Dielectric permeability frequncy variance is an interdependent change of real 
and imaginary parts ε* in case of frequency change.  

The main property of the ε*(ω) dispersion is the fulfillment of the Cramers–
Kronig relations, which must satisfy any dispersion equation. In a wide range of 
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frequencies and in different crystallographic directions, several sections of the 
dispersion ε*(ω) are usually observed in dielectrics, which form the dielectric 

spectrum. 
In a strong electric field, if a certain threshold value of the voltage in the 

dielectric is reached, the electrical breakdown occurs: the magnitude of the current 
passing through the dielectric increases catastrophically and the electric discharge 
(spark or arc) passes through the dielectric.  

The main physical mechanism of the first stage of breakdown (loss of 
electrical strength) is the shock ionization by electrons, as a result of which the 
concentration of charge carriers increases sharply due to the occurrence of the 
electron avalanche.  

This form of breakdown of dielectrics is called electronic breakdown, which 
is characterized by a very short time of development of processes of loss of electrical 
strength. 

Functional (active) dielectrics are able to convert energy and information 
carried by electrical signals. Piezoelectrics convert mechanical energy into electrical 
or, conversely, electrical energy into mechanical energy. The piezoelectric effect is 
observed in the non-centrosymmetric crystals and structures and is an odd (linear) 
effect.  

The piezoelectric effect can be controlled by an external electrical field, for 
example, by changing the piezo-resonance frequency or the parameters of filters 
based on surface acoustic waves.  

The efficiency of electrical control of the piezoelectric effect is most 
significant in the dielectrics with high dielectric constant. 

Pyroelectric is also a solid-state energy converter. If piezoelectricity is 
associated with the electromechanical transformation, the pyroelectrics demonstrate 
thermoelectric coversion. Such energy conversion in a solid is possible only if the 
dielectric (crystal, polycrystal or polymer) has polar-sensitive structure.  

Thermoelectric conversion is a pyroelectric effect, and the inverse 
electrothermal conversion of energy is the electrocaloric effect. 

Ferroelectrics are characterized by switchable polar-sensitive structure, the 
direction of which can be changed by the externally applied electric field. In addition 
to ferroelectrics, the electrets have their own residual polarization. In contrast to the 
non-equilibrium residual polarization of electrets, the polar-sensitive structure of 
non-centre symmetric polar dielectrics characterizes by their stable 
(thermodynamically stable) state.  



383 
 

Ferroelectrics are distinguished from pyroelectrics by their ability to 
repolarization: the reorientation of their polar-sensitivity polarization under the 
action of an electrical field. At that, the dielectric hysteresis is observed. 

Phase transitions. In the most cases, at a certain temperature, all degrees of 
freedom of atomic particles in a solid can be divided into two groups. For some 
degrees of freedom, the interaction energy Uint is small compared to kВT, and for 
others it was large (the kВT parameter is a measure of the thermal motion energy). 

If Uint << kВT, then corresponding degrees of freedom behave as a set of 
particles of an "ideal gas", and applicability of notion of quasiparticles is obvious. 
If Uint  >> kВT, then the corresponding degrees of freedom are ordered, but this 
motion can also be described by the introduction of quasiparticles. 

A difficult for the theory is the case when the interaction energy Uint ~ kВT, 
which usually corresponds to the phenomenon of phase transition in a solid. It 
should be noted that in all substances near certain temperatures, the physical 
properties do not change smoothly, but change abruptly.  

This abrupt alteration in material properties is called a phase transition and 
such changes are inevitable when the aggregate state of matter changes. The typical 
example of a phase transition is the liquid–vapor transition; the liquid–crystal 
transition (crystallization) is another such example.  

Both of these transitions belong to the transitions of the first order, when the 
phases located before and after the transition point are significantly different from 
each other. One phase replaces another simply because it is more energy efficient. 
For the transition to take place, the potential barrier separating these phases must be 
overcome. Therefore, in the vicinity of the phase transition of the first kind, both the 
supercooling and the overheating are possible. 

Solid state physics is mainly concerned with the study of phase transitions in 
one aggregate state — the solid.  

Of particular interest are the phase transitions in which a new property appears 
in the crystal, such as a spontaneous magnetic moment in the case of a transition 
from a paramagnetic state to a ferromagnetic state. In other cases, during the 
transition there is a switchable electric moment (in ferroelectrics), spontaneous 
deformation (in ferroelastics) or the ability to conduct current without resistance (in 
superconductors), and so on.  

All these transitions belong to the transitions of the second order: at the Curie 
temperature TC one of the phases ceases to exist and it is replaced by another. At the 
TC point phases are indistinguishable; but if one move away from this point, the 
discrepancy between the properties of both phases increases.  
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Thus, in the ferromagnets below the Curie point the spontaneous 
magnetization appears and increases as it cools, in the ferroelectric crystals, if the 
temperature is lower than the Curie temperature TC, a switchable electric moment 
increases, although at temperatures T = TC and above it equals zero. 

Near the point of phase transition of the second order, a solid behaves in such 
a way that any descriptions based on the quasiparticles cannot adequately correspond 
to the experimental situation. Usually the nearest neighboring crystal particles in 
crystal are considered to be such strongly interacting that the interaction of more 
distant particles can be even neglected.  

However, near the phase transition, the interaction of the nearest particles is 
compensating by each other, and against this background, the interaction of atomic 
particles placed at more long distance from each other becomes dominant.  

In the case of such a transition, the anomalous increase in the role of collective 
motions is confirmed by the experiment: a maximum of heat capacity and a strong 
anomaly of the coefficient of thermal expansion, the magnetic permeability of 
ferromagnets and dielectric permittivity of ferroelectrics at the Curie point tend to 
infinity, etc. That is why the usual model of quasiparticles has difficulty in 
describing second-order phase transitions. 
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