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Abstract—This paper considers the method of the winter 
crop classification map producing in terms of climatic and 
weather abnormal conditions in 2020. Given that the 
traditional method of construction involves the use of a 
training sample, which is collected in ground surveys along 
the roads.  This sample could not be collected under the 
strict quarantine regime, that is why the classification map 
was created based on the sample obtained as a result of the 
photointerpretation. Both, optical Sentinel-2 and SAR 
Sentinel-1 satellite data were used. This is due to the fact, 
that the period of the winter crop classification map 
producing fell exactly on the period of time (April and May 
2020), when the area of study Odesa region (as well as the 
whole territory of Ukraine) had a high percentage of cloud 
cover. At the same time, radar imaging techniques allow us 
to bypass obstacles such as clouds, but also have lower 
sampling quality. Therefore, it was decided to combine the 
obtained classification maps based on radar and optical 
data by fuzzy logic, considering the degree of belonging of 
each pixel by the value of the normalized difference 
vegetation index (NDVI). 

As a result, the obtained classification maps based on 
photointerpretation sample have an accuracy close to 95%. 
The fuzzy logic method allows to increase this value by 
selecting only the best pixels from classification maps based 
on radar and optical satellite data. 
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I. INTRODUCTION

Available satellite data and significant changes in 
meteorological conditions in winter and spring of Ukraine 
(increase of droughts, floods, sandstorms) became an 
impetus for scientists to study a growth dynamic of an 
agricultural fields, to analyze a crop state due to weather 
conditions, as well as to analyze a volume of winter crop 
losses using train data based on photointerpretation and 
fuzzy logic methods to build winter crop classification 
maps. 

Often satellite data are used to estimate the crop area 
[1-4]. This approach allows to get an objective 

information about the crop type area for major crops by 
different division (country level, oblasts or regions level, 
etc.) [5, 6]. Typically, these crop estimates made at the 
end of a growing season, but lately, there are “in-season” 
publications. For example, in publication [7] authors 
considered the method of crop yield estimation to improve 
prognosticating of agricultural yield. To ensuring national 
food security authors of publication [8] considered three 
spatial sampling methods as well as the Kriging method 
for improving the estimation accuracy of crop area. In 
order to increase growth of a digital agriculture, authors of 
[1] proposed to enhance the accuracy of crop
identification by using convolutional long-short term
memory networks. The yield forecasting was obtained
including the regional territory of Ukraine as well
described in publication [9, 10].

The works of other authors allow us to see that, on one 
hand, research is conducted on the topics of the crop yield 
forecasting, improving the estimation accuracy of crop 
identification or crop area. The predictors of crop yield 
variability for all growing season have one of the main 
directions of crop losses assessment [11-13]. Also, in 
publications [14-16] discussed the weather-related crop 
losses and offered the estimation methods based on 
operational satellite-based vegetation health (VH) indices 
[17]. Also, crop estimation provides after hailstorms, 
floods [18, 19], water-logging [20] or other weather 
disasters for statistics and decision-makers’ authorities or 
to led small-holder and subsistence farmers to the design 
of mitigation strategies [21-23]. 

On another hand, the assessment of crop losses during 
the growing season is less common, although for 2020 this 
task is quite relevant for several time and location sets, as 
well as for the spring period in the territory of Ukraine. 

A deterioration of weather and climatic conditions in 
Ukraine has begun in autumn 2019, when due to soil 
drought there were unfavorable conditions for sowing in 
necessary time to ensure optimal growth of winter crops. 
Also, the negative impact on winter crops of Odesa region 
was frosts from March 15 to April 16, which lasted for 22 
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days. All these factors affected the winter crop state and 
led to its losses. 

As a result, the climatic condition change in the 
territory of Ukraine is an opportunity to estimate not only 
the cropland areas, but also to calculate agricultural losses 
area. 

The idea of the study is to build classification maps for 
April and May 2020 and to compare the areas of winter 
crops. If some winter crops were lost then the area will be 
decreased.  

As optical satellite images for April and May 2020 
have a high cloud cover percentage, there is a need to use 
radar satellite data to refine the resulting classification 
maps. The combination of winter crop classification maps 
based on optical and radar satellite data is possible 
through the use of fuzzy logic based on the normalized 
difference vegetation index (NDVI) [24]. 

II. DATA

A. Area of Interest (AOI)
To monitor the winter crops condition and losses, a

study area is chosen Odesa region (Fig. 1), which has 
suffered the most from climate change. The region area is 
33,314 km2, it is located in the steppe climate zone of 
Ukraine. According to statistical data of 2019 the winter 
crop area in this region is around 11.6 % of the total area 
of the country (rapeseed, barley, rye, wheat). Odesa 
region ranks first in Ukraine in the winter crop area. 

Figure 1. Area of interest – Odesa region, Ukraine. 

According to meteorologists, the moisture lacks in 
Odesa region lasted during the entire vegetation period of 
winter crops, from crops to the maturation state (Table I). 

TRAIN AND VALIDATION DATA  

Month Precipitation 
(mm) % of precipitation norm 

September 2019 10 23 
October 2019 –
November 2019 6-10 unsatisfactory 

December 2019 – 
February 2020 66 63 

March 2020 4 15 
April 2020 5 16 

B. Satellite Data
The optical Sentinel-2 and radar SAR Sentinel-1

satellite data for two time periods starting from April 1, 
2020 to May 14, 2020 with a spatial resolution of 10 
meters are used in this work (Table II). 

TABLE I. SATELLITE DATA  

Sentinel-1 Sentinel-2 

Dates 01.04.2020 – 10.04.2020 
01.05.2020 – 14.05.2020 

This choice of satellites is due to the fact of high 
number of clouds in spring 2020. In this case, the data 
from the Sentinel-2 satellite are insufficient, as there were 
few unclouded images to build a classification map. That 
is why it is necessary to use the radar data of the Sentinel-
1 satellite, for which clouds are not an obstacle.  

C. Train and Validation Data
For high-quality producing of the classification map, it

is required to have in-situ data [25], which are used as 
training and validation data. To build the winter crop 
classification map of Ukraine, such data are usually 
collected from mid-April to mid-May. Given the 
extraordinary conditions in 2020, due to the quarantine 
measures, it was not possible to collect data properly. 
Therefore, various experiments on the construction of 
winter crop map, as algorithms that do not use train data, 
as well as using a sample based on photointerpretation.  

This is another scientific challenge that will show 
whether it is possible to construct relevant classification 
maps using photointerpretation.  

After the end of the strict quarantine, in-situ data were 
collected along the roads of Odesa region (Fig. 2), and 
used to validate all obtained classification maps.  

The total route length for in-situ data collection is 
1650 km. The number of summer fields is 490, and of 
winter – 1176. A quantitative characteristic of the 
collected data on the AOI territory are presented in the 
Table III.  

TABLE II. VALIDATION DATA FROM GROUND SURVEY 

Number of fields 
Winter crops 1176 

Summer crops 490 
Total 1666 



Figure 2. The route of in-situ data collection, 2020. 

III. METHODOLOGY

A. Research Method
Traditionally, Random Forest method [26-28], as well

as Random forest transfer [29], implemented on Google 
Earth Engine cloud platform, is used to build classification 
maps.  One way to get yield forecasting assessment is to 
use biophysical model [30] and complementing 
operational flood mapping [31, 32]. 

In this case, the novelty of the study is obtained two 
different winter crop classification maps based on optical 
and radar satellite data using the training set of 
photointerpretation. It is necessary to combine and 
validate obtained results using vegetation index NDVI.  

To solve this problem, the authors propose to combine 
different data sources: remote sensing data for processing 
classification maps; fuzzy logic model data for improving 
maps; in-situ data for validation. Thereby, the research 
approach is as follows.  

Firstly, to build the winter crop classification map in 
the period for April 2020, because during this period it is 
possible to analyze all crops during their highest 
vegetation. 

Secondly, to make an assumption that as a result of 
worsening climatic conditions, the area under crops will 
decrease next month. Therefore, the next step will be to 
build the winter crop classification map for May 2020. 

To build winter crop classification maps, it is more 
appropriate to use optical satellite data [33], which for the 
studied period of time were clouded. That is why it is 
necessary to use an additional source of radar data [34-
37], which is less relevant for such task, but allows to 
obtain a complete sample of data [38, 39]. Thus, it is 
necessary to combine the classification maps based on 
optical and radar satellite data, using a fuzzy logic 
scenario. Classification maps are refined using the values 

of NDVI, which, in turn, is selected using fuzzy logic 
based on the obtained optical and radar data.  

Therefore, the aim of this study is as follows: 1. 
determining the degree of belonging of each pixel to 
winter crops with the help of expert knowledge; 2. 
producing a membership measure map for optical and 
radar satellite data; 3. obtaining a general membership 
measure map based on fuzzy inference method.  

Consider more detailed algorithm for classification 
map creation based on fuzzy logic. 

To perform geospatial analysis of the obtained 
classification maps based on radar and optical satellite 
data, it is necessary to form expert estimates of each pixel 
membership.  

Form semantic values of expert assessments based on 
the values of NDVI of winter crops (Table IV). 

TABLE III. SEMANTIC VALUES OF EXPERT ASSESSMENTS 

Semantic value Expert 
assessment 

Low vegetation level 1 
Middle vegetation level 2 
High vegetation level 3 

As a result of the expert assessment formalization, 
each pixel of the winter crop classification map acquires a 
certain value. In this case, it is necessary to ensure the 
implementation of fuzzy membership function: 

Ai = {C(A), µ(CA)}, (1) 

where Ai – a pixel of the corresponding class of the 
classification map С(А), µ(CA) – a reliability measure of 
the expert assessment. 

A priori, the reliability measure is taken equal 1/N, 
where N – a number of experts. Then: 

Ai = {C(A), 1/N}. (2) 

If the pixel is on the border of several classes, then its 
reliability measure is equal to 1/kN, where k is a number 
of neighboring classes.  

The next step is to form fuzzy rule base. In this case, 
use the maximum function. Given that the main selection 
criterion is the value of the vegetation index of winter 
crops, the function that determines a probability of 
including pixel in the resulting classification map is: 

Ai = {arg max NDVI(C), 1/kN}. (3) 

The main concept of fuzzy logic is the development of 
a clear unambiguous control action for any type of control 
object [40]. Using the rule base, fuzzification and de-
fuzzification stages, get winter crop classification map 
with higher accuracy. Also, this achievement can improve 
the process of combining statistical and satellite data for 
Ukraine [41]. 



B. Experiments and Validation
The experiments have shown the following. The

overall accuracy of winter crop classification maps based 
on sample by photointerpretation and fuzzy logic for 
April and May 2020 is around 95 %. 

Winter crop maps have been produced for two dates: 
10 of April and 14 of May. The crop losses (red color) in 
Odesa region are shown in the Fig. 3 in higher zoom. 

Figure 3. Crop losses (red color) in Odesa region from April to May 
2020. 

TABLE IV. AREAS OF WINTER CROPS IN ODESA REGION 

Area, thousand hectares 

10th of April 14th of May Winter crop 
losses 

901.15 538.58 337.94 

IV. DISCUSSIONS AND CONCLUSIONS

In this work, the scientific research of the winter crop 
classification map producing in the period of the adverse 
climatic and epidemiological conditions is carried out. 
The state-of-the-art method of classification is Random 
Forest implemented on the Google Earth Engine cloud 
platform. However, due to deteriorating climatic and 
weather conditions, the classification method based on the 
sample by photointerpretation was considered, using 
training set taken with satellite images of the required time 
period (April and May 2020). Two types of satellite data 
were used for this - the optical Sentinel-2 data and the 
radar Sentinel-1 data. This choice is due to the fact that the 
quality of optical data depends on weather conditions, 
namely the percentage of cloudiness of satellite images. 
Spring 2020 has high percent of clouds that were present 
in the satellite images, and for the radar clouds it is not the 
obstacle.  

The resulting maps based on optical and radar satellite 
data and fuzzy logic have an accuracy of 95 %. 

Another method that will increase the accuracy of 
winter crop classification map was chosen the fuzzy logic: 
formed the expert assessment table of the membership 
measure of each pixel to a certain class based on NDVI; 
the classification map was obtained by combining radar 
and optical satellite data.  

Due to adverse climate change in winter and spring 
2020 (dry winter and spring with frosts), the task possible 
winter crop losses assessment for Odesa region as the 
most affected was also set. Comparing the classification 
maps obtained with the fuzzy set knowledge base, the 
winter crop losses are calculated, which are equal 337.94 
thousand hectares. 
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