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technology is MODIS NDVI collection that have moderate 

250 m. spatial resolution and has been updated daily since the 

2000s. The main reason why this data are most used is the 

long time series of satellite images. However, modern 

approaches to harmonization of the Sentinel-2 and Landsat-8 

satellite data [7] make it possible to improve the methodology 

for the NDVI trend calculation and obtain land productivity 

maps with higher spatial resolution [8]. These modifications 

as well as use of local data, such as land cover or crop type 

maps [9,10], are very important, because they give possibility 

to improve agricultural monitoring and food security in 

countries under development by support of UN SDGs [11]. 

In addition to the development of technology for monitoring 

land degradation, there are also software solutions that 

implement these technologies through the cloud 

environment. One of the projects developing tools for 

monitoring land degradation indicators is the Trends.earth, 

which is a convenient plugin for the QGIS, which through the 

Google Earth Engine platform makes it possible to build 

productivity maps and indicator 15.3.1 maps for any area in 

the world. 

An important issue that arises in the study of the phenomenon 

of land degradation is the impact on this process of climate 

change and the role of human activities in the climate change. 

Climate change due to the impact on agroclimatic indicators 

significantly influence the water balance in ecosystems [12, 

13], which has a particularly negative impact on the condition 

and development of crops. This effect can be seen through 

models that provide information on soil and water status 

through impact analysis of land use, land management 

practices, and climate change. Such a model is the SWAT, 

which is widely used in the world to assess climate change on 

the water balance of territories [14]. To conduct this research, 

several outputs produced in the scope of the ‘EnviroGRIDS: 

Building Capacity for a Black Sea Catchment (BSC) 

Observation and Assessment System supporting Sustainable 

Development’ were used. [15]. To conduct hydrological 

analyses of the 2.2 mio km2 catchment area, the Soil and 

Water Assessment Tool was set up and calibrated by 

Rouholahnejad [16]. All the resulting datasets of this project 

are freely available on a web platform 

(http://blacksea.grid.unep.ch).  
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ABSTRACT 

According to the methodology for determining land 

degradation adopted by the UN for the calculation of the 

sustainable development goal's (SDG) indicator 15.3.1, land 

productivity on the basis of remote sensing data is one of the 

three sub-indicators. At the same time, the process of land 

degradation is very complex and it has not yet been studied 

how it is affected by climate changes. This task is 

complicated by the fact that climate change has consequences 

in the future. However, satellite data have a long history of 

observations and therefore we can see, how climate indicators 

affect the process of land degradation in historical terms. In 

this paper, we used MODIS satellite data to calculate land 

productivity and estimated the relationship between land 

productivity and climate change vulnerability of agricultural 

water resources (CCV) obtained by SWAT model for 

Ukraine. Correlation and regression analysis show that the 

climate change vulnerability of agricultural water resources 

is one of the indicators of land degradation. 

Index Terms— SDG, land degradation, Trends.earth, 

SWAT, climate change 

1. INTRODUCTION

Land degradation is a complex phenomenon that needs 

further study to monitor it and reduce the negative impact on 

the environment. One of the definitions of land degradation 

used in modern practice is a long-term decline in the 

functioning of the ecosystem, which can be expressed in 

reduced biophysical indicators of vegetative biomass [1, 2]. 

This definition makes it possible to use remote sensing tools 

to calculate and monitor areas that have manifestations of 

land degradation [3]. Further research in this direction made 

it possible to calculate the sustainable development goal’s 

indicator 15.3.1 “Proportion of land that is degraded over 

total land area”, adopted by the UN for goal 15 "Life on 

Land” [4]. This technology is already used for the SDG 

support and provided great results on the land degradation 

assessment in different countries of Europe [5] and Asia [6]. 

The core product for SDG monitoring based on this 



2. STUDY AREA

Ukraine has a total area of more than 600,000 km2 and is 

bordered by two seas to the South: The Sea of Azov and the 

Black Sea. Agriculture represents 68% of the country’s total 

area and more than 10% of its Gross Domestic Product 

(GDP). We can usually distinguish three to four agro-

climatological zones in Ukraine:  

- The humid zone, with temperatures ranging from -

4°C to 17°C, covers most of the northwestern part of the

country, including the Carpathian Mountains. The average

annual precipitation is 600mm (including snow).

- The warm and semi-arid zones, with temperatures

ranging from -6°C to 21°C, cover half the country, mostly in

the eastern and central forested steppe. The average annual

precipitation lies between 450 and 500mm.

- The arid zone, with temperatures ranging from 0°C

to 23°C, covers the south of the country and gets an average

of 360mm precipitation per year.

Industry and agriculture are the two main drivers of water

withdrawals in the country, extracting respectively 48% et

30% of total withdrawals. Irrigation has traditionally been

developed in the arid zone (Southern Ukraine) and it is

estimated that more than 2 mio ha of agricultural land are

equipped for irrigation. However, in 2003, only a third of

these lands were actually irrigated.

3. DATA

3.1 SWAT data 

To assess vulnerability, as defined by the Intergovernmental 

Panel on Climate Change (IPCC), three climate change 

scenarios should be considered: an increase in temperature, a 

decrease in precipitation and the combination of both. For our 

study, we focus on the third scenario to analyze climate 

change impacts on agricultural water resources. To achieve 

this research’s objectives, we used a dataset produced by Bär 

et al. [12], who assessed the vulnerability of agricultural 

water resources to climate change in the BSC. As virtually all 

the territory of Ukraine is part of the BSC, we used the results 

pertaining to our study area (fig. 1).  

There are usually three main inputs required to run a 

simulation of SWAT for a given water catchment: a digital 

elevation model (DEM), used to build river networks and 

determine topography, a soil type map and a landuse map. 

Based on the DEM, the model will delineate the watershed 

and create subbasins. Further, each unique combination of 

slope, soil type and landuse will define Hydrological 

Response Units (HRUs). For this study, results were 

presented at the subbasin scale, while analyses were 

performed at the HRU scale. 

Through the model, outputs were simulated for the period 

1970 – 2006. To conduct the vulnerability assessment, a 

simulation with a climate change scenario of +3°C and -30% 

precipitation rate was also performed. The agricultural 

vulnerability to climate change defined by analyzing the 

yearly change in the number of days where climatic 

conditions allow for plant growth, taking into account the 

days where there is potential for irrigation. When a subbasin 

has a negative change in plant growth days, it is vulnerable to 

a change in climatic conditions. A subbasin with additional 

plant growth days benefits from climate change. 

Figure 1. climate change vulnerability of agricultural water 

resources for Ukraine 

3.2 Trends.Earth plugin usage 

To calculate the indicator 15.3.1 for a certain area, three sub-

indicators should be computed: trends in land cover, land 

productivity and carbon stocks. If one of these indicators has 

a declining trend for a certain land unit, then the land unit will 

be classified as degraded, even if the other two indicators are 

improving (“One Out, All Out” principle). The second sub-

indicator, land productivity, is the biological capacity of land 

to produce food and is usually approximated by vegetation 

indices, notably the Normalized Difference Vegetation Index 

(NDVI) (UNCCD, 2017). This sub-indicator is core product 

in our study, because it reflects the ecosystem functionality 

in terms of vegetation quality. 
In our study, we used Trends.Earth (TE) to calculate NDVI 

trend, using global, publicly available datasets. TE is a free 

and open-source Quantum GIS plugin created as part of the 

project “Enabling the use of global data sources to assess and 

monitor land degradation at multiple scales”, which is funded 

by the Global Environment Facility (GEF) TE uses Google 

Earth Engine cloud computing facilities to perform complex 

calculations.  
For the purpose of this study, we used the default datasets, 

which are the following: the ESA Climate Change Initiative-

Land Cover (CCI-LC) global dataset, at 300m spatial 

resolution (7 land cover classes), and MODIS NDVI 250m 

spatial resolution dataset.  
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4. DATA ANALYSIS

For the experiment we firstly masked not agricultural areas 

on NDVI trend map by land cover map. After, we calculated 

mean NDVI trend values for each subbasin polygon and 

removed all polygons with high percentage of non-

agriculture areas. In addition, we normalized values of NDVI 

trend and CCV. The values between 0 and 0.2 for CCV were 

removed, in this interval due to the appearance of noise for 

these small number of points. As the result we obtained 2406 

subbasin with NDVI trends and CCV values. For the analysis 

we used two techniques: correlation analysis and regression 

analysis. In the correlation analysis Pearson r coefficient is 

used to evaluate the linear dependence between two values. 

In the regression analysis we fit linear and polynomial 

regression function to evaluate how CCV can represent 

variance of NDVI trend by R-squared coefficient. Also for 

the linear regression function, the angular a1 coefficient 

represent the dependences between changes of two values. 

Taking into account the difference in the spatial resolution of 

both datasets, we conducted analysis for the all values as well 

as for mean values of NDVI trend for each 411 unique values 

of CCV. 

5. RESULTS

Figure 2 represent the dependence between CCV and NDVI 

trend. We can see a weak correlation equal 0.44 and linear 

regression function represent a small variance. But the a1 

coefficient is 0.77. 

Figure 2. 2-d histogram and regression function for the CCV 

and NDVI trend dependence. 

The figure 3 represent square dependence between CCV and 

NDVI trend. The Pearson correlation was calculated for CCV 

square and NDVI trend. We can see that R-squared and 

Pearson r are better than for linear function, but they are steal 

reflect weak dependence. It can be explained by the fact that 

spatial resolution of NDVI trend map is 250 m, while CCV 

are modeling results based on the large subbasin units and, 

thus CCV has much smaller variability then NDVI trend. 

Thus, we aggregated the values of NDVI trend by the unique 

values of CCV. The figure 4 represent the linear dependence 

between aggregated CCV and NDVI trend by mean value for 

each HRU. Now we can see strong correlation between this 

two values as well as the goodly fitted linear regression 

function with R-squared equal to 0.49. This result show that 

CCV is strongly correlated. However, we also see the 

quadratic patterns of the dependences of this values. The 

figure 5 represent square dependence between aggregated 

CCV and NDVI trend. 

Figure 3. 2-d histogram and square regression function for the 

CCV and NDVI trend dependence. 

Figure 4. Linear regression function for the aggregated CCV 

and NDVI trend 
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Figure 5. Square regression function between aggregated 

CCV and NDVI trend 

Now we can see very good representation of variance by 

regression function with R-square coefficient equal 0.63. and 

Pearson r coefficient 0.75. The strong correlation of this 

values means that CCV can be used as one of the indicator of 

land degradation that reflect the changes of NDVI trend 

influenced by climate change. 

6. DISCUSSION AND CONCLUSIONS

Land degradation is a serious challenge to humanity. The 

main driver of this process has long been considered 

anthropogenic impact on ecosystems, while factors related to 

climate change have been ignored. However, climate change 

is also partly an anthropogenic process and therefore its 

impact needs to be assessed in relation to land degradation. 

The experiment showed a strong relationship between 

climate change and land degradation, which is reflected in the 

quadratic relationship between climate change vulnerability 

of agricultural water resources and NDVI trend. 
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