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“Beim Betrachten eines Düngerhaufens 

Er ist der Schatz und das Kleinod des Bauern, die breiteste Grundlage für die Landwirtschaft und 

somit ein Faktor der Staatserhaltung […] und der bestehenden Ordnung.“ 

"When looking at a pile of fertilizer 

It is the treasure and jewel of the farmer, the broadest basis for agriculture and thus a factor in 

the preservation of the state [...] and the existing order". 

(Agricultural School Apolda 1899) 
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Introduction 

Introduction 

Current market developments reveal how vulnerable our food systems are. Agricultural value 

chains are highly internationally intertwined with farm produce as well as production factors being 

traded to a large extent between nations (Lun et al. 2021). 

Mays (Zea mays L.) needs phosphorus (P) to grow. Farmers try to sow the maize as early as possible 

in order to prolong the vegetation period and by this realize the yield potential of a variety. 

However, under cold soil conditions the uptake of nutrients by the roots is impeded and slowed 

down (Zhou et al. 2021; Moradtalab et al. 2018). Moreover, especially early developmental stages 

in maize were reported to determine successful crop establishment and also genotypic differences 

are revealed at this stage (Pedersen et al. 2022; Lu et al. 2020; Hölker et al. 2019a; Peter et al. 2009; 

Gordon et al. 1997). Hence, mineral starter fertilizers, in particular combinations of nitrogen (N) 

and phosphorus, became a common practice in maize cultivation in countries with an intensive 

agricultural production (Hertzberger et al. 2021; Mascagni Jr. and Boquet 1996; Teare and Wright 

1990).  

Status quo 

On a global scale, P fertilizers were used for agricultural production in a quantity of 43,83 Mt 

(FAOSTAT 2019) in the year 2019. However, P resources are limited and reserves are distributed 

unequally across a few countries (Li et al. 2019b; Cooper et al. 2011; van Vuuren et al. 2010). 

Likewise, the application and nutrient balances vary substantially in different regions of the world 

(Vitousek et al. 2009). China, which has to provide food for around 20 % of the world’s population 

on only 7 % of the global arable land (Wu et al. 2021), is often taken as an example for intensive 

agricultural production. Average P fertilizer application rates in North China amount to over 

90 kg/ha per year (Vitousek et al. 2009). At the same time, only 20 % of the applied fertilizers are 

eventually taken up by the plants (Bello 2021). Therefore, surpluses of P fertilizers hold the 

potential to be reduced by 75 % without negatively affecting Chinas food self-sufficiency (van 

Wesenbeeck et al. 2021). It must also be noted that phosphate efficiency of crops decreases with 

increasing P application (Rose and Wissuwa 2012).  

In Germany, diammonium phosphate (DAP), containing nitrogen and phosphate, is the most widely 

used starter fertilizer in maize cultivation, which is imported to the value of over 111 million US-

Dollar annually (FAOSTAT 2019). One consequence of such a supply with fertilizer inputs over 

the last decades are the high to very high soil P levels which are prevalent in Western Europe (Zhang 

et al. 2017). Another unwanted result of a high P supply are negative effects on the environment 

(Withers et al. 2020; Smith 2009; Liu et al. 2008). Due to this fact, the European Union has launched 

the Farm to Fork strategy within the framework of the EU Green Deal (European Commission 

2020). Farmers are asked to reduce nutrient losses by at least 50 % until 2030 and fertilizers are 
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aimed to be cut down by 20 %. In Germany for instance, the fertilizer ordinance restricts P to a 

surplus of 10 kg/ha in relation to the total amount of P removed from the field (Federal Ministry of 

Food and Agriculture 2017).  

Fertilizer prices have been relatively stable over the last five years until 2021. During the last 

months, however, prices have been skyrocketing to unforeseen new price levels with no relaxation 

or turn in sight (Figure 1). Currently, a farmer has to pay 1100 € for one ton of DAP, which 

corresponds to a price increase of 122 % within one year. The same trend holds true for the 

fertilizers containing the single macronutrients N (calcium ammonium nitrate, CAN) and P (triple 

super phosphate, TSP). 

 

Figure 1 Development of the fertilizer prices for diammonium phosphate (DAP), triple superphosphate (TSP), and 

calcium ammonium nitrate (CAN) since May 2017 in Germany (data by courtesy of the State Agency for Agriculture, 

Food and Rural Areas (LEL), Department of Agricultural Markets and Quality Assurance). 

In how far fertilizer prices have an impact on maize production, largely depends on the size and 

type of farm. While the current fertilizer price increase undoubtedly leads to an economization, 

wherever this is possible, maize cultivation areas are affected differently. In poorer countries, 

fertilizer use decreases as an immediate reaction to price increases and maize cultivation area, which 

is dependent on fertilizer application, decreases alike (Komarek et al. 2017). In highly supplied 

regions, as for example Germany, no major yield penalties are to be expected in the short term 

(Zhang et al. 2017). Therefore, the challenge in the latter case is to maintain yields through a higher 

nutrient efficiency. This demands plant breeders to develop and provide maize varieties, which can 

cope with reduced fertilizer inputs. 

Taken together, it is timely to deal with phosphate efficiency in European maize production systems 

and investigate the topic from a plant breeding point of view. Already now some EU governments 

ask to postpone the ambitious goals set by the Green Deal and call for a focus on food security 

producing agricultural goods on all available arable land. As a matter of fact, the European Union 

is currently importing food on a large scale and therefore a shift of environmental damages to 

outside of the union should be prevented (Fuchs et al. 2020). Thus, we have to ask ourselves whether 
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it is possible to make maize production less dependent on additional mineral fertilizer inputs, more 

efficient in the uptake and utilization of nutrients and therefore less vulnerable to fertilizer price 

rises. 

P as essential plant nutrient 

Plant nutrition cannot be ignored, when dealing with breeding for phosphate-efficient varieties. 

Justus von Liebig, a German pioneer in plant nutrition, acknowledged the importance of P as 

essential macronutrient already in the 19th century: if P availability is limited, plant growth is 

impaired (Liebig 1841). Therefore, it is of interest to know the characteristics of the different forms 

of P, which are to be found in plants and soil. 

P in plants 

P in living organisms occurs exclusively in the form of orthophosphates; it plays an essential role 

in the energy metabolism (e.g. adenosine triphosphate) and constitutes the backbone of DNA 

(Campbell and Reece 2009). At maturity, grains contain 90 % of the total P in the maize plant 

(Zhang et al. 2022), whereby the highest P uptake occurs around the silking stage (Ciampitti et al. 

2013). While inorganic phosphorus (Pi) in the form of phosphates is highly mobile in the plants 

(Pedersen et al. 2022), stored in the vacuoles (Rose and Wissuwa 2012) and transported via the 

xylem (Victor Roch et al. 2019), P in the seed is present as an organic compound, namely phytate 

(IP6, Figure 2).  

 

Figure 2 Structural chemical formula of phytate, an organic compound, anion of phytic acid and main storage form of P 

in the plants. 

In mature maize seeds, phytate accounts for 50 – 80 % of total P (Elgorashi Bakhite et al. 2021). 

Organic phosphorus (Po) – in contrast to metals and Pi – is mainly transported via the phloem to 

the seeds (Palmer and Guerinot 2009). Moreover, the ratio of IP6 to total P is strongly genotype-

dependent (Ragi et al. 2022) and low-phytate varieties have been successfully developed in the past 

due to this variation (Raboy 2002). Phytate as the phosphate storage molecule of plants will increase 

with elevated CO2 levels, which are to be expected in the future (Soares et al. 2021).  



Introduction 

5 

 

P in the soil 

P in the soil is extremely immobile (Bilyera et al. 2022). Its transport mainly works via diffusion 

and is therefore rather slow (Bello 2021; Kanno et al. 2016). In soils, we also distinguish an organic 

fraction and an inorganic fraction of P. Organic P usually represents 30 – 65 % of total soil P 

(Appelhans et al. 2021; Castagno et al. 2021). However, a large proportion of Po is locked in the 

form of phytate (Balaban et al. 2016; Figure 2). P is usually absorbed by minerals and therefore 

shows very low leaching. On the other hand, legacy P contents of soils are highly dependent on the 

slope and therefore soil erosion (VandenBygaart et al. 2021). Furthermore, Pi availability is mainly 

determined by the pH, with a neutral pH resulting in the highest availability (Joshi et al. 2021; Yu 

et al. 2021). Under an acidic pH, aluminum and iron compounds are formed, whereas a basic pH 

will lead to calcium and magnesium complexes. Thus, aluminum tolerance and phosphate 

efficiency are complementary breeding goals in highly weathered soils as for example prevalent in 

sub-Sahara Africa or South America (Leiser et al. 2014b; Magalhaes et al. 2007). P bioavailability 

is mainly determined by the soil conditions, but also by the plant species and plant nutritional status 

(Hinsinger 2001). Simply adding more P fertilizers does therefore not necessarily solve the problem 

of a low P availability in the soil.  

Roots – the interface between plant and soil: plant reactions to P deficiency 

P is taken up by the plants either directly as orthophosphates or indirectly via the mycorrhizal 

pathway (Ma et al. 2021; Bernardino et al. 2019; Victor Roch et al. 2019; Bovill et al. 2013). The 

vast majority of all plants uses the symbiosis with arbuscular mycorrhizal fungi to acquire nutrients 

in a more efficient way (Das et al. 2022). It is estimated that 90 % of the P requirement is covered 

by such symbioses (Liu et al. 2016). P deficiency can cause several phenotypic reactions such as a 

delay of flowering time, a reduced plant height, and lower yields (Leiser et al. 2015; Leiser et al. 

2012). It seems logical that the roots as interface between soil and plants show various reactions 

due to insufficient P supply. As a consequence of P deficiency, plants try to maximize the surface 

for plant-soil interactions by enhancing arbuscular mycorrhizal fungi symbioses as one strategy or 

root hair growth as another strategy. Comparing these two alternatives, a 33 % higher dependency 

on mycorrhiza compared to root hairs was reported for maize (Ma et al. 2021). However, breeding 

for colonization with arbuscular mycorrhizal fungi has not proven promising as it depicts a trait 

with a low heritability due to a low genetic variation (Leiser et al. 2016). Therefore, root architecture 

traits are more promising for selection as they have been shown to be highly correlated with the 

above-ground plant architecture in maize (Wu et al. 2022). P deficiency will lead to the shortening 

of primary roots and an increase of lateral roots since P is mainly present in the soil surface 

(Magalhaes et al. 2018). Next to the mentioned morphological changes as reaction to P deficiency, 

plants also undergo physiological and biochemical adaptations. Hereby, the phosphate transporter 

(PHT) gene family plays a crucial role. PHT genes are mainly expressed in the root cells (Zhang et 
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al. 2021a; Liu et al. 2016). As immediate reaction to P starvation, the Pi:H+ Co-Transporter PHT1 

genes are differentially regulated (Nussaume et al. 2011; Nagy et al. 2006). Summing up, roots play 

a paramount role in Pi acquisition, which is also highlighted by the findings of a consensus 

quantitative trait loci (QTL) study on low P tolerance in maize that found 17 of in total 23 QTL 

being related to root traits (Zhang et al. 2014).  

P concentration as central trait for phosphate efficiency breeding 

Leiser et al. (2014a) underlined that P concentration in the grain can serve as an easy and reliable 

measure for phosphate efficiency indicators. Assessing the P concentration in different tissues gives 

us, together with the amount of dry matter, information about how much P was taken up by the 

plants, how it is distributed, remobilized, and eventually utilized within the plant. Hence, we usually 

distinguish between phosphorus uptake efficiency (PUpE) and phosphorus utilization efficiency 

(PUtE) to characterize the phosphate efficiency of a crop. Generally, both components are 

interconnected, whereby PUpE is especially relevant in P limiting environments and PUtE is more 

important in high P conditions (Bello 2021; Bovill et al. 2013; Rose and Wissuwa 2012). In maize, 

PUpE accounted for 74 % of the phenotypic variance for phosphate efficiency (Parentoni and Souza 

Júnior 2008). After all, P concentration as single quantity has a limited information content. 

However, in combination with the yield quantities, we can derive the P content as product of P 

concentration and yield (Li et al. 2021a; Rose et al. 2016; Azevedo et al. 2015; Leiser et al. 2015; 

Ciampitti and Vyn 2014; Wissuwa and Ae 2001). Like this, we capture the total amount of P being 

removed from the field, which is – as mentioned earlier – the decisive parameter. An important 

question to ask is, whether we want to breed for high or low P concentrations and whether this 

varies in different contexts. High P concentration in plant biomass at harvest generally indicates a 

high P uptake efficiency, whereas an efficient genotype should show low P concentrations as a 

result of successful translocation to the grains (Leiser et al. 2015; Rose et al. 2016). For the grains 

however, high P concentrations are generally undesired (Ludewig et al. 2019; Wang et al. 2017). 

Phytate, which makes up the major part of total P in the grain, absorbs micronutrients and by this 

strongly inhibits iron and zinc uptake by humans (Akhtar et al. 2018). At the same time, P in the 

grain is essential during the germination of seeds and autotrophic nutrition phase for a successful 

establishment of the maize plant (Doria et al. 2009; Raboy et al. 2001). Having said this, the 

breeding for low phytate varieties in maize has not led to significant declines in seed quality 

parameters or key agronomic traits (Ragi et al. 2022; Elgorashi Bakhite et al. 2021). 

The last paragraphs have demonstrated the complexity of P nutrition, which we first have to be 

aware of when breeding for phosphate efficiency. Breeders also talk of a genotype-by-P-

environment nightmare since – as elaborated above – there are so many factors that influence P 

availability and it is a challenge to filter out genotypic responses from the environmental noise. 
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Maize – one of the big three 

Maize belongs with wheat (Triticum aestivum L.) and rice (Oryza sativa L.) to the most grown 

crops worldwide and is cultivated in Germany on an area of about 2.6 million hectares (German 

Maize Committee 2022). With the help of molecular data the introduction of maize into Europe can 

be reconstructed, revealing several separate introduction events right after the discovery of the New 

World (Rebourg et al. 2003). These independent introductions allowed for the adaptation of maize 

to different climates (Tenaillon and Charcosset 2011). Nowadays, maize is very widely adapted to 

different day lengths and temperatures (Liu et al. 2015). Transfer of elite lines within the same 

maturity groups is common practice in internationally operating maize breeding companies in order 

to broaden genetic pools (Steinhoff et al. 2012). 

Furthermore, maize breeding history is the favorite example to demonstrate the successful 

exploitation of heterosis (Duvick 2005; Hallauer 1999). The concept of modern hybrid breeding 

was independently developed by George Harrison Shull (Shull 1909) and Edward Murray East in 

the beginning of the 20th century. Hybrid seed production developed from double cross hybrids to 

single cross hybrids due to an improved yield potential of the parental inbred lines (Duvick 2001). 

As a basis, different heterotic pools have been established (e.g. Unterseer et al. 2016). The different 

kernel textures are one characteristic to assign individuals to heterotic pools. In Central Europe, 

Flint × Dent crosses represent the common breeding scheme for early to mid-late maturing hybrids 

(Barrière et al. 2006). Breeding progress in both pools over the last decades has been tremendous, 

also for the European Flint pool, which generally shows a narrower genetic basis compared to the 

Dent pool (Hölker et al. 2019b; Rebourg et al. 2003). 

Low temperatures as limiting factor 

As mentioned before, maize is very sensitive to cold temperatures especially in early growth stages 

and farmers are sowing their maize as early as possible to maximize the vegetation period and 

attempt to avoid other stresses (Yi et al. 2021). Therefore, cold tolerance remains an important 

breeding goal with no genes detected to predict for it in maize (Frascaroli and Revilla 2018). Studies 

on frost tolerance in different crops also confirmed a complex architecture of this trait, which is 

determined by multiple QTL (e.g. Shakiba et al. 2017; Liu et al. 2014; Galiba et al. 2009). Cold 

tolerance in maize is usually measured as emergence and seedling growth under cold temperatures 

(Revilla et al. 2000). In Europe, the selection of an ‘early allele’ along the northern Flint migration 

route took place while in warm environments this allele was eliminated due to its negative effects 

on plant size and yield (Tenaillon and Charcosset 2011). This is why individuals from the Flint pool 

show a better adaptation to cold conditions (Yi et al. 2021), which are prevalent during the sowing 

season in Central Europe. The maize field season in Germany usually lasts less than 6 months and 

focus in breeding activities is due to the abovementioned reasons also given to a good crop 

establishment (Figure 3, activity [3], [4] and [5]). 
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Figure 3 Field activities during the growing season in the maize nursery. Unmanned aerial vehicle images were taken by 

Alice-J. Reineke. 

A new era: the doubled haploid technology 

The advantages of developing homozygous inbred lines in an instantaneous way were soon 

identified but first faced several difficulties and thus were not implemented in breeding programs 

(Hallauer et al. 1988). For this purpose, haploids are induced, which in a subsequent step are 

doubled to derive completely homozygous lines (Geiger and Gordillo 2009). But only with the 

discovery and advent of higher haploid induction rates, maize breeding experienced a revolution 

with doubled haploid (DH) lines being developed in only two to three generations (Doubled haploid 

technology in maize breeding: theory and practice 2012). DH lines offer several benefits, above all 

higher selection gains per unit time by means of simplified logistics, rapid fulfillment of 

distinctness, uniformity and stability criteria, and greater efficiency and precision of selection in 

combination with the use of molecular markers (Geiger and Gordillo 2009; Röber et al. 2005). 

Nowadays, haploid induction rates with an inducer line used as pollen parent of on average 8 – 10 % 

are realized and identification of successful induction is facilitated by coloration markers or oil 

kernel content. Doubling of the chromosomal number is usually performed with colchicine 

treatment. As a last step, DH lines are recovered that can then be used in further breeding. The 

doubled haploid technology unfolds its full potential in combination with marker-assisted selection 

and year-round nurseries (Doubled haploid technology in maize breeding: theory and practice 

2012). Nowadays, in vivo doubled haploid production is part of most commercial breeding 

programs of maize. 
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Landraces – potential gold mines? 

Landraces represent a huge genetic variation (Figure 4). More than 10 000 accessions of maize are 

classified as populations and stored in European seedbanks from Austria to Yugoslavia (Lipman et 

al. 1997, Table 1). Unfortunately, with the overwhelming success of hybrids, landrace populations 

disappeared from the breeders’ radar. Producing DH line libraries from genetic resources was 

proposed as an approach to broaden the genetic basis of the Flint pool, as they offer rich genetic 

diversity in an adapted background (Würschum et al. 2022; Brauner et al. 2019; Böhm et al. 2017; 

Melchinger et al. 2017; Wilde et al. 2010). In doing so, heterogeneous landrace populations 

composed of heterozygous genotypes are purged from their high genetic load and thereby rapidly 

made available for breeding (Melchinger et al. 2017). It has to be considered, however, that the 

costs to produce DHs from landraces are three times higher than obtaining to DHs from elite 

material (Böhm et al. 2017). Having said this, if compared to maintenance costs of seed banks, the 

costs for producing DH libraries only moderately exceed these (Melchinger et al. 2017). 

Nevertheless, resources must be allocated effectively by first choosing the most promising 

landraces for DH production. Subsequently, the best performing DH lines from landraces should 

be identified for further breeding (Böhm et al. 2017). Testcross performance of DH lines from 

landraces suggest that they cannot be used as hybrid parents immediately but have to undergo 

backcrossing or other pre-breeding beforehand (Wilde et al. 2010). However, if landraces are 

carefully chosen before DH production, testcross performance of DH lines from landraces showed 

comparable results to elite lines (Brauner et al. 2019). Since the genetic variance within landraces 

was reported to be by far higher than among different landrace populations, it is recommended to 

rather focus on a few landraces and sample them intensively than producing a few DHs from many 

different landraces (Böhm et al. 2017). The mining of landrace haplotypes is promising since more 

than a quarter of haplotypes could not be found in elite breeding lines (Mayer et al. 2020). 

Moreover, landraces are perfectly suited to be used in genome-wide association studies (GWAS). 

Through their rapid decay of linkage disequilibrium, they allow for a high mapping resolution 

(Würschum et al. 2022). 

The allelic diversity hidden in landraces may assist the breeding for cold tolerance and the crop 

establishment at early growth stages by being made available as DH libraries (Hölker et al. 2019a; 

Mayer et al. 2020). Other traits for which a narrow genetic basis exists in breeding material, like 

for instance phosphate efficiency, could also benefit from retrieved genetic variation of maize 

landraces. 
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Figure 4 Phenomena observed in a diverse set of maize doubled haploid lines from landraces. Leaf colorations, tillering, 

flower abnormalities, lack of resistance to diseases and lodging are likely to be encountered. 

 

Maize breeding in Europe is dominated by a few large seed companies. The improvement of 

phosphate efficiency has not yet been in the focus of their breeding activities. Due to root system 

differences, maize generally has a lower phosphate efficiency compared to wheat and rice (Yu et 

al. 2021). In particular, the supply of maize with P during early growth stages is relevant, when root 

systems are not yet fully developed and the switch to heterotrophic nutrition takes place (Lu et al. 

2020). Having seen the many factors determining P availability for maize plants, the most important 

factor influencing the maize yield response to P and therefore phosphate efficiency is the variety 

(Yan et al. 2021). Hence, it seems reasonable, particularly in the setting of sharply rising fertilizer 

prices, to put a focus on breeding for nutrient-efficient maize varieties.  

Objectives of this thesis 

The goal of this thesis was to investigate phosphate efficiency in maize in a European context. In 

particular, we wanted to answer the following research questions: 

(1) Which genetic variation exists in commercial maize hybrids to make them less dependent 

on extra P fertilizer inputs?  

(2) How can traits for phosphate efficiency be cost- and time-efficiently predicted in breeding 

programs?  

(3) Do doubled haploid lines from European landraces harbor valuable genetic variation for 

phosphate efficiency traits?  

(4) What should breeding programs focusing on phosphate efficiency take into consideration?   
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Figure 5 Graphical excerpt of publication 1. Different starter fertilizers were applied to commercial maize hybrids. 

Mainly the early development of maize, namely the four- to six-leaf stage (V4 – V6), was affected by starter fertilizers. 

We observed a negligible G×P interaction, but a strong environmental effect, especially with regard to cold and wet 

conditions.  
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Abstract

Phosphorus (P) is an essential macronutrient for plants, but also a limited resource world-

wide. Strict regulations for fertilizer applications in the European Union are a consequence

of the negative environmental effects in case of improper use. Maize is typically grown with

the application of P starter fertilizer, which, however, might be reduced or even omitted if

suitable varieties were available. This study was performed with the 20 commercially most

important maize hybrids in Germany evaluated in multi-location field trials with the aim to

investigate the potential to breed for high-performing maize hybrids under reduced P starter

fertilizer. At the core location, three starter fertilizers with either phosphate (triple superphos-

phate, TSP), ammonium nitrate (calcium ammonium nitrate, CAN), or a combination of

ammonium and phosphate (diammonium phosphate, DAP) were evaluated relative to a

control and traits from youth development to grain yield were assessed. Significant differ-

ences were mainly observed for the DAP starter fertilizer, which was also reflected in a yield

increase of on average +0.67 t/ha (+5.34%) compared to the control. Correlations among

the investigated traits varied with starter fertilizer, but the general trends remained. As

expected, grain yield was negatively correlated with grain P concentration, likely due to a

dilution effect. Importantly, the genotype-by-starter fertilizer interaction was always non-sig-

nificant in the multi-location analysis. This indicates that best performing genotypes can be

identified irrespective of the starter fertilizer. Taken together, our results provide valuable

insights regarding the potential to reduce starter fertilizers in maize cultivation as well as for

breeding maize for P efficiency under well-supplied conditions.

1 | Introduction

Phosphorus (P) is a globally limited reserve [1]. There are varying predictions of how long

phosphate rock reserves will last, but most studies anticipate a time frame between 100 and

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250496 April 22, 2021 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Weiß TM, Leiser WL, Reineke A-J, Li D,

Liu W, Hahn V, et al. (2021) Optimizing the P

balance: How do modern maize hybrids react to

different starter fertilizers? PLoS ONE 16(4):

e0250496. https://doi.org/10.1371/journal.

pone.0250496

Editor: Kandasamy Ulaganathan, Osmania

University, INDIA

Received: November 20, 2020

Accepted: April 8, 2021

Published: April 22, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0250496

Copyright:© 2021 Weiß et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

12

https://orcid.org/0000-0002-9809-6340
https://doi.org/10.1371/journal.pone.0250496
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0250496&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1371/journal.pone.0250496
https://doi.org/10.1371/journal.pone.0250496
https://doi.org/10.1371/journal.pone.0250496
http://creativecommons.org/licenses/by/4.0/


400 years [2]. Moreover, P reserves are unevenly distributed across the globe [3] and often con-

taminated with heavy metals [3, 4]. In living organisms, phosphorus always occurs in the form

of phosphates (Pi) and plays an essential role as a component of the DNA, cell membranes,

and coenzymes as well as in the energy transfer processes of cells. Thus, P is deemed one of the

most important macronutrients for plants [5].

Maize (Zea mays L.) is one of the three major staple foods worldwide with a cultivated area

of around 194 million hectares in 2018 [6], of which Germany grows more than 2.6 million ha,

primarily for silage usage [7]. It is common agricultural practice since the 1980s in industrial-

ized countries to apply starter fertilizers in maize cultivation, specifically combinations of

ammonium and phosphate [8–10]. Germany, for instance, used over 90.8 Mt of P fertilizer in

2017 [11]. However, the known negative environmental effects [12, 13] due to an inappropri-

ate use of fertilizers—in its worst form, the eutrophication of surface water by run-off and

leaching into drainages or deeper soil layers–have gained increasing attention in the public

perception and the shaping of agricultural policies [14, 15]. Recently, the Farm to Fork Strategy

of the European Union was released, which aims for a reduction of nitrogen and phosphate

fertilizers of 20% by 2030 [16]. In Germany, a new fertilizer ordinance has been introduced,

dictating the documentation of nitrogen and phosphate fertilizer usage for the whole farm; fer-

tilizer applications are restricted depending on the overall nutrient removal of each crop [17].

Several studies have shown that P in Europe is sufficiently to abundantly available on agricul-

tural lands [18]. This holds specifically true for agricultural businesses that have a surplus of

organic fertilizers available, namely livestock- and biogas-based farms [19, 20]. In many cases

however, the abundant P is fixed by minerals and therefore not fully available for plants [21].

Taking these facts together, it now appears timely and reasonable to breed for an optimized

use of phosphate fertilizers in maize in order to achieve an improved ecological footprint.

Phosphate-use-efficiency (PUE) is classically defined either as high P concentrations of the

harvested organs due to a higher P uptake of the roots or as increased yields per given unit P

due to a better internal utilization of the available P [22–24]. In previous studies, it was shown

that the traits early vigor, early-season plant height, flowering, and yield react to P deficiency

in sorghum and can thus be considered as P-sensitive traits [23]. Conversely, starter fertiliza-

tion in maize may lead to an increase in grain yield of 4.5% in comparison with broadcast fer-

tilization [25].

Nevertheless, little is known about the reaction of modern maize hybrid varieties to differ-

ent starter fertilizers. We therefore conducted a field trial with 20 modern maize hybrids evalu-

ated at five locations within Germany under a control (Co) and three different starter

fertilizers treatments, i.e. phosphate (triple superphosphate, TSP), ammonium nitrate (calcium

ammonium nitrate, CAN), or a combination of ammonium and phosphate (diammonium

phosphate, DAP). In particular, our objectives were to (i) assess the variation in the response

to different P starter fertilizers in maize cultivation, (ii) evaluate the genotype-by-starter fertil-

izer interaction, (iii) identify high-yielding and P-stable maize hybrids, and (iv) draw conclu-

sions for maize breeding.

2 | Material and methods

2.1 | Plant material

For this study, the 20 commercially most important maize hybrids in Germany were chosen.

They belong to eight breeding companies and the vast majority represents the mid-early matu-

rity group (FAO 200–270). All varieties are suited for grain or corn-cob-mix utilization and

were harvested as grain maize. Moreover, all seeds were treated in the standard way of each

company (S1 Table).
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2.2 | Field trial

We applied four treatments, i.e. a control (Co: 0% N/ 0% P), and the three different starter fer-

tilizers triple superphosphate (TSP: 0% N/ 20% P), calcium ammonium nitrate (CAN: 26%

N/ 0% P), and diammonium phosphate (DAP: 18% N/ 20% P). The field design was laid out as

an alpha-lattice (5×4) using the software CycdesigN [26]. Genotypes were replicated twice per

starter fertilizer treatment and the trial was conducted at five different locations. Hohenheim

served as core location with the control and all three different starter fertilizers. All other loca-

tions comprised the control and either TSP or DAP, resulting in total in three locations with

TSP, three with DAP, and one with CAN (S2 Table). The weather data including soil tempera-

tures in Hohenheim (S1 Fig) for the calendar year 2019 [27] was characterized by an extraordi-

nary cold phase in May right after sowing the trial, which led to a delayed emergence. The

altitude of the field locations ranged from 56 to 561 m above sea level, the average temperatures

varied from 8.7 to 11.7˚C, and the average annual precipitation amounted to 661 to 857 mm in

2019. All locations were thoroughly characterized regarding their soil properties and phospho-

rus status before the trial started (Table 1). The P status of the soils was analyzed according to

the method for plant available P by the Association of German Agricultural Analytic and

Research Institutes (VDLUFA). Phosphates were extracted with 100 mL solution of calcium

acetate, calcium lactate and acetic acid buffered to pH 4.1 from 5 g air-dry soil followed by a

photometric determination [28]. It is crucial to notice that all investigated soils showed levels of

plant available P between 7.7 and 20.5 mg P/100g soil, therefore showing high to very high P

availability according to the P-content-classes defined by the VDLUFA [29]. Overall, best agri-

cultural management practice was followed, adapted to the individual agronomic demands of

each location (e.g. Trichogramma treatment, herbicide application, etc.). The field season

across locations ranged from 23rd of April to 29th of October 2019, sowing densities ranged

from 8.8 to 10 plants/m2, and plot sizes from 7.5 to 18 m2 (for the latter only the middle rows

were considered for grain harvest) according to the local standard practice (S3 Table).

2.3 | Phenotypic data

During the field season 2019, the following traits were assessed: plant height at up to four dif-

ferent developmental stages (PH, cm), ear height (EH, cm), days to anthesis (DTA, days after

sowing, abbreviated as DAS), days to silking (DTS, days after sowing), anthesis-silking-interval

Table 1. Description of the locations.

Altitude [m

ASL]

Ø Temp.�

[˚C]

Ø Precip.�

[mm]

Soil type pH P2O5 [mg/100g

soil]

P [mg/100g

soil]

Classification of P

availability��

Hohenheim

(HOH)

402 10.6 857 Silty Loam 6.79 21.1 9.2 D

Eckartsweier

(EWE)

142 11.7 783 Clayey Loam 6.54 19.2 7.7 D

Dettingen (DET) 561 9.1 661 Clayey Loam 7.33 52 20.5 E

Einbeck (EIN) 124 8.7 679 Clayey Loam 6.85 19.5 7.7 D

Saerbeck (SAB) 56 9.3 789 Strongly Loamy

Sand

5.75 24.7 10.7 D

Including altitude, weather data (mean temperature, mean precipitation), soil type, and pH. According to the P status, the ’Classification of P availability’ of the soils can

range from A (very low) to E level (very high).

� Data for locations in Baden-Württemberg retrieved from <www.wetter-bw.de>, for locations outside of Baden-Württemberg retrieved from <climate-data.org>

�� According to VDLUFA-P-content-classes (A = very low, E = very high) defined by the Association of German Agricultural Analytic and Research Institutes (Verband

Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten).

https://doi.org/10.1371/journal.pone.0250496.t001
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(ASI, days), grain dry matter content (GDM, %), grain yield (GY, t/ha), P grain concentration

(Pconc, mg/kg), and P grain content (Pcont, kg/ha; calculated as GY�Pconc/1000). Details of

how the traits were scored are provided in S4 Table. In case a trait was not measured at a loca-

tion, the data were treated as not available (NA).

2.4 | Statistical analyses

First, we checked the quality of the phenotypic data of all traits on the single location level. The

statistical model for this analysis was:

yij ¼ mþ gi þ rj þ ℇij; ð1Þ

where yij stands for the trait value of the i-th genotype in the j-th replicate; μ denotes the overall

mean, gi the effect of the i-th genotype, rj the effect of the j-th replicate and ℇij the residual.

Outlier detection was performed on the single location level applying the Bonferroni-Holm

method [30].

In a second step, the analysis was performed across locations and the mixed model of the

single location analysis was extended to the full model:

yijkl ¼ mþ ti þ gj þ lk þ ðtgÞij þ ðtlÞik þ ðglÞjk þ ðtglÞijk þ rikl þ ℇijkl ð2Þ

where yijkl stands for the trait value of the j-th genotype at the k-th location in the l-th replicate

grown under the i-th starter fertilizer; μ denotes the overall mean, ti the effect of the i-th fertil-

izer treatment, gj the effect of the j-th genotype, lk the effect of the k-th location, (tg)ij, (tl)ik,
(gl)jk represent the corresponding two-way interaction terms, (tgl)ijk the three-way interaction

term, rikl refers to the replication nested within the location and each starter fertilizer, and ℇijkl
is the residual term. As for the single location analysis, all factors were treated as random to

estimate the variance components except for the general mean and the starter fertilizer treat-

ment which entered the model as a fixed factor for calculations across starter fertilizers. Signifi-

cance of variance components was tested by likelihood ratio tests. Repeatabilities (r2) and

broad-sense heritabilities (H2) respectively were calculated after the concept of the generalized

heritability measure [31, 32] with H2 ¼ 1 � Att=ð2s
2
gÞ, where H2 denotes the generalized heri-

tability, Att the average pairwise prediction error variance for the genotypic term, and s2
g the

genotypic variance estimate.

Best Linear Unbiased Estimates (BLUEs) were obtained for each of the investigated 20

hybrid varieties by considering the factor genotype as a fixed effect in the mixed model. All

subsequent analyses were based on these BLUEs. Statistical analyses were performed with

RStudio [33] and mixed model analyses were performed with ASReml-R [34]. In addition, the

R-packages ‘asremlPlus’ [35] served for the calculation of information criteria for model selec-

tion, ‘agricolae’ [36] for the performance of significance tests, and ‘multtest’ [37] for outlier

detection. Under R version 3.6.2 the R-packages ‘ggpubr’ [38], ‘gplots’ [39], and ‘qgraph’ [40]

were used to produce plots.

3 | Results

3.1 | Response of traits to different starter fertilizers

The field trial underlying this study was based on five locations. Importantly, these can all be

classified as having a high to very high P availability (Table 1). For all investigated traits, medium

to very high repeatabilities were observed on the single location level. The lowest repeatabilities

were found for grain yield with a minimum of 0.35, whereas grain dry matter content showed

the highest values with a maximum of 0.98 (S5 Table). The phenotypic distributions and the
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mean trait values revealed that if there was an effect of the starter fertilizer, it was usually the

DAP treatment that exhibited this effect (Fig 1 and S2 Fig). Regarding the early plant height

measurements, the control always showed the lowest mean, but only the DAP treatment

resulted at youth stage in significantly taller plants than the control (Fig 1a). The response

observed for plant height illustrates that the youth developmental stages are generally enhanced

by the application of starter fertilizers. However, these differences diminished in the course of

the field season and were not significant any more for the final plant height measurement. Nev-

ertheless, ear height measurements resulted in significantly different means depending on the

starter fertilizer (S2 Fig). The anthesis-silking-interval shortened from a mean of 0.65 days in

the control and TSP to a mean of 0.40 days in the DAP treatment. These differences were statis-

tically non-significant, but it must be noted that the ASI was very narrow for all 20 hybrids and

only ranged between -1 and 4 days. Similarly, grain dry matter content was slightly higher in

the DAP treatment with a mean of 69.40% compared to 68.15% in the control, indicating a

faster maturity process in the treatments with starter fertilizer. These trends, even though they

did not lead to significant differences, are in agreement with the significant differences

observed for male and female flowering (S2 Fig). The DAP-fertilized varieties flowered signifi-

cantly (p-value< 0.05) earlier (mean DTA = 83.03 DAS; mean DTS = 83.43 DAS) than the

control (mean DTA = 84.80 DAS; mean DTS = 85.45 DAS), and also the TSP treatment (mean

DTA = 83.75 DAS; mean DTS = 84.40 DAS) flowered approximately one day earlier than the

control. For grain yield, the DAP treatment once again contrasted with the other treatments,

yielding on average 13.21 t/ha, while the control showed a mean of 12.55 t/ha. In accordance

with the results for grain yield, the highest P content was found for DAP with a mean of 31.61

kg/ha. P content showed only a significant difference (p-value < 0.05) between the DAP and

CAN (mean Pcont = 29.60 kg/ha) starter fertilizer treatments. The P concentration of the

grains, by contrast, showed no significant differences among the four treatments (S2 Fig).

3.2 | Relationships among traits dependent on the starter fertilization

The network plots visualized the correlations among the investigated traits dependent on the

starter fertilizer (Fig 2). While there were differences, the general patterns remained the same.

Grain yield, for instance, was always negatively correlated with P concentration, which can

probably be attributed to the effect of dilution. Independent of the starter fertilizer, the early

plant heights PH1, PH2, and PH3 (measured 53, 59, and 63 DAS, respectively) were closely

related (0.75< r< 0.95; p-values<0.01) but are no predictor for the final plant height (mea-

sured 94 DAS), nor grain yield. Another consistent triangle observed throughout the different

treatments was the highly positive correlation between the male and female flowering times

(r> 0.9, p-values < 0.001), which were always strongly negatively (r> -0.87, p-values < 0.01)

correlated with grain dry matter (S3 Fig). Moreover, there was a significant positive association

between the anthesis-silking-interval and the final plant height as well as between the P grain

concentration and the P grain content.

We further analyzed the relationships between the maize kernel content of 16 chemical ele-

ments in the Co, TSP, and DAP treatment of the core location Hohenheim (S4 Fig). This

revealed close positive correlations of phosphorus with magnesium, manganese, potassium,

sulfur, and zinc.

3.3 | Identification of P sensitive and P stable genotypes across multiple

locations

Having observed an effect of the starter fertilizer on some traits, the question arises whether

the overall ranking of the varieties changes, i.e. whether there is a genotype-by-starter fertilizer
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Fig 1. Response of different traits to starter fertilizers. Control (Co, grey), triple superphosphate (TSP, purple), calcium ammonium nitrate (CAN,

blue), diammonium phosphate (DAP, red). (a) Density plots of plant height distributions at four different time points (PH1, PH2, PH3, PHfinal). (b)

Histograms of anthesis-silking-interval (ASI), grain dry matter (GDM), grain yield (GY), and P content (Pcont). Different letters indicate significant (p-

value< 0.05) differences between starter fertilizer means.

https://doi.org/10.1371/journal.pone.0250496.g001
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interaction. This knowledge is essential for the choice of variety by the farmer but also to

choose appropriate conditions for genotype selection in breeding. The rank changes across the

four different starter fertilizer treatments in Hohenheim demonstrated a rather parallel shift of

the performance for grain yield and P content (Fig 3). The genotype-by-treatment interaction

was non-significant for grain yield (p-value = 0.46). Thus, the best performing varieties under

starter fertilizer application tend to be also among the best performing varieties in the control.

Likewise, the trait P content signifying the removal of P from the field showed no significant

genotype-by-treatment interaction (p-value = 0.30).

This observation, made for the core location Hohenheim, was confirmed in the series

across locations, for which the genotype-by-starter fertilizer interaction in the analysis of vari-

ance was never significant for any observed trait (S6 Table). The heritabilities in the series

were very high except for grain yield and the trait P content derived from it. This is likely due

to the highly quantitative nature of grain yield, the rather small genotypic variation in this elite

material and the observed strong genotype-by-location interaction. Again, the differentiation

Fig 2. Associations among the investigated traits dependent on the starter fertilizer. Control (Co, grey), triple

superphosphate (TSP, purple), calcium ammonium nitrate (CAN, blue), diammonium phosphate (DAP, red).

Network plots showing anthesis-silking-interval (ASI), days to anthesis (DTA), days to silking (DTS), ear height (EH),

grain dry matter content (GDM), grain yield (GY), P grain concentration (Pconc), P grain content (Pcont), and plant

heights (PH1, PH2, PH3, PHfinal). Positive Pearson correlations (r) are indicated in green, negative Pearson

correlations in red.

https://doi.org/10.1371/journal.pone.0250496.g002
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was more pronounced in the comparison between DAP and the control than between TSP

and the control.

Interestingly, the origin of the variety in the sense of the eight different breeding companies,

did not lead to a consistently similar behavior with regard to the investigated traits under dif-

ferent starter fertilizers (S5 Fig). From a practical farming point of view, the most interesting

question is how the different varieties perform with regard to grain yield under control and

starter fertilizer conditions. Therefore, relative grain yields under TSP or DAP starter fertilizer

were plotted against the relative grain yield of the control for each location (Fig 4). Varieties in

quadrant I (highlighted upper right) of the plot can be defined as stably above- average-yield-

ing P-utilizers, whereas varieties in quadrant III (bottom left) are relatively low-yielding inde-

pendent of their P-supply. Varieties located in the quadrants II and IV can be considered P-

sensitive genotypes, as they will show above-average yields with starter fertilizer but not in the

control or vice versa, respectively. In line with the small genotype-by-treatment interaction,

most varieties showed either below-average or above-average yield performance no matter

which starter fertilizer they were grown under. By comparing the relative performance of all

varieties in each treatment-location-combination, we identified the consistently best varieties.

For the TSP-series, three varieties were in quadrant I at each location (AGROPOLIS_AM,

AMAVERITAS_AM, WALTERINIO_KWS) and for the DAP-series also three varieties

(AGROPOLIS_AM, FIGARO_KWS, SY_TALISMAN). Only the variety AGROPOLIS_AM

was in this high-yielding quadrant at each location-treatment combination.

From a breeding point of view, it is also interesting to identify the most P-independent

genotypes. While the analysis of the relative performance in the control and the starter fertil-

izer treatments already provided some indication to this, genotypes may be above average for

both treatments, but still show a substantial reduction in grain yield when the starter fertilizer

is omitted. The most interesting candidates are those showing the least reduction between

starter fertilizer and control, while at the same time having a high yield. We therefore analyzed

Fig 3. Visualization of the genotype-by-starter fertilizer interaction. Boxplots for grain yield (GY) and P grain content (Pcont) by starter fertilizers: control

(Co, grey), triple superphosphate (TSP, purple), calcium ammonium nitrate (CAN, blue), diammonium phosphate (DAP, red). Interaction terms are

visualized by connecting trait values of the same varieties with a grey line. Note that for the sake of clarity lines are only drawn between every other treatment.

Different letters indicate significant (p-value< 0.05) differences between starter fertilizers means.

https://doi.org/10.1371/journal.pone.0250496.g003
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Fig 4. Scatterplots of each starter fertilizer-location combination. Relative grain yield (rel. GY [%]) in the control vs. triple

superphosphate (TSP, purple) or vs. diammonium phosphate (DAP, red), respectively. Quadrants are counted starting from the

highlighted one as I (stably above- average-yielding P-utilizers) in an anti-clockwise manner to IV (II and IV indicate P-sensitivity).

The varieties which in all three locations were located in Quadrant I are highlighted in bold and color. Locations are abbreviated as

follows: Hohenheim (HOH), Eckartsweier (EWE), Dettingen (DET), Einbeck (EIN), and Saerbeck (SAB).

https://doi.org/10.1371/journal.pone.0250496.g004
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for each variety the reduction in grain yield and P concentration between the DAP or TSP

starter fertilizer and the control across locations. This revealed the trend that if grain yield is

strongly reduced without starter fertilizer, this generally goes in line with a reduced P content

(Fig 5), while the P concentration does not significantly (p-value < 0.05) differ among the

starter fertilizer treatments. Also, varieties that performed consistently above-average, like for

instance AGROPOLIS_AM, can nonetheless show proportionally strong reductions without

starter fertilization.

4 | Discussion

This study was performed to investigate the effect of different starter fertilizers on current

maize hybrids in Germany. The application of starter fertilizer is common practice in maize

cultivation, but whether there are genotypes for which it can be omitted has not been thor-

oughly investigated yet. Now, however, that the application of fertilizers in agriculture, includ-

ing the associated negative environmental effects, has come under focus and is becoming

increasingly restricted, this question has gained social and political relevance and warrants sci-

entific answers. We therefore screened the top 20 market leaders of German maize hybrid vari-

eties in five locations under DAP (N+P), TSP (P), CAN (N) and Co (no) starter fertilization to

assess potential P fertilizer reductions, evaluate the underlying genotypic components, identify

superior genotypes regarding P supply, and draw conclusions for practical maize breeding.

Fig 5. Relative differences for each hybrid variety. Grain yield (GY) and P content (Pcont) are based on best linear unbiased

estimators (BLUEs) across locations between the fertilized treatment (purple: triple superphosphate (TSP); red: diammonium

phosphate (DAP)) compared to the control. The darker the coloration, the stronger the reduction.

https://doi.org/10.1371/journal.pone.0250496.g005

PLOS ONE Optimizing the P balance in maize hybrids

PLOS ONE | https://doi.org/10.1371/journal.pone.0250496 April 22, 2021 10 / 17

21

https://doi.org/10.1371/journal.pone.0250496.g005
https://doi.org/10.1371/journal.pone.0250496


4.1 | P as starter fertilizer and its interaction with other plant nutrients

The importance of a balanced nutrient management and specifically the role of nitrogen in fer-

tilization is well known [5]. The results obtained in our study suggest a synergetic effect of a

co-starter-fertilization of ammonium and phosphate. This combination had the strongest

effect on early plant height measurements and thus youth development, and led to yield

increases compared to the control treatment (Figs 1 and 3). Even though yield clearly repre-

sents the most important trait for the farmer, a successful youth development in farmers’ fields

is not to be underestimated. Interestingly, DAP starter fertilization also resulted in a slight

increase of the P content, thus the amount of P that was successfully taken up by the plants

and that is eventually removed from the field. This effect was extensively observed in former

studies [25] and can be explained by the acidification ammonium causes in the soil, which

enhances P uptake [25, 41]. More precisely, local ammonium supply stimulates the extension

of the root system [42], which is caused by the accumulation of the plant hormone auxin [43].

In general, the soil conditions e.g. pH, anion and metal concentrations [21] as well as the effect

of the previous crop and the crop rotation strongly impact the bioavailability of P in the rhizo-

sphere [44]. In which combination P is given to the maize plants seems to be crucial for its suc-

cessful conversion in the plant. The CAN treatment does not appear to unleash the available P

in the soil, which is likely due to its lower acidifying potential compared to DAP [45].

Another interesting aspect when talking about the relationship of P with other plant nutri-

ents is the consistent positive relationship of phosphorus with manganese, magnesium, potas-

sium, sulfur, and zinc observed across all starter fertilizers (S4 Fig), which prevails also when

looked at each starter fertilizer separately. Previous studies confirmed that potassium, manga-

nese and magnesium were highly positively correlated with P in maize grains [46]. This under-

lines the need to check for example for a sufficiently high magnesium status of the fields,

which—in case it is limited—should be applied as an efficient fertilizer combination as cus-

tomary in trade. Taken together, these observations highlight the importance to keep in mind

other nutrients besides P that promote maize youth development. When working on the

improvement of phosphate-use-efficiency, we also have to consider the overall nutritional sta-

tus in the soils, also with regard to suitable co-fertilization strategies and even planning of crop

rotations, which determine the whole cropping system.

4.2 | Potential for optimizing the P balance on well-supplied soils

It is paramount to emphasize that all trial locations showed no P deficiency of the soils. By con-

trast, all soils can be classified as rich to very rich soils with regard to P availability (Table 1).

For all further considerations, we therefore have to keep in mind that the starter fertilizer treat-

ments took place on fields with an overall very good nutrient availability. While some parts of

the world are challenged with P-deficient soils, in Germany this situation of well-supplied soils

is rather the rule than the exception [18, 47]. Different studies underlined that current P stocks

in the soils in Europe allow for sufficient P supply of the crops for several years with zero fertil-

ization [18, 48]. In practical farming, the application of starter fertilizers is often simply condi-

tioned by the availability of the corresponding sowing technique. Our results showed that only

the combination of ammonium and phosphate (DAP) as starter fertilization resulted in signifi-

cantly higher grain yields by on average +0.67 t/ha at the core location Hohenheim (Figs 1b

and 3), as well as on average +0.4 t/ha over multiple locations, which corresponds to an

increase of +5.34% and +3.6%, respectively (S6 Table). By contrast, the yield increase using

only phosphate (TSP) as starter fertilizer only amounted to +1.2% across multiple locations.

Thus, the commonly applied combination of ammonium and phosphate as starter fertilizer

does have a positive effect on maize yield, at least on average across all 20 hybrid varieties.
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Notably, however, performance without starter fertilizer has not been a breeding goal to date.

Hence, there is a certain potential to reduce or omit P starter fertilizers and thereby gain lee-

way in the farm nutrient balance, even if this may come at the price of potential minor reduc-

tions in grain yield. At the same time, P surpluses on a farm but also on a regional level are or

will be in the future restricted and fined by law, which makes it worthwhile for the farmer to

thoroughly weigh additional fertilizer versus additional yield. We conclude that meaningful

phosphate-use-efficiency in the context of well-saturated soils should be defined ideally as only

minor yield reductions without extra P fertilization given as starter fertilizer.

4.3 | How to breed for phosphate-use-efficiency?

Two aspects determine if breeding of maize hybrids with a reduced need for starter fertilizer is

possible and how it can be pursued. First, we need genetic variation regarding the response to

reduced or no starter fertilizer, so that lines with no or only a minimal reduction in growth

and yield can be selected. If so, the genotype-by-starter fertilizer interaction will determine

under which conditions selection should be performed.

Our results show that there is variation regarding the response to starter fertilizer and thus

the potential to omit it. Identifying and selecting genotypes that are high-yielding and main-

tain above-average performance regardless of the starter fertilization, is thus possible and can

be considered a meaningful goal for breeding in Germany. As described in the literature [49],

we also observed a shift of flowering dates due to the different starter fertilizers (S2 Fig). Gen-

erally speaking, the better the soil is supplied with P, the earlier the flowering takes place. In

our case, however, this shift only amounted to less than one day and is of no practical

relevance.

We observed neither a significant genotype-by-starter fertilizer interaction for the trait

grain yield nor for P content (Fig 3). This suggests that breeders can select P-efficient lines

independent of the soil P-status since generally the best genotypes perform the best no matter

with or without starter fertilization. Nonetheless, further research is required to investigate

whether this also holds true for soils with lower P availability than investigated in this study.

With the expected restrictions for P fertilizer inputs ahead, breeders should still target to select

under no P starter fertilizers conditions for obtaining better adapted material with regard to

phosphate-use-efficiency.

For breeding purposes, more genotypes should be screened in more locations, including

poorer P availability classes, and more importantly, the trials should be carried out in more

years. It is known from other studies that the effect of starter fertilizers is extremely dependent

on the environment [24, 50] and on the year [9]. As pointed out, the early phase of the field

season in 2019 was extraordinary wet and cold (S1 Fig). The application of starter fertilizer

may buffer against such adverse events and thus provide a kind of insurance for the farmer.

This potential positive effect must be weighed against legal regulations restricting fertilizer use

per farm. Obviously, the availability of varieties that do not require this external buffer in the

form of starter fertilizer, but have a strong youth development and can cope with a certain

level of abiotic stress genetically, would be an important means to reduce P input in our agri-

cultural systems. More and more seed treatments that enhance the mobilization of P in the

soils are currently entering the market and show additional ways of how a sustainable opti-

mized P balance can be achieved in the future.

5 | Conclusions

Our study revealed that starter fertilizer treatments have a rather limited effect on grain yield

but mainly show a positive effect on the youth development of maize. Breeding for phosphate-
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use-efficiency in the context of well-supplied soils, as present for example in Germany, should

focus on genotypes that maintain high absolute grain yields even with a reduction of P inputs

to zero. Selection of such phosphate-use-efficient varieties appears possible without taking the

P level of the soil into account, since no substantial genotype-by-starter fertilizer interaction is

expected under the P-rich soil conditions to be mostly found in Germany. In order to fulfill

the clear social and political will of reducing fertilizers, plant breeding should contribute its

part and provide varieties that allow the desired reduction of fertilizers without major financial

disadvantages for the farmers.

Supporting information

S1 Table. Detailed description of hybrid varieties. Information of all 20 hybrids investigated

in the field season 2019, including the breeding company, maturity (FAO groups go from

early 170–220 to late 300–350), the main utilization (’B’ denoting biogas, ’CCM’ corn-cob-mix,

’G’ grain and ’S’ silage), and the companies standard seed treatment. The year of registration is

given according to the federal plant variety office.

(PDF)

S2 Table. Starter fertilizer-location combinations. Control (Co), triple superphosphate

(TSP), calcium ammonium nitrate (CAN), diammonium phosphate (DAP). In brackets the

nitrogen and phosphorus content are given in percent.

(PDF)

S3 Table. Maize cultivation parameters. Given for the field season 2019 in each location.

(PDF)

S4 Table. Detailed description of trait assessments. Same methods were applied for all loca-

tions.

(PDF)

S5 Table. Repeatabilities in the single locations. Traits are abbreviated as follows: Plant

height<55 days after sowing (DAS)(PH1), Plant height 56–60 DAS (PH2), Plant height 61–65

DAS (PH3), Plant height 66–70 DAS (PH4), Plant height 71–75 DAS (PH5), Plant height >75

DAS (PHfinal), ear height (EH), all measured in cm; days to anthesis (DTA) and days to silk-

ing (DTS), indicated in DAS; anthesis-silking-interval (ASI) in days; grain dry matter content

(GDM) in percent; grain yield (GY) in tons dry matter/ha; Phosphorus grain concentration (P

conc) measured with X-ray fluorescence in mg P/kg dry matter; and Phosphorus grain content

(P cont) in kg P/ha. Control (Co, grey), starter fertilizers: triple superphosphate (TSP, purple),

calcium ammonium nitrate (CAN, blue), diammonium phosphate (DAP, red).

(PDF)

S6 Table. Summary of the statistical analyses in the series. (i) Control (Co) vs. triple super-

phosphate (TSP) and (ii) Control (Co) vs. diammonium phosphate (DAP): Values are given

for within each starter fertilizer treatment (indicated with Co, TSP, DAP, respectively) as well

as across both starter fertilizer treatments. Minimum (Min), Mean, and Maximum (Max) is

given based on the best linear unbiased estimators (BLUEs). σ2
g denotes the genotypic vari-

ance, σ2
l the location variance, σ2

gxt the genotype-by-treatment-interaction variance, σ2
gxtxl the

genotype-by-treatment-by-location-interaction variance, σ2
e, the error variance, and H2 the

broad-sense heritability. Traits are abbreviated as follows: plant height at BBCH stage ~ V4

(PH early), plant height at BBCH stage > R1 (PH late), ear height (EH), days to silking (DTS)

given in in days after sowing (DAS), grain dry matter (GDM), grain yield (GY), phosphorus

grain concentration (P grain conc), and phosphorus grain content (P cont). Significance levels
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are shown as ‘�’ (p-value < 0.05), ‘��’ (p-value < 0.01), ‘���’ (p-value < 0.001). All values are

based on three locations (Co-TSP: Hohenheim, Eckartsweier, Dettingen; Co-DAP: Hohen-

heim, Einbeck, Saerbeck), except for P grain conc and P cont in the DAP series.

(PDF)

S7 Table. Raw data of hybrid trial.

(XLSX)

S1 Fig. Climograph and soil temperatures at the location Hohenheim. Daily precipitation

rates [mm/d] and mean temperatures [˚C] of the year 2019. The dates of plant height measure-

ments during the field season are indicated with dark green arrows, the period of the field sea-

son with a light green arrow. Soil temperatures at 2 cm, 20 cm, and 200 cm are shown in

brown colors in the plot below.

(PDF)

S2 Fig. Histograms of specific traits. The traits final plant height (PHfinal), ear height (EH),

days to anthesis (DTA), days to silking (DTS), and P concentration (Pconc) are depicted. Dif-

ferent letters indicate significant (p-value < 0.05) differences between starter fertilizers means.

Starter fertilizers are abbreviated as Control (Co), triple superphosphate (TSP), calcium

ammonium nitrate (CAN), diammonium phosphate (DAP).

(PDF)

S3 Fig. Correlation matrices of all investigated traits. Separated by starter fertilizers: control

(Co), triple superphosphate (TSP), calcium ammonium nitrate (CAN), diammonium phos-

phate (DAP). Anthesis-silking-interval (ASI [d]), days to anthesis (DTA [d]), days to silking

(DTS [d]), ear height (EH [cm]), grain dry matter content (GDM [%]), grain yield (GY [t/ha]),

P grain concentration (Pconc [mg/kg]), P grain content (Pcont [kg/ha]), and plant heights

(PH1, PH2, PH3, PHfinal [cm]). Red indicates negative correlations between traits, green posi-

tive correlations. Significance levels are shown as ‘.’ (p-value < 0.1), ‘�’ (p-value < 0.05), ‘��’

(p-value < 0.01), ‘���’ (p-value < 0.001).

(PDF)

S4 Fig. Network plot among 16 chemical elements. 120 grain samples of the core location

HOH were analyzed, independent of starter fertilizer treatments. Positive Pearson correlations

(r) are indicated in green, negative Pearson correlations in red.

(PDF)

S5 Fig. Heatmaps of all 20 maize hybrids and the investigated traits. Separated by starter

fertilizers (control (Co), triple superphosphate (TSP), calcium ammonium nitrate (CAN),

diammonium phosphate (DAP)): anthesis-silking-interval (ASI [d]), days to anthesis (DTA

[d]), days to silking (DTS [d]), ear height (EH [cm]), grain dry matter (GDM [%]), grain yield

(GY [t/ha]), P concentration (Pconc [mg/kg]), P content (Pcont [kg/ha]), and plant heights

(PH1, PH2, PH3, PHfinal [cm]). Dark red indicates maximum, light yellow minimum trait

values.

(PDF)
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TABLE S1. Detailed description of hybrid varieties. Information of all 20 hybrids investigated in the field 

season 2019, including the breeding company, maturity (FAO groups go from early 170-220 to late 300-350), 

the main utilization ('B' denoting biogas, 'CCM' corn-cob-mix, 'G' grain and 'S' silage), and the companies 

standard seed treatment. The year of registration is given according to the federal plant variety office. 

Variety Company 

Year of 

registrati

on 

Maturity 
Main 

utilization 
Treatment 

AGROPOLIS Agro Mais 2015 S240 S/B/CCM Mesurol + TMTD 

AMAROC Agro Mais 2016 S230 S/B/CCM Mesurol + TMTD 

AMAVERITAS Agro Mais 2017 S240/K240 S/G/B Mesurol + TMTD 

BENEDICTIO 

KWS 
KWS 2016 S230/K230 S/G Mesurol + TMTD 

BERNARDINIO 

KWS 
KWS 2018 S240/K240 S/G Mesurol + TMTD 

ES METRONOM Euralis 2014 S240/K240 S/G/B Mesurol + Maxim XL 

GEOXX RAGT 2010 S240/K240 S/G/B 
Mesurol + Maxim XL + Biofortifier 

(Geoxx Gold) 

HULK 
agaSAAT 

GmbH 
2013 

S250-

260/K250-

260 

S/G/B/CC

M 

Maisprotektor (Fungizid + 

Vogelfraß) 

KWS FIGARO KWS 2016 S250/K250 S/G Mesurol + TMTD 

KWS STABIL KWS 2013 S200/K200 S/G Mesurol + TMTD 

LG 30.222 Limagrain 2010 S210/K220 S/G Mesurol + Maxim XL 

LG 30.258 Limagrain 2016 S240/K240 S/G/B Mesurol + Maxim XL 

LG 32.16 Limagrain 2007 S260/K240 S/G/B Mesurol + Maxim XL 

P 8666 Pioneer 2017 S260/K250 S/G/B Mesurol + Maxim XL 

P 8329 Pioneer 2016 S250/K240 G Mesurol + Maxim XL 

RICARDINIO KWS 2008 S230/K220 S/G Mesurol + TMTD 

SIMPATICO KWS KWS 2014 S250/K260 S/G Mesurol + TMTD 

SY KARDONA Syngenta 2014 S250/K240 S/G Mesurol + Maxim XL 

SY TALISMAN Syngenta 2015 S220/K230 S/G Mesurol + Maxim XL 

WALTERINIO 

KWS 
KWS 2015 S270/K270 S/G Mesurol + TMTD 
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TABLE S2. Starter fertilizer-location combinations. Control (Co), triple superphosphate (TSP), calcium 

ammonium nitrate (CAN), diammonium phosphate (DAP). In brackets the nitrogen and phosphorus content 

are given in percent. 

Starter fertilizers 

(N / P)[%] 

Co 

(- / -) 

TSP 

(- / 20)) 

CAN 

(26 / -) 

DAP 

(18 / 20) 

Hohenheim 0 kg/ha 115 kg/ha 77 kg/ha 115 kg/ha 

Eckartsweier 0 kg/ha 115 kg/ha - - 

Dettingen 0 kg/ha 115 kg/ha - - 

Einbeck 0 kg/ha - - 100 kg/ha 

Saerbeck 0 kg/ha - - 116 kg/ha 
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TABLE S3. Maize cultivation parameters. Given for the field season 2019 in each location. 

Parameters 

[Unit] 

Sowing 

[Date] 

Sowing Depth 

[cm] 

Sowing Density 

[plants/m2] 

Plot Size 

[m2] 

Harvest 

[Date] 

Hohenheim April 29th 6 8.8 7.5 October 15th&16th 

Eckartsweier April 23th 4.5 8.8 7.5 September 24th 

Dettingen May 6th 5 8.8 7.5 October 29th 

Einbeck May 1st 5.5 10 18 October 17th 

Saerbeck April 27th 5 10 15.6 October 10th 
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TABLE S4. Detailed description of trait assessments. Same methods were applied for all locations. 

Trait Abbreviation Description Unit [ ] 

Plant height PH 

The average height of three representative 

individuals from the ground to the 

straigthened youngest leave (V-stages) and 

up to tassel tip for the final measurement 

(R-stage), respectively 

cm 

Ear height EH 

The average height of three representative 

individuals from the ground to the internode 

of the top (uppermost) ear 

cm 

Days to 

anthesis 
DTA 

Male flowering: 50% pollen shedding in one 

plot 

days after 

sowing 

Days to silking DTS 
Female flowering: 50% silks visible in one 

plot 

days after 

sowing 

Anthesis-silking-

interval 
ASI Days between male and female flowering days 

Grain dry matter 

content 
GDM 

Percentage of dry matter after 72h at 110°C 

in relation to fresh weight at harvest 
% 

Grain yield GY 

Weight of all threshed grain per plot, 

corrected for its water content, recalculated 

for one hectare 

t dry 

matter/ha 

Phosphorus 

grain 

concentration 

Pconc 

The average concentration of phosphorus 

in the maize kernels, measured by means 

of X-ray fluorescence; calibration obtained 

by inductively coupled plasma optical 

emission spectrometry (ICP-OES) 

ppm = 

mg/kg 

Phosphorus 

grain content 
Pcont Phosphorus concentration * grain yield kg/ha 
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TABLE S5. Repeatabilities in the single locations. Traits are abbreviated as follows: Plant height <55 days after sowing (DAS)(PH1), Plant height 56-60 DAS (PH2), 

Plant height 61-65 DAS (PH3), Plant height 66-70 DAS (PH4), Plant height 71-75 DAS (PH5), Plant height >75 DAS (PHfinal), ear height (EH), all measured in cm; 

days to anthesis (DTA) and days to silking (DTS), indicated in DAS; anthesis-silking-interval (ASI) in days; grain dry matter content (GDM) in percent; grain yield 

(GY) in tons dry matter/ha; Phosphorus grain concentration (P conc) measured with X-ray fluorescence in mg P/kg dry matter; and Phosphorus grain content (P cont) 

in kg P/ha. Control (Co, grey), starter fertilizers: triple superphosphate (TSP, purple), calcium ammonium nitrate (CAN, blue), diammonium phosphate (DAP, red). 

PH1 

[cm] 

PH2 

[cm] 

PH3 

[cm] 

PH4 

[cm] 

PH5 

[cm] 

PHfinal 

[cm] 

EH 

[cm] 

DTA 

[DAS] 

DTS 

[DAS] 

ASI 

[d] 

GDM 

[%] 

GY 

[t DM 

/ha] 

P conc 

[mg/kg 

DM] 

P 

cont 

[kg/ha] 

(i) Hohenheim

Co 0.85 0.80 0.83 0.71 0.86 0.95 0.96 0.84 0.97 0.62 0.80 0.67 

TSP 0.64 0.82 0.83 0.78 0.83 0.93 0.95 0.79 0.91 0.49 0.92 0.50 

CAN 0.86 0.75 0.85 0.79 0.91 0.94 0.97 0.85 0.97 0.40 0.86 0.36 

DAP 0.65 0.66 0.67 0.91 0.87 0.91 0.95 0.73 0.96 0.62 0.94 0.69 

(ii) Eckartsweier

Co 0.83 0.67 0.82 0.91 0.94 0.41 0.93 0.40 

TSP 0.67 0.84 0.81 0.93 0.96 0.66 0.94 0.79 

(iii) Dettingen

Co 0.51 0.77 0.81 0.82 0.97 0.35 0.92 0.64 

TSP 0.70 0.90 0.81 0.82 0.97 0.60 0.93 0.66 

(iv) Einbeck

Co 0.72 0.83 0.92 0.96 0.66 

DAP 0.64 0.82 0.97 0.98 0.85 

(v) Saerbeck

Co 0.62 0.87 0.90 0.51 0.93 0.36 

DAP 0.65 0.92 0.95 0.54 0.98 0.55 
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TABLE S6. Summary of the statistical analyses in the series. (i) Control (Co) vs. triple superphosphate (TSP) and (ii) Control (Co) vs. diammonium phosphate 

(DAP): Values are given for within each starter fertilizer treatment (indicated with Co, TSP, DAP, respectively) as well as across both starter fertilizer treatments. 

Minimum (Min), Mean, and Maximum (Max) is given based on the best linear unbiased estimators (BLUEs). σ2
g denotes the genotypic variance, σ2

l the location 

variance, σ2
gxt the genotype-by-treatment-interaction variance, σ2

gxtxl the genotype-by-treatment-by-location-interaction variance, σ2
e, the error variance, and H2 the 

broad-sense heritability. Traits are abbreviated as follows: plant height at BBCH stage ~ V4 (PH early), plant height at BBCH stage > R1 (PH late), ear height (EH), 

days to silking (DTS) given in in days after sowing (DAS), grain dry matter (GDM), grain yield (GY), phosphorus grain concentration (P grain conc), and phosphorus 

grain content (P cont). Significance levels are shown as ‘*’ (p-value < 0.05), ‘**’ (p-value < 0.01), ‘***’ (p-value < 0.001). All values are based on three locations (Co-

TSP: Hohenheim, Eckartsweier, Dettingen; Co-DAP: Hohenheim, Einbeck, Saerbeck), except for P grain conc and P cont in the DAP series. 
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PH early 

[cm] 

PH late 

[cm] 

EH 

[cm] 

DTS 

[DAS] 

GDM 

[%] 

GY 

[t DM/ha] 

P grain conc 

[mg/kg DM] 

P cont 

[kg P/ha] 

(i) Co vs TSP

Min (Co) 106.67 269.17 115.28 81.25 64.52 11.08 2132 25.13 

Min (TSP) 108.67 266.94 110.28 80.25 64.73 10.91 2127 25.94 

Mean (Co) 120.04 296.52 137.56 83.59 69.70 11.75 2362 27.74 

Mean (TSP) 124.56 293.11 131.41 82.69 70.39 11.89 2379 28.34 

Max (Co) 130.42 315.83 159.17 86.50 74.65 12.78 2742 30.69 

Max (TSP) 133.75 310.83 151.17 86.25 74.93 12.99 2796 31.32 

σ2
g (Co) 40.84*** 128.32*** 154.99*** 2.74*** 4.82*** <0.01 21633.27*** 535.25 

σ2
g (TSP) 47.84*** 109.12*** 114.18*** 2.44*** 5.52*** 0.14 27897.23*** 863.19 

σ2
gxl (Co) <0.01 <0.01 <0.01 0.45** 1.13*** 0.20* 6564.03** 2048.21** 

σ2
gxl (TSP) <0.01 21.14 21.88 0.62*** 1.17*** 0.24* 6941.92*** 2498.12* 

σ2
e (Co) 35.68 79.88 51.77 0.46 0.56 0.50 6876.71 3466.93 

σ2
e (TSP) 23.59 62.20 57.78 0.37 0.67 0.47 4730.04 3580.09 

H2 (Co) 0.87 0.91 0.94 0.92 0.91 0.02 0.87 0.30 

H2 (TSP) 0.92 0.86 0.89 0.90 0.92 0.47 0.90 0.38 

σ2
g 45.18*** 118.06*** 117.32*** 2.57*** 5.15*** 0.08 24392.19*** 708.67 

σ2
l 3.98** 862.02*** 103.27*** 6.34*** 15.24*** 0.59*** 5674.53*** 7303.70*** 

σ2
gxt <0.01 11.02 <0.01 0.01 <0.01 <0.01 333.71 <0.01 

σ2
gxl 2.01 11.02 10.86* 0.56*** 1.22*** 0.28*** 6780.18*** 2442.89*** 

σ2
gxtxl <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 

σ2
e 26.54 60.86 48.07 0.39 0.56 0.41 5790.10 3337.99 

H2 0.90 0.90 0.91 0.91 0.91 0.34 0.88 0.34 
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(ii) Co vs DAP

Min (Co) 119.83 285.00 110.00 82.75 63.08 10.50 2107$ 25.69$ 

Min (DAP) 132.56 291.67 113.17 80.00 64.03 10.88 2175$ 26.13$ 

Mean (Co) 134.93 311.46 135.31 86.19 67.28 11.16 2383$ 29.66$ 

Mean (DAP) 146.46 313.90 135.10 83.84 68.12 11.56 2429$ 30.74$ 

Max (Co) 144.22 336.67 162.92 89.25 72.51 12.00 2706$ 35.71$ 

Max (DAP) 154.56 334.58 165.00 87.75 72.96 12.12 2836$ 34.96$ 

σ2
g (Co) 39.09*** 140.34*** 171.04*** 2.85*** 4.10*** 0.09* 19842.73**$ 2211.47*$ 

σ2
g (DAP) 32.48*** 112.83*** 149.75*** 4.49** 4.48*** 0.02 25180.66***$ 2559.33*$ 

σ2
gxl (Co) 3.54 <0.01 14.07 0.43** 0.45*** 0.09 n.a. n.a.

σ2
gxl (DAP) 8.09 10.49 29.70*** 1.52*** 0.40*** 0.25** n.a. n.a.

σ2
e (Co) 26.54 70.18 43.02 0.49 0.45 0.30 10000.86$ 2980.52$ 

σ2
e (DAP) 42.06 38.19 22.36 0.63 0.30 0.27 4152.71$ 4903.24$ 

H2 (Co) 0.87 0.92 0.94 0.93 0.95 0.70 0.80$ 0.67$ 

H2 (DAP) 0.77 0.92 0.92 0.88 0.96 0.09 0.92$ 0.50$ 

σ2
g 32.69*** 125.21*** 162.28*** 3.71*** 4.34*** 0.07* n.a. n.a.

σ2
l 310.30*** 711.65*** 49.25*** 0.58* 0.97*** 2.35*** n.a. n.a.

σ2
gxt 2.22 0.90 <0.01 <0.01 <0.01 <0.01 n.a. n.a.

σ2
gxl 8.50** 6.73 20.08*** 0.60** 0.26*** 0.09* n.a. n.a.

σ2
gxtxl <0.01 <0.01 <0.01 0.34** 0.12* 0.07 n.a. n.a.

σ2
e 32.31 53.10 32.89 0.56 0.38 0.28 n.a. n.a.

H2 0.78 0.92 0.93 0.93 0.97 0.46 n.a. n.a.

$: only assessed for the location HOH 
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FIGURE S1. Climograph and soil temperatures at the location Hohenheim. Daily precipitation rates 

[mm/d] and mean temperatures [°C] of the year 2019. The dates of plant height measurements during the field 

season are indicated with dark green arrows, the period of the field season with a light green arrow. Soil 

temperatures at 2 cm, 20 cm, and 200 cm are shown in brown colors in the plot below. 
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FIGURE S2. Histograms of specific traits. The traits final plant height (PHfinal), ear height (EH), days to 

anthesis (DTA), days to silking (DTS), and P concentration (Pconc) are depicted. Different letters indicate 

significant (p-value < 0.05) differences between starter fertilizers means. Starter fertilizers are abbreviated as 

Control (Co), triple superphosphate (TSP), calcium ammonium nitrate (CAN), diammonium phosphate (DAP). 
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FIGURE S3. Correlation matrices of all investigated traits. Separated by starter fertilizers: control (Co), 

triple superphosphate (TSP), calcium ammonium nitrate (CAN), diammonium phosphate (DAP). Anthesis-

silking-interval (ASI [d]), days to anthesis (DTA [d]), days to silking (DTS [d]), ear height (EH [cm]), grain 

dry matter content (GDM [%]), grain yield (GY [t/ha]), P grain concentration (Pconc [mg/kg]), P grain content 

(Pcont [kg/ha]), and plant heights (PH1, PH2, PH3, PHfinal [cm]). Red indicates negative correlations between 

traits, green positive correlations. Significance levels are shown as ‘.’ (p-value < 0.1), ‘*’ (p-value < 0.05), ‘**’ 

(p-value < 0.01), ‘***’ (p-value < 0.001). 
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FIGURE S4. Network plot among 16 chemical elements. 120 grain samples of the core location HOH were 

analyzed, independent of starter fertilizer treatments. Positive Pearson correlations (r) are indicated in green, 

negative Pearson correlations in red. 
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FIGURE S5. Heatmaps of all 20 maize hybrids and the investigated traits. Separated by starter fertilizers 

(control (Co), triple superphosphate (TSP), calcium ammonium nitrate (CAN), diammonium phosphate 

(DAP)): anthesis-silking-interval (ASI [d]), days to anthesis (DTA [d]), days to silking (DTS [d]), ear height 

(EH [cm]), grain dry matter (GDM [%]), grain yield (GY [t/ha]), P concentration (Pconc [mg/kg]), P content 

(Pcont [kg/ha]), and plant heights (PH1, PH2, PH3, PHfinal [cm]). Dark red indicates maximum, light yellow 

minimum trait values. 
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Figure 6 Graphical excerpt of publication 2. The central trait P concentration in the grain was - among others - predicted 

by the phenomic selection (PS) approach, which uses near-infrared spectra (NIRS) instead of marker data to predict traits. 
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Abstract

Genomic selection is a well-investigated approach that facilitates and supports selection decisions for complex traits and has meanwhile
become a standard tool in modern plant breeding. Phenomic selection has only recently been suggested and uses the same statistical pro-
cedures to predict the targeted traits but replaces marker data with near-infrared spectroscopy data. It may represent an attractive low-
cost, high-throughput alternative but has not been sufficiently studied until now. Here, we used 400 genotypes of maize (Zea mays L.) com-
prising elite lines of the Flint and Dent heterotic pools as well as 6 Flint landraces, which were phenotyped in multienvironment trials for
anthesis-silking-interval, early vigor, final plant height, grain dry matter content, grain yield, and phosphorus concentration in the maize ker-
nels, to compare the predictive abilities of genomic as well as phenomic prediction under different scenarios. We found that both
approaches generally achieved comparable predictive abilities within material groups. However, phenomic prediction was less affected by
population structure and performed better than its genomic counterpart for predictions among diverse groups of breeding material. We
therefore conclude that phenomic prediction is a promising tool for practical breeding, for instance when working with unknown and rather
diverse germplasm. Moreover, it may make the highly monopolized sector of plant breeding more accessible also for low-tech institutions
by combining well established, widely available, and cost-efficient spectral phenotyping with the statistical procedures elaborated for ge-
nomic prediction - while achieving similar or even better results than with marker data.

Keywords: phenomic selection; genomic selection; RR-BLUP; NIRS; predictive ability; landraces; maize breeding

Introduction
Plant breeding was revolutionized by the advent of genotypic in-
formation in the form of marker data. The seemingly obvious ad-
vantage was to introduce science to a subject formerly largely
deemed as art (Jiang et al. 2020). This development has only oc-
curred in the last decades with many approaches from quantita-
tive trait loci (QTL) mapping (Würschum 2012) to genome editing
developed since then (Benavente and Gim�enez 2021). Among
these approaches is genomic selection, which was first imple-
mented in animal breeding (Meuwissen et al. 2001), but has
meanwhile also become a standard breeding tool for the predic-
tion and subsequent selection of complex traits in plant breeding.
Selection using genomic predictions was shown to lead to higher
gains compared to pure phenotypic selection (Bernardo 2021b).
There are different models that can be applied to perform geno-
mic selection (Heffner et al. 2009) and many studies elaborating
on, refining and comparing genomic selection approaches differ-
ing in their assumption with regard to the marker effect distribu-
tion are available (e.g. Resende et al. 2012; Thavamanikumar
et al. 2015). Ridge regression best linear unbiased prediction

(RR-BLUP), which assumes a homogeneous variance of all marker
effects on the entire genome, has proven to be a robust method
for predicting traits with many small-effect QTL (Heslot et al.
2012), as it generally results in high predictive abilities, expressed
as the correlation between predicted and observed trait values.
Besides QTL effects, the methods used for genomic prediction
also exploit relatedness among individuals to achieve their pre-
dictive ability (Schopp et al. 2017; Bernardo 2021a). Special atten-
tion was also given to the role of the training set in genomic
selection as its composition and relatedness to the prediction set
are known to strongly impact prediction accuracies (e.g.
Riedelsheimer et al. 2013; Schopp et al. 2015; Zhu et al. 2021). In
general, genomic prediction is utilized to assist in a better use of
available financial resources within the breeding process. It
should be noted though, that generating marker data by genotyp-
ing is still cost-intensive and - if not outsourced - requires a cer-
tain laboratory infrastructure. There have been several advances
and attempts in different crop species to include omics data
other than genomics as predictors, but to date these are more dif-
ficult to obtain and more expensive than genotypic data
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(Riedelsheimer et al. 2012; Westhues et al. 2017; Schrag et al.
2018; Stich et al. 2020; Knoch et al. 2021).

Relatively new is the concept of phenomic selection, which was
first proposed by Rincent et al. (2018) with the species poplar and
wheat. The basic principle is to use near-infrared spectroscopy
(NIRS) data instead of the marker data of each genotype for pre-
diction. Hence, all wavelength information is used jointly. By
this, the approach differs by definition from the traditional and
ordinary NIRS application, which makes use of calibrations of
only few wavelengths to predict specific traits (e.g. Melchinger
et al. 1986). Several studies have successfully incorporated a set
of wavelengths into the prediction models (Aguate et al. 2017;
Hayes et al. 2017; Montesinos-López et al. 2017; Krause et al.
2019; Parmley et al. 2019; Galán et al. 2020); however, very few
have investigated the innovative approach of phenomic selection
as an alternative or complementary tool to facilitate selection
decisions in breeding (Rincent et al. 2018; Lane et al. 2020). As a
consequence, several questions with regard to the potential of
applying phenomic selection in plant breeding still remain open.
By providing answers to these questions, we might be able to
broadly and routinely utilize this approach in breeding and
thereby eliminate the need for genotyping (Lane et al. 2020). This
might specifically empower less high-tech breeding companies
and institutions, since an NIR spectrometer is rather easy to buy
and maintain compared to a genotyping laboratory.

Hence, this study was motivated to contribute filling this gap,
particularly regarding the performance of genomic and phenomic
prediction within and among diverse groups of breeding material.
To this end, we employed a set of 400 genotypes of maize - half
elite material from two heterotic groups, half from 6 diverse land-
races - to predict 6 traits relevant for maize breeding, i.e.
anthesis-silking-interval, early vigor, final plant height, grain dry
mattercontent, grain yield, and phosphorus concentration in the
maize kernels. We particularly aimed to (1) estimate the predic-
tive abilities of phenomic and genomic prediction within groups
and among groups and to compare both approaches, (2) assess
how population structure may influence predictive abilities of
both approaches, (3) evaluate the impact of training set composi-
tion on the predictive abilities obtained by phenomic and geno-
mic prediction, and (4) draw conclusions for practical plant
breeding.

Materials and methods
For a better overview, the different steps of data processing are
visualized in Supplementary Fig. 1. Overall, 3 threads were de-
fined, namely phenotypic, genotypic, and NIRS data processing.

Phenotypic data
Field experiments
In total, 400 genotypes were investigated in this study. These
comprised 100 elite Dent (ED) lines, 100 elite Flint (EF) lines and
200 lines from 6 Flint landraces (LR) (Fig. 1a). The genotypes of
the landraces group were immortalized as doubled-haploid lines
and are comprised of the following 6 landraces: Campan-Galade
(CG; n¼ 11) originating from France, Gelber Badischer (GB; n¼ 33)
from Germany, Sankt Galler Rheintaler (RT; n¼ 14) from
Switzerland, Satu Mare (SM; n¼ 53) from Romania, Strenzfelder
(SF; n¼ 30) from Germany, and Walliser (WA; n¼ 59) from
Switzerland. The plant material has been described in previous
studies (Böhm et al. 2017; Würschum et al. 2021). Three different
location-year-combinations served as environments for the phe-
notypic data used in this study, the experimental station for

plant breeding in Hohenheim (HOH; 48�43005.700N, 9�11020.800E;

389 m above sea level) during the field seasons 2019 and 2020 and

the experimental station Eckartsweier (EWE; 48�32024.700N,

7�51015.100E; 139 m above sea level) during the field season 2020.

Average precipitation and mean temperatures over the last 5

years of the two locations amounted to 663.3 mm, 10.3�C and

683.3 mm, 11.5�C, respectively (Agrometeorology Baden-

Württemberg 2021). The field trials were laid out as alpha latti-

ces, designed with the software CycdesigN (VSN International

2018), and each genotype was replicated twice. Standard seed

and field treatments were applied before and during the field sea-

son. The net plot size was 6 m2 and the sowing density was 8.66

plants/m2. The following 6 phenotypic traits were assessed in

this study in all location-year-combinations corresponding to

2,400 plots in total: anthesis-silking interval (ASI; days between

50% pollen shedding and 50% visible silks of a plot), early vigor

(EV; 1 ¼ “very poor” to 9 ¼ “very vigorous” score), final plant

height (Final PH; for HOH measured as the mean of 3 single

plants, for EWE as one estimated value over the whole plot, given

in cm), grain dry matter content (in %), grain yield (GYield in

t/ha), and P concentration in the maize kernels [Pconc; for

HOH_2019 and EWE_2020; milled to 1 mm, measured by means

of X-ray fluorescence (Bruker, Billerica, MA, USA) in ppm].

Best linear unbiased estimation
The raw data were subjected to the Bonferroni-Holm outlier de-

tection (Bernal-Vasquez et al. 2016) using the R-package

“multtest” (Pollard et al. 2005). The hereafter described mixed

model was applied for the multiple environment analyses using

the software ASRemL-R 3.0 (Butler et al. 2009):

yijkl ¼ lþ gi þ ej þ ðgeÞij þ rjk þ bjkl þ eijkl (1)

where the phenotypic trait value yijkl is explained by the overall

mean l, the factor genotype gi, the location-year-combinations

denoted here as environments ej, the interaction of genotype and

environment ðgeÞij, the design variables replication rjk and block

effect bjkl each nested within the environment, and the error term

eijkl; for which a homogeneous variance was assumed.
By taking all factors as random into the model, broad-sense

heritabilities (Cullis et al. 2006; Piepho and Möhring 2007) of the

traits were calculated. For the case of calculating the group-

specific variance components, we introduced dummy variables

and derived broad-sense heritabilities for each group by the for-

mula (Hallauer et al. 2010):

H2 ¼
r2

g

r2
g þ

r2
g�e

ne
þ r2

e
ne� nr

(2)

where r2
g denotes the genotypic variance in the group, r2

g�e

denotes the group-specific genotype-by-environment interaction

variance, r2
e denotes the variance of the error, and ne and nr de-

note the number of environments and replications, respectively.

Using the factor genotype as fixed in the mixed model of

Equation (1), we then calculated best linear unbiased estimates

(BLUEs). These BLUEs were subsequently used as phenotypic trait

values for all further analyses. The R-package “agricolae” was

used to perform significance tests (a¼ 0.05) of the group means

(de Mendiburu 2020). The phenotypic raw data as well as the

hereof calculated BLUEs are provided in Supplementary Table 1.
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Genotypic data
All 400 genotypes were characterized with a 50K SNP array by
Illumina (Ganal et al. 2011), resulting in total in 57,840 calls.
Genotypic raw data are provided in Supplementary Table 2.

Quality control
As a first step, all marker data were filtered for their information
content and 8,254 markers were found to only consist of missing
values. The threshold of >50% for missing marker information
and >5% for heterozygous state led to the exclusion of additional
844 markers and 637 markers, respectively. In addition, 2,222
monomorphic markers were detected of which 2,093 were not yet
included in the missing and heterozygote filter steps and there-
fore also removed from the genotypic data, leaving 46,012
markers in the overall genotypic data. Next, we checked that no
individual genotype fell under the criteria of having >20% miss-
ing marker data and/or >5% heterozygous markers. No filtering
of genotypes due to these criteria was necessary. Finally, the ge-
notypic data were split up according to the elite dent (n¼ 100),
elite flint (n¼ 100), and landraces (n¼ 200) categorization. In each
of these groups, markers containing only missing and/or mono-
morphic markers, and markers with a minor allele frequency
(MAF) of <3% were once again removed from the subsets.
Heterozygous marker information was in contrast to the com-
plete marker data set not excluded but instead set to NA. All
these filtering steps led to a total of 34,145 markers for the ED,
33,422 markers for the EF, and 38,284 markers for the LR group.

Imputation
The 3 groups were kept separately for imputation. Therefore, all
3 files were loaded into TASSEL (Bradbury et al. 2007) in HapMap
format and transformed to the Variant Call Format. This format
was then used for imputation by the software Beagle 5.2
(Browning et al. 2018). Standard settings for the imputation

procedure were chosen, except for the effective population size
ne, which was reduced to 1,000. After successful imputation, all 3
files were filtered and markers with MAF <5% were removed. The
so obtained files were then merged, which resulted in a total of
17,845 imputed markers for the investigated 400 genotypes.

Genomic selection
We performed genomic selection with the R-package “rrBLUP”
4.6.1 with the basic model written as: y ¼WGuþ e (Endelman
2011), where the phenotypic value y is calculated by the product
of the design matrix W, the genotype matrix G, and the vector u
of marker effects with e being the error term. Ridge regression
keeps all markers in the model and shrinks their estimated
effects by a constant factor (Whittaker et al. 2000). In general, we
can distinguish between predictions within a group, where 5-fold
cross-validation was performed and predictions among groups
without cross-validation. Single landrace populations were only
considered for �30 individuals. To perform 5-fold cross-
validation, the dataset was for each run divided randomly into
80% training set and 20% prediction set. For the heterogeneous
group “landraces”, consisting of 6 single populations, propor-
tional sampling was performed per landrace and then the train-
ing set and the prediction set were combined accordingly. For
within-group predictions, the number of cross-validation runs
was 1,000, if not mentioned otherwise. The predictive ability was
calculated as the Pearson correlation between predicted values
and the BLUEs of each prediction set.

NIRS data
NIRS data were obtained with a SpectraStar (Unity Scientific,
Milford, MA, USA). The device covers the wavelength range be-
tween 1,250 and 2,400 nm with a stepsize of 1 nm (NIRS raw data
are given in Supplementary Table 3 and are depicted in
Supplementary Fig. 2a). In addition to seed samples from all 3

Fig. 1. Population composition and discriminant analysis of principal components (DAPC). a) Elite material (n¼ 200) with ED and EF, landraces (n¼ 200)
as a whole (LR) with CG, GB, RT, SM, SF, and WA. The size of each group is represented by the circle size and given as the number of individuals. b) DAPC
of all 400 individuals from the 8 groups, performed with marker data (top) and NIRS data (bottom). The amount of variance explained by the first two
discriminant analysis functions DA1 and DA2 is given in brackets.
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environments, NIR spectra of seedling biomass samples grown in
EWE_2020 were recorded. Seed samples were obtained from ca.
375 g of the open-pollinated harvest sample used for the determi-
nation of grain dry matter content. All samples were ground to a
final fineness of 1 mm filling a 200-ml tube (RETSCH GmbH,
Haan, Germany). Of these subsamples, one NIR cup per plot was
assembled and measured with 24 repetitions.

Quality control
First, the NIR spectra were cut at each side of the spectra by
18 nm to exclude undesired border effects, leaving 1,114 wave-
lengths to be further analyzed. Subsequently, Savitzky-Golay
smoothing and first derivative of the NIR spectra were applied by
means of the R-package “prospectr” 0.2.0 (Stevens and Ramirez-
Lopez 2020). Afterwards, starting from wavelength 1,268 to wave-
length 2,382, BLUEs were calculated of each single wavelength
following the mixed model denoted in Equation (1). Heritabilities
per wavelength were calculated (Supplementary Fig. 2b) and vari-
ance components per wavelength checked (Supplementary Fig.
2c).

Phenomic selection
All NIRS BLUEs were centered and scaled using the function
“scale” in R before the so obtained values were subjected to fur-
ther analyses. The standardization of the data is paramount for
assuming a common variance of the regression coefficients
(Piepho 2009). Exactly the same procedure as described for geno-
mic prediction was carried out for phenomic prediction, except
for using NIR data instead of marker data. Again, within group
predictions were performed with 1,000 cross-validation runs. For
predictions within and among groups, the two smallest popula-
tions with <30 individuals, namely CG and RT were not consid-
ered as a separate group. Hence, the following 7 groups were
used for all genomic and phenomic predictions: elite Dents (ED),
elite Flints (EF), landraces as a whole (LR) as well as the single
landraces Gelber Badischer (GB), Satu Mare (SM), Strenzfelder
(SF), and Walliser (WA).

If not specified otherwise, we used RStudio version 3.5.3 for all
described data analyses (R Studio Team 2020) and the R packages
“ggraph” (Lin Pedersen 2021), “ggpubr” (Kassambara 2020),
“adegenet” (Jombart 2008) as well as basic R plot functions.

Results
Characterization of the material groups by
phenotypic, genotypic, and NIRS data
The 400 genotypes that were investigated in this study can be dif-
ferentiated into 8 groups: 100 elite lines of each of the two heter-
otic groups Flint and Dent, and 200 lines from 6 European Flint
landraces (Fig. 1a). The discriminant analysis of principal compo-
nents (DAPC) showed that the marker data reflected this underly-
ing population structure, whereas no distinct clustering of the
groups was apparent with NIR spectra (Fig. 1b).

Furthermore, we assessed the phenotypic variation present in
the plant material (Fig. 2 and Supplementary Table 4). This
revealed that the single landraces exhibited significant differen-
ces between each other for certain traits and can therefore also
phenotypically not be considered as one homogeneous group. As
expected, the elite material showed on average significantly
higher yields than the landraces. Overall, it could be observed
that the higher the grain yield was, the lower were the P concen-
trations in the kernels. Notably, the elite Dent lines are generally
later maturing under European field conditions than the elite

Flint lines, which explains the grain dry matter content values
and may also underlie their observed lower P concentrations in
the maize kernels. Broad-sense heritabilities for the multienvir-
onment analysis were overall high, ranging from 0.48 for grain
dry matter content to 0.97 for final plant height, both in the land-
race CG (Fig. 2 and Supplementary Table 4). Moreover, the geno-
typic variance components in each group illustrated the larger
variation of landraces compared to elite material for the traits
anthesis-silking interval, early vigor, and final plant height. For
the trait grain yield, it was the other way around, with the broad-
est variation observed in elite material.

When correlating the BLUEs of the phenotypic data with those
of the NIR spectra, we observed rather low correlations for most
wavebands and different correlation patterns for the different
traits (Supplementary Fig. 2d). Interestingly, opposed correlations
for grain yield and P concentration with the NIR reflectance val-
ues were observed. Collectively, these results underpin that mo-
lecularly and phenotypically diverse breeding material was
represented in this panel, which is therefore well suited to ad-
dress the objectives of this study.

Predictions within groups
We first performed genomic and phenomic prediction within
groups (Fig. 3). This revealed no consistent pattern, as for most
traits and groups the phenomic and genomic predictive ability
was comparable, with sometimes one or the other being better,
but often only slightly. Genomic prediction achieved generally
better results for the traits final plant height and grain dry matter
content. Conversely, grain yield was overall better predicted by
phenomic prediction and for the trait P concentration phenomic
prediction outperformed genomic prediction substantially for all
groups. The predictive ability values obtained by cross-
validation, confirmed for genomic and phenomic prediction alike
that smaller groups (the landraces GB, SM, SF, and WA), and
therefore smaller training and prediction sets, resulted in lower
mean predictive abilities with a generally larger variation.

We then focused on the cases where we observed the most
prominent discrepancies between the genomic and the phenomic
prediction approach in the 3 major groups. Large differences be-
tween both approaches were observed for predictions in the
group of landraces. For early vigor, genomic prediction outper-
formed phenomic prediction by 0.46. On the other hand, P con-
centration was characterized by a 0.40 higher phenomic
predictive ability compared to genomic prediction. In order to il-
lustrate the cause for these differences, we plotted for 10 cross-
validation runs the predicted and observed values of the traits
early vigor and P concentration for each individual genotype of
the 6 landraces (Fig. 4). For early vigor, the overall correlation co-
efficient of the genomic approach was relatively high with
r¼ 0.69. However, the mean trait performance was quite different
among the landraces and the correlations assessed within them
only averaged to r� ¼ 0.03. This low predictive ability within each
landraces was reflected by phenomic prediction, for which the
overall correlation coefficient r was indeed low with 0.05, hence
only slightly deviating from the average r� across the landraces
that was 0.13 and thus even higher compared to the genomic ap-
proach (r� ¼ 0.03). In the case of P concentration for which phe-
nomic prediction yielded a much higher predictive ability than
genomic prediction, the genomic approach resulted in low
within-landrace correlation coefficients (r� ¼ �0.19), but also a
low overall correlation (r¼ 0.28), as the phenotypic differences
among the landraces were minor. By contrast, phenomic predic-
tion showed a high overall correlation coefficient of r¼ 0.79,
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which was again mirrored by the correlation coefficients ob-
served in each single landrace (r� ¼ 0.72).

Predictions among different groups
We next assessed predictions among groups, i.e. using one group
as training set and another one as prediction set (Fig. 5 and
Supplementary Figs. 3 and 4). In general, the phenomic predictive
abilities surpassed the genomic ones when one of the 3 major
groups was used as training set. An exception was the prediction
of final plant height when using elite Dents as training set, as for
this scenario the predictive ability was negative for prediction in
all other groups, whereas positive predictive abilities were
achieved for the genomic approach except for the elite Flints.
However, especially for the traits grain dry matter content, grain
yield, and P concentration, phenomic prediction yielded substan-
tially higher predictive abilities compared to genomic prediction.
The same trends as observed for the 3 major groups, though po-
tentially slightly less pronounced, were observed when the two
largest landraces, SM or WA, were used as training set
(Supplementary Fig. 3). Phenomic prediction yielded overall more
stable results, which can also be well seen in the visualization of

the predictive abilities separated by group (Supplementary Fig. 4).
Here, we can also conveniently compare reciprocal predictions,

which substantiated the much lower robustness of genomic com-

pared to phenomic among-group predictions. The phenomic pre-

diction results, by contrast, yielded similar patterns no matter in
which direction the prediction took place.

Phenomic predictions were also performed with NIR spectra of

maize seedling biomass for the environment EWE_2020.

Predictions based on biomass generally achieved lower predictive

abilities than seed-based ones. This held true for the comparisons
of the seed NIRS BLUEs across all 3 environments (results not

shown) as well as for the seed NIRS data of EWE_2020 alone

(Supplementary Table 5).
In summary, phenomic prediction resulted in much higher

predictive abilities than genomic prediction for the prediction
among groups.

Evaluation of composite training sets
The trait grain yield was chosen to investigate the potential of

combining groups into composite training sets, which were

then larger but also composed of material from different

Fig. 2. Phenotypic variation in the 8 groups. Groups are abbreviated as WA, SM, SF, RT, GB, CG, EF, and ED. Distribution of the phenotypic trait values for
ASI (anthesis-silking-interval), EV (early vigor), Final PH (plant height at harvest), GDM (grain dry matter content), GYield (grain yield), and Pconc
(phosphorus concentration in kernels) shown per group. The letter display indicates significant differences of the means; groups with the same letter
are not significantly different from each other (a¼ 0.05). H2 denotes the broad-sense heritability.
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groups with different trait performance (Fig. 6). To predict elite
Dents and elite Flints, the following scenarios were compared
with each other: (1) 5-fold cross-validated prediction within the
respective elite group, (2) across prediction from the other elite
group as well as from the landraces group as a whole, and (3)
combinations of 80% of the lines from the elite group to be pre-
dicted with one or both of the other major groups to predict
the 20% remaining lines of the respective elite group. Phenomic
prediction resulted in highly similar predictive abilities for all 6

scenarios for both the elite Flint and elite Dent lines. As shown
before, genomic prediction was on a comparable level for the
cross-validated within-group prediction, but performed poorly
for the among-group prediction. Interestingly, genomic predic-
tion then resulted in similar or even slightly higher predictive
abilities compared to phenomic prediction for the 3 composite
training sets. The predictive abilities achieved with these com-
posite training sets were similar to that obtained by the within-
group prediction.

Fig. 3. Multiple comparisons of the predictive abilities by within-group prediction. Cross-validated predictive abilities obtained by 1,000 runs are shown
for each trait and group. Groups are abbreviated as ED, EF, all LR, GB, SM, SF, and WA. GS and PS abbreviate genomic and phenomic prediction,
respectively. The mean of each scenario is given underneath the boxplots. Traits are denoted as ASI, EV, Final PH, GDM content, GYield, and Pconc.
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Discussion
Comparison of genomic and phenomic prediction
First, it has to be stated that a high quality of phenotypic data is

and will remain the basis for all breeding activities (Bernardo

2021a). This was given in this dataset, which showed a large ge-

notypic variation and high to very high trait heritabilities in the

multienvironment analysis (Supplementary Table 4).
Looking at the obtained cross-validated predictive abilities

within groups, genomic and phenomic prediction generally

yielded comparable results (Fig. 3). This performance was, how-

ever, also dependent on the trait (Knoch et al. 2021) and the ge-

netic group. It should be mentioned here, that no general

conclusion should be drawn solely from the results of the single

landraces with their rather small population sizes. Final plant

height, for example, was much better predicted by marker than

by NIRS data, but mainly in the elite material. This material is

somewhat taller than the landrace lines, but otherwise there is

no apparent difference. For grain dry matter content, the differ-

ence in predictive ability was most pronounced for the elite

Dents and the landrace SM from Romania, which are the two lat-

est maturing groups as can be seen by their lowest means for this

trait (SM ¼ 72.81%, ED ¼ 70.88%). All seed samples were

completely dried before NIR spectra were measured and one

might assume that drying maize kernels containing more water

at the beginning might change their properties in a way that al-

tered the NIRS assessment. However, for other traits like early

vigor or grain yield, phenomic prediction was as good or even

better than genomic prediction for these two groups. For grain
yield, we found that both approaches performed similarly, which
is promising as grain yield is a central trait in every breeding pro-
gram. In line with this, Lane et al. (2020) reported prediction abili-
ties above 0.7 for grain yield obtained by phenomic prediction of
whole-kernel maize samples. For the trait P concentration, we ob-
served higher phenomic predictive abilities compared to the ge-
nomic approach for all groups. Notably, P concentration is also
an endophenotype of the seeds, which may have contributed to
this performance.

Taken together, the reasons for the discrepancies observed be-
tween the two approaches for some traits and groups are not
clear and require further research. Nevertheless, our results con-
firmed the potential of phenomic prediction for NIRS-assisted se-
lection in breeding, as the phenomic predictive abilities were
generally competitive with those from genomic prediction. NIRS
data can already be obtained from early- or mid-generation selec-
tion candidates before any yield trials in multiple environments
have been performed. Phenomic prediction can thus be used to
predict more resource-intensive traits such as grain yield and
thereby assist the identification of the most promising candidates
to be advanced to the next generation.

Population structure can lead to overestimation of the
genomic predictive ability
The greatest differences between the genomic and phenomic pre-
dictive abilities were often observed for the panel of landraces,
where for the 3 traits anthesis-silking interval, early vigor, and

Fig. 4. Predictive ability in the heterogenous group of landraces. Comparison of genomic (GS) and phenomic (PS) prediction for the traits EV and Pconc.
For EV, the genomic predictive ability was much higher, whereas for Pconc the phenomic approach resulted in a much higher predictive ability than
genomic prediction. The Pearson correlation coefficients within each group are indicated as r. In bold, the Pearson correlation coefficient across all
genotypes is given and r� denotes the mean of all correlation coefficients of the single landraces. The dots represent the observed and the predicted trait
values from 10 cross-validation runs.
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final plant height genomic prediction appeared to perform much
better. We exemplarily used early vigor to further investigate this
different performance. Analyzing the correlations between the ob-
served and the predicted trait values per landrace revealed that the
high predictive ability of early vigor by genomic prediction was an ar-
tifact (Fig. 4). While the overall correlation coefficient was high with
0.69, each single landrace showed only weak correlations that aver-
aged 0.03. The reason for this is the confounding of population struc-
ture and trait performance, here in the form of the different
landraces and their mean performance, a phenomenon which has
been described in previous studies (Windhausen et al. 2012). All 3
traits showed clear differences in their means among the landraces
(Fig. 2). In addition, the marker data can clearly separate landraces
as shown by the discriminant analysis of principal components
(Fig. 1B). In contrast to the marker data, the NIRS data do not distin-
guish the LR as groups in the DAPC as clearly as the marker data and
are therefore less prone to this kind of artifact. For the NIRS data, the
low overall correlation coefficient for early vigor of 0.05 much more
accurately reflected the predictive ability in the single landraces.

For the reverse case of phenomic prediction outperforming geno-
mic prediction in the landraces for the trait P concentration, by con-
trast, the high overall correlation coefficient of the former correctly
portrays the high predictive ability in each of the landraces. In sum-
mary, this confirms previous results concluding that genomic selec-
tion is sensitive to population structure (Thorwarth et al. 2017). As a
consequence, seemingly high genomic predictive abilities achieved

with panels showing population structure should be interpreted with

caution and always in combination with the trait performance of the

populations.

Phenomic prediction works well among different breeding
material
A major advantage of phenomic prediction became apparent

when predicting from one group to another (Fig. 5). Genomic pre-

diction has been described to strongly depend on the relatedness

between training and prediction set (Albrecht et al. 2011;

Riedelsheimer et al. 2013; Li et al. 2021; Zhu et al. 2021). Our

results corroborate these findings, as the prediction among

groups resulted in only low predictive abilities, even for the pre-

dictions among the more closely related Flint material. The phe-

nomic predictive abilities, on the contrary, were much higher,

especially for the traits grain dry matter content, grain yield, and

P concentration. For these 3 traits, the among-group predictive

abilities were often as high as the cross-validated within-group

ones.
Collectively, these findings illustrate that phenomic prediction

is very promising for rather diverse breeding material with more

or less unrelated groups, whereas genomic prediction has been

shown to work best if the material in the training and prediction

set are from the same group (Schopp et al. 2015).

Fig. 5. Predictive ability of among-group predictions. Results are shown for the ED, EF or the landraces being used as training set for genomic (GS) or
phenomic (PS) prediction to predict each of the other groups. Groups are abbreviated as ED, EF, all LR, GB, SM, SF, and WA. Traits are denoted as ASI, EV,
Final PH, GDM content, GYield, and Pconc.
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Composition of the training set with diverse breeding
material
These findings rose the question on how different compositions
of the training set would affect the prediction of grain yield of the
elite lines. Notably, grain yield differed substantially between the
elite material and the landraces. As phenomic prediction
appeared to be tolerant to unrelated material being used as train-
ing set, we hypothesized that increasing the training set with lines
from other material groups than the one to be predicted would im-
prove or at least not hamper the predictive ability of phenomic pre-
diction. While the other elite group and the landraces both yielded
predictive abilities similar to the cross-validated within-group phe-
nomic predictions, adding them to the training set did not enhance
the predictive ability. For the prediction of both elite groups, the
phenomic predictive abilities were more or less unchanged for all
tested scenarios of training set composition. It might be that even
though the predictive abilities of all 3 groups are highly similar, the
effect estimates are different and combining them does not yield an
advantage or that even with the smallest training set size of the 80
lines (80%) sampled from the same group, the predictive ability al-
ready reached a plateau stage. Our results of phenomic predictive
abilities between 0.33 and 0.43 with combined training sets are

consistent with a former study, which reported a phenomic predic-
tion ability based on maize kernel NIRS of on average 0.28 for grain
yield in elite material, when a diversity set and 10% of each group
to be predicted were used as training set (Lane et al. 2020).

While the genomic prediction using one of the other two major
groups virtually failed, adding them to the training set resulted in
similar or even slightly higher predictive abilities as the cross-
validated within-group predictive ability. This is in line with pre-
vious findings that showed that adding less related lines to a
training set did not reduce the predictive ability (e.g. Brauner
et al. 2020; Li et al. 2021; Zhu et al. 2021) and increasing the train-
ing set size generally results in higher predictive abilities of geno-
mic selection (e.g. Zhao et al. 2012; Thorwarth et al. 2017; Li et al.
2021; Zhu et al. 2021).

Nevertheless, if all scenarios are considered, phenomic predic-
tion showed a higher robustness of the predictive abilities for dif-
ferent compositions of the training set and thus relatedness
between training and prediction set. This result is also worth
mentioning as it suggests that the general assumption that pre-
dictive breeding strongly relies on estimating the genetic related-
ness among individuals (Bernardo 2021a) may not hold true for
the approach of phenomic prediction.

Fig. 6. Evaluation of composite training sets. For the 3 major groups, ED, EF, and landraces, different training set compositions were tested for grain
yield for genomic (GS) and phenomic (PS) prediction. The boxplot on the left shows the differing level of phenotypic performance for the 3 groups. The
bar plots on the right depict the predictive ability of the different scenarios for either the ED (top) or the EF (bottom). The superscript numbers 80 and 20
reflect the proportion of individuals in the training set (TSet) and the prediction set (PSet). Predictions within the respective elite groups were obtained
with 1,000 5-fold cross-validation runs; for the composite training sets, 100 cross-validation runs were used.
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Possible effects of the NIRS sample material on the trait
prediction
Spectral data can not only be obtained from seeds but also from
other plant material, thereby potentially allowing selection at dif-
ferent stages of a breeding program. We derived NIR spectra from
maize kernels as well as for one environment from seedling bio-
mass samples, both ground to 1 mm. In our study, the results
obtained with the seed sample NIRS data were generally better
(Supplementary Table 5). This is in line with previous findings
that in addition showed higher genotypic variances for grain in
comparison to leaf samples, which may underlie the higher pre-
dictive abilities of the former (Rincent et al. 2018). Interestingly,
when looking at the single traits separately, we observed higher
predictive abilities based on NIRS of seedling biomass for early
vigor and final plant height, whereas anthesis-silking-interval,
grain dry matter content, grain yield and P concentration were
clearly better predicted by seed samples. The picture this
presents is that the closer the sampled tissue is in relation to the
trait of interest, the better the prediction works based on this tis-
sue. Our data set is clearly too small to substantiate this conclu-
sion, but this warrants further research. We also correlated the
NIRS BLUEs of the seedling biomass with the trait BLUEs for each
genotype, but could not discern a pattern between these correla-
tions and the goodness of the trait prediction (data not shown). It
should be noted here that grain yield is often the most important
trait for breeders and therefore seed-based NIR spectra appear
more promising for application in breeding programs.

Application of phenomic prediction in practical breeding
Rincent et al. (2018) showed in simulations that for different sce-
narios regarding the costs and reliabilities of phenomic and geno-
mic prediction, the expected selection gain was in most cases
higher for phenomic compared to genomic selection. The advan-
tages of performing predictions based on NIRS data compared to
genotypic data are the low requirements for infrastructure such
as specialized laboratories and the strongly reduced costs, both
coupled with the benefit of an increased speed and efficiency of
selection in the breeding program. The first point challenges the
assumption that became prevalent in the last years, namely that
the most cost-efficient tool for trait prediction is found in genetic
marker data (Bernardo 2021b; Knoch et al. 2021). Supposed that
seeds represent the most suitable material to obtain NIR spectra,
we are much faster to capture all data with a state-of-the-art
spectrometer compared to the DNA extraction and subsequent
genotyping. If we have to take decisions that are time-critical, as
for example, frequently encountered in winter cereals between
harvest and sowing or in maize in between shuttle breeding sea-
sons, phenomic prediction results can be obtained quicker than
genomic prediction results. Moreover, the phenomic selection ap-
proach appears particularly attractive for comparatively low-
tech institutions because less investments and resources are
needed for NIRS measurements compared to genotyping.

A main finding of this study is that phenomic prediction also
reliably works for designs of training sets that show a population
structure as well as for the case that the training set and the pre-
diction set include less related material. In breeding programs
that stay within their established material, as for example in
maize within the existing heterotic groups, this is of no relevance.
So, when could this become relevant in practical breeding? For
instance, if we were to start a breeding program in a new environ-
ment by combining material from different origin. After an initial
field evaluation and yield trials with the labor- and/or resource-

intensive traits being assessed only on a subset of lines, phe-
nomic prediction based on the NIR spectra of the harvested mate-
rial of all lines could support the identification of further
candidates to be more intensively tested. Likewise, broadening
the genetic basis of a breeding program by introgression of less
related material from different groups, as exemplified here with
the landraces, will require testing this material but may also
profit from the additional prediction of the expected perfor-
mance. Furthermore, crops with yet undefined heterotic pools or
the presence of subpopulations such as wheat (Boeven et al.
2016) or sorghum (da Silva et al. 2021) could benefit from the in-
dependence of the performance of phenomic prediction with re-
gard to the training set composition and its possibly underlying
population structure. In addition, breeding programs are driven
by the different selection cycles, which by nature imply a de-
creasing relatedness of the individuals from one cycle to the next
(Schopp et al. 2015; Auinger et al. 2021) . Further research is re-
quired to investigate whether phenomic prediction can provide
higher predictive abilities than genomic prediction when using
the current cycle as training set for the prediction of the individu-
als of the next cycles. Eventually, the decision of whether to use
the genomic or the phenomic approach will be made in very prac-
tical terms, depending on the available resources and infrastruc-
ture, as well as the characteristics of the particular breeding
program.

Conclusion
While a large number of studies is available on different aspects
of genomic prediction, the use of NIRS or other spectral data for
phenomic prediction is still in its beginnings. We therefore com-
pared both approaches under different scenarios for a set of 6
traits relevant in maize breeding. Apart from being cost-efficient
and amenable to high-throughput, the potential of phenomic se-
lection lies in its reliable predictions also under structured train-
ing sets as well as for predictions into unrelated material. In the
end, however, it is not about a competition of the two
approaches, but rather to expand the breeder’s toolbox and ide-
ally one can choose from different approaches the one that is
best suited for a given situation. Thus, resources can be allocated
in the best possible way in order to maximize selection gain. Just
as seen for genomic prediction over the past years, further re-
search is required to better understand and refine the approach
of phenomic prediction toward a broader application in plant
breeding. Specifically, NIRS sample material and the environ-
mental effect on the spectra should be investigated in the future.
Nevertheless, our results demonstrate the value of phenomic
prediction as a low-cost and efficient tool to support selection of
complex traits in plant breeding.

Data availability
The authors affirm that all data necessary for confirming the
conclusions of this article are represented fully within the article
and its tables and figures. Supplemental material is included at
figshare: https://doi.org/10.25387/g3.16692409.

Acknowledgments
The authors are very much obliged to the great support by the
technical staff in performing the field trials during the field sea-
sons of 2019 and 2020, namely to, Mire Halilaj, Jochen Jesse,

10 | G3, 2022, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab445/6509517 by U

niversitaet H
ohenheim

 user on 04 February 2022

53

https://doi.org/10.25387/g3.16692409


Franz Josef Mauch, Sebastian Pluskat, Heralt Pöschel, and Regina
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TABLE S4 Summary statistics for each group. Groups are abbreviated as WA = Walliser, SM = Satu Mare, 

SF = Strenzfelder, RT = Sankt Galler Rheintaler, GB = Gelber Badischer, CG = Campan-Galade, EF = elite 

Flints, and ED = elite Dents. 𝜎𝑔
2 denotes the genotypic variance, 𝜎𝑔𝑥𝑒

2  the genotype-by-environment interaction

variance, and 𝜎𝜀
2 the error variance. 𝐻2 is the broad-sense heritability. Traits are abbreviated as follows:

anthesis-silking-interval (ASI), EV (early vigor), plant height at harvest (Final PH), grain dry matter content 

(GDM), grain yield (GYield), phosphorus grain concentration in the kernels (Pconc). All values are based on 

the three location-year-combinations (Hohenheim 2019 and Hohenheim 2020, Eckartsweier 2020), except for 

Pconc for which HOH 2020 was not available.  

Pop 
Variance 

component 
ASI [d] 

EV 

[ ] 

Final PH 

[cm] 

GDM 

[%] 

GYield 

[t /ha] 

Pconc 

[ppm] 

WA 

𝜎𝑔
2 12.50 0.68 240 37.20 0.17 34 103 

𝜎𝑔xe
2 5.51 0.33 47 11.10 0.12 8 888 

𝐻2 0.85 0.82 0.90 0.89 0.72 0.85 

SM 

𝜎𝑔
2 9.65 1.85 708 21.50 0.60 32 404 

𝜎𝑔xe
2 4.34 0.51 142 5.29 0.57 14 168 

𝐻2 0.84 0.90 0.93 0.89 0.73 0.81 

SF 

𝜎𝑔
2 3.06 0.72 196 15.90 0.19 20 704 

𝜎𝑔xe
2 3.54 0.34 72 8.07 0.24 4 215 

𝐻2 0.67 0.82 0.85 0.82 0.63 0.82 

RT 

𝜎𝑔
2 1.13 1.10 669 15.70 0.13 64 878 

𝜎𝑔xe
2 0.52 0.46 79 4.12 0.08 15 050 

𝐻2 0.69 0.85 0.95 0.88 0.70 0.90 

GB 

𝜎𝑔
2 6.02 1.13 371 7.59 0.45 30 276 

𝜎𝑔xe
2 3.76 0.51 79 7.65 0.40 1 264 

𝐻2 0.79 0.84 0.91 0.69 0.74 0.90 

CG 

𝜎𝑔
2 1.44 0.46 423 12.60 0.20 180 186 

𝜎𝑔xe
2 2.03 0.28 17 37.80 0.07 12 600 

𝐻2 0.59 0.77 0.97 0.48 0.79 0.96 

EF 

𝜎𝑔
2 1.62 0.26 174 17.50 2.58 34 819 

𝜎𝑔xe
2 1.00 0.42 38 2.78 0.45 10 284 

𝐻2 0.71 0.59 0.89 0.91 0.94 0.84 

ED 

𝜎𝑔
2 1.60 0.32 280 34.30 4.94 114 046 

𝜎𝑔xe
2 1.00 0.16 55 10.80 1.66 9 192 

𝐻2 0.71 0.77 0.91 0.89 0.90 0.95 

overall 
𝜎𝜀
2 2.03 0.25 58.50 4.85 0.17 18 435 

𝑯𝟐 0.78 0.80 0.91 0.86 0.85 0.85 

57



TABLE S5 Phenomic prediction based on NIR spectra of seedling biomass samples (BM; green) compared 

to maize kernels (Seed; yellow). NIRS was assessed for all 393 available genotypes grown in EWE 2020 for 

seedling biomass as well as for seed samples. The analysis was performed for the three major groups elite 

Dents (ED, n = 100), elite Flints (EF, n = 100), and landraces (LR, n = 193). The traits anthesis-silking-interval 

(ASI), EV (early vigor), plant height at harvest (Final PH), grain dry matter content (GDM), grain yield 

(GYield), and phosphorus grain concentration in the kernels (Pconc) were predicted by phenomic prediction 

within and among groups. Predictions within a group were cross-validated with 100 runs. 

BM1 ASI 

[d] 

EV 

[ ] 

Final PH 

[cm] 

GDM 

[%] 

GYield 

[t DM/ha] 

P conc 

[mg/kg DM] Seed 

E
D

 -0.17 0.51 0.13 0.23 0.00 0.22 

0.20 0.26 -0.19 0.42 0.43 0.70 

E
F

  
  
 

-0.11 0.27 0.05 -0.02 -0.11 0.24 

0.24 -0.06 -0.06 0.23 0.40 0.56 

L
R

 0.03 0.59 0.31 0.18 0.42 0.18 

0.18 0.20 0.14 0.58 0.26 0.70 

ED  EF 

-0.07 0.24 -0.13 0.11 0.11 0.26 

0.33 0.12 0.09 0.34 0.45 0.61 

ED  LR 

0.07 0.41 -0.05 0.04 0.05 -0.05

0.09 0.22 -0.12 0.53 0.38 0.63 

EF ED 

-0.04 0.43 -0.15 0.08 0.08 0.18 

0.24 0.15 0.06 -0.11 0.42 0.71 

EF LR 

-0.04 0.38 0.23 -0.03 -0.12 0.05 

0.14 0.01 0.04 0.17 0.34 0.59 

LR ED 

0.11 0.43 -0.08 0.07 0.19 -0.04

0.07 0.35 -0.06 0.66 0.46 0.74 

LR EF 

-0.10 0.33 0.21 -0.05 -0.07 0.06 

0.21 0.14 0.08 0.50 0.45 0.65 
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Figure S1 Data processing steps. The different steps of processing the phenotypic (middle), genotypic (left) 

and NIRS (right) data are depicted. GS stands for genomic prediction, PS for phenomic prediction, BLUEs for 

best linear unbiased estimates, and CV for cross-validation. 
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Figure S2 Near infrared spectroscopy data. A. Raw NIR spectra of all 400 genotypes. The black line represents 

the mean. B. Heritabilities for each wavelength across environments. C. Variance components for each 

wavelength across environments. G stands for the genetic, GE for the genotype-by-environment interaction, 

and Residual for the error variance term. D. Correlations for each trait between best linear unbiased estimate 

of the trait and NIR reflectance values. Traits are abbreviated as ASI (anthesis-silking-interval), EV (early 

vigor), Final PH (plant height at harvest), GDM (grain dry matter content), GYield (grain yield), and Pconc 

(phosphorus concentration in kernels). 
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Figure S3 Among-group prediction for Satu Mare and Walliser used as training set. Groups are abbreviated 

as ED = elite Dents, EF = elite Flints, LR = overall landraces, GB = Gelber Badischer, SM = Satu Mare, SF = 

Strenzfelder, and WA = Walliser. GS and PS stand for genomic and phenomic prediction, respectively. Traits 

are denoted as ASI (anthesis-silking-interval), EV (early vigor), Final PH (plant height at harvest), GDM (grain 

dry matter content), GYield (grain yield), and Pconc (phosphorus concentration in kernels). 
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Figure S4 Predictive ability of among-group predictions shown by group. Groups are abbreviated as ED = 

elite Dents, EF = elite Flints, LR = overall landraces, GB = Gelber Badischer, SM = Satu Mare, SF = 

Strenzfelder, and WA = Walliser. GS (left side) and PS (right side) stand for genomic and phenomic prediction, 

respectively. Traits are denoted as ASI (anthesis-silking-interval), EV (early vigor), Final PH (plant height at 

harvest), GDM (grain dry matter content), GYield (grain yield), and Pconc (phosphorus concentration in 

kernels). 
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Figure 7 Graphical excerpt of publication 3. The definition of P efficiency as the ratio of harvested crop per unit of P 

given, largely depends on the harvested farm product as well as on the environment, which eventually determines the 

available P.  
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Abstract 44 

Future farming is required to produce high yields with reduced inputs. Increased fertilizer prices 45 

as well as policy goals underline the need to breed for nutrient-efficient varieties. We therefore 46 

conducted a multi-environmental field trial comprising 400 maize genotypes, half elite lines, half 47 

doubled haploid lines from six European landraces, and assessed yield parameters and 48 

corresponding phosphorus concentrations at two developmental stages. From these traits we 49 

derived several measures for phosphate efficiency and evaluated them phenotypically and 50 

genetically. The results of this study revealed that ample variation for phosphate efficiency is 51 

present in maize. However, while elite material clearly outperformed all landraces with regard 52 

to yield-related traits, some landrace genotypes indicated superior early development 53 

characteristics. The phosphate efficiency measures showed a complex genetic architecture and 54 

hence, genomic selection appears best suited to assist their improvement. Taken together, 55 

breeding for phosphate efficiency is feasible but should be performed under the same conditions 56 

in which the crops are eventually grown because phosphate efficiency and what is deemed a 57 

sustainable P balance largely depends on the context.  58 

59 

KEYWORDS: maize – landraces – phosphorus - phosphate efficiency – breeding - genomic 60 

selection 61 
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1. INTRODUCTION

Agriculture has to become more sustainable. While the need to improve agricultural production 

systems with regard to the social, economic, and ecological framework is beyond controversy, 

the different ways how to reach this goal are still to be explored. In the European Union, the 

Farm to Fork strategy aims to considerably reduce chemical synthetic inputs for plant protection 

as well as fertilization (European Commission, 2020). In Germany, the concept of a ‘hybrid 

agriculture’, ensuring high yields while simultaneously delivering environmental services, is 

proposed as a future-oriented concept to achieve a resilient agricultural production (Future 

Committee Agriculture, 2021). Hence, plant breeders are in charge of developing high-yielding 

varieties that also perform under reduced inputs. Phosphorus (P) in the form of phosphate is the 

second most important plant macronutrient (Campbell & Reece, 2009). Due to the fact that 

Germany, for instance, has to import all of its applied phosphate fertilizer in a quantity of 

253 478 t per year (FAOSTAT, 2019), the improvement of phosphate efficiency is a topical and 

crucial selection target in order to reach a sustainable P balance.  

There are various definitions of the term phosphate efficiency including different 

calculations to measure it and one difficulty lies in their inconsistent deployment (Bovill et al., 

2013; Rose & Wissuwa, 2012). In general, the trait phosphate use efficiency (PUE) can be split 

up into phosphate uptake efficiency (PUpE) and phosphate utilization efficiency (PUtE) (Leiser, 

Rattunde, Weltzien, & Haussmann, 2014; Parentoni & Souza Júnior, 2008); a concept which was 

first proposed for nitrogen (Moll et al., 1982). Eventually, which phosphate efficiency measure 

is applied largely depends on the target environment. Hence, the breeding goals also have to 

adapt to different cultivation scenarios: while some regions of the world are challenged with very 

low soil P levels, for example in sub-Sahara Africa, intensively farmed regions like Europe are 

instead confronted with eutrophication due to overfertilization (Withers et al., 2019). In the first 

case, low P concentrations in the harvested grain are desirable because soil P mining should be 

avoided (Leiser, Rattunde, Weltzien, & Haussmann, 2014) and P in the form of phytate 

negatively interacts with the uptake of other minerals and some micronutrients (Akhtar et al., 

2018; Lux et al., 2022). In the case of high soil P levels, additional inputs in these sufficiently 

supplied agricultural soils should be reduced (Weiß et al., 2021). In both scenarios, high crop 

yields are aimed for, but the described scenarios also underline that no one-size-fits-all solution 

exists for P efficiency.  

In this study, we cultivated a diverse set of maize (Zea mays L.) genotypes under – compared 

to the common local farming practice – reduced P fertilizer inputs in order to better understand 

phosphate efficiency and which traits need to be tackled for a more sustainable agricultural 

production. We grew 400 maize genotypes in multi-environmental field trials in Germany and 96 
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assessed them for their biomass yield at seedling stage as well as for biomass and grain yield at 97 

harvest, and then analyzed the P concentration in these tissues. Our objectives were to (1) 98 

calculate and evaluate different measures for phosphate efficiency, (2) investigate whether and 99 

in how far two elite heterotic groups and landraces differ with regard to phosphate efficiency, (3) 100 

evaluate the potential for genomics-assisted improvement of these traits, and (4) draw 101 

conclusions for breeding programs focussing on phosphate efficiency. 102 

103 
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2. MATERIAL AND METHODS104 

2.1.  Phenotypic Trait Assessment 105 

2.1.1. Germplasm 106 

In this study, we used 400 maize genotypes that have been described in detail previously (Weiß 107 

et al., 2022; Würschum et al., 2022). In brief, the investigated germplasm consisted of 200 elite 108 

lines (100 elite Flints [EF] and 100 elite Dents [ED]) and 200 European doubled haploid lines 109 

from landraces (11 individuals from Campan-Galade [CG], 33 from Gelber Badischer [GB], 14 110 

from Sankt Galler Rheintaler [RT], 30 from Strenzfelder [SF], 53 from Satu Mare [SM], and 59 111 

from Walliser [WA]). Due to heterogeneity of one genotype, which became obvious during the 112 

field trials, this genotype was excluded from the analyses and the final number of genotypes 113 

amounted to 399. 114 

2.1.2. Field Trials 115 

For a reliable trait assessment, multiple environmental field trials were performed in an alpha 116 

lattice design (VSN International, 2018) comprising two replicates per genotype. Each plot had 117 

a net size of 6 m2 and plant density was controlled to 8.66 plants/m2. In 2019, the trial was 118 

conducted at the experimental station Heidfeldhof of the University of Hohenheim (Lat 48.71117, 119 

Long 9.19594). In 2020, in addition to Heidfeldhof, the breeding station Eckartsweier served as 120 

another location (Lat 48.51974, Long 7.87076). Both locations are characterized in detail in 121 

Table S1. It should be mentioned that all fields where the experiments were conducted, showed 122 

typical base P levels for the region, which are classified as optimal to high. Furthermore, the 123 

weather data (Agrometeorology Baden-Württemberg, 2022) for both stations and both years is 124 

depicted in Figure S1. It can be seen that the spring of 2019 was extraordinary cold (May 2019: 125 

-2.6°C compared to the long-term mean) and wet (May 2019: +89.5 %) in Hohenheim. This126 

represented challenging conditions for maize, especially with regard to acquiring sufficient P 127 

during the early developmental phase, when seed P resources have already been used up. 128 

The traits relevant for phosphate efficiency measures were assessed in three different sample 129 

materials: seedling (abbreviated ‘Se’, four plants per genotype were sampled at growth stage V4-130 

V6), stover (abbreviated ‘St’, three plants per genotype were sampled and manually separated 131 

from cobs at harvest), and grain (all plants of the 6 m2 plot were threshed at physiological 132 

maturity with a combine harvester). It should be mentioned that a separate harvest of grain and 133 

stover did not take place in the field season 2019, therefore, all measures based on stover refer 134 

to the two trials in 2020. 135 

From the field, we generally obtained seedling (SeY in g/4 plants), stover (StY in g/plant) and 136 

grain yield (GY in t/ha) parameters. In the lab, all samples were analyzed for P concentration 137 

(Pconc in ppm) by X-ray fluorescence (Bruker, Billerica, MA, USA). Based on these field and 138 
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lab data, all other measurements were calculated on a plot basis (for raw data see supplementary 139 

material Table S2). 140 

2.2.  Data Analysis 141 

If not stated otherwise, RStudio version 3.5.3 was used for the statistical analyses (RStudio Team, 142 

2020).  143 

2.2.1. Estimation of Parameters 144 

As described in detail in a previous study (Weiß et al., 2022), the first step was to remove outliers 145 

from the dataset. Then a mixed model was applied for the three environments jointly to derive 146 

variance components, heritabilities, and best linear unbiased estimates (BLUEs) using the 147 

software tool ASReml, version 3.0 (Butler et al., 2009). For the calculation of the subgroup-148 

specific variance parameters, we introduced dummy variables that assigned each genotype to the 149 

corresponding subgroup. Broad-sense heritability was calculated following Hallauer et al. (2010). 150 

Analyses of variance for each trait were calculated by the R package ‘agricolae’ (Mendiburu, 151 

2020).  152 

2.2.2. Genome-wide association mapping and genomic prediction 153 

The 50K marker data of all genotypes (available at Weiß et al., 2022) was first subjected to a 154 

quality control with regard to missing values (< 20 %), heterozygotes (< 5 %), and monomorphic 155 

markers. Imputation using Beagle 5.2 (Browning et al., 2018) was done separately for the three 156 

groups elite Dents, elite Flints, and landraces. After imputation files were merged and afterwards 157 

filtered for a minor allele frequency > 5 %. This resulted in a total of 22,101 SNP markers and 158 

consequently a Bonferroni-corrected significance threshold of 5.65 [− log10(0.05/22,101 )]. 159 

The so obtained set of markers was used to perform genome-wide association mapping for each 160 

of the investigated traits using the Bayesian-information and Linkage-disequilibrium Iteratively 161 

Nested Keyway (BLINK) approach (Huang et al., 2019) available in ‘GAPIT 3.0’ (Wang & 162 

Zhang, 2021). The physical position of markers referred to the B73 reference genome, version 4 163 

(Jiao et al., 2017). 164 

We also applied genomic prediction by rrBLUP (Endelman, 2011). In order not to intermingle 165 

differences in population mean performance with prediction accuracy, we performed this 166 

analysis in the four largest groups, i.e. the elite Dents, the elite Flints, and the two largest 167 

landraces Satu Mare and Walliser separately. We used fivefold cross-validation with 1,000 runs 168 

to calculate the Pearson correlation coefficients between estimated and observed trait values and 169 

divided this predictive ability by the square root of the heritability to obtain the prediction 170 

accuracy (Zhao et al., 2012). 171 

The presentation of data was facilitated through the packages ‘ggpubr’ (Kassambara, 2020), 172 

‘devtools’ (Wickham et al., 2021), ‘gghalves’ (Tiedemann, 2020), ‘ggbiplot’ (Vu, 2011), ‘qqman’ 173 

(Turner, 2018), ‘qgraph’ (Epskamp et al., 2012), and ‘tidyverse’ (Wickham et al., 2019). All 174 
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graphical codes were run with RStudio version 4.1.0. 175 

176 
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3. RESULTS177 

3.1.  How to Capture Phosphate Efficiency? 178 

179 
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Screening the literature for measures of phosphate efficiency revealed a plethora of different 

terms and formulae (Table 1). The different definitions can be grouped into the following 

categories: phosphate use efficiency, which itself can be separated into phosphate uptake 

efficiency and phosphate utilization efficiency. As a basis, all of them rely on a precise 

assessment of the field parameters, namely yield measures as well as P concentration in the 

corresponding tissues. Additionally, P balance can be derived from these traits, which indicates 

how much P is in total removed from the field during harvest. Due to the fact that we did not 

supply any extra P fertilizers in our field trials, P balance corresponds to the negative value of 

the P content of the total biomass. After calculation of all listed phosphate efficiency measures, 

we excluded the ones that were highly (> 0.99) correlated with each other for the sake of clarity. 

For the remaining 20 measures, we then analyzed the summary statistics, variance components 

and heritabilities across environments (Table 2). When comparing the means, we found that the 

grain showed a significantly (P < 0.01) higher P concentration compared to the stover. The ratio 

of the genotypic (𝜎𝑔
2) to the genotype-by-environment interaction (𝜎𝑔

2
×𝑒) variance components 

demonstrated for all measures the relative importance of the genotypic component compared to 

the genotype-by-environment interaction variance. Seedling yield showed the most substantial 

genotype-by-environment interaction, whereas P utilization of the biomass, which means how 

much aboveground biomass is produced per unit P, was largely determined by the genotype. 

Heritabilities were generally high, ranging from 0.63 for P content in the seedling to 0.92 for P 

utilization of the biomass, which confirmed an overall high quality of the phenotypic data. 

Furthermore, we also reported the genetic coefficient of variation, which puts the observed 

genotypic variance in relation to the mean of the corresponding trait. Here, we found the lowest 

coefficients for the traits P concentration in the grain, P use efficiency of the grain, and P 

quotient of utilization, whereas the highest genetic coefficient of variation was observed for 

grain yield. Collectively, phosphate efficiency can be described by several measures, which all 

showed ample genetic variation and high heritabilities. 

3.2.  Evaluation of Phosphate Efficiency in Diverse Maize Groups 

We next investigated the relationships among the different phosphate efficiency measures 

(Figure 1). The biplot and the network plot (Figure 1a, b) revealed that the applied measures 

cover different aspects of phosphate efficiency and are more or less strongly related to each other. 

These correlations were in part dependent on the tissue type, as for example seedling and stover 

measures formed somewhat distinct groups. Interestingly, the landrace Satu Mare seems to 211 
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contain a wide diversity, including specifically high performers for the P utilization of stover 212 

(Figure 1a). Also, landraces showed generally higher trait values for the P concentrations in grain 213 

and stover.  214 

As plant breeding usually focuses primarily on yield-related traits, the three yield measures 215 

seedling yield, stover yield, and grain yield were investigated for their correlations with the 216 

different phosphate efficiency measures (Figure 1c). It can be noted that the correlation pattern 217 

of seedling yield differs considerably from that of the stover and grain yield, which themselves 218 

were positively and significantly correlated (r = 0.46***) with each other. Higher P 219 

concentrations of the seedling were positively correlated with seedling, stover, and grain yield. 220 

Additionally, a high seedling yield, and thus a good early development, was associated with 221 

higher P concentrations not only in the seedling, but also in stover and grain. All yield parameters 222 

showed a negative correlation with phosphate use efficiency in the seedling as well as with P 223 

balance. The calculation of P content is based on the P concentration and yield of the respective 224 

tissue, which themselves showed a positive correlation of 0.18*** for the seedling and negative 225 

correlations of -0.27*** for stover and -0.50*** for grain. We found that P content was highly 226 

positively correlated with yield for all tissue types (0.69*** < r < 0.99***), but P content of the 227 

grain showed a negative correlation of -0.39 with P concentration in the grain. 228 

In order to capture phosphate efficiency, we exemplarily chose six traits from different clusters 229 

of the network plot for more detailed analyses: seedling yield, P concentration of the seedling, 230 

grain yield, P use efficiency of the stover, P quotient of utilization, and P balance. Jointly, these 231 

traits can be used to describe the complex trait phosphate efficiency and cover it from different 232 

angles. Since our panel is composed of different breeding material, it also allows to evaluate the 233 

performance of each subgroup (Figure 2, Table S3). For the six exemplary traits, the most 234 

prominent and significant differences can be seen for grain yield and P balance, where the elite 235 

lines are clearly distinct from the landraces, as they showed generally higher grain yields and 236 

therefore a more negative P balance. Interestingly, the landraces St. Galler Rheintaler, Gelber 237 

Badischer and Strenzfelder showed a superior early development. More generally speaking, 238 

early plant development, represented by seedling yield, clearly separated the lower-performing 239 

Dent from the Flint pool (elite Flints and all landraces). Moreover, the two subgroups elite Dents 240 

and Satu Mare behaved differently than the other groups. While both demonstrated a below-241 

average performance in the early stages, they had a significantly higher phosphate use efficiency 242 

of the stover compared to the other subgroups. The elite Dent material also showed the highest 243 

quotient of P utilization. Moreover, if we select of all 20 indicators for phosphate efficiency the 244 

10 % genotypes with the highest trait values of the whole panel and subsequently filter out the 245 

10 % genotypes with the highest occurrence, we end up exclusively with elite Dent lines except 246 

for two elite Flints and one Satu Mare genotype. Taken together, the germplasm as well as the 247 
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analyzed tissue have a major impact on the outcome of phosphate efficiency indicators. 248 

249 

3.3.  The Genetic Architecture of Phosphate Efficiency Measures 250 

As a first step, we performed genome-wide association mapping to identify quantitative trait loci 251 

(QTL). Across all traits, this revealed only few single nucleotide polymorphism (SNP) markers 252 

that surpassed the Bonferroni-corrected significance threshold of 5.65. For the two traits seedling 253 

yield and P utilization of the grain, no marker reached the significance threshold (Figure 3, Table 254 

S4).  255 

Due to the apparent quantitative nature of the traits, we next performed genomic prediction for 256 

all 20 traits in the four largest subgroups, namely elite Dents, elite Flints, Satu Mare, and Walliser 257 

(Figure 4). This showed that the three yield parameters generally achieved high prediction 258 

accuracies. One exception was grain yield in the two landraces, which was rather poorly 259 

predicted with 0.22 and 0.19. The trait P content of the biomass also resulted in high prediction 260 

accuracies for all four subgroups. Overall, the pattern for the two elite subgroups and for the two 261 

landraces appears quite similar. The highest prediction accuracy was obtained for the landrace 262 

Walliser with 0.73 for the P concentration in the seedling, while the lowest mean prediction 263 

accuracy of 0.17 was observed for Satu Mare for the P utilization of grain. Furthermore, when 264 

comparing the prediction accuracies of each subgroup, the elite Dents showed the highest values 265 

across all traits with an average prediction accuracy of 0.53 and the landrace Walliser the lowest 266 

with an average prediction accuracy of 0.41. In summary, genomic prediction resulted for most 267 

phosphate efficiency measures in moderate to high prediction accuracies. 268 

269 
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4. DISCUSSION 270 

4.1.  Phosphate Efficiency is Context-Dependent 271 

As already mentioned in the introduction, the definition and prioritization of phosphate 272 

efficiency measures are strongly dependent on the available P in the target environment and on 273 

the harvested material being removed from the field. While the first factor is mainly influenced 274 

by the base P level and the soil type with its properties (Erel et al., 2017; Ibrahim et al., 2021; 275 

Leiser, Rattunde, Weltzien, Cisse, et al., 2014), the amount of fertilizer and the interaction of P 276 

with other plant nutrients (Frank Stephano et al., 2021; Weiß et al., 2021) as well as the 277 

management of the field (Nkebiwe et al., 2016; Xin et al., 2017), the latter is above all a question 278 

of the farm’s operating mode. A dairy farm will harvest silage maize and in the next season 279 

resupply a part of the P to its fields in form of manure. By contrast, an agricultural farm that sells 280 

maize grain for human or animal consumption exports the therein contained nutrients and 281 

therefore removes them from the farm’s P cycle. Hence, it is especially desirable and relevant 282 

for pure crop farms to realize adequate P levels of their fields. This example emphasizes the point 283 

how strongly the definition of phosphate efficiency is dependent on the context, even within a 284 

given environment. 285 

In Europe, most fields were fertilized sufficiently with P in the course of the last decades and the 286 

soil P status is high (Table S1), also in a global comparison. Interestingly, high P concentrations 287 

in the seedling seem to result in a higher seedling, stover, and grain yield, which is likely due to 288 

an improved seedling vigor. This underlines the importance of early development in maize as the 289 

uptake of P is most critical in this stage. Moreover, stover and grain yield in maize were mostly 290 

positively correlated with the investigated phosphate efficiency measures. Unlike other 291 

negatively correlated target traits in crops that impose a trade-off during selection, as for example 292 

protein content and grain yield (Neuweiler et al., 2021), breeders can benefit from the fact that 293 

the selection for grain yield indirectly has resulted in a concomitant improvement of most of the 294 

phosphate use efficiency measures. Thus, breeding for phosphate efficiency in a European 295 

context, which means realizing high yields under the given soil P levels without extra P fertilizer 296 

inputs, appears feasible with the available genetic variation and does not seem to come at the 297 

expense of other target traits. 298 

 299 

4.2.  Impact of the Breeding Material on Phosphate Efficiency 300 

The differences between the subgroups became evident in the biplot and the phenotypic 301 

distribution of the investigated traits (Figure 1a, 2, Table S3). We observed a generally superior 302 

performance of elite Dent lines in comparison to the Flint subgroups, including a substantially 303 

higher grain yield. Except for a significantly lower seedling yield of the elite Dent lines due to 304 
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their lower cold tolerance (Strigens et al., 2013), Dent genotypes therefore also showed generally 305 

higher trait values with regard to phosphate efficiency indicators. Previous studies have shown 306 

that American Dents display a higher polymorphic richness than European Flint lines (Rebourg 307 

et al., 2003; Revilla et al., 2014). This fact and the overall longer breeding history of Dent lines 308 

may explain the higher genetic gains achieved in Dent material compared to Flints and therefore 309 

a higher line per se performance under favorable conditions (Moreno‐Gonzalez et al., 1997). 310 

Moreover, the Satu Mare landrace lines showed extraordinarily high trait values for phosphate 311 

utilization efficiency of the stover. The reason for this is that Satu Mare genotypes frequently 312 

showed the phenomenon of barren stalks. Since no cobs were formed then, the ratio of stover 313 

yield to total P in the biomass was distorted, which led to such artificially high values for 314 

phosphate utilization efficiency of the stover. 315 

It should be noted that the choice of the investigated measures we use as selection criteria will 316 

have a decisive impact on the composition of the selected fraction. Performing a combined 317 

selection across all traits resulted in almost only Dent lines. Since many phosphate efficiency 318 

measures contain the factor yield, elite material is clearly superior and will always be preferred. 319 

While heterotic pools, such as Flint and Dent in our example, will be kept separate anyhow 320 

during breeding, this nevertheless illustrates that the genetic background should be kept in mind 321 

when working with different material groups as the landraces in our study.  322 

323 

4.3.  The Potential of Marker-Assisted Breeding for Phosphate Efficiency 324 

According to Gojon et al. (2022) only few major QTL for phosphate efficiency were reported in 325 

maize (Chen et al., 2009; Li, Wang, et al., 2021). Notably, studies where major QTL could be 326 

detected were performed under severely P-deficient conditions. The identification of the 327 

underlying causal genes for phosphate efficiency in crops was so far only achieved for very few 328 

cases. PSTOL1 in rice (Oryza sativa L.) represents the probably most well-known example. This 329 

gene acts as an enhancer of early root growth and root surface area and therefore improves 330 

phosphate uptake under low P conditions (Gamuyao et al., 2012; Wissuwa et al., 1998). Another 331 

example is SbMATE in sorghum (Sorghum bicolor L. Moench), known to be causal for aluminum 332 

tolerance, that was proposed to have a pleiotropic effect also on grain yield under P deficiency 333 

(Leiser, Rattunde, Weltzien, Cisse, et al., 2014). Our study, which took place under sufficient P 334 

supply, did not identify any consistent QTL for the investigated phosphate efficiency indicators. 335 

This is somehow to be expected as most of the traits contain or are derived from yield, which is 336 

a trait with a highly quantitative nature. In line with this, we observed moderate to high 337 

accuracies for genomic prediction, which varied somewhat depending on the genetic group and 338 

the chosen phosphate efficiency indicator. Nevertheless, given appropriate training set sizes and 339 

designs, our results illustrate the potential of genomic selection to assist the improvement of 340 
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phosphate efficiency in breeding.  341 

 342 

4.4.  Breeding for a Sustainable P Balance 343 

Because breeding means thinking ahead, also breeders in countries with currently well P-344 

supplied soils should already now work on varieties that will perform well under reduced P 345 

availability, as reduced P fertilizer inputs will eventually lead to lower P base levels in the soil. 346 

Taking into consideration how much phosphate efficiency depends on the context, we 347 

recommend to conduct the selection of phosphate-efficient crops under the target conditions 348 

under which the crops will eventually be grown. Breeding under reduced P field conditions 349 

seems reasonable in order to select genotypes that possess characteristics to perform well under 350 

such conditions. For example, a recent study has demonstrated that cultivating maize without 351 

extra starter fertilizers in breeding nurseries can be recommended as there is sufficient genetic 352 

variation to tolerate this reduced fertilizer input (Weiß et al., 2021). Moreover, future research 353 

concerning phosphate, or generally speaking nutrient efficiency, should take root traits into 354 

account, which may also be promising with regard to the increased need for drought tolerant 355 

maize (Hund et al., 2009).  356 

Finally, in breeding programs that usually deal with large numbers of genotypes, we need traits 357 

that can be easily scored and are thus amenable to high throughput. Therefore, the crucial 358 

question with regard to screening phosphate efficiency is: which trait to choose? Of the 20 359 

phosphate efficiency indicators investigated in this study, we observed fairly high heritabilities 360 

and genomic predictive accuracies for the field-related traits (Figure 4). For this reason, we 361 

recommend to focus on the traits seedling, stover, and grain yield as well as the P concentration 362 

in all three tissues as a straightforward approach to assess phosphate efficiency. Specific selection 363 

strategies and breeding objectives can then be adapted to the respective conditions. While yield 364 

at harvest is already routinely assessed, analyzing P concentration at the seedling stage would 365 

also enable an indirect selection for the improvement of all yield measures (Figure 1c). However, 366 

the tissue sampling and measuring the P concentration may not be applicable to the many 367 

selection candidates in early generations. Thus, genomic selection appears promising to target P 368 

concentration in early generations in a resource- and time-efficient manner (Weiß et al., 2022). 369 

In addition, it should be noted that it also matters in which form P is present in the plants 370 

(Rodehutscord et al., 2016). For food and feed alike, a reduced concentration of phytate or an 371 

increased phytase activity is desirable to ensure a sufficient mineral supply (Akhtar et al., 2018; 372 

Humer & Zebeli, 2015). In conclusion, this study illustrated that it is necessary to define what 373 

exactly is meant by sustainable P balance since this may vary greatly depending on the context. 374 

Importantly, however, breeding for phosphate efficiency is feasible as illustrated by the available 375 

genetic variation for the different measures, which allows the targeted selection depending on 376 
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the specific environmental requirements. Interestingly, Flint landraces showed valuable 377 

characteristics with regard to early development, which illustrates that for some traits the 378 

introgression of such beneficial variation from more exotic material into elite breeding material 379 

may be worthwhile. As phosphate efficiency generally showed a complex genetic architecture, 380 

a combination of genomic and phenotypic selection appears most suitable for the improvement 381 

of phosphate efficiency in breeding towards a more sustainable agriculture.  382 

383 
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TABLES 623 

Table 1 Different phosphate efficiency measures reviewed in literature. The categories 624 

phosphate use efficiency (PUE), phosphate uptake efficiency (PUpE), phosphate utilization 625 

efficiency (PUtE), and phosphate balance (Pbal) are distinguished. Yield stands, depending on 626 

the tissue, for seedling yield (SeY), stover yield (StY), grain yield (GY), or biomass yield (BMY, 627 

given as the sum of grain and stover). Accordingly, P concentration (Pconc) and P content 628 

(Pcont) can be specified according to the corresponding sample (seedling, grain, stover, 629 

biomass). Abbreviations, which were eventually used in this sutdy are highlighted in bold. PUE 630 

was calculated for all three tissues and together with the P concentrations for all tissues we end 631 

up with 20 measures in total. 632 

Category Name Abbr. Calculation Crop Reference 

PUE P-use efficiency

SeY 

StY 

GY 

𝑃𝑈𝐸 = 𝑌𝑖𝑒𝑙𝑑  

𝑃𝑈𝐸 = 𝑆𝑒𝑒𝑑𝑙𝑖𝑛𝑔𝑌𝑖𝑒𝑙𝑑 

𝑃𝑈𝐸 = 𝑆𝑡𝑜𝑣𝑒𝑟𝑌𝑖𝑒𝑙𝑑  

𝑃𝑈𝐸 = 𝐺𝑟𝑎𝑖𝑛𝑌𝑖𝑒𝑙𝑑 

Maize; 

Rice 

Adem et al., 2020; 

Azevedo et al., 2015 

PUE 

Agronomic 

efficiency; P-use 

efficiency; Partial 

factor 

productivity of P 

agroPUE 

𝑃𝑈𝐸 = 𝑃𝑈𝑝𝐸 ∗ 𝑃𝑈𝑡𝐸 

 =
𝑌𝑖𝑒𝑙𝑑

𝑃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑
 

Maize; 

Sorghum 

Frank Stephano et al., 

2021; Leiser et al., 2015; 

Moll et al., 1982; Yan et 

al., 2021; Magalhaes 

(personal 

communication) 

PUE P use efficiency PUE 𝑃𝑈𝐸 =
1

𝑃𝑐𝑜𝑛𝑐
Rice 

Wissuwa (personal 

communication) 

PUpE 

P accumulation; 

P acquisition; P 

content; P 

uptake; Whole-

plant nutrient 

uptake 

Pcont G 𝑃𝑈𝑝𝐸 = 𝐺𝑌 ∗ 𝑃𝑐𝑜𝑛𝑐𝐺𝑟𝑎𝑖𝑛 

Maize; 

Rice; 

Sorghum 

Azevedo et al., 2015; 

Ciampitti & Vyn, 2014; 

Leiser et al., 2015; Li, 

Chen, et al., 2021; Rose 

et al., 2016; Wissuwa & 

Ae, 2001 

PUpE 

P content; Per-

plant nutrient 

uptake 

Pcont Se 

Pcont St 
𝑃𝑈𝑝𝐸 =

𝑌𝑖𝑒𝑙𝑑∗𝑃𝑐𝑜𝑛𝑐

𝑃𝑙𝑎𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
Maize Ciampitti & Vyn, 2014 

PUtE 

Physiological 

efficiency; P 

utilization 

efficiency; P 

utilization grain 

PUtE G 𝑃𝑈𝑡𝐸 =
𝐺𝑌

𝑃𝑐𝑜𝑛𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠

Maize; 

Sorghum 

Ciampitti & Vyn, 2014; 

Leiser et al., 2015; Moll et 

al., 1982; Parentoni & 

Souza Júnior, 2008 
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PUtE 
P utilization 

stover 
PUtE St 𝑃𝑈𝑡𝐸 =

𝑆𝑡𝑌

𝑃𝑐𝑜𝑛𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠

Sorghum; 

Rice 

Adem et al., 2020; Leiser 

et al., 2015 

PUtE 
P utilization 

biomass 
PutE BM 𝑃𝑈𝑡𝐸 =

𝐺𝑌+𝑆𝑡𝑌

𝑃𝑐𝑜𝑛𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠

Tomato; 

Bean; 

Sorghum 

Gabelman & Gerloff, 

1983; Leiser et al., 2015 

PUtE P ratio P ratio 𝑃𝑈𝑡𝐸 =
𝑃𝑐𝑜𝑛𝑐𝐺𝑟𝑎𝑖𝑛

𝑃𝑐𝑜𝑛𝑐𝑆𝑡𝑜𝑣𝑒𝑟
Cereals Zhang et al., 2021 

PUtE P harvest index PHI 𝑃𝐻𝐼 =
𝑃𝑐𝑜𝑛𝑡𝐺𝑟𝑎𝑖𝑛

𝑃𝑐𝑜𝑛𝑡𝐵𝑖𝑜𝑚𝑎𝑠𝑠

Maize; 

Sorghum 

Leiser et al., 2015; 

Parentoni & Souza 

Júnior, 2008 

PUtE 
P quotient of 

utilizaion 
QUTIL 𝑃𝑈𝑡𝐸 =

𝐺𝑌

𝑃𝑐𝑜𝑛𝑡𝐺𝑟𝑎𝑖𝑛
Maize 

Parentoni & Souza 

Júnior, 2008 

PUtE 

P internal 

utilization 

efficiency 

PUTIL 𝑃𝑈𝑇𝐼𝐿 = 𝑄𝑈𝑇𝐼𝐿 ∗ 𝑃𝐻𝐼 Maize 
Parentoni & Souza 

Júnior, 2008 

PUtE 

P internal 

utilization 

efficiency 

PUtE int 𝑃𝑈𝑡𝐸 =
𝐵𝑀𝑌

𝑃𝑐𝑜𝑛𝑡𝑆𝑡𝑜𝑣𝑒𝑟

Bean; 

Rice 

Ciampitti et al., 2013; 

Liao & Yan, 1999; Rose 

et al., 2016 

Pbal P balance Pbal 
𝑃𝑏𝑎𝑙 = 𝑃𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑 −

𝑃𝑝𝑙𝑎𝑛𝑡 𝑢𝑝𝑡𝑎𝑘𝑒  
Maize Redel et al., 2021 
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Table 2 Summary statistics for all phosphate efficiency measures. 𝜎𝑔
2 denotes the genotypic634 

variance, 𝜎𝑔×𝑒
2  the genotype-by-environment interaction variance, 𝜎𝑒

2 the error variance, and635 

𝐻2 the broad-sense heritability. The genetic coefficient of variation is abbreviated as GCV.636 

Traits are named as follows: seedling yield (SeY), P concentration in seedling (Pconc Seedling), 637 

stover yield (StY), P concentration in stover (Pconc Stover), grain yield (GY), P concentration 638 

in grain (Pconc Grain); phosphate use efficiency of seedling (PUE Se), of stover (PUE St), of 639 

grain (PUE G); P content seedling (Pcont Se), stover (Pcont St), grain (Pcont G), and biomass 640 

(Pcont BM); phosphate utilization efficiency of stover (PUtE St), of grain (PUtE G), of biomass 641 

(PUtE BM), P ratio, P quotient of utilization (QUTIL), P internal utilization efficiency (PUtE 642 

int), and P balance (Pbal). Traits based on all three location-year-combinations (Hohenheim 2019 643 

and 2020, Eckartsweier 2020) are marked with a ♣. Otherwise, they are based on Hohenheim 644 

2020 and Eckartsweier 2020. 645 

Variable Unit Mean 𝝈𝒈
𝟐 𝝈𝒈×𝒆

𝟐 𝝈𝒆
𝟐 𝝈𝒈

𝟐 :𝝈𝒈×𝒆
𝟐 𝑯𝟐 GCV 

SeY♣ 
[g/4 

plants] 
6.42 1.91 1.47 1.43 1.30 0.72 0.21 

Pconc 

Seedling♣ 
[ppm] 3176.38 96799.02 63288.92 117411.66 1.53 0.70 0.10 

StY [g/plant] 41.96 183.31 16.69 82.83 10.98 0.86 0.32 

Pconc 

Stover 
[ppm] 2161.83 265117.83 30374.25 88047.95 8.73 0.88 0.24 

GY♣ [t/ha] 1.84 1.35 0.58 0.16 2.31 0.86 0.63 

Pconc 

Grain♣ 
[ppm] 3181.55 52688.89 11733.83 23984.76 4.49 0.87 0.07 

PUE Se♣ [kg/g P] 0.34 1.30E-03 8.94E-04 1.59E-03 1.46 0.70 0.11 

PUE St [kg/g P] 0.53 1.88E-02 6.75E-03 6.78E-03 2.78 0.79 0.26 

PUE G♣ [kg/g P] 0.32 5.48E-04 1.37E-04 2.34E-04 4.00 0.87 0.07 

Pcont Se♣ [g/plant] 0.01 1.32E-06 1.58E-06 1.50E-06 0.84 0.63 0.21 

Pcont St [g/plant] 0.09 6.83E-04 2.52E-04 5.54E-04 2.71 0.72 0.30 

Pcont G♣ [kg/ha] 5.58 11.43 4.23 1.77 2.70 0.87 0.61 

Pcont BM [kg/ha] 12.41 15.20 2.39 5.04 6.35 0.86 0.31 

PUtE St [g/mg P] 0.32 8.60E-03 9.76E-04 2.12E-03 8.81 0.89 0.29 

PUtE G [kg/g P] 0.11 2.93E-03 6.96E-04 6.97E-04 4.21 0.85 0.50 

PUtE BM [kg/g P] 0.42 6.97E-03 4.03E-04 1.50E-03 17.28 0.92 0.20 
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P ratio [%] 172.17 1580.12 486.12 797.76 3.25 0.78 0.23 

QUTIL♣ [ ] 318.42 557.6 145.44 230.17 3.83 0.87 0.07 

PUtE Int [ ] 776.50 78312.58 43588.6 32097.38 1.80 0.72 0.36 

Pbal [kg/ha] -12.41 15.20 2.39 5.04 6.35 0.86 -0.31
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FIGURES 647 

648 

Figure 1 Relationships among phosphate efficiency indicators. a: Biplot of all 20 traits and 649 

measures with the 399 genotypes assigned to their subgroups, i.e. elite Dents (ED), elite Flints 650 

(EF), Campan-Galade (CG), Gelber Badischer (GB), St. Galler Rheintaler (RT), Strenzfelder (SF), 651 

Satu Mare (SM), and Walliser (WA). b: Network correlation plot. The line between two traits 652 

depicts the strength of the Pearson correlation coefficient, red showing negative, green positive 653 

correlations. Traits are abbreviated as: seedling yield (SeY), P concentration in seedling (Pconc 654 

Se), stover yield (StY), P concentration in stover (Pconc St), grain yield (GY), P concentration 655 

in grain (Pconc G); phosphate use efficiency seedling (PUE Se), stover (PUE St), grain (PUE 656 

G); P content of seedling (Pcont Se), of stover (Pcont St), of grain (Pcont G), and of biomass 657 

(Pcont BM); phosphate utilization efficiency of stover (PUtE St), grain (PUtE G), and biomass 658 

(PUtE BM), P ratio, P quotient of utilization (QUTIL), P internal utilization efficiency (PUtE 659 

int), and P balance (Pbal). Six exemplary traits from different clusters are circled in bold and 660 

used for further analyses. c: Pearson correlation matrix for the yield measures with the other 661 

phosphate efficiency measures. Significance levels are shown as ‘*’ (p-value < 0.05), ‘**’ (p-662 

value < 0.01), ‘***’ (p-value < 0.001). 663 
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665 

Figure 2 Phenotypic distribution of six exemplary traits representing the phosphate efficiency 666 

measures, shown for the different subgroups. 667 

668 
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669 

Figure 3 Results from genome-wide association mapping performed with 22,101 markers for the 670 

six exemplary traits. Manhattan plots and QQ plots are shown, the Bonferroni-corrected 671 

significance threshold is indicated as horizontal dashed line, significant SNPs are highlighted in 672 

purple. 673 

674 
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675 

Figure 4 Genomic prediction results for the 20 phosphate use efficiency components and measures, 676 

split up into the category ‘Field’, phosphate use efficiency (PUE), phosphate uptake efficiency 677 

(PUpE), and phosphate utilization efficiency (PUtE). Results are given as prediction accuracy 678 

obtained with 1000 cross-validation runs. Subgroups are abbreviated as elite Dents (ED), elite 679 

Flints (EF), and the two landraces Satu Mare (SM) and Walliser (WA). 680 
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SUPPLEMENTARY MATERIALS 691 

Table S1 Location characterization including maize cultivation parameters and soil properties 692 

of the growing seasons 2019 and 2020. 693 

Parameters 

[Unit] 

A
lt
it
u

d
e

 

[m
 A

S
L
] 

Ø
T

e
m

p
e
ra

tu
re

*

[°
C

] 

Ø
P

re
c
ip

it
a
ti
o

n
*

[m
m

] 

S
o
w

in
g

 

[D
a
te

] 

H
a
rv

e
s
t 

[D
a
te

] 

S
o
il 

ty
p

e
 

p
H

 

M
g

 

[m
g
/1

0
0
g

 s
o
il]

 

P
2
O

5
**

 

[m
g
/1

0
0
g

 s
o
il]

 

P
**

 

[m
g
/1

0
0
g

 s
o
il]

 

C
la

s
s
if
ic

a
ti
o
n
 P

 

a
v
a
ila

b
ili

ty
**

* 

Heidfeldhof 

2019 
402 10.6 857 

Apr 

30th 

Oct 

14th - 

24th 

Silty 

loam 
6.79 17.5 19.5 8.5 D 

Heidfeldhof 

2020 
402 10.9 667 

Apr 

20th 

Sep 

16th 

– Oct

13th 

Silty 

loam 
6.95 11 14.4 6.3 D 

Eckartsweier 

2020 
142 12.2 659 

Apr 

15th 

Aug 

31st - 

Sep 

16th 

Clayey 

loam 
5.66 19.6 9.9 4.3 C 

* Data retrieved from <www.wetter-bw.de>694 

** Calcium Acetate lactate (CAL) method and photometric determination of available soil P 695 

*** According to VDLUFA-P-content-classes (A = very low, E = very high) defined by the Association of German Agricultural Analytic 696 

and Research Institutes (Verband Deutscher Landwirtschaftlicher Untersuchungs- und Forschungsanstalten). 697 

698 

699 

700 

Table S2 Field raw data of measured and calculated phosphate efficiency measures. 701 

See separate Excel file for Table S2. 702 

703 

Enviro- 

ments 
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Table S3 Population-specific variance components of the investigated phosphate efficiency 704 

measures. 𝜎𝑔
2 denotes the genotypic variance, 𝜎𝑔×𝑒

2  the genotype-by-environment-interaction705 

variance, 𝜎𝑒
2 the error variance, and 𝐻2 the broad-sense heritability. Traits are abbreviated as706 

follows: seedling yield (SeY), P concentration in seedling (Pconc Seedling), stover yield (StY), 707 

P concentration in stover (Pconc Stover), grain yield (GY), P concentration in grain (Pconc 708 

Grain); phosphate use efficiency of seedling (PUE Se), of stover (PUE St), of grain (PUE G); P 709 

content seedling (Pcont Se), stover (Pcont St), grain (Pcont G), and biomass (Pcont BM); 710 

phosphate utilization efficiency of stover (PUtE St), grain (PUtE G), biomass (PUtE BM), P 711 

ratio, P quotient of utilization (QUTIL), P internal utilization efficiency (PUtE int), and P balance 712 

(Pbal). If nothing is indicated, the population-specific values are based on the 2020 field data 713 

only, three location-year-combinations (Hohenheim 2019 and Hohenheim 2020, Eckartsweier 714 

2020) are marked with ♣. Different superscript letters indicate significant (p-value < 0.05) 715 

differences between the eight subgroup means. 716 

717 
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Subgrou

p 

Variabl

e 

SeY♣ 

[g/4 

plants

] 

Pconc 

Seedling

♣ 

[ppm] 

StY 

[g/plant

] 

Pconc 

Stover 

[ppm] 

GY♣ 

[t/ha] 

Pconc 

Grain♣ 

[ppm] 

PUE 

Se♣ 

[kg/g 

P] 

PUE 

St 

[kg/g 

P] 

PUE 

G♣ 

[kg/g 

P] 

Pcont 

Se♣ 

[g/plant

] 

Pcont 

St 

[g/plant

] 

Pcont 

G♣ 

[kg/ha

] 

Pcont 

BM 

[kg/ha

] 

PUtE 

St 

[g/mg 

P] 

PUtE 

G 

[kg/g 

P] 

PUtE 

BM 

[kg/g 

P] 

P 

ratio 

[%] 

QUTIL

♣ 

[ ] 

PUtE 

Int 

[ ] 

Pbal 

[kg/ha

] 

WA 

mean 
6.42b

c

2957.0

3b 

37.15

bc

2321.8

9b 

0.7

4d 

3324.7

6b 

0.37

a

0.47

cd

0.30

cd
0.01bc 0.08a 2.36c 9.45b 

0.36

b

0.07

bc

0.42

b

162.7

5b 

302.6

5cd 
581.04c 

-

9.45a 

𝜎𝑔
2 2.11 

1.51E+

05 
92.55 

9.85E

+04

0.1

4 

1.85E

+04

2.41

E-03

4.36

E-03

1.62

E-04

1.99E

-06

6.50E

-04
1.75 6.41 

3.69

E-03

1.07

E-03

2.62

E-03

394.0

0 

167.0

0 

14939.

91 
6.41 

𝜎𝑔×𝑒
2 1.62 

4.11E+

04 
23.68 

3.76E

+04

0.1

1 

1.79E

+04

1.48

E-03

5.98

E-03

1.27

E-04

1.65E

-06

2.50E

-04
0.94 0.88 

1.04

E-03

2.09

E-04

1.27

E-03

683.0

1 

125.4

2 

10698.

70 
0.88 

𝐻2 0.73 0.82 0.74 0.71 
0.6

9 
0.65 0.76 0.49 0.66 0.71 0.71 0.74 0.79 0.78 0.79 0.72 0.42 0.68 0.54 0.79 

SM 

mean 5.28d 
3023.5

1ab 
33.30c 

1938.7

6c 

1.2

0c 

3193.4

7c 

0.36

ab

0.58

b

0.32

b
0.00d 0.07b 3.70c 8.29b 

0.41

a

0.09

b

0.49

a

194.7

4a 

316.2

3b 
764.77b 

-

8.29a 

𝜎𝑔
2 3.17 

2.13E+

05 

206.6

1 

2.17E

+05

0.6

6 

3.19E

+04

4.16

E-03

2.48

E-02

3.21

E-04

2.82E

-06

1.10E

-03
6.24 

16.9

6 

3.06

E-02

1.92

E-03

2.48

E-02

3281.

66 

325.7

3 

55532.

39 

16.9

6 

𝜎𝑔×𝑒
2 3.58 

2.48E+

05 
0.54 

3.57E

+04

0.6

0 

1.43E

+04

3.54

E-03

8.32

E-03

1.09

E-04

4.32E

-06

2.59E

-10
4.99 0.00 

9.30

E-04

7.47

E-04

3.76

E-04

194.6

2 

118.1

3 

26481.

72 
0.00 

𝐻2 0.69 0.68 0.91 0.84 
0.7

4 
0.78 0.74 0.81 0.81 0.63 0.89 0.76 0.93 0.97 0.78 0.98 0.92 0.81 0.73 0.93 

SF 

mean 
7.34a

b

3136.9

1ab 

38.13

bc

2615.6

2b 

0.8

9cd 

3263.2

2bc 

0.35

ab

0.41

de

0.31

bc
0.01ab 0.10a 2.80c 

11.0

0b 

0.31

bc

0.06

bc

0.37

bc

137.0

4bc 

309.4

3bc 
499.47c -11a

𝜎𝑔
2 2.94 

7.56E+

04 
35.14 

1.91E

+05

0.1

8 

2.12E

+04

7.17

E-04

3.66

E-03

1.85

E-04

1.36E

-06

1.77E

-04
1.68 3.19 

1.90

E-03
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Table S4 Markers reaching the Bonferroni-corrected significance threshold of 5.65 in the 

genome-wide association study. Frequency indicates how often this SNP was identified as a 

significant marker for the 20 investigated phosphate efficiency measures. 

Trait Marker Chr. Pos. [bp] P value Frequency 

Seedling yield - - - - - 

P concentration seedling AX-90559399 10 62,300,773 1.18E-11 7 

AX-90549380 6 103,112,536 1.13E-07 1 

AX-91363640 10 18,983,353 2.69E-07 1 

AX-90528468 1 2,106,411 2.82E-06 1 

AX-90539192 3 155,496,851 3.46E-06 1 

Stover yield AX-90551406 7 85,298,782 4.08E-07 1 

P concentration stover AX-90561279 4 238,100,142 3.13E-10 4 

AX-90571724 3 29,590,115 7.13E-10 2 

AX-90540452 3 232,646,913 2.68E-06 1 

Grain yield AX-90538422 3 112,492,593 1.93E-06 2 

P concentration grain AX-90546602 5 140,470,238 3.31E-07 3 

P content grain AX-90554163 2 119,423,856 7.32E-09 1 

AX-90538422 3 112,492,593 1.20E-08 2 

AX-90547819 5 215,515,596 2.78E-07 1 

AX-90565978 6 98,782,602 6.84E-07 1 

PUE seedling AX-90559399 10 62,300,773 4.63E-19 7 

AX-90552092 7 122,960,118 4.01E-08 1 

PUE grain AX-90559399 10 62,300,773 2.37E-07 7 

AX-90546602 5 140,470,238 4.76E-07 3 

PUE stover AX-90561279 4 238,100,142 5.60E-08 4 

P content seedling AX-90542610 4 135,840,932 9.51E-08 1 

AX-90559399 10 62,300,773 5.45E-07 7 

AX-90539179 3 155,180,061 1.30E-06 1 
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P content stover AX-90527406 2 205,704,579 5.14E-07 1 

AX-91348995 4 224,627,185 1.06E-06 1 

AX-90559399 10 62,300,773 1.75E-06 7 

AX-91360121 8 135,656,836 2.19E-06 1 

P content biomass AX-90559588 10 71,953,924 1.67E-06 1 

PUtE stover AX-90571337 7 177,638,927 1.40E-13 2 

AX-91354059 6 91,229,070 4.32E-08 1 

AX-90559399 10 62,300,773 2.20E-07 7 

AX-91377974 10 70,052,981 1.05E-06 1 

AX-90558912 10 30,081,724 1.61E-06 1 

PUtE grain - - - - 

PutE biomass AX-90571337 7 177,638,927 2.76E-15 2 

AX-90559399 10 62,300,773 4.71E-15 7 

AX-90571724 3 29,590,115 8.16E-14 2 

AX-90561279 4 238,100,142 1.21E-12 4 

AX-90571133 1 66,654,956 6.66E-09 1 

AX-90542916 4 155,454,018 3.79E-07 1 

AX-90573683 1 51,465,666 5.60E-07 1 

AX-90550118 6 150,515,669 1.37E-06 1 

P ratio AX-90561279 4 238,100,142 2.59E-08 4 

QUTIL AX-90559602 10 73,628,694 1.29E-08 1 

AX-91332263 3 228,880,245 1.21E-06 1 

AX-90546602 5 140,470,238 1.28E-06 3 

PUtE int AX-91364519 10 73,645,344 7.73E-08 1 

P balance AX-90559588 10 71,953,924 1.67E-06 - 
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Figure S1 Weather data of the three location-year combinations during the maize growing 

season. Precipitation is depicted as bar plots, the temperatures as lines. 

103



Discussion 

104 

Discussion 

This work was conducted to assess the genetic variation for phosphate efficiency traits in maize and 

derive implications for practical breeding. In the sister research subject on the Chinese side, our 

colleagues investigated temperate and tropical/subtropical maize for their adaptation to phosphate 

tolerance, by focusing on low P soil conditions (Li et al. 2021a; Li et al. 2021b; Li et al. 2019a). 

The aim of this research was to focus on DHs from Flint landraces, Flint and Dent elite lines, as 

well as mid-early to mid-late hybrid cultivars currently on the market and assess them for phosphate 

efficiency under well-supplied soils commonly found in Central Europe.  

The key findings of our work at hand are: 

(1) Genotypes show different response to the application of starter fertilizers in early

developmental stages

(2) The environment has a significant effect on the impact of starter fertilizers

(3) Phenomic selection is a useful and cost-efficient tool to predict traits like phosphorus

concentration and grain yield

(4) Population structure does not bias the ability of phenomic selection to predict target traits

(5) DHs from Flint landraces offer valuable allelic diversity with regard to phosphate

efficiency during the seedling stage

(6) Genomic selection can complement phenotypic selection for phosphate efficiency traits in

a meaningful way

(7) Phosphate efficiency, including its definition and interpretation, is largely context

dependent

The following paragraphs should elucidate the meaning of this research: what are the factors that 

need to be considered when breeding for phosphate efficiency on highly supplied soils? 

Interaction of P with other elements 

P cannot and should not be regarded separately due to the various interactions that are known to 

exist with other plant nutrients. We observed in our commercial hybrid trial the biggest effect of 

starter fertilizers for the diammonium phosphate treatment, in particular for early plant height 

measurements (Weiß et al. 2021). This synergistic effect of nitrogen and phosphorus has been 

reported in several studies and it is a well-established fact that the combination of N + P is more 

effective than their single application (Bello and Yusuf 2021; Nkebiwe et al. 2016). The reason for 

this lies in the acidification of soil through ammonium and the thereby caused increased P 

availability for root uptake (Vogel et al. 2020; Jing et al. 2012). It is even said that eventually it is 

the availability of nitrogen that determines phosphate efficiency as the crucial limiting factor for 

grain yield in most cases (Kenea et al. 2021; Mpanga et al. 2019; Mascagni Jr. and Boquet 1996). 
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Nevertheless, since we investigated the treatments P in the form of TSP and N in the form of CAN 

fertilizers also separately, we observed only significant effects on grain yield if both nutrients were 

combined, illustrating that it is indeed the combination of nitrogen and phosphorus, which leads to 

a reinforced positive effect. 

In contrast to nitrogen in form of ammonium, zinc and P are antagonistic players (Wang et al. 2017; 

Zhang et al. 2017). Both can form insoluble complexes in soil and if one of the nutrients is applied 

as fertilizers, less root exudates are released and therefore the respective other nutrient is worse 

available and to a lesser extent taken up by plants. This is why high P application rates have been 

shown to impede zinc uptake and vice versa (Saboor et al. 2021; Zhang et al. 2021b). Moreover, P 

in the grain in the form of phytate hinders the uptake of iron and zinc in humans and animals, which 

poses especially in developing countries a severe problem (Akhtar et al. 2018).  

We also analyzed 16 chemical elements in hybrid maize grain and observed strong positive 

correlations of P concentration with the micronutrients magnesium, potassium, and manganese 

(Weiß et al. 2021, Figure S4). This is in line with other studies (Lim and Yi 2019). Magnesium is 

generally located in deeper soil levels than P and the magnesium-phosphate ratio is associated with 

root traits resulting in a synergism between the two elements (Weih et al. 2021). Despite the positive 

correlation of P and potassium in the grain, various foliar P application levels during the four-leaf 

stage led to higher P but lower potassium concentrations in shoot and root tissue (Görlach and 

Mühling 2021). Interestingly, manganese concentration in the leaves has been shown to serve as a 

signature for P-mobilizing carboxylates in the rhizosphere (Lambers et al. 2021). These described 

relationships underline that P interacts closely with other plant nutrients and the interactions change 

dynamically over time and with tissue type. 

Lately, the fertilization with the micronutrient silicon has gained increasing attention in practical 

farming (Breuer 2021). Co-fertilization with silicon is deemed suitable to increase P availability 

since both elements have a very similar molecular size and silicon can thus replace the P locked in 

the form of complexes in the soil (Frank Stephano et al. 2021; Kostic et al. 2017). This results in a 

positive effect of silicon fertilization on chilling tolerance during seed germination and seedling 

growth of maize (Sun et al. 2021; Moradtalab et al. 2018). 

Last but not least, the combination of mineral and organic nutrient sources results in higher yields 

and is deemed beneficial for soil fertility (Bello and Yusuf 2021; Xin et al. 2017). The application 

of organic manure generally implies higher available P contents (Abid et al. 2020). 

Taken together, an integrated nutrient management, considering co-fertilization with other nutrients 

as well as combinations with organic fertilizers, should be aimed for in order to ensure a sustainable 

P fertilization. 
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When do starter fertilizers pay off? 

It is common knowledge among farmers and researchers alike that starter fertilizers are especially 

worthwhile to enhance early development under cold and wet conditions (Pedersen et al. 2019; 

Bundy and Andraski 1999). For our trials, this was the case for the field season 2019, in which 

temperature at the location Hohenheim deviated by – 2.6°C and precipitation by + 89.5 % from the 

long-term mean in May, when maize usually emerges in Germany. Such conditions can lead to 

micronutrient limitations in maize as low root zone temperatures result in a reduced uptake of 

minerals by roots due to a reduced activity of enzymes and transporters (Moradtalab et al. 2018; 

Zhou et al. 2021). The three-leaf to six-leaf stage of maize is reported to be crucial since grain P 

storage is depleted then and the maize seedling has to switch to heterotrophic nutrition (Bello 2021; 

Lu et al. 2020; Messiga et al. 2020). For this reason, we regularly measured plant height as indicator 

for early development during this phase (Figure 3, activity [4]). Biggest differences between 

treatments with and without TSP starter fertilizer were observed around 60 days after sowing (DAS) 

for lines and hybrids alike (Figure 8). Besides the evident fact that lines are significantly smaller 

than hybrids, lines showed an overall higher phenotypic variation for the trait plant height and 

moreover, lines seem to respond on average stronger (+ 6 cm) to the starter fertilizer application 

compared to hybrids (+ 2 cm). 

Figure 8 Plant height differences between control (transparent color) and TSP starter fertilizer (opaque color) measured 

63 days after sowing (DAS) in the lines trial and 59 DAS in the hybrid trial for Hohenheim, 2019. 

In contrast to this, maturity plays a more important role in hybrids compared to lines (W. Schmidt 

2021, personal communication, 10 November). Grain maize breeders are usually interested in the 

relationship between grain yield (GY) and grain dry matter content (GDM) to ensure no gradual 

shift towards later maturing genotypes but considering maturity-corrected yields as selection 

criterion. Hence, genotypes above the regression line are usually selected (Figure 9). Maturity, 

expressed as GDM at harvest (Figure 9a) or alternatively as flowering date, e.g. days to silking 

(Figure 9b), is tightly related to final grain yield. Later maturing hybrids, indicated by lower grain 

dry matter contents at harvest or more days to silking, generally result in higher GY as they have 
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more time for light interception (Gasura et al. 2013). Although for our GDM data the trends of no 

starter fertilization (Co) and TSP are similar (Figure 9a, slope Co = -0.06, slope TSP = -0.07), the 

TSP regression line is shifted to the right (Figure 9a, intercept Co = 15.63, intercept TSP = 16.43). 

This also shows that later genotypes have the tendency to benefit slightly more. The effect of TSP 

starter fertilizer on grain yield was non-significant with an increase of 0.14 t dry matter/ha (Weiß 

et al. 2021). Nevertheless, the here shown regression line for GY and GDM reveals that for the 

same average GY in the control treatment of 11.75 t/ha, a TSP starter fertilization results in an 

increase of 2.71 % GDM compared to the control. 

Figure 9 Regression lines between (a) grain yield and grain dry matter content, (b) grain yield and days to silking for best 

linear unbiased estimates obtained by the multi-environmental hybrid trial in 2019. The control with no starter fertilizer 

(Co, grey) and the triple superphosphate (TSP, purple) treatment are depicted. Green arrows indicate the shift from Co to 

TSP starter fertilizer application. 

This circumstance is somewhat hidden in the data as the comparison of means between control 

(mean = 69.70 %) and TSP treatment (mean = 70.39 %) for GDM did not result in a significant 

difference. However, the decisive quantity is the combination of grain yield and grain dry matter. 

Eventually, farmers growing maize for grain usage pay drying costs per unit fresh weight. 

Assuming a GDM of 78 %, which is normally envisaged for maize grain harvest in Germany, grain 

has to be dried down to 14 %, which corresponds to an 8 % increase in GDM. Therefore, the 

resulting decrease in drying costs of around 3 % is not to be neglected, especially having current 

energy prices in mind. Likewise, we observed a shift towards earlier flowering when maize was 

fertilized with TSP by approximately one day. However, compared to studies with severe, hence 

real P deficiency and thereof resulting flowering delays in sorghum (Sorghum bicolor L. Moench) 

of up to 10 days (Leiser et al. 2012), the here observed shift is rather minor. For some target 

environments, the selection for an accelerated early development and therefore earlier flowering 

may not be desirable (Hölker et al. 2019a). Generally speaking though, an advancement of 

flowering time through the application of starter fertilizers could imply an escape of water deficit 

periods or other stresses (Mascagni Jr. and Boquet 1996). We can confirm based on our hybrid trial 

data that phosphate efficiency is confounded with developmental and maturity genes and thereby 

adding to its complexity (Bovill et al. 2013). As we have seen, a higher GDM at harvest basically 
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means more grain dry matter grain yield and advancing the flowering time can be a decisive factor 

towards the end of a field seasons with challenging conditions. These implications may be the 

tipping point for making maize cultivation possible in locations, which were formerly deemed 

unsuitable to grow maize due to economic or ecological reasons (F.J. Mauch 2022, personal 

communication, 7 April). 

Collectively, the application of starter fertilizers is relevant especially at early stages under low soil 

temperatures. Moreover, it may be not the pure yield advantage that counts for the farmer but the 

potential reduction of drying costs. Whether the current high fertilizer prices can be compensated 

by the abovementioned advantages has to be thoroughly evaluated by business economists or, more 

likely, will be decided by farmers themselves. 

Meaning of the selection environment for phosphate efficiency breeding 

Ultimately, breeders have to ask themselves what the target environment is they are breeding for. 

In the case of this work, the target environment was characterized by a high soil P status (Weiß et 

al. 2021). Most studies investigating phosphate efficiency perform their experiments under different 

levels of P supply in order to compare low versus high conditions and then derive the so called P 

tolerance for different genotypes (Li et al. 2021a; Li et al. 2021b; Rose et al. 2016; Leiser et al. 

2015; Leiser et al. 2014a; Wissuwa and Ae 2001). Having said this, it has to be stated that P-

deprived soils, which would be necessary to realize such different P treatments, are not easily to be 

found in Central Europe. From a breeding perspective though, different levels of P supply only need 

to be analyzed and reported with regard to a potential genotype-by-P-level interaction (Leiser 2014, 

p.8). In environments which are highly P deficient, the application of P fertilizers leads to a

significant, but generally low genotype-by-P-level interaction (Leiser et al. 2014a; Leiser et al. 

2012). Rose et al. (2016) did not observe any significant genotype-by-P-level interaction, neither 

in hydroponic nor on soil-based experiments. In our hybrid trials taking place in sufficiently to 

highly P supplied soils, no significant interaction between genotype and starter fertilization was 

observed (Weiß et al. 2021). Most likely, we already surpassed the crossover point of different P 

conditions (Leiser 2014) and therefore the slope between high and very high P supply is minor, 

resulting in a non-significant genotype-by-P-level interaction. As a consequence, subsequent 

studies investigating phosphate efficiency under well-supplied conditions only considered one P 

level, namely the control with no extra P input in from of starter fertilizers (Weiß et al. 2022; Weiß 

et al. unpublished). This approach is deemed adequate in light of the broad-sense heritability 

calculation going back to Hallauer (2010): 

𝐻2 =  
𝜎𝑔

2

𝜎𝑔
2+ 

𝜎𝑔×𝑦
2

𝑛𝑦
+ 

𝜎𝑔×𝑙
2

𝑛𝑙
+ 

𝜎𝑔×𝑦×𝑙
2

𝑛𝑦∗ 𝑛𝑙
 +

𝜎𝜀
2

𝑛𝑦∗ 𝑛𝑙∗ 𝑛𝑟

(1)
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With 𝜎𝑔
2, 𝜎𝑔×𝑦

2 , 𝜎𝑔×𝑙
2 , 𝜎𝑔×𝑦×𝑙

2 , 𝜎𝜀
2 denoting the genotypic, genotype-by-year, genotype-by-location,

genotype-by-year-by-location, and error variance terms and 𝑛𝑦, 𝑛𝑙 and 𝑛𝑟 denoting the number of 

years, locations and replications, respectively. Taking into account that genotype-P-level 

interactions do not seem to be relevant in the given framework, the different P treatments can be 

seen as kind of replicate, entering the formula only in one term. Therefore, it is more meaningful to 

increase the number of environments by adjusting the allocation of resources towards more 

locations and years instead of different P-treatments for future phosphate efficiency research taking 

place in well-supplied soils. 

Another factor, which has to be considered when choosing the selection environment for phosphate 

efficiency breeding, is the genotype-by-environment interaction. We have seen, also in former parts 

of this thesis, that the soil in all its complexity is a major driver of P performance (Hinsinger 2001). 

Moreover, especially low temperatures are known to have an impact on early development of maize, 

a factor that is obviously highly depending on location and year. Flint genotypes are attributed to 

react more to environmental effects than Dents do (W. Schipprack 2019, personal communication, 

15 July). The genotype-by-location interaction variance was highly significant for most traits 

under investigation (Weiß et al. 2021). Additionally, the lowest ratio between genotypic and 

genotype-by-environment variance was observed for the trait P content of the seedling, which 

underlines the sensitivity of seedlings to environmental influences (Weiß et al. unpublished). All 

other ratios for phosphate efficiency indicators showed levels above 1, which emphasizes the 

meaning of the pure genotypic component nonetheless. 

Lastly, research has been conducted to perform selection under artificial conditions to realize a 

higher selection gain (Jähne et al. 2020). However, it should be considered that maize plants are 

rather tall and different story layers optimizing space issues are probably not feasible. This is one 

of the reasons why in maize pot experiments often only youth developmental analyses are 

performed (e.g. Ma et al. 2021; Azevedo et al. 2015). Liu et al. (2017) pointed out that it is 

problematic to extrapolate results obtained under one growing system to another, which should be 

also kept in mind. 

Moreover, there has been a lot of discussion going on regarding the meaning of environments in 

the phenomic selection (PS) approach, also applied in this work to predict phosphate efficiency-

relevant traits (Weiß et al. 2022). Environments have a crucial impact on PS predictive ability and 

it was recommended to use environments exposed to stresses as they will increase phenotypic 

differentiation and thereby result in better predictive abilities (Lane et al. 2020). Zhu et al. (2021) 

reported no satisfying results if the training and prediction set for performing PS are grown in 

different environments. We can infer that phenomic predictions generally work better if the material 

is grown in the same environment or if several environments are combined together (Robert et al. 

2022). 
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Overall, enviromics should be more considered and become a routine part in breeding pipelines 

(Cooper and Messina 2021). The choice of type and number of environments has to be undertaken 

with great care depending on the targeted environment. More precisely, the contained interactions 

between genotypes and environments have to be considered in order to maximize heritability and 

thus selection gain. 

The implications of working with diverse breeding material 

In the underlying work, we investigated phosphate efficiency-related measures in 20 commercial 

hybrids, 100 elite lines each of the Flint and Dent heterotic pool, as well as 200 DH lines from 

landraces. The most pronounced differences between the material groups can be observed for the 

trait grain yield (Figure 10). 

Figure 10 Grain yield (GY [t/ha]) best linear unbiased estimates obtained by multi-environmental trials for the different 

material groups investigated in this work. Groups are abbreviated as Campan-Galade (CG), elite Dents (ED), elite Flints 

(EF), Gelber Badischer (GB), St. Galler Rheintaler (RT), Strenzfelder (SF), Satu Mare (SM), and Walliser (WA). Values 

are based on control plots with no extra starter fertilization. 

As expected, DH lines from landraces are inferior to the breeding pools elite Dents and elite Flints 

and in a completely different range than commercial hybrids. Previous studies reported a smaller 

than expected yield gap between elite lines and some landraces, but clear superiority of recent elite 

material (Hölker et al. 2019b). In line with our results, Böhm et al. (2017) described that several 

genotypes of the landrace Satu Mare (SM) produced similar yields compared with the best elite 

lines. Next to the undoubtedly important trait grain yield, we also investigated numerous other 

parameters, for which landraces showed a huge variation and also significant differences among 

populations (Weiß et al. 2022; Weiß et al. unpublished). Especially seedling traits have shown 

promising characteristics with regard to phosphate efficiency (Weiß et al. unpublished). 

Nonetheless, we recommend to use yield and P concentrations of different tissues as straight 

forward parameters to select for phosphate efficiency. Therefore, selection in diverse material 

should always account for performance discrepancies among different groups. Moreover, as 

discussed in a previous section about maturity, when selecting for yield traits at harvest, we have 
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to pay attention to not gradually and unconsciously select later maturing and therefore better 

performing genotypes. 

The suitability to use DH lines from landraces for GWAS and the resulting high mapping resolution 

has been pointed out in several studies (Würschum et al. 2022; Mayer et al. 2020). Therefore, 

landraces hold great potential for detecting underlying causal genes of relevant traits in maize 

breeding. Although ideal prerequisites were thus given for association mapping, we could not 

identify consistent marker-trait associations across the phosphate efficiency traits under 

investigation (Weiß et al. unpublished). Clearly, such new allelic diversity detected in landraces 

would in advance need to be introduced by marker-assisted backcrossing or new breeding 

technologies (Ran et al. 2013) in order to avoid yield reductions.  

Last but not least, one main finding of our work was the suitability of genomic selection (GS) for 

the prediction of phosphate efficiency measures. We observed that GS works best for the group of 

elite Dents (Weiß et al. unpublished). Besides the generally higher genetic diversity in the Dent 

compared to the Flint pool (Rebourg et al. 2003), which has been addressed in the introduction 

chapter, single nucleotide polymorphism (SNP) marker arrays were originally developed to detect 

polymorphisms in Northern American Dents (Frascaroli et al. 2013). Although the resulting bias 

cannot be seen in the absolute number of polymorphic markers, the number of markers being 

excluded after imputation due to a minor allele frequency (MAF) of below 5 % was substantially 

higher for Flint elite lines (12.7 %) compared to Dents (8.5 %). Elite Flint markers generally 

occured with lower minor allele frequencies (MAF < 0.2 = 57 %) than elite Dents (MAF < 0.2 = 

41 %). This shift of the elite Flint markers towards lower minor allele frequencies may be one 

potential explanation for higher prediction accuracies obtained in elite Dents. However, the in our 

work applied ridge-regression best linear unbiased prediction method should not be affected by the 

quantity of genetic markers with low minor allele frequency as much as other GS methods (Zhang 

et al. 2019). 

In conclusion, landraces show promising characteristics with regard to phosphate efficiency-related 

traits and broadening the genetic basis of the elite material. At the same time, yield gaps and 

differences among subgroups have to be taken into consideration when selecting for phosphate 

efficiency.  

Prediction and interrelations of P concentration 

Previously, it was elaborated why P concentration plays an important role in breeding for an 

improved phosphate efficiency. Several studies have demonstrated the negative relationship 

between P concentration and yield as a consequence of a dilution effect (Arrobas et al. 2022; 

Hertzberger et al. 2021). To account for this effect, the product of yield and P concentration is 

usually evaluated, resulting in the parameter P content. In our dataset, the general trend of a 
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decreasing P concentration with increasing yield could be well observed for hybrids and lines alike 

(Figure 11). 

Figure 11 Relationship between best linear unbiased estimates for grain yield (GY [t/ha]) and P concentration in the grain 

(Pconc [ppm]), (a) split up into hybrids and single DH lines from landraces with the overall trend between both traits 

indicated as dashed red line. Groups are abbreviated as commercial hybrids (Hyb), Campan-Galade (CG), elite Dents 

(ED), elite Flints (EF), Gelber Badischer (GB), St. Galler Rheintaler (RT), Strenzfelder (SF), Satu Mare (SM), Walliser 

(WA). P content (Pcont [kg/ha]) was added for the correlation matrices of (b) hybrids and (c) all lines jointly. Values are 

obtained from multilocational field trials under control conditions without extra starter fertilization. 

Notably, the extent of this negative relation seems to vary largely depending on the material group 

(Figure 11a): the higher the yield level, the stronger the dilution effect for P concentration. When 

looking at hybrids and lines separately, we make the interesting observation that P content is in the 

case of hybrids mainly driven by the variable P concentration with a correlation coefficient of r = 

0.87*** (Figure 11b), whereas grain yield basically determines P content for the line genotypes 

with r = 0.98***. This may be due to the fact that P concentration in the case of hybrids and grain 

yield in the case of lines contribute as bigger source of variation to P content, respectively. 

P concentration in our maize samples was analyzed by means of X-ray fluorescence (XRF). The 

sample throughput for measuring P concentration by XRF amounts to 90 samples per day (C. Maus 

and R. Bauer 2021, personal communication, 4 February). With an average sample volume of more 

than 5 000 units per field season, this means around three months of solely analyzing samples for 

P concentration - without taking sample preparation into account. Therefore, a reliable prediction 

of P concentration is desirable. Genomic selection is successfully applied in maize breeding 

programs and yields accuracies which correspond to phenotyping unreplicated field trials in three 

to four locations (Zhao et al. 2012). The rather novel approach of phenomic prediction has proven 

useful in the prediction of complex traits (Robert et al. 2022; Zhu et al. 2021; Rincent et al. 2018). 

We applied this method using near-infrared spectroscopy (NIRS) data instead of marker data and 

obtained high prediction accuracies for P concentration (Weiß et al. 2022). For the case of P 

concentration, we highlighted the advantage of PS over GS with regard to robustness towards 

population structure. NIRS data acquisition is twice or trice as fast as XRF measurements and in 
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particular the costs between the two machines differ significantly. Evidently, certain samples have 

to be wet chemically analyzed for P concentration, also in the case of phenomic prediction, in order 

to set up a calibration. Based on the abovementioned assumptions, however, PS holds great 

potential to save costs and time and enables the screening of more candidates during the breeding 

process.  

We were further interested to compare which 10 % best performing genotypes are identified in PS 

versus GS based on the predicted grain yield (results not shown). As a matter of fact, different 

genotypes would be selected if marker or NIRS data are used as predictors. The reason for this may 

be that phenomic selection captures environmental in addition to genotypic effects (Rincent et al. 

2018). Of course, breeders are interested primarily in the genetic component of a trait. Nevertheless, 

PS is deemed suitable for predicting large numbers of genotypes at earlier stages of the breeding 

pipeline and by this discarding the worse half for example. 

Moreover, the prediction of phytate being the main constituent of total P in the maize grain, was 

tested. Phytate measurements by wet chemical analysis are very laborious. Moreover, it should be 

noted that IP6 is sensitive to the temperature under which maize kernels are dried. Therefore, only 

data from the line field trial in 2019 were available, when maize samples were additionally dried at 

40°C. If we use conventional NIRS calibration we obtained an R2 of 0.76. The mean predictive 

ability based on the 100 wet-chemically analyzed maize samples yielded 0.61 for phenomic and 

0.52 for genomic prediction. Including samples that were dried at 110°C resulted in considerable 

decreases of the predictive ability though. Thus, selection for phytate concentrations and the IP6 to 

total P ratio are best performed at later stages of the breeding pipeline when only comparatively 

few candidates are left for more detailed assessments and an additional lower drying temperature 

can be afforded. 

As shown above, P concentration and its correlation with yield and P content is strongly determined 

by the breeding material. Considering that phosphate efficiency is specifically important in low-P 

soils, which are predominantly encountered in Africa’s and South America’s highly weathered 

soils, PS might represent an attractive solution in this context as generally less resources for 

phosphate efficiency breeding are disposable. Lastly, we have seen that phytate can only to a limited 

extent be predicted by genomic and phenomic approaches due to its high sensitivity with regards to 

drying temperature and storage. 

How to increase phosphate efficiency in Central Europe 

Why phosphate efficiency will most likely play a bigger role in agriculture and hence plant breeding 

was comprehensively explained in previous sections of this work. What makes the target 

environment of Central Europe distinct is that phosphate efficiency has not been in the focus of 

breeding activities so far, because we mostly deal with highly P supplied soils. As a consequence, 
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the goal in this setting must be to minimize extra mineral fertilizer input while maintaining high 

yield levels.  

Based on this statement, the first follow-up action for breeders should be that breeding nurseries 

take place under low input regimes (Weiß et al. 2021). Thereby, we can identify and select 

promising candidates under conditions that are to be expected in the near future. To the best of our 

knowledge, this is already the case for national variety trials. However, enquiries at different 

breeding companies revealed that starter fertilization is oftentimes applied as common practice 

standard procedure. This has to change if we want to develop varieties that perform well under 

reduced P fertilizer conditions. 

Next, we showed the potential of phenomic selection to predict complex traits relevant for assessing 

phosphate efficiency, such as P concentration or grain yield (Weiß et al. 2022). One huge advantage 

lies in the fact that population structure is not having an impact on prediction outcomes when 

applying NIRS data as predictors. In contrast to this, we need to correct for population structure 

when using marker data as predictors even when working in an elite maize breeding population 

(Liu et al. 2011). Hence, phenomic selection is well suited to produce robust results in diverse 

material, which may in maize be for instance the case during pre-breeding activities. As breeding 

always needs to be cost-efficient, it is of great importance to allocate resources in the best possible 

way. Here, we proposed to take advantage of the comparatively cheap and time-efficient method of 

PS to predict P concentration and grain yield for a large number of individuals as this is the case 

early on in breeding programs and negatively select for the worst fraction. At the end of the day, 

the application of PS is not an either-or-decision. We want to rather point out how PS and GS are 

both useful tools for the breeders and can be applied in a complementary way. 

And third, this work demonstrated how phosphate efficiency is a complex trait to breed for (Weiß 

et al. unpublished). Breeders prefer to work with traits that show a small environmental dependency 

of genotypes and that are ideally based on a few causal genes. In the case of phosphate efficiency-

related traits, however, we reported a strong environmental effect and the genetic nature seems to 

be quantitative in the setting of high and very high P levels of the soil. Therefore, we advise to use 

the direct and primary traits P concentration and yield in the corresponding tissues to capture 

phosphate efficiency and rely on genomic selection rather than marker-assisted selection to improve 

these generally quantitatively inherited traits. 

Taken together, breeding companies have to come up with solutions to make their varieties less 

dependent on fertilizer inputs. Including phosphate efficiency traits in the selection criteria is 

feasible and we observed sufficient genetic variation to develop phosphate-efficient varieties under 

Central European conditions. 
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Limitations and recommendations 

We have seen in the course of this study that the environment, namely location-specific soil 

characteristics and year-specific weather conditions, has a decisive influence on the observed 

phosphate efficiency of maize. Due to this fact, multi-year field trials over a longer period including 

more locations rather than different P treatments would be of interest to quantify the environmental 

effect on the genotypes and derive robust conclusions about their performance. It has been 

emphasized that long term assessments which take the environmental variability of genotypic 

responses into consideration would be highly desirable (Bovill et al. 2013).  

Furthermore, it is evident that roots as interface between plants and soil play a crucial role in 

phosphate efficiency performance. Especially in the light of climate change, future research should 

focus more on underground traits as an improvement of these is expected to be associated with 

general abiotic stress tolerance (Lynch 2007). 

One major outcome of this work was the demonstration of successfully applying phenomic 

selection based on wavelength data obtained by a NIR spectrometer to predict phosphate efficiency-

relevant traits in maize. We have been also collaborating with the agricultural engineering group of 

our university, who monitored our field trials with unmanned aerial vehicles. A next step could 

therefore be to collect near-infrared data by means of drones, predict traits via phenomic selection 

based on this, and save even more valuable time and resources during the breeding process. 

Last, but not least, we made clear in various places that the assessment of phosphate efficiency traits 

under well-supplied P levels comes along with certain consequences. One is that we cannot detect 

great phenotypic differences between different treatments on an already high P level to start with. 

Additionally, we were not able to detect consistent marker-trait associations across phosphate 

efficiency traits. However, we expect nutrient efficiency in crops to gain more attention in the future 

due to the development of fertilizer prices described at the beginning. For this reason, we identified 

reasonable measures, which can help to meet the requirements for the successful breeding of 

phosphate-efficient maize under European conditions. 
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Summary 

Why should plant breeders in Central Europe care about phosphate efficiency? Soil phosphorus 

levels have mostly reached high to very high levels over the last decades in intensively farmed, 

livestock-rich regions. However, the European Union demands a restructuring of the agricultural 

production systems through setting ambitious goals envisaged in the Farm to Fork Strategy. By 

2030, fertilizer use should be reduced by 20 %, nutrient losses by at least 50 %. As a consequence, 

farmers have to be even more efficient with crop inputs, among them the globally limited resource 

of phosphorus fertilizers, while maintaining high yields. Plant breeding means thinking ahead. 

Therefore, phosphate-efficient varieties should be developed to help farmers meet this challenge 

and reduce the need for additional fertilizers. One prerequisite to reach this target is that genotypic 

variation for the relevant traits is available. Moreover, approaches that assist selection by accurate 

but also time- and resource-efficient prediction of genotypes are highly valuable in breeding. 

Finally, the choice of the selection environment and suitable trait assessment for the improvement 

of phosphate efficiency under well-supplied conditions, need to be elaborated. 

In this dissertation, a diverse set of maize genotypes from ancient landraces to modern hybrids was 

investigated for phosphate efficiency-related traits under well-supplied P soil conditions. Multi-

environmental field trials were conducted in 2019 and 2020.  

The reaction to different starter fertilizer treatments of the 20 commercially most important maize 

hybrids grown in Germany was studied. In the hybrid trial, the factor environment had a significant 

effect on the impact of starter fertilizers. Especially in early developmental stages genotypes 

showed a different response to the application of starter fertilizers. On the overall very well-supplied 

soils, we observed no significant genotype-by-starter fertilizer interaction. Nonetheless, we 

identified hybrids, which maintained high yields also if no starter fertilizer was provided. Thus, it 

seems that sufficient variation is available to select and breed for phosphate efficiency under 

reduced fertilizer conditions.  

Furthermore, the concept of phenomic prediction, based on near-infrared spectra instead of marker 

data to predict the performance of genotypes, was applied to 400 diverse lines of maize and 

compared to genomic prediction. For this, we used seed-based near-infrared spectroscopy data to 

perform phenomic selection in our line material, which comprised doubled haploid lines from 

landraces and elite lines. We observed that phenomic prediction generally performed comparable 

to genomic prediction or even better. In particular, the phenomic selection approach holds great 

potential for predictions among different groups of breeding material as it is less prone to artifacts 

resulting from population structure. Phenomic selection is therefore deemed a useful and cost-

efficient tool to predict complex traits, including phosphorus concentration and grain yield, which 

together form the basis to determine phosphate efficiency. 
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Lastly, 20 different indicators for phosphate efficiency were calculated, the genetic variation of the 

different measures present in this unique set of lines was quantified, and recommendations for 

breeding were derived. Of the different measures for phosphate efficiency reported in literature, 

Flint landraces demonstrated valuable allelic diversity with regard to phosphate efficiency during 

the seedling stage. Due to the highly complex genetic architecture of phosphate efficiency-related 

traits, a combination of genomic and phenotypic selection appears best suited for their improvement 

in breeding. Taken together, phosphate efficiency, including its definition and meaning, is largely 

dependent on the available phosphorus in the target environment as well as the farm type, which 

specifies the harvested produce and thereby the entire phosphorus removal from the field. 

In conclusion, future maize breeding should work in environments that are similar to the future 

target environments, meaning reduced fertilizer inputs and eventually lower soil P levels. Our 

results demonstrate that breeding of varieties, which perform well without starter fertilizers is 

feasible and meaningful under the well-supplied conditions prevalent in Central Europe. For the 

improvement of the highly complex trait phosphate efficiency through breeding we recommend to 

apply genomic and phenomic prediction along with classical phenotypic screening of genotypes 

and by this making our food systems more resilient towards upcoming challenges in agriculture. 
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Zusammenfassung 

Warum sollten sich Pflanzenzüchter:innen in Mitteleuropa mit Phosphateffizienz beschäftigen? Der 

Phosphorgehalt im Boden ist in den letzten Jahrzehnten vor allem in intensiv bewirtschafteten 

viehreichen Regionen auf ein hohes bis sehr hohes Niveau angestiegen. Die Europäische Union 

formuliert jedoch in der „Farm to Fork“-Strategie ehrgeizige Ziele für eine Umstrukturierung der 

landwirtschaftlichen Produktionssysteme. Bis 2030 soll der Düngemitteleinsatz um 20 % und die 

Nährstoffverluste um mindestens 50 % reduziert werden. Das bedeutet, dass die Landwirte noch 

effizienter mit dem Einsatz von Betriebsmitteln umgehen müssen, insbesondere mit der weltweit 

begrenzten Ressource von Phosphordüngern, bei gleichzeitig weiterhin hohen Erträgen. 

Pflanzenzüchtung bedeutet vorausschauend zu denken. Daher sollten phosphateffiziente Sorten 

entwickelt werden, die den Landwirten helfen, diese Herausforderung zu meistern und den Bedarf 

an zusätzlichen Düngemitteln zu verringern. Eine Voraussetzung, um dieses Ziel zu erreichen, ist, 

dass genotypische Variation für die relevanten Merkmale vorhanden ist. Darüber hinaus sind 

Ansätze, die die Selektion durch eine genaue, aber auch zeit- und ressourceneffiziente Vorhersage 

von Genotypen unterstützen, in der Züchtung sehr wertvoll. Außerdem müssen die Wahl der 

Selektionsumwelt und eine geeignete Merkmalserfassung für die Verbesserung der 

Phosphateffizienz unter gut versorgten Bedingungen näher beleuchtet werden. 

In dieser Dissertation wurde eine Reihe von Maisgenotypen, von alten Landrassen bis hin zu 

modernen Hybriden, bezüglich Phosphateffizienz-Merkmalen auf gut mit P versorgten Böden 

untersucht. In den Jahren 2019 und 2020 wurden mehrortige Feldversuche durchgeführt.  

Untersucht wurde die Reaktion der 20 kommerziell wichtigsten in Deutschland angebauten 

Maishybriden auf unterschiedliche Unterfußdüngungen. In dem Hybridversuch hatte der Faktor 

Umwelt einen signifikanten Einfluss auf die Wirkung von Unterfußdüngern. Insbesondere in frühen 

Entwicklungsstadien reagierten die Genotypen unterschiedlich auf die Gabe von Unterfußdüngern. 

Auf den insgesamt sehr gut versorgten Böden beobachteten wir keine signifikante Interaktion 

zwischen Genotyp und Unterfußdünger. Dennoch konnten wir Hybriden identifizieren, die auch 

ohne Unterfußdünger hohe Erträge erzielten. Es scheint also genügend Variation vorhanden zu sein, 

um unter reduzierten Düngebedingungen auf Phosphateffizienz zu selektieren und zu züchten.  

Darüber hinaus wurde das Konzept der phänomischen Vorhersage, welches auf 

Nahinfrarotspektren anstelle von Markerdaten zur Vorhersage der Leistung von Genotypen basiert, 

auf 400 verschiedenen Maislinien angewandt und mit der genomischen Vorhersage verglichen. 

Hierbei nutzten wir samenbasierter Daten der Nahinfrarotspektroskopie, um phänomische 

Selektion in unserem Linienmaterial durchzuführen, welches doppelhaploide Linien von 

Landrassen und Elitelinien enthielt. Wir konnten feststellen, dass die phänomische Vorhersage im 

Allgemeinen mit der genomischen Vorhersage gleichauf oder sogar besser war. Der phänomische 
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Selektionsansatz hat insbesondere für Vorhersagen zwischen verschiedenen Gruppen von 

Zuchtmaterial großes Potenzial, da er weniger anfällig für Artefakte ist, die aus der 

Populationsstruktur resultieren. Die phänomische Selektion hat sich daher als nützliches und 

kosteneffizientes Instrument zur Vorhersage komplexer Merkmale erwiesen, einschließlich der 

Phosphorkonzentration und des Kornertrags, welche zusammen die Grundlage für die Bestimmung 

der Phosphateffizienz bilden. 

Zuletzt wurden 20 verschiedene Indikatoren für Phosphateffizienz berechnet, die genetische 

Variation der verschiedenen Messgrößen in dieser spezifischen Zusammensetzung von Linien 

quantifiziert und Empfehlungen für die Züchtung abgeleitet. Von den verschiedenen in der Literatur 

beschriebenen Maßen für die Phosphateffizienz zeigten Flint-Landrassen eine wertvolle allelische 

Diversität in Bezug auf die Phosphateffizienz im Keimlingsstadium. Aufgrund der hochkomplexen 

genetischen Struktur von Phosphateffizienz-Merkmalen, scheint eine Kombination aus 

genomischer und phänotypischer Selektion am besten geeignet, um diese züchterisch zu verbessern. 

Alles in allem hängt die Phosphateffizienz, einschließlich ihrer Definition und Bedeutung, 

weitgehend vom verfügbaren Phosphor in der angestrebten Umwelt sowie vom Betriebstyp ab, da 

dieser das Erntegut und damit die Gesamtphosphorabfuhr vom Feld bestimmt. 

Zusammenfassend lässt sich sagen, dass die zukünftige Maiszüchtung in Umgebungen arbeiten 

sollte, die den zukünftigen Zielumwelten ähnlich sind, was einen geringeren Düngemitteleinsatz 

und schließlich einen niedrigeren P-Gehalt im Boden bedeutet. Unsere Ergebnisse zeigen, dass die 

Züchtung von Sorten, die ohne Unterfußdünger auskommen, unter den in Mitteleuropa 

vorherrschenden gut versorgten Bedingungen realisierbar und sinnvoll ist. Zur Verbesserung des 

hochkomplexen Merkmals Phosphateffizienz durch Züchtung empfehlen wir, neben der 

klassischen phänotypischen Begutachtung von Genotypen auch genomische und phänomische 

Vorhersagen anzuwenden und damit unsere Nahrungsmittelsysteme widerstandsfähiger gegenüber 

den kommenden Herausforderungen in der Landwirtschaft zu machen. 
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