
UDC 004-04

S.O. Diakov, T. E. Zubrei

MANAGING STATE IN A MICROSERVICE

Abstract: this report takes a close look at the problem of state in modern applications,

how it affects the architecture. Popularity of microservices raised the issue of information

acquisition. Analyzing solutions to this problem is the main topic of the article. Multiple

approaches to communication were examined with a focus on defining its advantages and

disadvantages. Coupling, availability and consistency were analysed, suitable use cases were

defined and ways to negate drawbacks were suggested. Microservice architecture implies

multiple sources of data so accessing required information is a task in and of itself. This

article will review many approaches to dealing with state within a service: stateless

microservice, command query responsibility segregation principle, on demand direct

communication with and without caching on top and event sourcing.

Keywords: microservice architecture, state management, inter-service communication

patterns.

What is state

Everything in the world has its state. It’s a set of characteristics describing an object.

State is a natural thing as well as its ability to change over time. It’s the last part that is so

quirky. It’s not enough to be aware of something you also need to keep track of its mutations.

Imagine if your favourite café had a menu without prices. It would be definitely cheaper for a

manager to account for price fluctuations since they wouldn’t have to update the menu if

coffee beans became more expensive. It may look like a sound idea, but why haven’t you

seen its rise in popularity? That’s because the responsibility of providing customers with a

price is now laid on customers themselves. Each time you want to order something you

would as your waiter for the latest price. Doesn’t sound very convenient, but it sure made

menu printing cheaper.

Figure 1. State in microservices comparing with traditional monolith

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 S.O. Diakov, T. E. Zubrei

 ISSN 1560-8956 19

We face such dilemmas every day. We need information to make an educated

decision, but how we acquire this information may vary from case to case. It’s always a game

of balancing pros and cons. Dealing with this information is managing its state. It’s a

necessary precondition for any business logic. While you may be tempted to always focus on

the process that actually makes you money you need to acknowledge the importance of data

which allows you to do the math so to say.

Microservice architecture implies multiple sources of data so accessing required

information is a task in and of itself. This article will review many approaches to dealing with state.

Stateless service

If you can make it stateless you should – it’s a simple rule of thumb. Managing state

is no ordinary task and can lead to numerous complications. Therefore, by avoiding it

altogether you can focus on what’s important – business logic.

There are cases when the input stream has all the information required to decide

relieving you from needing to have additional data for reference. A lot of ETL [1] (extract

transform load) operations are stateless. You may want to aggregate data for a period of time

or save internally for a later processing.

Having service fully devoid of state may seem unrealistic and it is a rare sight. Most

practical use cases involve 2 or more data sources being combined to make a proper decision.

With great power comes great responsibility and having stateless service shouldn’t be a sole

aim of architectural design as it may lead you to wrong context cuts and even more coupling.

For instance, let’s imagine we have an email service which whole idea is to send text

messages via 3
rd

 party providers. Then we have other services which may require this

functionality, like registration completion or notification about business process evaluation

results. You may have a desire to make email service stateless in a way that it receives

requests, transforms it into a text and sends it to some mail provider for further dispatching.

Sounds simple enough but there’s a caveat – who should coordinate when to send email and

provide all the necessary data. Email service is stateless, it can’t do all of these things

otherwise we will break this design. Then other services that make requests have to take care

of all the requirements. Imagine there are 5 of them. You would need to have all of them be

aware of the existence of email service and fulfil the contract. It’s an additional responsibility

those services may not necessarily were designed to ensure.

On the contrary API gateway [2] would be a great example of a stateless service

which applies some predefined rules to route requests. The most common use case is to unify

API between multiple providers of similar data. With no internal state there’s nothing to

worry about rather than the actual routing – main business logic. While this pattern has its

merits, simplicity is definitely one of them, you still need to pay attention to scalability and

throughput since gateway may be a potential bottleneck of the system.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 20

While it’s hard to come by a great opportunity to make microservice fully stateless it’s

one you shouldn’t miss out on. When making this decision consider whether you are taking this

responsibility from a new service and putting it on another (or even multiple ones).

Bounded contexts and concept of external data

The first thing in designing microservices – defining boundaries. Each service is

supposed to cover some piece of business logic. Slice too much and you will come up with

another monolith. Slice too thin and your inter-communication will take the main focus rather

than desired business logic. Slice in the wrong direction and tight coupling will slow

everything down, from development to deployment.

It’s a fine line and should be treated with great respect. This is when the concept of

bounded contexts enters the scene. It’s not a new thing but it has raised in popularity in recent

years becoming the main pillar of DDD [3] (domain driven design) in pair with ubiquitous

language. Basically, it’s a way to split the system on the higher-level using domains as an

abstraction over business processes. This focus on business problems and operations allows

us to better model real life use cases.

However, with a concept of boundaries [4] the natural split is inevitable: internal and

external data. Each context has boundaries with another one because they all work together to

perform required tasks. This is the place of communication and it’s the key for having

architecture suit the use case.

Figure 2. Boundaries between 2 contexts

Sharing is only natural for people. The same is for microservices. Each one of them

consumes some data and provides another. However, service may also require data from

another bounded context, in other words external data. The main difference is that it doesn’t

own this information, it puts responsibility to maintain consistency on the provider of the

data. Moreover, this service can’t be queried for such data since it’s not their goal. But still

this information is vital for internal decision making and hence it should be accounted for

how to acquire it.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 21

Dual read/write service model

The simplest way to share data is to just share data storage. Then both services are

working with the same dataset. However, this solution contradicts one of the main ideas of

microservice architecture: one service – one database. This is true, sharing a storage leads to

tight coupling which is a very bad idea in an everchanging world.

Not all hope is lost for this approach though. There are benefits for having the same

storage and intelligent use may even lower all the drawbacks. CQRS [5] (command query

responsibility segregation) describes 2 separate models: one for reading and another for

writing. It allows us to have each part take care of its concerns. It’s a powerful tool when the

way you write data substantially differs from the way you read it. Then you can have 2

services: reader and writer which both share the same storage but focus on different things.

What can we gain from such separation? Well, better scalability for one. There are cases

when one part is much more loaded then the other. You may want to have 10 writers and only

one reader. In the standard all-in-one implementation, you would have all of them doing both

jobs which would slow down the read operations as all the resources would be taken by writing.

Clear separation of concerns is another benefit. Writing stage may require additional

data enrichment and transformations to prepare them for read optimised view.

Having said that drawbacks are heavy as well to maintain a world order and balance.

It is a right coupling any way you look at it. Any schema change is a double pain because

now you have to deal with both services. Moreover, they work in tandem, meaning you need

to deploy and test them exclusively together since the next version of the reader may be

incompatible with the previous writer. You can tackle this difficulty by applying such

architecture only when the schema is relatively stable. If you can develop both sides

independently most of the time then this coupling won’t make a huge difference.

However, there’s a coupling in the core of this idea and there’s nothing to do with it.

Making the writer prepare data optimized for read operations requires the former to know a

lot about the latter. You need to know how you query to store data appropriately. You should

consider it when deciding the application of this pattern.

On demand information

If you don’t know something – just ask for it. Any teacher would tell you that. And

they will be right. There’s no shame in asking. Problem is to know who to come to. If I want

to know more about the latest trends in football tactics I need to ask a sports teacher. But this

would require that I already know about them which I may not. Same is applicable in a world

of microservices. Service A calls service B to provide necessary information and return it to

service C. That’s microservices in a nutshell some may say.

Let’s illustrate this using our previous example. We have template service which can

return a template by id and mail service which needs a template for dispatching purposes.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 22

How can we tight them together? Just make a call. We can define a client on mail service

which will query a template. Then we use it on each dispatch. Problem solved and we can

spend our time somewhere else. Or is it?

Take a step back and look at what we’ve done. We had two separate services with its

concerns and responsibilities. Now they know about each other, now they need each other.

What would happen if template service goes down? Well, you can’t send emails anymore.

Even though you can actually dispatch, mail service is in perfect condition to do its work, it

can’t because it depends on faulty service.

Let’s look from another angle. What is happening more often – template modification

of email sending? I would say latter in most cases. This means that we make a lot of calls

which result in the same response over and over again. Each time it slows the dispatching

process to reaffirm that template is the same as it was a second ago.

Finally, you need to know that template service actually exists and where it is located,

what format does it accept. Adding network issues and possible errors on the provider side

we end up with a lot of cases needed to be covered on the client side. What to do if the

service didn’t respond? What to do if service didn’t find such a template? All of these

questions need to be answered otherwise you will have a nice time debugging production

when someone asks you why an email wasn’t sent.

With all these drawbacks, it’s still a convenient way to set up communication. It leads

to clear separation of concerns: template service manages templates and mail service only

queries the latest version of it. Furthermore, you don’t duplicate the data having it exactly in

one place with a service that manages it. If something goes wrong there’s only one place you

need to modify. You can tackle network issues with scalability, finding service location with

service registries and external routing (e.g. kubernetes [6] takes it in its own hands to connect

two services via HTTP just by knowing their names).

Caching as intermediate solution

Adding cache on top of anything is always a complexity. Maintaining it consistent is a

whole another topic worth of a few hundred-page book. However, it does solve a few

problems: performance and availability in particular.

Caching [7] allows you to avoid making repeated calls for the same information – the

main source of problems in the previous solution. Sounds like it makes a good solution

perfect. Not quite. It’s true that having information locally removes the tight coupling to

another service, but there’s a caveat – who is responsible for maintaining this data in a

consistent state? Service, who doesn’t own this information. How can you guarantee

consistency if you don’t have full control over the data? That’s the main question to ask

yourself when considering caching.

There are multiple ways to solve this problem or at least lessen the blow. For instance,

you can set up clever time to leave and retrieve data from the source from time to time. This

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 23

always comes at a cost since you cannot always know whether an object was changed until

the next cycle comes and you make a call. But you don’t always need to know. There’s no

such concept as now in programming, we always work with delays and stale data. We can

embrace it and simplify the architecture.

Alternatively, you can update cache asynchronously by consuming updates from

source service and applying them to internal cache. However, there’s still a catch. Cache is a

temporary storage, meaning you need to populate it each time you start a service. This logic

is very different from updates but is essential as well. That’s a lot of work just to serve the

cache not business needs.

Consuming open data

We can iterate from caching to permanent storage. All we need is for each service to

provide a way to serve its data asynchronously. Event sourcing [8] covers this idea in depth,

but in a nutshell, service has a log of events which they guarantee to keep in check. Then

anyone can subscribe to that log and always have eventually consistent data. This way you

completely decouple both sides. Subscriber has no idea who is writing the log. Publisher

doesn’t care who will read this data.

The core difference of this approach is an idea that service needs to keep consistent

other storage – the log. Achieving it is not a hard task, there are even automated solutions that

can record all changes to the storage and publish them to some queue. Moreover, most

databases are using log internally as its source of truth, having tables and collections as its

snapshots.

In the example above, mail service can listen to updates for templates and store only

its required fields internally. Then it will have everything it needs to work fully relying on

itself.

Everything has its drawbacks and event sourcing is not an exclusion. First of all, it’s

data duplication whichever way you look at it. You can’t just manually change field value in

one database because it may be stored in dozens of others. Ironically it leads to better

automation and transparency which is a good thing.

Secondly, log has its limitations. It’s not infinite and you may come to a problem

where you need to populate the storage with historic data. However unlike with caching you

would need to do this only once and this code may not even be a part of the service.

Furthermore, log is not just a concept. It’s a concrete technology and every technology is

faulty so you should keep in mind a case when you can’t either publish or subscribe because

this component went down.

Finally, eventual consistency may scare you away though it is a very natural concept.

As was said previously we also have some delays and rather than fight them we can use it to

our advantage. In the end everything will be consistent but it’s us who control the speed we

are heading at. Still it’s something to consider and not all cases can neglect this aspect.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 24

Conclusion

State is a natural part of every process and managing it is as important as the process

itself. There is no right way to do it, no silver bullet. Finding the right balance between

benefits and drawbacks is the main task when deciding on any architecture.

Table 1

Comparison of architectures in state management

Approach Advantages Disadvantages

Stateless No need to manage state
This responsibility may be put on

other services

CQRS Scalability and flexibility Tight coupling between 2 services

Direct communication
Data deduplication and separation

of concerns

Tight coupling between multiple

services, availability concerns

Caching
Speed and circumstantial

availability

Tight coupling, additional

complexity

Event sourcing
Loose coupling, availability,

flexibility
Data duplication

In the end your main focus should be on business logic. If you think like you paying

too much attention to support communication take a look at other options, maybe one of them

will suit you better.

REFERENCES

1. Beal V. ETL - Extract, Transform, Load // https://www.webopedia.com. Available

at: https://www.webopedia.com/TERM/E/ETL.html

2. Richardson C. Pattern: API Gateway / Backends for Frontends //

https://microservices.io. Available at: https://microservices.io/patterns/apigateway.html

3. Evans E. Domain-Driven Design: Tackling Complexity in the Heart of Software

1st Edition / E. Evans. — Addison-Wesley Professional, 2003. — 560c.

4. Fowler M. BoundedContext // https://martinfowler.com. Available at:

https://martinfowler.com/bliki/BoundedContext.html.

5. Fowler M. CQRS // https://martinfowler.com. Available at:

https://martinfowler.com/bliki/CQRS.html.

6. Connecting Applications with Services // https://kubernetes.io. Available at:

https://kubernetes.io/docs/concepts/services-networking/connect-applications-service.

7. Handy J. Cache Memory Book, The (The Morgan Kaufmann Series in Computer

Architecture and Design) 2nd Edition / J. Handy. – Burlington: Morgan Kaufmann, 1998. –

229 с.

8. Kleppmann M. Making Sense of Stream Processing / M. Kleppmann. —

Sebastopol: O'Reilly Media, Inc., 2016. — 172 с.

Міжвідомчий науково-технічний збірник «Адаптивні системи автоматичного управління» № 2’ (37) 2020

 ISSN 1560-8956 25

	+Belous_Krуlov_Anikin
	+Bondarenko_Zeniv
	+Diakov_Zubrei
	+Kornaga_Bazaka_Marienko
	+Romanenko_Finogenov_Bondarenko
	+Stenin_Pasko_Soldatova_Stenin
	+SteninMelkumianSoldatovaDrozdovich
	+Бондар_Лісовиченко
	+Голубек
	+Дьяков_Самойдюк
	+Круглова_Диховичний_Лисенко_Богданова (Восстановлен)_1
	+Пархоменко_Сегол_Лісовиченко
	+Степанов_Корнага_Крилов_Анікін
	Binder2.pdf
	Зміст
	УДК
	ПРО АВТОРА

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only odd numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom right
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114315

 1
 1

 BR

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Odd
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 115
 114
 5ed48a3b-7b83-42ad-916a-f3d3deaf1e41
 58

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 1 to page 115; only even numbered pages
 Font: TimesNewRoman;TimesNewRomanPSMT 12.0 point
 Origin: bottom left
 Offset: horizontal 70.87 points, vertical 25.51 points
 Prefix text: ''
 Suffix text: ''
 Colour: Default (black)
 Add text every 0 pages

 D:20210115114344

 1
 1

 BL

 1
 1
 1
 0
 0
 3
 TimesNewRoman;TimesNewRomanPSMT
 1
 0
 0
 1216
 231
 0
 1
 R0
 12.0000

 Even
 1
 SubDoc
 115

 CurrentAVDoc

 Default
 [Doc:FileName]
 70.8661
 25.5118

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 1
 115
 113
 e1c08d3a-6818-42b7-b86a-ada69273a2b6
 57

 1

 HistoryItem_V1
 InsertBlanks

 Where: before current page
 Number of pages: 2
 Page size: same as current

 D:20210115114404

 Blanks
 Always
 2
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190
 0
 1
 1

 CurrentAVDoc

 SameAsCur
 BeforeCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 0
 2

 1

 HistoryItem_V1
 InsertBlanks

 Where: after current page
 Number of pages: 1
 Page size: same as current

 D:20210118082038

 Blanks
 Always
 1
 1

 D:20180918122136
 841.8898
 a4
 Blank
 595.2756

 70
 Tall
 1060
 190

 0
 1
 1

 CurrentAVDoc

 SameAsCur
 AfterCur

 QITE_QuiteImposingPlus4
 Quite Imposing Plus 4.0g
 Quite Imposing Plus 4
 1

 141
 1

 1

 HistoryList_V1
 qi2base

