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ABSTRACT

In studies from this laboratory, the chronic administration of ZnTe
during pregnancy, lactation, and prepuberal stages of litter (F1
generation) modified the behavioral patterns of motivated exploration,
lateralized exploration, social activity, and survival responses of
maturing rats. To determine whether these affected behaviors would
extend to the next generation, Fi litter rats previously exposed to
tellurium (Te) up to 30-day-old were left at rest with no further
treatment up to 90-day-old. Then, Fi female rats were mated with
normal untreated male rats, and in the next generation (F2), the litter rats
at 30-day-old preserved the modified behaviors previously observed in
their parents. The study revealed that Te effects were intergenerational.
Here, considering that ZnTe was used in the previous study and that Zn
ion has many physiological functions in the cell, experiments were
conducted to elucidate if Zn would have an intergenerational effect
similar to Te. Working with the same experimental setup as in the
previous study but using ZnCl: instead of ZnTe, results revealed that
none of the behavioral responses studied were affected by the Fi
generation. However, in the F2 generation, lateralized exploration and
survival behavior were inhibited, suggesting that Zn also has an
intergenerational effect.

1 Introduction

Zinc (Zn) is a trace element that humans earlier
used to galvanize iron and steel against metals’
natural corrosion. This industrial application

remains to date [1, 2]. It took several years for
the scientific community to appreciate this
element’s vital role as an essential nutrient in
medicine and biology [2, 3]. Zn participates
in many critical oxidation-reduction reactions in
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normal cellular metabolism [2—4]. This trace
metal has been found as a prosthetic group for
several crucial enzymes, such as carbonic

anhydrase, phospholipase C, alkaline phospha-

tase, and other cellular regulatory enzymes [3, 5].

Another key participation of this bivalent trace
element in cellular homeostatic reactions is the
formation of Zn finger proteins, a group of cell
molecules that regulate gene expression [4, 6].
Alternatively, Zn is involved in the regulation of
sleep [7], anxiety, and depression [8], and
maintenance and regeneration of intestinal
epithelial tissue [9]. This evidence emphasizes
the versatile and crucial role of Zn cell
physiology.

Stability and perpetuation in time are
ubiquitous characteristics of living systems.
Reproduction and transference of all basic

information to the next generation are
performed by DNA molecule codification
(encoding).  Thus, in  nature, perfect

transgenerational information is an evolutionary

means to maintain species stability and
perpetuation. Considering that Zn is a versatile
essential bioelement with a wide spectrum of
cellular actions, its participation as a Zn finger
protein is related to DNA regulation. However,
whether this element has a possible role in the
molecular mechanisms of inheritance is
questionable. In a study from our laboratory
with ZnTe administered during pregnancy and
lactation in nontoxic, low doses to mother rats,
the F: that

behavioral parameters

generation several

displayed
related to natural
cognitive responses was affected [10, 11]. One
problem with this evidence is that ZnTe
simultaneously contains Zn and Te. Since Te
affects the

expression previously mentioned, Zn’s possible

epigenetically final behavioral

participation was unclear [12, 13]. This study

presents the same experimental design
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previously described [13] but using zinc chloride
(ZnCL) instead of K:TeO:s to define Zn’s probable
role in these multigenerational processes.

2 Materials and methods

2.1 Animals

Rats of a Holzman-derived colony, 30-day-old
with no distinction of sex, maintained under
thermoregulated (22-24 °C) and controlled light
(On  6:00/0ff 20:00) were used.
Standard rat chow and water were available ad

conditions

libitum to the control group. In the test groups,
animals had access to the trace element with no
restrictions to the standard rat chow.

2.2 Experimental design

The experimental protocol used in this study
has been previously described [12]. Briefly,
chronic exposure to Zn, beginning from mother
rat fertilization up to prepuberal maturation
stages of litter rats, was conducted. From
35-day-old to 90-day-old, the trace element-
treated animals (F1) remained at rest without
further treatments (Fig. 1). At 90 days of age,
female Fi1 generation rats were mated with
normal male rats, yielding the F2 generation.
There were three experimental groups:

(1) Control animals (no trace element treatment,
water only, n =11)

(2) F1 animals (with ZnClz treatment, 1 = 10)

(3) F2 animals (no ZnCl: treatment in the F:
generation, n = 20)

As formerly specified, pups were standardized
to 10-12 animals per litter to maintain whenever
possible the relationship of 1:1 of male to female
rats at birth for all groups. Thus, there were
initially approximately ten animals for each group
in the behavioral tests. When maturing rats were
21-day-old (treatment day 42), young rats were
weaned and separated from their mothers. Here,
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Treatments

(1): Tap water (Control)
(2): ZnClL, (0.2 pg/L): F,

(3): Tap water: F,

Behavioural tests

First generation (F))

1
/ 30 day-old
A D s
Day 0 Day 51

f—————————— Duration of Zn Cl, treatment ——————————TJgp-

Normal male

Second generation (F,)

=

F, female

Behavioural tests

30 day-old

90 day-old

——

mating

Fig.1 Experimental design to the study of Zn effects across generations in rats. F1 = first generation; F2 = second generation.

Animals are exposed to ZnClz after mating, during pregnancy, lactation and up to litter rats reached 30-day-old. Fo and F:

are exposed to the Zn treatment. At 90-day-old, Fi-female is mated with a normal male. The pregnant rat then received no

further treatment. Further details, see material and methods.

the mother rats were discarded from the
experiment. At 30 days old (treatment day 51),
young rats of both sexes were subjected to
behavioral tests to evaluate general motor
activity, motivated lateralized exploration,
socialization and defensive behaviors, as
previously described [10]. After that, all F
animals remained at rest with water and chow
pellets ad libitum, and no further experimental
treatment was applied. When F: rats reached
90-day-old, female rats were mated with normal
rats. After that, pregnancy, delivery, lactation,
and maturation of the F: litters were maintained
with no treatment until the rats were 30-day-old
when the behavioral tests were performed, as
previously described [10]. At the end of the
experiment, the animals were sacrificed by
lethal intraperitoneal (i.p.) injections of sodium
pentobarbital (40 g/100) and sodium dipheny-
lhydantoin (5 g/100, Euthanyle, Brouwer Inc,

Argentina).
2.3 Chemicals

ZnCl:  (Tetrahedron,
Industria Argentina) was used.

Laboratorio  Andes,

2.4 Behavioral tests

As previously mentioned, ZnTe administered in
the chronic scheme induced modifications in

several behavioral responses related to cognitive
functions that lasted to the next generation [13].
To evaluate if ZnCl: could affect the same
behavioral responses, the following tests to

evaluate motivated exploration, lateralized
exploration of novel environments, social
interaction, and defensive behavior were
performed.

2.4.1 The general activity and exploratory behavior
detector (OVM)

It consists of a rectangular open field with
acrylic walls, equipped with infrared detectors
and digital counting devices to measure animal
activity (Optovarimex instruments, U.S.A). The
device was enriched with holes in the floor and
a tube rack as a novel object, as previously
described [10].

The following variables were measured to
evaluate exploration motivated by novelty.

(1) Head-dipping: the number of times the
animal dips its head to ear level into any OVM
floor hole.

(2) Rearing: the number of times the animal
rears on any lateral wall of the OVM with its
anterior arms, lifting its head, or leaning on its
rear legs on the floor.

(3) Focalized exploration: the duration of
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exploratory behavior dedicated to the novel
object located in the OVM center, measured by a
digital counter at a rate of 2 counts per second.
The test was applied to single animals and had a
total duration of 5 min.

2.4.2 The double lateral hole-board labyrinth (DHBL)

This labyrinth evaluates motivated exploration
expressed in lateralized form, as previously
described [10, 14].

DHBL is made of wood and is composed of a
rectangular cage 39 cm in width, 70 cm in length,
and 15 cm in height. Inside, two compartments
are disposed of at 90°. The first compartment
(initial) is 39 cm in length and 15 cm in width,
with a central entrance to the second
compartment (corridor). The corridor has a
length of 55 cm, 17 cm in width, and on its
sidewalls, there are 4 lateral holes, each 3 cm in
In this test,

driven only by

diameter. animals’” behavioral

activity was exploratory
motivation induced by novel environments. The
following variables were measured:

(1) Lateralized exploration. In this variable, all
behaviors related to exploration are displayed
when the animal chooses one side of the
corridor during exploration. Behaviors include
the following: (i) walking near the left or right
corridor wall, at a constant speed, with vibrissae
touching the wall; (ii) lateral head-dipping; (iii)
rearing against the left or right corridor wall:
this score was measured in the same way as the
corridor behavioral activity.

(2) Percentage of animals showing left-biased
exploration. Calculated by counting the number
of rats showing left preference following the
total number of animals tested.

Non-exploratory activities, such as immobili-
zation at any corridor site, walking at the center,
not approaching any side wall, or grooming,
were not measured.

In this behavioral

test, laterality was
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considered present when the median lateralized
exploration on one side of the walls statistically
The
behavioral activity was measured using an

outnumbers the opposite exploration.
automatic digital counter (counting rate 2
counts/s) monitored by an observer unaware of
the treatments. The test was applied to single

animals and lasted for 3 min.
2.4.3 The social interaction test

This test (intruder—host territorial test) measures
two interacting rats’ social display in a
determined territory challenge by an intruder
[11]. The test was performed in a rectangular
steel cage (26-cm width, 42-cm length, and
20-cm height) with wood shavings on the floor.
This test lasted for 5 min. In the two initial
minutes, the test animal (host rat) was left alone
in the arena to familiarize themselves with the
cage. At 3 min, a new rat of the same size and
sex (intruder rat) was introduced in one corner
of the cage. The behavioral display was
recorded until the testing period ended. The
following variables were measured:

(1) Latency to interact: the time taken (using a
digital counter) for the host animal to face the
intruder (a-behavior). Sniffing, touching, gentle
biting, and dragging the intruder were recorded
as social, behavioral displays.

(2) Duration of a-contact: the time taken
(using a digital counter) for a-social interaction

as displayed by the host animal in the test.
2.4.4 Forced swimming test

This measures animals’ defensive behavioral
response to a stressful situation represented by
active swimming in a closed environment with
[10]. The
transparent acrylic tube measuring 50 cm height

no escape device consists of a
by 12 cm diameter (internal diameter), filled
with water at room temperature up to half the
cylinder height. Two variables were measured.
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(1) Active swimming activity: the vigorous
swimming movements displayed by animals
involving all four extremities at an approxi-
constant rate, and motor

mately activity

displayed during immersion indicative of
escape. The activity was measured using an
automatic digital counter at a rate of 2 counts/s
monitored by an expert observer unaware of the
treatment.

(2) Immobilization: the time-lapse whereby
animals do not swim. They float without
movement or display a slow motion of their
extremities enough to avoid drowning. Since the
test lasted for 3 min (360 counts), this behavioral
activity was obtained by subtracting the total
count’s active swimming activity.

All behavioral tests were filmed using a
digital video camera and recorded in a DVD
player/recorder (Phillips, model DVDR3455H)
at an artificial illumination of approximately
180-206 lux.

Results of the

expressed as counts/3 min (C/3 min).

behavioral measures are

2.5 Statistical analyses

Multiple comparisons for behaviors between
experimental situations were performed by

non-parametric Dunn’s test [15]. When
comparisons involved paired groups, the
Mann-Whitney  U-test was used. The

significance of single percentage differences was
analyzed by a binomial distribution (the sign
test). < 0.05 was
statistically significant. Results are presented as

A p-value considered

the median + standard error of the median

2.6 Animals’ ethical care

This followed the
recommendations of the Guide for the Care and
Use of Laboratory Animals (8th edition), NIH [16],
and guidelines by C. J. Foltz [17].

Whenever possible, the number of animals

experimental  protocol
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was reduced to the acceptable minimum,
thereby allowing statistical discrimination in the
experiment.

3 Results

3.1 Motivated exploration in the OVM

The three
exploratory motivation induced by novelty in F1

primary behaviors related to
and F» maturing rats are shown in Fig. 2.
Treatment with Zn unaffected head-dipping,
rearing, or focalized exploration in F1 and F2 rats
(Fig. 2, Panel 1) compared with the control.

3.2 Lateralized exploration in the DHBL

In the control Fi, and F: generations, the
lateralized exploration was measured in the
DHBL (Fig. 3). Treatment with Zn unaffected
normal spontaneous left-biased exploration in
the F1 animals as seen in control rats [Fig. 3(A)].
However, in the F: generation, left-biased
exploration was absent [Fig. 3(A)]. When the
percentage of animals showing left-biased
exploration was examined in the three groups,
only F2 rats showed random exploratory choice
(no preference for any sidewall), while 80% of

1 Water control (n=10)

_ =3 Exposed to Zn (F,); n=10 g
g &3 Not exposed to Zn (F,); n=12 v
g 12 140 2
g Panel 1 Panel 2 §
& 10l J J F120 S
Q
5 L - 100 8
&~ 81 S~
>3 80 23
Z2 ¢ 58
£ & 60 &
< Q
5 4 La0 =
g g
= 2 | | [+
é 20 3
<
g 0 0z
Head Dipp Rearing Foc Expl ZO

Type of behaviour

Fig.2 Behavioural responses of rats exposed to ZnClz (F1),
not exposed to ZnCl: (F2), and control (water) animals in
the enriched open field (OVM). Head Dipp = head dipping;

Foc Expl = focalized exploration.
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Fig. 3 Lateralized exploration in the DHBL of rats
exposed to ZnClz in the first generation. (A) Left and right

exploration for the three experimental groups. ** p <0.01

compared to left-biased exploration. (B) Proportion of rats
with left-biased exploration in the DHBL. ** p < 0.01
compared to 50% which indicate no lateralization or

random responses.

the control and 90% of the Fi1 animals showed
left exploratory preferences [Fig. 3(B)]

3.3 Social activity in the intruder—resident test

The social interaction activity is displayed when
an intruder rat is introduced into a resident
animal’s cage for the three experimental groups
(Fig. 4).

Control animals took approximately 30.5 + 7
counts/3 min of latency to confront the intruder
rat. No significant differences compared to the
control was found in the F1 and F2 groups (Fig. 4).

3.4 Survival behavior in the forced swimming
test

The active swimming in the escape response and
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Fig. 4 Social activity parameters in rats exposed to ZnClz
in the first generation. Additional details, in materials and
method section.
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Fig. 5 Survival behavioural responses in the forced

swimming test of rats exposed to ZnCl> in the first

generation. * p <0.05 compared to control rats.

immobility behavior for all three groups is
shown in Fig. 5.

Active swimming in the F1 Zn-treated group
was unaffected by the trace element treatment
since the behavior was not statistically different
from the control group (Fig. 5). However, in the
F2 group (no Zn treatment), the active swimming
score decreased significantly compared with the
control group. Regarding the immobilization

behavior, the only group that showed a
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significantly increased score than the control
group was the F2 generation (no Zn treatment,
Fig. 5).

4 Discussion

In the OVM general test of motivated
exploration, none of the exploratory behaviors
were modified by Zn treatment in Fi1 and F
(Fig. 2). Thus, this

unaffected the rat’s guided motivated explora-

generations element
tion, suggesting an absence of a multigen-
erational effect. This evidence agrees with
ZnClz
administered only in the F1 generation [10, 11].

previous results wusing ZnTe or

Lateralizing exploration, such as measured in
the DHBL, presented a different picture when
the behavior was examined through successive
generations. F1 generation was insensitive to Zn
left-biased

animals treated with the trace element was

treatment since exploration in
similar to control rats [Fig. 3(A)]. However, in
the next generation (Fz), lateralized exploratory
behavior [Fig. 3(A)] and the normal percentage
of rats with left-biased exploration [Fig. 3(B)]
were abolished.

This effect cannot have attributed to some
residual Zn concentration in their parents’ blood
since F1 parent rats remained at rest without
further treatment for 60 days. Considering that
no mechanism to store the bio-metal in the cell is
known [3], the 60 days of resting were sufficient
to remove any trace of the body’s bio-metal.

On the

response, a critical response to acute stress in the

same line, behavioral survival

swimming test, was also inhibited in the F:

generation despite being normal in the F1 (Fig. 5).

This evidence reveals that a chemical agent that
does not modify several behavioral parameters
in one generation does not mean that its action
is harmless. Thus, it can be assumed that Zn’s
can be considered a

behavioral effects

Journal of Neurorestoratology

transgenerational consequence of single metal
The possibility that this
inhibitory action on lateralized exploration

treatment in Fu.
found in the F: rats might be due to other
random unspecific actions unrelated to an
inheritance mechanism seems unsupported by
the experimental data. A motivated exploration
in the OVM and social interaction of rats under
the same experimental conditions in the F
generation were unaffected by Zn treatment on
F1 (Figs. 2 and 4), suggesting altered behavioral
3 and 5)
consequences of Zn treatment.

responses  (Figs. were specific

Comparing these results with the intergen-
erational effects of tellurium (Te) previously
observed using the same variables [12], striking
differences are evident. Te treatment affected
head-dipping, rearing, lateralizing exploration,
social activity, and survival behaviors in Fi1 and
F2 generations [12]. Te and Zn act by different
brain mechanisms to influence the behavioral
responses observed in Fi and F2 generations. The
specific brain processes whereby Zn produces
the behavioral changes observed in this study
are unknown. Zn has complex participation in
many molecular processes essential to cell
functioning [3, 7, 9, 18-20]. Another interesting
point from these results is that whatever the
intrinsic mechanism the trace element may have,
it is fully expressed in the next generation
through the Fi1 mother rat since the male partner
at mating is a normal male unexposed to the Zn
treatment. This eliminates the possibility of the
male germinal line contribution. Results also
suggest the possibility of fetal reprogramming
occurring after Zn exposure in the mother Fo
and F1 generations.

Zn is involved in finger domain molecules,
thereby directly interacting with DNA [20] or
histone nuclear proteins [21, 22], molecular
modulate DNA

targets that expression.
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However, since the mechanisms in influencing
the behavioral expression remain unclear, only
future research will likely give a more precise
description of Zn cellular activities.
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