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Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between
these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH)
ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L
of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation
for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and
LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their
toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and
LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic
from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first
study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on
aquatic ecosystems.
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Introduction

Agriculture is the main economic activity in Argentina. In the
last decades, the agricultural development model was based
on the expansion of the agricultural barrier and the intensifi-
cation of production through the use of genetically modified
crops (Pengue 2004). This model implies a greater consump-
tion of land and agrochemicals. In consequence, it increases
the pollution in agricultural regions by mixtures of diverse
pesticides (De Gerónimo et al. 2014; Etchegoyen et al.
2017). In particular, the main transgenic crops (soybean, corn,
and wheat) are designed to tolerate glyphosate, a broad-
spectrum non-selective post-emergent herbicide that inhibits

5-enolpyruvylshikimate-3-phosphate synthase, an essential
enzyme for the production of aromatic amino acids in plants
and a few microbial species (Achary et al. 2020). Despite that
animals obtain these aromatic amino acids through diet and do
not have this enzyme, glyphosate has been classified as a
harmful compound for aquatic organisms (category III) fol-
lowing the classification criteria proposed by the European
Union directives (UN 2011). Recently, it was classified as
“probably carcinogenic to humans” (group 2A), by the
IARC (2015). In water bodies of agroecosystems of
Argentina, the concentrations of glyphosate varied between
0.0001 and 105 mg/L(Peluso et al. 2020b; Sasal et al. 2017).
Particularly, one of the most applied commercial formulations
is ATANOR® (48% glyphosate as isopropylamine salt)
(Romero et al. 2011).

On the other hand, 2,4-dichlorophenoxyacetic acid (2,4-D)
is also one of the most employed pesticides in Argentina.
Between 2013 and 2015, 2,4-D was the third most imported
agrochemical in the country (SENASA 2017). Moreover, its
use has increased due to its implementation in mixtures tanks
as a result of the emergence of glyphosate resistant weeds
(Leiva and Picapietra 2012). 2,4-D is a systemic herbicide
used mainly in agriculture, in genetically modified corn and
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soybean crops (Cappello et al. 2013; Merini et al. 2008).
Additionally, it can be applied in pastures, forest management,
and gardens to control broadleaf weeds and aquatic vegetation
(Islam et al. 2018). 2,4-D is a stable and persistent auxin-like
substance involved in plant growth and development. The
exposure to this compound results in an overstimulation of
growth, which leads to plant death (Zimdahl 2018). It has been
classified by theWHO (1990) as moderately hazardous (Class
II) and by the IARC (2015) as “possibly carcinogenic to
humans” (group 2B). There is little information about the
environmental concentrations of 2,4-D in Argentina (Ruiz de
Arcaute et al. 2016); Peluso et al. (2020a) informed an envi-
ronmental concentration between the limit of detection and
quantification (1–4 μg/L) in a river of Buenos Aires province.

Glyphosate and 2,4-D present different environmental be-
havior and can enter ephemeral ponds or aquatic systems close
to fumigated lands. On the one hand, glyphosate and AMPA
(its metabolite) bind strongly to topsoil particles and therefore
reach water bodies, ponds, and lakes through water erosion
events (Bento et al. 2019). On the other hand, 2,4-D present a
high mobility and can reach aquatic ecosystems by runoff
(Health Canada Pest Management Regulatory Agency
2016). Additionally, both pesticides may enter aquatic sys-
tems from washing fumigation machinery.

When pesticides are applied, the most affected environ-
ments are the shallow freshwater aquatic/estuarine systems
and even pools that are often associated with agricultural
areas, which are common habitats for amphibians (Solomon
and Thompson 2003). Additionally, most amphibian species
have seasonal reproduction, coinciding the breeding and the
embryo-larval development with the application of pesticides
and fertilizers during spring-summer(Lenhardt et al. 2015). In
the last years, a decline in amphibian populations has been
registered (Green et al. 2020), and it was related to habitat loss
and increased environmental degradation mainly by agricul-
ture (Davidson and Knapp 2007; Peltzer et al. 2011).
Particularly, Rhinella arenarum is a representative species of
the Argentine herpetofauna, and may inhabit water bodies of
agroecosystems (Peltzer et al. 2011). Despite that it is classi-
fied as a least concern species by the IUCN (Kwet et al. 2004),
several studies warn about the vulnerability of this species to
chemical contaminants in agroecosystems, which led to an
increased incidence of malformations and populations de-
clines (Bionda et al. 2013; Peltzer et al. 2011).

Several laboratory studies have shown that different com-
mercial formulations of glyphosate are moderately toxic to
amphibian (Bernal et al. 2009; Chen et al. 2004; Edginton
et al. 2004; Fuentes et al. 2011; Howe et al. 2004;
Lajmanovich et al. 2003; Mann and Bidwell 1999; Relyea
and Jones 2009; Sing Yadav et al. 2013). Moreover, the acute
toxicity of glyphosate-based pesticides, as Atanor®, Credit®,
Glifloglex®, and Roundup Ultra Max®, was informed in the
range of 19.4 mg/L and 78.18 mg/L(Brodeur et al. 2014;

Soloneski et al. 2016). It has been previously demonstrated
that glyphosate causes oxidative stress, inhibits the action of
key enzymes for regulation of cell cycle, and produces
genotoxic damage on amphibian larvae (Carvalho et al.
2020; Lima et al. 2020). Toxicity studies of 2,4-D on amphib-
ians have shown that the herbicide inhibits oocyte maturation
(LaChapelle et al. 2007; Stebbins-Boaz et al. 2004) and has
teratogenic effects on Xenopus laevis(Morgan et al. 1996) and
Rhinella arenarum, one of the most susceptible amphibian
species during the embryo-larval period (Aronzon et al.
2011). In Physalaemus albonotatus larvae, exposure to 2,4-
D caused histological alterations in the liver and morpholog-
ical abnormalities (Curi et al. 2019). Also, in Lithobates
catesbeianus, Leptodactylus fuscus, and Physalaemus
nattereri larvae, altered total hepatic lipids, protein, and car-
bohydrate contents were observed. Also, the respiration rates
and swimming speed were affected (Freitas et al. 2019).
Moreover, 2,4-D increased GST activity and DNA damage
by dermal exposure of R. arenarum adults (Lajmanovich
et al. 2015).

When Boana faber and Leptodactylus latrans larvae were
exposed to a combination of glyphosate and 2,4-D, growth,
and swimming activity were altered, an increase in morpho-
logical abnormalities was observed and erythrocytes showed
micronuclei and other nuclear abnormalities (Pavan et al.
2021). However, there is no information about the lethal tox-
icological interactions in mixtures of glyphosate and 2,4-D on
amphibians, so the aim of the current study was to evaluate the
lethal toxicity of equitoxic and non-equitoxic binary mixtures
of these pesticides on larvae of the common South American
toad, Rhinella arenarum. It is noteworthy the importance of
assessing the toxicity of complex commercial formulations,
since these are the ones that are actually applied in the fields.
Moreover, non-equitoxic mixtures are more environmentally
realistic, and in this study, the mixture was prepared according
to the combination recommended for their use in fields present
in the pesticide bottle labels.

Materials and methods

Substances and test solutions

The commercial formulations “Atanor®” and “Así Max 50®”
were used for testing single and joint toxicity of glyphosate
(GBH) and 2,4-D (2,4-DBH) based herbicides, respectively.
“Atanor®” is a commercial formulation of glyphosate
(N-(phosphonomethyl) glycine; CASNo. 1071-83-6) contain-
ing 43.8% of glyphosate in the form of monopotasic salt
which corresponds to 35.6% of glyphosate acid equivalent
(ae). “Así Max 50®” is a commercial formulation of the
dimethylamine salt of the 2,4-dichlorophenoxyacetic acid
(CAS No. 2008-39-1) containing 602000 mg/L of 2,4-D
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which corresponds to 500000 mg/L of 2,4-D ae. Both herbi-
cide formulations included undisclosed proprietary additives,
surfactants, or emulsifiers. The glyphosate and 2,4-D concen-
trations in test solutions were checked. For the glyphosate
determination, the stock solution and the sample were
derivatized with 100 μL of 0.5 mM FMOC and 100 μL of
Borate Buffer pH 9. They were allowed to react at room tem-
perature for 30 min. Then, samples were filtered through
0.45 μm nylon filters and quantified by HPLC (Agilent
1100 Series equipment) with an ODS (C18) reversed phase
column and a fluorescence detector. The injection volumewas
5 μL and the flow was 0.5 mL/min. The 2,4-D concentration
was analyzed by direct injection of the sample against a stan-
dard solution with a concentration similar to the expected in
the sample. The mobile phase was acetonitrile:acetic acid 4%
(55:45). An Agilent 1200 HPLC system with a LiChrospher
RP-18 (250×4mm; 5μm) and a DAD detector was employed.
Both standards were purchased at Sigma-Aldrich (99.9% pu-
rity). The herbicide concentrations employed during this study
represent the nominal concentration of ae of the active princi-
ple contained in the formulation. The error between the nom-
inal and measured concentrations did not exceed 10%.

Single test solutions

For the single toxicity assay, GBH and 2,4-DBH stock solu-
tions of 1000 mg ae/L and 25000 mg ae/L were prepared in
deionized water, respectively. The test range was determined
based on a preliminary bioassay and previous data on the
effects of the herbicides in other related species. Ten test so-
lutions were prepared with AMPHITOX solution (AS: Na+

14.75; Cl- 22.71; K+ 0.26; Ca2
+ 0.36 and HCO3

- 1.45 mg/
L), in concentrations ranging between 5 and 80 mg ae/L for
glyphosate (5, 10, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,
and 80 mg ae/L) and 50–1250 mg ae/L for 2,4-D (50, 75, 100,
150, 200, 300, 350, 400, 500, 600, 800, 1000, 1250 mg ae/L).
Test solutions were completely renewed every other day in
order to ensure the physicochemical conditions of the AS
solution (hardness lower than<2 mg/L CaCO3, conductivity
of 59.4 μS/cm, a pH between 6.86-7.45), the levels of dis-
solved oxygen (>7 mg/L) and the herbicide concentrations.
Every time, new stock solutions were prepared.

Mixture test solutions

GBH and 2,4-DBH mixture toxicity was evaluated using a
fixed ratio design according to the protocols described by
Aronzon et al. (2016). Stock solutions of equitoxic and non-
equitoxic mixtures were prepared by dissolving the corre-
sponding volume of the commercial formulation of GBH
and 2,4-DBH in AS. Equitoxic mixture was prepared based
on the LC50-168 h for each compound, to combine both her-
bicides in equal proportions according to their respective

toxicity (Table 1). For that purpose, preliminary bioassays
were performed with single GBH and 2,4-DBH to obtain the
LC50-168 h, which were 48.18 (43.74–51.40) mg/L and 419
(404–430) mg/L, respectively. Equitoxic relation was main-
tained as there were no significant difference with the LC50
obtained in the simultaneous single exposure of this study.

Non-equitoxic mixture was prepared according to the
glyphosate label recommendation for the combination with
the amine salt of 2,4-D (Table 1). Besides, both pesticides
were combined in a ratio based on a commercial herbicide
formulation increasingly used in Argentina (Mestizo®, from
Atanor®, Argentina) (Lozano et al. 2018). Test solutions of
equitoxic and non-equitoxic mixtures were prepared by dilut-
ing the corresponding volume of each stock solution in AS, in
order to maintain the proportion of compounds. Solutions
were completely renewed every other day as in the single
bioassays.

Acquisition of Rhinella arenarum larvae

Two mating pairs of Rhinella arenarum adults weighing ap-
proximately 200–250 g per animal were acquired in a non-
impacted site of Buenos Aires province, Argentina (34° 49′
55.7″ S 58° 07′ 11.3″W). The maintenance and care of toads
and the acquisition, maintenance, and selection of embryos
were conducted according to methods described in the
AMPHITOX protocols (Pérez Coll et al. 2017). Ovulation
of female toads was induced by means of an intraperitoneal
injection of 5000 IU of human chorionic gonadotropin
(Gonacor® 5000) (Mann and Bidwell 2000). Oocytes were
fertilized in vitro using a 10% spermatozoid suspension in AS.
Sperm viability was evaluated by analyzing the morphology
and motility of sperm under optical microscopy (Olympus
CX41, 400× magnification). Fertility was considered accept-
able with rates greater than 75%. Embryos were kept in AS at
20 ± 2°C, alternating 12-hlight/dark cycles, until they reach
the complete operculum stage (S.25), defined according to
Del Conte and Sirlin (1951). All experiments were conducted
according to the international standards on animal welfare
(Beaupre et al. 2004) and controlled and approved by the
Institutional committee for the care and use of animals in
experimentation (CICUAE) of the National University of
San Martín (UNSAM) (Res. No. 14/2016).

Experimental protocols

Rhinella arenarum larvae at complete operculum stage (S.25)
were continuously exposed to the single GBH and 2,4-DBH
solutions for 504 h and to the mixtures for 240 h. For each
experimental condition, 10 larvae were placed in covered 10-
cm-diameter glass Petri dishes with 40 mL of AS (controls) or
test solutions. Test solutions were entirely replaced every 48
h, and temperature was maintained between 20 ± 2°C,
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alternating 12-hlight/dark cycles, throughout the exposure.
Dissolved oxygen (Lutron PDO-519 oximeter) and pH
(Adwa AD-12 pH meter) were measured during the exposure
time to ensure the conditions. Dead individuals were removed,
and survival was evaluated every day. Larvae were fed with 6
± 0.5 mg of balanced fish food TetraColor® every other day.
Toxicity bioassays were repeated two times with different
clutches, so besides the preliminary single bioassays, we per-
formed eight toxicity bioassays.

Data analysis

Lethality data were statistically analyzed by the USEPA
PROBIT Program (EPA 1988). LC10, 50, and 90s were ob-
tained for each chemical. The significance level of mean sep-
aration (p < 0.05) of two LC50 values was based on the lack of
overlap between the 95% confidence limits (Yu et al. 2019).

Mixture results were analyzed using the median-effect/
Combination Index (CI) developed by Chou (2017). This
method is based on the median-effect principle (mass-action
law)(EPA 1988), which demonstrates that there is an univocal
relationship between concentration and effects, independently
of the number of substances and mechanisms of action or
inhibition. The Compusyn program (Sprague 1970) was used
for the calculation of CI values at different effect levels (Fa=
proportion of individuals affected), whenCI <1,CI =1, andCI
> 1 indicate synergism, additivity, and antagonism,
respectively.

Results

Chronic toxicity of single GBH- and 2,4-D-BH

The survival of larvae in the control groups was between 90
and 100%. GBH and 2,4-DBH concentrations that cause 10%,
50%, and 90% mortality of larvae throughout the 504 h of
exposure are shown in Figure 1. GBH was significantly more
toxic than 2,4-DBH, as the LC50s of 2,4-DBH were between
12 and six times higher than the ones of GBH. The toxicity of
both pesticides was time-dependent since it significantly in-
creased almost two and five times through the exposure time
for GBH and 2,4-DBH, respectively. The LC50 for GBH
decreased from a value of 64.02 (60.69–68.60) mg ae/L at
24 h to 59.91 (55.76–64.56) mg ae/L and 38.67 (32.22–
44.015) mg ae/L at 96 and 504 h, respectively. On the other
hand, for 2,4-DBH, the LC50 decreased from 1420 (2949–
1168) mg ae/L at 24 h to 746 (787.56–705.43) mg ae/L and
250.31 (284.03–218.55) mg ae/L at 96h and 504 h,
respectively.

Chronic toxicity of equitoxic and non-equitoxic binary
mixtures of GBH and 2,4-DBH

The LC50s for single GBH, 2,4-DBH, and the LC50Ms for
GBH and 2,4-DBH in the equitoxic and non-equitoxic mix-
ture are shown in Figures 2 A and B. It is noteworthy that in
both mixture proportions, the LC50M of both pesticides are

Table 1. Concentration and
composition of glyphosate (GBH)
and 2,4-D (2,4-DBH) based her-
bicides on equitoxic and non-
equitoxic mixture solutions.

Mixture stock solution Total exposure
concentrations (mg/L)

GBH in exposure
solution (mg/L)

2,4-DBH in exposure
solution (mg/L)

Equitoxic 936 96 840

748.8 76.8 672

655.2 67.2 588

561.6 57.6 504

468 48 420

421.2 43.2 378

374.4 38.4 336

327.6 33.6 294

280.8 28.8 252

187.2 19.2 168

93.6 9.6 84

Non-equitoxic 220 150 70

132 90 42

110 75 35

88 60 28

77 52.5 24.5

66 45 21

55 37.5 17.5

44 30 14
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always lower than their corresponding single LC50.
Moreover, the LC50M of the pesticides are in relation of its
contribution in the mixture proportion. This is particularly
noticeable in the LC50M of 2,4-DBH in the non-equitoxic
mixture. In both cases, the GBH seems to modulate the joint
toxicity curve. However, in order to understand the nature of
the combination toxicity, a joint toxicological analysis is re-
quired. In that sense, the CI values of equitoxic and non-
equitoxic binary mixture of GBH and 2,4-DBH are shown
in Table 2. The equitoxic mixture presented an additive inter-
action in the acute exposure time of 48 h at all effect levels
(0.1, 0.5, and 0.9). The interactions turned to antagonistic at
the 0.1 and 0.5 effect levels from the 96 h to the 240 h. The
same change in interactions was observed at the 0.9 effect
level from the 168 h. On the other hand, the non-equitoxic
mixture showed an additive response at the 0.1 effect level
from the 48 h to the 168 h, turning to synergistic at the 240 h.
Indeed, the mixture interaction resulted synergistic for all ex-
posure times at the 0.5 and 0.9 effect levels.

Figure 3 illustrates the results obtained for equitoxic and
non-equitoxic mixtures at the 0.5 effect level. The diagonal
isobole linking the values of 1 Toxic Unit (TU) on the y(2,4-
DBH) and x(GBH) axes is the line of concentration addition.
The TU arbitrarily assigns a value of 1 TU to a concentration
of toxicant that elicits a particular response; in this case, it
represents the 50% mortality (LC50)(Sprague 1970). The
equitoxic mixture lies above and to the right of the additivity

line from the 96 h of exposure, which confirms the antagonis-
tic interaction. However, the non-equitoxic mixture lies below
and to the left of the additivity line, which shows the synergic
interactions at all exposure times (Figure 3).

Joint toxicity could not be calculated beyond 240 h due to
the high mortality observed during the exposure to mixtures.

Discussion

We comparatively evaluated the chronic lethal toxicity and
prevailing interactions in equitoxic and non-equitoxic mix-
tures of two different commercial herbicide formulations on
R. arenarum larvae. Both pesticide formulations exerted lethal
effects on R. arenarum larvae. The observed lethal effects
may be due to the ability of both herbicides to induce oxida-
tive stress, morphological and histological alterations, DNA
damage, and altered swimming activity as observed in larvae
of different amphibian species (Curi et al. 2019; Freitas et al.
2019; Pavan et al. 2021). Also, when two substances have
different mechanisms of action, they can affect different bio-
logical endpoints, so their behavior may differ from the ex-
pected additive effects (Deneer 2000). In this case, as the
pesticides have some similar but also different endpoints, it
is difficult to predict the effects of the mixture. Thus, joint
toxicity evaluations are important to assess the change in the
behavior at different proportions. GBH resulted up to 18 times

Fig. 1 Glyphosate (GBH)- and
2,4-D (GBH) based herbicide
concentrations that cause the 10%
(Lethal concentration 10, LC10),
50% (Lethal concentration 50,
LC50), and 90% (Lethal concen-
tration 90, LC90) mortality of
Rhinella arenarum larvae, with
95% of confidence intervals, at
different exposure times
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more toxic to larvae than 2,4-DBH. This fact becomes very
relevant since the first one is the most applied herbicide in
Argentina and is commonly found in the environment (Lupi
et al. 2015). The observed time-dependent toxicity of both
pesticides highlights the relevance of assessing toxicity in
chronic periods. In particular, the GBH concentration that
produced toxicity on larvae at chronic exposure is in the range
of previously informed environmental concentrations in
Argentine water bodies from the distribution area of
R. arenarum (0.0001–105 mg/L) (Berkovic et al. 2006;
Sasal et al. 2017). Even though there is no previous informa-
tion about 2,4-D concentrations in agroecosystems of
Argentina, the estimated range of environmental concentra-
tions in freshwater bodies is 0.004–0.024 mg/L, while in ag-
ricultural fields, its concentration may reach up to 4 mg/
L(Islam et al. 2018).

Commercial formulations contain different substances that
enhance the performance of the active ingredient. For most
pesticides of Argentina, these substances are unknown
(CASAFE 2001), and generally, they are not considered to
play an active role in the toxicity on non-target organisms
(WHO 1990). However, their harmful effects may exceed
the ones caused by the active ingredients and alter the toxicity
of the product (WHO 1990). Particularly, the toxicity of
glyphosate is highly dependent on the kind of surfactant used
in the different brands (Lajmanovich et al. 2011; Mann et al.
2009). In comparison with the results informed in previous
studies on R. arenarum larvae exposed to other commercial
formulations, the one assessed in the present study,
“Atanor®,” resulted more toxic than Glifoglex and Credit®
with LC50-96 h of 72.8 mg ae/ L and 96 h 78.18 mg/L,
respectively (Brodeur et al. 2014; Howe et al. 2004),
but less toxic than Roundup Ultra-MaX®, with a
LC50-48 h of 45.95 mg/L(Lajmanovich et al. 2019),
and a previous version of Atanor ® with a LC50-96h
of 19.4 mg/L(Brodeur et al. 2014).

On the other hand, in comparison with the results informed
in a previous study onR. arenarum larvae exposed to the butyl
ester of 2,4-D, the commercial formulation of the amine salt
evaluated in this study resulted significantly less toxic. Thus,
the LC50-168 h of larvae exposed to the butyl ester of 2,4-D
was 13.4 mg/L(Aronzon et al. 2011) while the LC50-168 h
informed in the present work for the amine salt of 2,4-DBH
was 406.42 (445.77-338.32) mg/L. A lower toxicity of the
amine salt was also seen in the exposure to the commercial
formulation of the dimethylamine salt of 2,4-D, Zamba®,
which elicited a similar lethal toxicity on Physalaemus
albonotatus larvae with a LC50-96 h of 350 mg/L(Curi et al.
2019). However, in mixture studies, it is more relevant to
assess the toxicity of the amine salt since it is the most com-
monly employed in tanks and binary mixtures of the formu-
lations available in the market (Lozano et al. 2018).

In the present study, the evaluated equitoxic mixture of the
herbicides suggested mainly an antagonistic interaction.
However, the non-equitoxic mixtures of GBH and 2,4-DBH
indicated the presence of synergism for all exposure times at
the 0.5 and 0.9 effect levels, and for chronic exposure times at
the 0.1 effect level (Table 2 and Figure 3). These results show
the existence of different types of interactions that depend on
the proportion of the compounds in the mixture. Also, the
interactions may vary according to the to the compound form
since Carvalho et al. (2020) found that the combination of
glyphosate with 2,4-D or 2,4-D DMA showed a synergistic
pattern whereas the combination of glyphosate with 2,4-D BE
was antagonistic. This fact highlights the need to assess mix-
ture toxicity not only at different proportions of each com-
pound and at different effect level but also at chronic exposure
times since they are more environmentally accurate. The as-
sessment of the toxicity of non-equitoxic mixtures provides a
better understanding of the behavior of the mixture in com-
parison to evaluating only the equitoxic mixture, so these re-
sults become more significant as the non-equitoxic mixture is

Table 2. Combination Index (CI) values, at different effect levels, with 95% confidence intervals for Rhinella arenarum larvae exposed to equitoxic
and non-equitoxic mixtures of glyphosate (GBH) and 2,4-D (2,4-DBH) based herbicides from 48 h to 240 h.

Combination Index (CI)

Mixture stock solution Exposure Time (h) Effect level (0.1) Interaction Effect level (0.5) Interaction Effect level (0.9) Interaction

Equitoxic 48 1.46 +/− 0.52 Additive 1.16 +/−0.22 Additive 0.97 +/− 0.30 Additive

96 1.90 +/− 0.22 Antagonism 1.21 +/− 0.12 Antagonism 0.90 +/− 0.10 Additive

168 1.83 +/− 0.56 Antagonism 1.56 +/− 0.27 Antagonism 1.37 +/− 0.16 Antagonism

240 1.96 +/− 0.55 Antagonism 1.66 +/− 0.26 Antagonism 1.46 +/− 0.10 Antagonism

Non−equitoxic 48 0.85 +/− 0.17 Additive 0.82 +/− 0.04 Synergism 0.82 +/− 0.14 Synergism

96 0.10 +/− 0.09 Additive 0.87 +/− 0.03 Synergism 0.77 +/− 0.07 Synergism

168 0.89 +/− 0.15 Additive 0.80 +/− 0.09 Synergism 0.74 +/− 0.18 Synergism

240 0.78 +/− 0.16 Synergism 0.77 +/− 0.09 Synergism 0.79 +/− 0.19 Synergism
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more environmentally realistic since in the environment is
highly unlikely that the mixture of chemicals occurs in an
equitoxic way (Brodeur et al. 2014). Also, a synergic effect
is expected inmixtures of these pesticides at any concentration
in a non-equitoxic relation, which includes concentrations that
may be present in freshwater bodies. In this case, the assessed
non-equitoxic mixture was prepared according to the
recommendation for the combination with the amine salt
of 2,4-D present on the label of glyphosate and of a
commercial herbicide formulation increasingly used in
Argentina (Lozano et al. 2018).

A recent study about the toxicity of mixtures of glyphosate
and 2,4-D based herbicides proved their genotoxic, morpho-
logical and behavioral effects on Boana faber and
Leptodactylus latrans tadpoles (Pavan et al. 2021).
However, our results are, up to our knowledge, the first to
clearly demonstrate the presence of synergistic toxicological
interaction on lethal effects between these two herbicides.
Also, they highlight that single-compound assessments may
underestimate the real risk for aquatic wildlife species that are
exposed to complex mixtures of substances. It must be em-
phasized that the herbicides combined in our study are com-
mercial formulations. Since each one is a combination of sev-
eral components, the resulting mixtures are more complex
systems than simple binary mixtures. Further studies will be
required to explain the results of the present study from a
mechanistic concept. Despite that synergistic interactions rep-
resent a minority of the reported cases (WHO 1990), glypho-
sate has previously shown synergistic interaction with
cypermethrin and arsenic on R. arenarum larvae (Brodeur

Fig. 2 Lethal concentrations 50 of glyphosate (GBH) and 2,4-D (2,4-
DGH) based herbicides, and of equitoxic (a) and non-equitoxic (b) mix-
tures on Rhinella arenarum larvae. LC50: lethal concentration 50 for
single GBH and 2,4-DBH; LC50M: lethal concentration 50for GBH and
2,4-DBH in the equitoxic and non-equitoxic mixtures

Fig. 3 Isobolograms showing the
composition of the equitoxic (Δ)
and non-equitoxic (○) mixtures of
glyphosate (GBH) and 2,4-D
(2,4-DGH) based herbicides that
cause 50% mortality of Rhinella
arenarum larvae (lethal concen-
tration 50, LC50) at 48 (a), 96 h
(b), 168 h (c), and 240 h (d) of
exposure
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et al. 2014; Lajmanovich et al. 2019). Moreover, these results are
relevant because the use of a local species provides ecological
pertinent information and might allow characterizing the poten-
tial risk on the native fauna (Lajmanovich et al. 2019).

Conclusions

The environmentally realistic non-equitoxic mixture of GBH
and 2,4-DBH showed synergic effect at different effect levels
of lethality on the larvae of the native amphibian specie
Rhinella arenarum. The present findings result relevant from
a regulatory point of view given the widely use of the herbi-
cides, the environmental relevance of the assayed concentra-
tions, and the need for amphibian conservation around the
world.
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