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ALGEBRAS OF COMMUTING DIFFERENTIAL OPERATORS

FOR INTEGRAL KERNELS OF AIRY TYPE

W. RILEY CASPER, F. ALBERTO GRÜNBAUM, MILEN YAKIMOV, AND IGNACIO ZURRIÁN

To the memory of Harold Widom, with admiration

Abstract. Differential operators commuting with integral operators were discovered in the
work of C. Tracy and H. Widom [37, 38] and used to derive asymptotic expansions of the
Fredholm determinants of integral operators arising in random matrix theory. Very recently,
it has been proved that all rational, symmetric Darboux transformations of the Bessel, Airy,
and exponential bispectral functions give rise to commuting integral and differential operators
[6, 7, 8], vastly generalizing the known examples in the literature. In this paper, we give a
classification of the the rational symmetric Darboux transformations of the Airy function in
terms of the fixed point submanifold of a differential Galois group acting on the Lagrangian
locus of the (infinite dimensional) Airy Adelic Grassmannian and initiate the study of the full
algebra of differential operators commuting with each of the integral operators in question. We
leverage the general theory of [8] to obtain explicit formulas for the two differential operators
of lowest orders that commute with each of the level one and two integral operators obtained
in the Darboux process. Moreover, we prove that each pair of differential operators commute
with each other. The commuting operators in the level one case are shown to satisfy an
algebraic relation defining an elliptic curve.

1. Introduction

Our contribution to this volume bears a connection with a phenomenon uncovered by Craig
Tracy and Harold Widom [38] in their work on level spacing in Random Matrix Theory. For
a double scaling limit at the “edge of the spectrum” they observed that the resulting integral
operator with the Airy kernel acting on an appropriate interval admits a commuting second
order differential operator. This highly exceptional fact is put to good use in section IV of
their paper where a number of asymptotic results for several quantities of interest are given.

In the context of RandomMatrix Theory the existence of such a commuting pair of operators
had been exploited earlier, for instance in work by M. Mehta [29] and W. Fuchs [14]. In this
case one is interested in the “bulk of the spectrum” and the role of the Airy kernel is taken
up by the more familiar sinc kernel. Both of these situations deal with the Gaussian Unitary
Ensemble.

The consideration of either the Laguerre or the Jacobi ensembles at the “edge of the spec-
trum” gives rise to the Bessel kernel. This case, as well as the corresponding commuting
pair of integral-differential operators is considered by C. Tracy and H. Widom in [37]. There,
once again, this exceptional fact is exploited in section III to derive a number of important
asymptotic results.

In this paper we concentrate on the “exceptional fact” mentioned above in three differ-
ent situations relevant to Random Matrix theory. This fact had emerged in other areas of
mathematics. In a ground-breaking collection of papers by D. Slepian, H. Landau and H.
Pollak done at Bell labs in the 1960’s [27, 28, 32, 33, 34, 35, 36] instances of this phenomenon
were discovered and used in a key way in communication-signal processing theory. In fact,
some precedents can be traced further back, see [4, 22]. For an up-to-date treatment of the
numerical issues involving the prolate spheroidal function, one can see [30].
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Incidentally in the case of the Bessel kernel the existence of a commuting operator was
already proved by D. Slepian, while the situation of the Airy kernel appears for the first
time in C. Tracy and H. Widom’s paper mentioned above. The so called “prolate spheroidal
wave functions,” which arise in the case of the sinc kernel and their corresponding integral-
differential pair of operators, have played an important role in areas far removed from signal
processing that motivated the research of Slepian and collaborators. We give only two in-
stances of this, but we are sure that other people can provide other examples: the paper
by J. Kiukas and R. Werner [24] in connection with Bell’s inequalities, and the program by
A. Connes in connection with the Riemann hypothesis with C. Consani, M. Marcolli and H.
Moscovici [10, 11, 12].

One should also mention that the Airy function itself and variants of it have played an
important role in other very active areas of current research, such as quantum gravity and
intersection theory on moduli space of curves, see [25, 41].

In all the three instances discussed above (namely the sinc, Bessel and Airy kernels), the
commuting differential operator has been found by a direct computation that relies heav-
ily on integration by parts. The interest in understanding and extending this exceptional
phenomenon in a variety of other situations has produced some few more examples, see
[5, 9, 15, 16, 17, 19, 20].

The bispectral problem formulated 1986 in [13] aimed at a conceptual understanding of the
phenomenon of integral operators admitting a commuting differential operator. The idea is
that all known kernels with this property are built from bispectral functions, that is functions
in two complex variables that are eigenfunctions of differential operators in each of them.
There has been a substantial amount of research on this problem [18, 21], which started with
the classification of all bispectral differential operators of second order [13] and culminated
in the classification of bipectral functions of rank 1 in [39] and the construction of bispectral
functions of arbitrary rank via Darboux transformations [2, 23] and automorphisms of the
first Weyl algebra [1, 3].

Since the mid 80s, the belief that the two problems, bispectrality and the existence of a
commuting pair made up of a differential and an integral operator were closely connected has
been driving research on both fronts. However, for a long time there no general argument
proving that bispectral functions give rise to kernels of integral operators with the commuta-
tivity property. This was finally settled in [8] where it was proved to be the case for self-adjoint
bispectral functions of rank 1 and 2.

More recently we proved in [6, 7] that all bispectral functions of rank 1 give rise to integral
operators that reflect a differential operator rather than plain commute with it.

All of the previous results on integral operators address the construction of a single differ-
ential operator commuting with it. The purpose of this paper is to initiate the systematic
study of the algebras of differential operators that commute with a given integral operator.
We start with the Airy example considered by C. Tracy and H. Widom and consider all self-
adjoint bispectral Darboux transformations. This is an infinite dimensional manifold which
sits canonically in the infinite dimensional Grassmannian of all Darboux transformation from
the Airy function, obtained from factorizations of polynomials of the Airy operator

(1) L(x, ∂x) = ∂2 − x.

We give a conceptual classification of the former manifold as the fixed point set of a Lagrangian
Grassmannian with respect to the canonical action of the associated differential Galois group.
The Lagrangian Grassmannian in question is the sub-Grassmannian with respect to a canon-
ical symplectic form. We consider the first two instances of self-adjoint bispectral Darboux
transformations coming from factorizations of

(L− t1)
2 and (L− t2)
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of the form P ∗P for a differential operator P (x, ∂x) with rational coefficients. The corre-
sponding bispectral functions, referred to here as level one and level two bispectral functions,
are significantly more complicated than the bispectral Airy function Ai(x + z). The integral
operators that they give rise to depend on parameters classifying different factorizations. For
each integral operator, we compute explicitly the differential operators of the lowest two orders
and prove that they are algebraically dependent. In the level one situation, the commuting
operators have order 4 and 6. They generate the algebra of all differential operators com-
muting with the integral operator and satisfy an algebraic relation which happens to be an
elliptic curve. In the level two situation, the lowest two commuting operators have order 10
and 12. However, we are also able to find commuting operators of order 14, 16, and 18 and
to prove that these differential operators commute with each other. In a future publication,
we will return to the problem of studying algebras of differential operators commuting with a
fixed integral operator and will present general structural results for the algebra of differential
operator commuting with all integral operators which are built from bispectral functions, and
which are motivated by the examples in this paper.

This paper is written as a small token of admiration and gratitude to the amazing math-
ematical work of Harold Widom. Widom started mathematical life as an algebraist working
with Irving Kaplansky at Chicago, before becoming mainly an analyst through the influence of
Mark Kac at Cornell. This paper uses tools from both analysis and algebra, uniting Widom’s
dual mathematical history. His influence will be a lasting one, and we will miss him badly.

2. Bispectral functions, Fourier algebras and prolate spheroidal type

commutativity

2.1. Bispectrality and Fourier Algebras. For an open subset U ⊆ C, denote by D(U) the
algebra of differential operators on U with meromorphic coefficients.

Definition 2.1. [13] Let U and V be two domains in C. A nonconstant meromorphic function
Ψ(x, z) defined on U×V ⊆ C

2 is called bispectral if there exist differential operators B(x, ∂x) ∈
D(U) and D(z, ∂z) ∈ D(V ) such that

B(x, ∂x)Ψ(x, z) = g(z)Ψ(x, z)

D(z, ∂z)Ψ(x, z) = f(x)Ψ(x, z)

for some nonconstant functions f(x) and g(z) meromorphic on U and V , respectively.

Denote by Ai(x) the classical Airy function. The function

ΨAi(x, z) := Ai(x+ z)

is bispectral because

(2) L(x, ∂x)ΨAi(x, z) = zΨAi(x, z) and L(z, ∂z)ΨAi(x, z) = xΨAi(x, z),

where L(x, ∂x) is the Airy operator (1). The differential equations satisfied by a bispectral
function are captured by the following definition.

Definition 2.2. [1] Let Ψ(x, z) be a bispectral meromorphic function defined on U ×V ⊆ C
2.

Define the left and right Fourier algebras of differential operators for Ψ by

Fx(Ψ) = {R(x, ∂x) ∈ D(U) : there exists a differential operator S(z, ∂z) ∈ D(V )

satisfying R(x, ∂x)Ψ(x, z) = S(z, ∂z)Ψ(x, z)}

and

Fz(Ψ) = {S(z, ∂z) ∈ D(V ) : there exists a differential operator R(x, ∂x) ∈ D(U)

satisfying R(x, ∂x)Ψ(x, z) = S(z, ∂z)Ψ(x, z)}.
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By [8, Proposition 2.4], for every bispectral meromorphic function Ψ : U × V → C, there
exists a canonical anti-isomorphism

bΨ : Fx(Ψ) → Fz(Ψ),

given by bΨ(R(x, ∂x)) = S(z, ∂z) if

R(x, ∂x)Ψ(x, z) = S(z, ∂z)Ψ(x, z).

We call this the generalized Fourier map associated to Ψ(x, z). Define the co-order of an
element R(x, ∂x) ∈ Fx(Ψ) by

cordR := ord bΨ(R).

Analogously, we define the co-order of S(z, ∂z) ∈ Fz(Ψ) by cordS := ord b−1
Ψ (S). The Fourier

algebras of Ψ(x, z) have natural N× N-filtrations:

Fx(Ψ)ℓ,m = {R(x, ∂x) ∈ Fx(Ψ) : ordR ≤ ℓ, cordR ≤ m},

Fz(Ψ)m,ℓ = {S(z, ∂z) ∈ Fz(Ψ) : ordS ≤ m, cordS ≤ ℓ},

where N = {0, 1, . . .} and bΨ(Fx(Ψ)ℓ,m) = Fz(Ψ)m,ℓ. The commutative algebras

Bx(Ψ) :=
⋃

ℓ≥0

Fx(Ψ)ℓ,0 and Bz(Ψ) :=
⋃

m≥0

Fz(Ψ)0,m

are precisely the algebras of differential operators in x and z, respectively, for which Ψ(x, z)
is a eigenfunction.

Example 2.3. The Airy bispectral function ΨAi(x, z) satisfies

L(x, ∂x)ΨAi(x, z) = zΨAi(x, z),

∂xΨAi(x, z) = ∂zΨAi(x, z),

xΨAi(x, z) = L(z, ∂z)ΨAi(x, z).

The Fourier algebras Fx(ΨAi) and Fz(ΨAi) coincide with the first Weyl algebra in the variables
x and z, respectively, and the generalized Fourier map bΨAi

is the anti-isomorphism from the
first Weyl algebra in x to the first Weyl algebra in z given by

bΨAi
(x) = ∂2z − z, bΨAi

(∂x) = ∂z.

Furthermore,

dimFx(ΨAi)
2ℓ,2m = ℓm+ ℓ+m+ 1,

see [8, Sect. 3.1 and Lemma 5.5]. On the level of Wilson’s adelic grassmannian, the anti-
isomorphism bψ is equivalent to Wilson’s bispectral involution [39]. More generally, every
anti-automorphism of the first Weyl algebra determines a bispectral function as proved in [3].

Definition 2.4. A rational Darboux transformation from the bispectral Airy function ΨAi(x, z)
is a function of the form

(3) Ψ(x, z) :=
P (x, ∂x)ΨAi(x, z)

q(z)p(x)

such that

(4) ΨAi(x, z) = Q(x, ∂x)
Ψ(x, z)

q̃(z)p̃(x)

for some differential operators P and Q with polynomial coefficients and polynomials p(x),
p̃(x), q(z) and q̃(z) with coefficients in C. We define the bidegree of such a transformation to
be the pair (ordP, cordP ).
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In this setting we have Q,P ∈ Fx(ΨAi), p̃(x), p(x) ∈ Fx(ΨAi)
0,m and q̃(x), q(x) ∈ Fz(ΨAi)

0,ℓ

for some ℓ,m ∈ N. Furthermore, eqs. (3)–(4) imply that

Q(x, ∂x)
1

p̃(x)p(x)
P (x, ∂x)ΨAi(x, z) = q̃(z)q(z)ΨAi(x, z),

and thus by Example 2.3,

(5) Q(x, ∂x)
1

p̃(x)p(x)
P (x, ∂x) = q̃(L(x, ∂x))q(L(x, ∂x)).

Theorem 2.5. [1, 3, 23] All rational Darboux transformations of the bispectral Airy function
ΨAi(x, z) are bispectral functions. More precisely, if Ψ(x, z) is as in Definition 2.4, then it
satisfies the spectral equations

1

p(x)
P (x, ∂x)Q(x, ∂x)

1

p̃(x)
Ψ(x, z) = q(z)q̃(z)Ψ(x, z),

1

q(z)
bΨAi

(P )(z, ∂z)bΨAi
(S)(z, ∂z)

1

q̃(z)
Ψ(x, z) = p(x)p̃(x)Ψ(x, z).

2.2. Prolate Spheroidal Type Commutativity. A rational Darboux transformation Ψ(x, z)
of the bispectral Airy function of bidegree (d1, d2) is called self-adjoint if it has a presentation
as in Definition 2.4 such that

Q(x, ∂x) = P ∗(x, ∂x)

and p̃(x) = p(x), q̃(z) = q(z). Here P 7→ P ∗ denotes the formal adjoint. It follows from
(5) that P has even order. A rational Darboux transformation Ψ(x, z) of the Airy bispectral
function ΨAi(x, z) is self-adjoint if and only if the spectral algebras Bx(Ψ) and Bz(Ψ) are
preserved under the formal adjoint, and this condition is satisfied if and only if Ψ(x, z) is
an eigenfunction of nonconstant, formally symmetric differential operators in x and z (i.e.,
operators that are fixed by the formal adjoint), see [8, Remark 3.17 and Proposition 3.18].

For self-adjoint rational Darboux transformations Ψ(x, z) of ΨAi(x, z), both Fourier algebras
Fx(Ψ) and Fz(Ψ) are preserved under the formal adjoint and

(6) (bΨ(R))
∗ = bΨ(R

∗) for all R ∈ Fx(Ψ),

see [8, Proposition 3.24 and 3.25]. Define

Fx,sym(Ψ) := {R ∈ Fx(Ψ) : R∗ = R}.

By (6) for all R ∈ Fx,sym(Ψ),
(bΨ(R))

∗ = bΨR.

Example 2.6. [8, Lemma 5.5] For all ℓ,m ∈ N, F2ℓ,2m
x,sym(ΨAi) has a basis given by

{L(x, ∂x)
jxk + xkL(x, ∂x)

j : 0 ≤ j ≤ l, 0 ≤ k ≤ m},

and in particular,
F2ℓ,2m
x,sym(ΨAi) = (ℓ+ 1)(m+ 1).

For ǫ > 0 consider the sector

Σǫ = {reiθ ∈ C : r > 0, |θ| < π/6− ǫ}.

The Airy function Ai(x) of the first kind is holomorphic on this domain and has the asymptotic
expansion

Ai(x) = e−
2

3
x3/2

(
∞∑

j=1

cjx
−j/4

)

for some cj ∈ R where x1/4 is interpreted as the principal 4th root of x. Furthermore, any
rational Darboux transformation of ΨAi(x, z) equals Ψ(x, z) = 1

p(x)q(z)P (x, ∂x)ΨAi(x, z) for
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some polynomials p(x), q(z) and a differential operator P (x, ∂x) with polynomial coefficients.
Thus, for any bispectral Darboux transformation of ΨAi(x, z) we have the asymptotic estimate

‖∂jx∂
k
zΨ(x, z)‖ = e−

2

3
(x+z)3/2O((|x| + |z|)(j+k)/2+m)

on Σǫ for some integer m. The transformation z 7→ (2/3)z3/2 sends Σǫ to the sector {reiθ ∈ C :
r > 0, |θ| < π/4− 3ǫ/2}. Therefore if Γ1,Γ2 ⊆ Σǫ are smooth, semi-infinite curves inside this
domain with parametrizations γi(t) : [0,∞) → C then the real part of −2(γ1(t) + γ2(s))

3/2/3
will go to −∞ as t → ∞ or s → ∞. The above asymptotic estimate now shows that Ψ(x, z)
satisfies∫

Γ1

|xmzn∂jx∂
k
zΨ(x, z)|dx ∈ L∞(Γ2) and

∫

Γ2

|xmzn∂jx∂
k
zΨ(x, z)|dz ∈ L∞(Γ1),

for every pair of smooth, semi-infinite curves Γ1,Γ2 ⊆ Σǫ.
Recall that the bilinear concomitant of a differential operator

R(x, ∂x) =

m∑

j=0

dj(x)∂
j
x.

is the bilinear form CR(−,−; p) defined on pairs of functions f(x), g(x), which are analytic at
p ∈ C by

CR(f, g; p) =
m∑

j=1

j−1∑

k=0

(−1)kf (j−1−k)(x)(dj(x)g(x))
(k)|x=p

=
m∑

j=1

j−1∑

k=0

k∑

ℓ=0

(
k

ℓ

)
(−1)kf (j−1−k)(x)dj(x)

(k−ℓ)g(x)(ℓ)|x=p.

See for example [22, Chapter 5, Section 3].

Theorem 2.7. [8] Let Ψ(x, z) be a self-adjoint bispectral Darboux transformation of the Airy
bispectral function ΨAi(x, z) of bidegree (d1, d2) and let Γ1 and Γ2 be two semi-infinite, smooth
curves in Σǫ for some ǫ > 0, whose finite endpoints are t1 and t2, respectively. Assume
moreover that Ψ(x, z) is holomorphic in a neighborhood of Γ1 × Γ2 and that the operators in
Fx(Ψ) and Fz(Ψ) have holomorphic coefficients in a neighborhood of Γ1 and Γ2, respectively.
Then the following hold:

(1) dimF
2ℓ,2m
x,sym(Ψ) ≥ (ℓ+ 1)(m+ 1) + 1− d1d2.

(2) If a differential operator S(z, ∂z) ∈ Fz,sym(Ψ) satisfies

CS(−,−; t1) ≡ 0 and Cb−1

Ψ
(S)(−,−; t2) ≡ 0,

then it commutes with the integral operator

T : f(z) 7→

∫

Γ1

K(z, w)f(w)dw with kernel K(z, w) =

∫

Γ2

Ψ(x, z)Ψ(x,w)dx.

(3) If dimF
2ℓ,2ℓ
z,sym ≥ ℓ(ℓ + 1) + 2, in particular if ℓ = d1d2, then there exists a differential

operator S(z, ∂z) ∈ F
ℓ,ℓ
z,sym(Ψ) of positive order satisfying the assmption and conclusion

in part (2).

As a special case of this theorem, we are able to recover the commuting integral and dif-
ferential operators studied by Tracy and Widom in [38]. In particular, if we take Ψ = ΨAi in
the theorem, then it guarantees the existence of a differential operator of order 2 commuting
with the integral operator

TAif(z) 7→

∫ ∞

t1

KAi(z, w)f(w)dw,
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with kernel

KAi(z, w) =

∫ ∞

t2

Ai(x+ z)Ai(x+ w)dx =
Ai′(t2 + z)Ai(t2 + w)−Ai(t2 + z)Ai′(t2 + w)

z − w
.

Solving the associated system of linear equations for the vanishing concomitant, we discover
that the differential operator

SAi(z, ∂z) := ∂z(t1 − z)∂z + (t2 − t1)z + z2

satisfies the condition that CSAi
(f, g; t1) = 0 for all functions f, g analytic at t1. Its preimage

under the generalized Fourier map

b−1
Ψ (SAi(z, ∂z)) = ∂x(t2 − x)∂x + (t1 − t2)x+ x2

also satisfies the condition Cb−1

Ψ
SAi

(f, g; t2) = 0 for all functions f, g analytic at t2. Therefore the

differential operator SAi(z, ∂z) commutes with TAi. This is precisely the differential operator
discovered by Tracy and Widom in [38].

3. Classification of self-adjoint rational Darboux transformations of the

bispectral Airy function

In this section, we will classify the self-adjoint rational Darboux transformations of the
bispectral Airy function by leveraging two tools: (1) the technology of differential Galois the-
ory, and (2) the classification of self-adjoint Darboux transformations in terms of Lagrangian
subspaces of symplectic vector spaces found in [8]. A similar classification is performed in [2]
using the entirely different technique of performing an explicit asymptotic analysis of Wron-
skians associated to subspaces of the kernel. More explicity, in this section we wish to classify
factorizations of the form

(7) P (x, ∂x)
∗ 1

p(x)2
P (x, ∂x) = q(L(x, ∂x))

2

where here p and q are polynomials and P (x, ∂x) is a differential operator with polynomial
coefficients. Without loss of generality, we take q(z) to be monic so that p(x) is the leading co-
efficient of the operator P (x, ∂x). The associated self-adjoint rational Darboux transformation
of the bispectral function Ai(x+ z) is then defined by

Ψ(x, z) =
1

p(x)q(z)
P (x, ∂x) · Ai(x+ z).

3.1. Lagrangian Subspaces and Concomitant. We begin by recalling the classification
of self-adjoint factorizations of self-adjoint differential operators found in [8]. To begin, let
A(x, ∂x) be a differential operator and recall the standard fact that the concomitant CA(f, g;x)
is independent of x for all f ∈ ker(A) and g ∈ ker(A∗).

Lemma 3.1 ([40], Section 3). Let A(x, ∂x) be a linear differential operator. Then the con-
comitant of A defines a canonical nondegenerate pairing

ker(A)× ker(A∗) → C, (f, g) 7→ CA(f, g).

Combining this with the identity CA(f, g) = −CA∗(g, f), we see that the concomitant re-
stricts to a symplectic bilinear form on ker(A) when A(x, ∂x) is formally symmetric.

We will also rely on the following formula for concomitants of differential operator products.

Lemma 3.2 ([40], Lemma 3.6). Let A(x, ∂x) = A1(x, ∂x)A2(x, ∂x). Then

CA(f, g;x) = CA1
(A2f, g;x) + CA2

(f,A∗
1g;x).
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From this, we see that if A = A∗, then ker(A2) ⊆ ker(A) and ker(A∗
1) ⊆ ker(A) are

orthogonal under the pairing defined by the concomitant of A(x, ∂x).
As is well-known in the theory of factorizations of linear differential operators, a factorization

of a differential operator
A(x, ∂x) = A1(x, ∂x)A2(x, ∂x)

corresponds to a choice of a subspace V ⊆ ker(A). The subspace V corresponds to the
kernel of A2(x, ∂x) and determines the value of the operator A2(x, ∂x) up to a left multiple
by a function of x. As is readily seen from the previous lemma, the kernel of A1(x, ∂x)

∗ is
completely determined by V and given by the orthogonal complement

V ⊥ = {g ∈ ker(A∗) : CA(f, g) = 0 ∀f ∈ V }.

Thus to obtain factorizations of the form (7), we search in particular for subspaces V ⊆
ker(q(L)2) satisfying V ⊥ = V . In other words, we search for Lagrangian subspaces of the
symplectic vector space ker(q(L)2). To summarize, we have the following proposition.

Proposition 3.3. Factorizations of the form (7) with p(x) and the coefficients of P (x, ∂x) not
necessarily rational functions, correspond precisely to Lagrangian subspaces of the symplectic
vector space ker(q(L)2) whose symplectic form is defined by the concomitant of q(L)2.

3.2. Differential Galois Theory. Our next task is to determine the symmetric factoriza-
tions obtained in the previous section which are rational. For the convenience of the reader, we
briefly outline the requisite basics of Picard-Vessiot extensions and the Fudamental Theorem
of Differential Galois Theory. We direct the interested reader to [31] for a more thorough
treatment.

Definition 3.4. Let (K,∂) be a differential field and let A ∈ K[∂] be a linear differential
operator with coefficients in K. The Picard-Vessiot extension of K associated with A(x, ∂x) is
a differential field extension (F, ∂) of K whose constants all belong to K and which is generated
by the solutions of the homogeneous equation Ag = 0.

Picard-Vessiot extensions of a differential field play precisely the role of Galois extensions
in field theory. Likewise, the usual Galois group is replaced by a similar object consisting of
field automorphisms respecting differentiation.

Definition 3.5. The differential Galois group DGal(F/K) consists of all K-linear field auto-
morphisms σ : F → F of F satisfying σ(∂ · a) = ∂ · σ(a) for all a ∈ F .

Analogous to the case of Galois extensions of fields, we have the following theorem relating
differential subextensions and Zariski-closed subgroups of the differential Galois group (see
[31, Proposition 1.34]).

Theorem 3.6 (Fundamental Theorem of Differential Galois Theory). Let (K,∂) be a dif-
ferential field whose subfield of constants is algebraically closed and let (F, ∂) be a Picard-
Vessiot extension of K. Then there is a bijective correspondence between differential subfields
K ⊆ F ′ ⊆ F and Zariski-closed subgroups G′ ⊆ DGal(F/K) given by

G′ ⊆ DGal(K/F ) 7→ KG′

= {a ∈ K : σ(a) = a, ∀σ ∈ G′}.

K ⊆ F ′ ⊆ F 7→ DGal(F ′/K) = {σ ∈ DGal(F/K) : σ(a) = a, ∀a ∈ F ′}.

Furthermore, this correspondence restricts to a correspondence between Picard-Vessiot subex-
tensions of F/K and normal subgroups of DGal(F/K).

We will not rely on the full force of this correspondence, and therefore will not have to
recall the precise nature of the topological structure of DGal(F/K) as a group subscheme of
a general linear group. Instead, we will use only the immediate fact that

(8) K = {a ∈ F : σ(a) = a, ∀σ ∈ DGal(F/K)}.
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Since differential operators are determined (up to a multiple) by their kernels, rationality of
a differential operator may be characterized by differential Galois invariance of the associated
kernel.

Theorem 3.7. Let A(x, ∂x) be a differential operator with rational coefficients and let F be the
Picard-Vessiot extension of C(x) for A. Consider a factorization A(x, ∂x) = A1(x, ∂x)A2(x, ∂x)
with A2 monic. Then A1(x, ∂x) and A2(x, ∂x) have rational coefficients if and only if ker(A2) ⊆
ker(A) is invariant under the action of DGal(F/C(x)).

Proof. For σ ∈ DGal(F/C(x)), let σ(Aj) := σ(Aj)(x, ∂x) denote the operator obtained by ap-
plying the automorphism to the coefficients. Since the automorphism preserves differentiation,
we know that

σ(Aj)(x, ∂x) · σ(a) = σ(Aj(x, ∂x) · a), ∀a ∈ F.

If A1(x, ∂x) and A2(x, ∂x) have rational coefficients, then clearly σ(Aj) = Aj and there-
fore ker(σ(Aj)) = ker(Aj). Thus the kernel of Aj(x, ∂x) is invariant under the action of
DGal(F/C(x)).

Conversely, suppose that ker(A2) ⊆ ker(A) is invariant under the action of the differential
Galois group, ie. σ(ker(A2)) = ker(A2) Then σ(A2) · σ(a) = σ(A2 · a) = σ(0) = 0 for all
a ∈ ker(A) and therefore ker(A2) ⊆ ker(σ(A2)). Since the order of A2 and the order of σ(A2)
are the same, their kernels will have the same dimension. Therefore ker(σ(A2)) = ker(A2) and
consequently σ(A2) = bA2 for some b ∈ F . Since A2 has leading coefficient 1, it follows that
b = 1. Hence σ(A2) = A2 and from the Fundamental Theorem of Differential Galois Theory,
the coefficients of A2 must all be rational functions. Lastly, since A and A2 have rational
coefficients, it follows that A1 has rational coefficients. �

Corollary 3.8. Let A(x, ∂x) be a self-adjoint differential operator with rational coefficients
and let F be the Picard-Vessiot extension for A. Then the self-adjoint, rational factorization
of A(x, ∂x) correspond precisely with the DGal(F/C(x))-invariant Lagrangian subspaces of
ker(A).

Proof. This follows immediately from the theorem and the results of the previous subsection.
�

3.3. The classification. Now let a1, . . . , ar ∈ C be the distinct roots of q(z) and write

q(z) = (z − a1)
d1 . . . (z − ar)

dr

for some positive integers d1, . . . , dr and distinct a1, . . . , ar ∈ C. The kernel of q(L)2 for
L(x, ∂x) = ∂2x − x the Airy operator is given by the following lemma.

Lemma 3.9. The kernel of q(L)2 has basis given by

{Ai(j)(x+ ai),Bi
(j)(x+ ai) : 1 ≤ k ≤ r, 0 ≤ j ≤ 2dk}

where here Ai(x) and Bi(x) are the Airy functions of the first and second kind, respectively.

Proof. To prove this, we will rely on the fundamental relation

L(x, ∂x)∂x = ∂xL(x, ∂x) + 1,

which implies that

(L(x, ∂x)− ak)
m∂nx =

m∧n∑

j=0

(
m

j

)
n!

(n− j)!
∂n−jx (L(x, ∂x)− ak)

m−j .

Thus for all 0 ≤ n < 2dk − 1, we have

(L(x, ∂x)− ak)
2dk Ai(n)(x+ ak) =

n∑

j=0

(
2dk
j

)
n!

(n− j)!
∂n−jx (L(x, ∂x)− ak)

2dk−j Ai(x+ ak) = 0.
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Hence Ai(n)(x + ak) ∈ ker((L(x, ∂x) − ak)
2dk) ⊆ ker(q(L)2) for all 0 ≤ n < 2dk. The same

calculation shows that Bi(n)(x+ ak) ∈ ker(q(L)2) for all 0 ≤ n < 2dk. �

Thus the Picard-Vessiot extension of the differential field (C(x), ∂x) corresponding to the
linear differential operator q(L(x, ∂x))

2 is finitely generated by 4r elements

F q = C(x)(Ai(x+ ak),Ai
′(x+ ak),Bi(x+ ak),Bi

′(x+ ak) : 1 ≤ k ≤ r).

Using this, we see that the differential Galois group of F is isomorphic to r copies of SL2(C).

Lemma 3.10. The differential Galois group consists of all differential C(x)-linear morphisms

σ : F q → F q,

{
Ai(x+ ak) 7→ αk Ai(x+ ak) + βk Bi(x+ ak)
Bi(x+ ak) 7→ γk Ai(x+ ak) + δk Bi(x+ ak)

∀1 ≤ k ≤ r,

where here αk, βk, γk, δk ∈ C with αkδk − βkγk = 1.

Proof. The fact that

Ai(x+ ak) 7→ αAi(x+ ak) + β Bi(x+ ak)
Bi(x+ ak) 7→ γ Ai(x+ ak) + δBi(x+ ak)

,

[
α β
γ δ

]
∈ SL2(C),

is a differential automorphism is standard. See for example [31, Example 8.15]. Therefore, we
need only show that this accounts for all differential automorphisms.

If σ : F q → F q is a differential automorphism fixing C(x), then

σ(Ai(x+ ak))
′′

σ(Ai(x+ ak))
= σ

(
Ai′′(x+ ak)

Ai(x+ ak)

)
= σ(x+ ak) = x+ ak.

Thus σ(Ai(x+ak)) must be a solution of the differential equation y′′ = (x+ak)y, and therefore
a linear combination of Ai(x + ak) and Bi(x + ak) for all k. A similar statement holds for
σ(Bi(x+ ak)) so that

σ :

{
Ai(x+ ak) 7→ αk Ai(x+ ak) + βk Bi(x+ ak)
Bi(x+ ak) 7→ γk Ai(x+ ak) + δk Bi(x+ ak)

∀1 ≤ k ≤ r

for some αk, βk, γk, δk ∈ C. Lastly, the Wronskian identity implies

W (Ai(x+ ak),Bi(x+ ak)) = Ai′(x+ ak)Bi(x+ ak)−Ai(x+ ak)Bi
′(x+ ak) =

1

π
·

Since the Wronskian is skew-symmetric, we can conclude that

1

π
= σ(W (Ai(x+ ak),Bi(x+ ak)))

=W (σ(Ai(x+ ak)), σ(Bi(x+ ak)))

= (αδ − βγ)W (Ai(x+ ak),Bi(x+ ak)) = (αδ − βγ)/π.

Hence αδ − βγ = 1. �

Using this, we can obtain the following characterization of the Galois-invariant subspaces
of ker(q(L)2).

Lemma 3.11. Suppose that V ⊆ ker(q(L)2) is a subspace. Then V is invariant under the
action of the differential Galois group if and only if V is spanned by pairs of elements of the
form

2dk−1∑

j=0

αkj Ai
(j)(x+ ak),

2dk−1∑

j=0

αkj Bi
(j)(x+ ak)
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Proof. Clearly any subspace spanned by pairs of elements of this form is invariant under the
action of the Galois group, since the the action restricts to an action sending each of the
functions in the pair to a linear combination of the functions in the pair. Thus it suffices to
show the converse.

Let f(x) be a nonzero element of V . Then

f(x) =
r∑

k=1

2dk−1∑

j=0

αkj Ai
(j)(x+ ak) + βkj Bi

(j)(x+ ak)

Consider the differential automorphisms σk and τk which fix Ai(x + aj) and Bi(x + aj) and
satisfy

σk : Ai(x+ ak) 7→ −Bi(x+ ak), Bi(x+ ak) 7→ Ai(x+ ak),

τk : Ai(x+ ak) 7→ Ai(x+ ak) + Bi(x+ ak), Bi(x+ ak) 7→ Bi(x+ ak).

We see that

τk(f(x))− f(x) =

2dk−1∑

j=0

αkj Bi
(j)(x+ ak) ∈ V.

Following up by applying σk, we see that

σk(τk(f(x))− f(x)) =

2dk−1∑

j=0

αkj Ai
(j)(x+ ak) ∈ V.

Likewise, one may show
∑2dk−1

j=0 βkj Ai
(j)(x + ak),

∑2dk−1
j=0 βkj Bi

(j)(x + ak) ∈ V and since k
was arbitrary, the statement of the Lemma follows immediately. �

Our explicit description of the kernel of q(L)2 allows us to give a concrete formula for
the symplectic form on ker(q(L)2) defined by the bilinear concomitant. We start with a
combinatorial Lemma.

Lemma 3.12. Let a, b,m be integers. Then
m∑

k=0

(−1)k
(
k + a

k

)(
b

m− k

)
=

(
b− 1− a

m

)
.

Proof. We use the binomial series expansion on the identity

(1− z)−a−1(1− z)b = (1− z)b−a−1

to find
∞∑

j,k=0

(
−a− 1

k

)(
b

j

)
(−1)j+kzj+k =

∞∑

m=0

(
b− 1− a

m

)
(−1)mzm.

Now comparing coefficients of zm:
m∑

k=0

(
−a− 1

k

)(
b

m− k

)
(−1)j+k =

(
b− 1− a

m

)
.

Noting that
(
−a−1
k

)
= (−1)k

(
k+a
a

)
, the statement of the lemma follows immediately. �

Proposition 3.13. Let f(x), g(x) ∈ {Ai(x),Bi(x)} and choose 0 ≤ m < 2dj and 0 ≤ n < 2dk.
Then

Cq(L)2(f
(m)(x+ aj), g

(n)(x+ ak)) = δjk
m!n!W (f, g)

(m+ n− 2dk + 1)!
∂m+n−2dk+1
z

∣∣∣
z=ak

·

(
q(z)2

(z − ak)2dk

)

for all nonnegative integers m,n with m+ n ≥ 2dk − 1 and is zero otherwise.
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Proof. For simplicity of notation, we will let h(z) = q(z)2 and write f and g in place of f(x+ak)

and g(x + bk), respectively. First note that if j 6= k then f (m) ∈ ker((L − aj)
2dj ) and g(n) ∈

ker(h(L)(L − aj)
−2dj ), which is the orthogonal complement of the subspace ker((L − aj)

2dj )

of ker(h(L)). Hence Ch(L)(f
(m), g(n)) = 0. Thus it suffices to consider the case when j = k.

Let h̃(z) = h(z)/(z − ak)
2dk . Applying Lemma 3.2 and the fundamental relation L∂x =

∂xL+ 1 we see that

Ch(L)(f
(m), g(n)) = Ch(L)∂mx (f, g(n))

= C
h̃(L)(L−ak)

2dk∂mx
(f, g(n))

=

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!
C
h̃(L)∂m−s

x (L−ak)
2dk−s(f, g

(n)).

Now using the fact that the concomitant of L is the Wronskian and again applying Lemma
3.2 and the more general relation

h̃(L(x, ∂x))∂
m
x =

m∑

s=0

(
m

s

)
∂m−s
x h̃(s)(L(x, ∂x))

we see that

Ch(L)(f
(m), g(n))

=
m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!
(−1)m−sW (f, (L− ak)

2dk−s−1∂m−s
x h̃(L)∂nx · g)

=

n∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!
(−1)m−sW (f, (L− ak)

2dk−s−1∂n+m−s−t
x · g).

From this it is clear that if n+m < 2dk − 1 then the concomitant is zero. Thus without loss
of generality we take m+ n ≥ 2dk − 1. Then for ℓ = n+m− 2dk + 1

Ch(L)(f
(m), g(n))

=

n∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!
(−1)m−sW (f, (L− ak)

2dk−s−1∂n+m−s−t
x · g)

=

n∧ℓ∑

t=0

(
n

t

)
h̃(t)(ak)

m∑

s=0

(
m

s

)
(2dk)!

(2dk − s)!
(−1)m−s (m+ n− s− t)!

(ℓ− t)!
W (f, ∂ℓ−tx · g)

=

n∧ℓ∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n− t)!

(ℓ− t)!

m∑

s=0

(
2dk
s

)(
m+ n− s− t

m− s

)
(−1)m−sW (f, ∂ℓ−tx · g).

Now reindexing the sum and applying the previous lemma, we obtain

Ch(L)(f
(m), g(n))

=
n∧ℓ∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n− t)!

(ℓ− t)!

m∑

s=0

(
2dk
m− s

)(
s+ n− t

s

)
(−1)sW (f, ∂ℓ−tx · g)

=
n∧ℓ∑

t=0

(
n

t

)
h̃(t)(ak)

m!(n− t)!

(ℓ− t)!

(
2dk − 1− n+ t

m

)
W (f, ∂ℓ−tx · g).
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The binomial coefficient in the last sum is nonzero if and only if ℓ ≤ t. Since the sum is taken
between t = 0 and t = ℓ, the only nonzero term comes from when t = ℓ. Thus

Ch(L)(f
(m), g(n)) =

m!n!

(n+m− 2dk + 1)!
h̃(n+m−2dk+1)(ak)W (f, g).

�

The rational Darboux transformations of Ai(x + z) come directly from factorizations of
the form (7) with P (x, ∂x) having rational coefficients. As we have outlined above, these
correspond precisely to the Galois-invariant Lagrangian subspaces of ker(q(L)2). This charac-
terization is made explicit in the next theorem.

Theorem 3.14 (Classification Theorem). Let fm, gm ∈ ker(q(L)2) for 1 ≤ m ≤ d be 2d
linearly independent functions of the form

fi(x) =

2dℓi−1∑

m=0

αimAi(m)(x+ aℓi), gi(x) =

2dℓi−1∑

n=0

αin Bi
(n)(x+ aℓi)

satisfying the condition that

2dk−1∑

m+n≥2dk−1

αimαjn
m!n!

(m+ n− 2dk + 1)!
∂m+n−2dk+1
z

∣∣∣
z=ak

·

(
q(z)2

(z − ak)2dk

)
= 0

for all k and for all i, j with ℓi = ℓj = k. Then the differential operator P (x, ∂x) of order 2d
defined in terms of a Wronskian by

P (x, ∂x) · f := W (f1, f2, . . . , fd, g1, g2, . . . , gd, f)

has rational coefficients and satisfies

P (x, ∂x)
∗ 1

p(x)2
P (x, ∂x) = q(L(x, ∂x))

2

for some rational function p(x). Furthermore every self-adjoint rational factorization of
q(L(x, ∂x))

2 is of this form.

Proof. This follows directly from our direct calculation of the concomitant along with our
characterization of the Galois-invariant subspaces of the kernel. �

This result is particularly nice in the situation that q(z) = (z−s1)
d, so that the concomitant

has the simple form

Cq(L)2(f
(m)(x+ s1), g

(n)(x+ s1)) =





m!n!/π, f = Ai, g = Bi, m+ n = 2d− 1
−m!n!/π, f = Bi, g = Ai, m+ n = 2d− 1

0, otherwise.

The payout of our dive through all the differential Galois theory and symplectic geometry above
is that we immediately provide explicit factorizations of (L(x, ∂x)− s1)

2 and (L(x, ∂x)− s1)
4.

Corollary 3.15. Let s1 ∈ C. Then up to a function multiple, the only self-adjoint rational
factorizations of (L(x, ∂x)− s1)

2 are the trivial one and

P1(x, ∂x)
∗ 1

(x+ s1)2
P1(x, ∂x) = (L(x, ∂x)− s1)

2

for

P1(x, ∂x) = (x+ s1)∂
2
x − ∂x − (x+ s1)

2.
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Proof. From the previous Theorem, we know we must choose functions

f1(x) = α11 Ai(x+ s1) + α12 Ai
′(x+ s1), g1(x) = α11 Bi(x+ s1) + α12 Bi

′(x+ s1)

satisfying 2α11α121!1!/π = 0. Thus either α11 = 0 or α12 = 0 and without loss of generality
we may take the remaining coefficient to be π. In the first case, the operator P (x, ∂x) is

P (x, ∂x) · f =W (Ai′(x+ s1),Bi
′(x+ s1), f) = (x+ s1)f

′′(x)− f ′(x)− (x+ s1)
2f.

In the second case, the operator P (x, ∂x) is

P (x, ∂x) · f =W (Ai(x+ s1),Bi(x+ s1), f) = f ′′(x)− (x+ s1)f.

Thus in this second case P (x, ∂x) = L(x, ∂x) − s1, giving us the trivial factorization of
(L(x, ∂x)− s1)

2. �

Corollary 3.16. Let s1 ∈ C. Then up to a function multiple, the self-adjoint rational factor-
izations of (L(x, ∂x)− s1)

4 are of the form

P2(x, ∂x)
∗ 1

(x+ s1)2
P2(x, ∂x) = (L(x, ∂x)− s1)

4

for

P2(x, ∂x) · f =W (f1, f2, g1, g2, f),

where here

fk(x) =

3∑

j=0

αkj Ai
(j)(x+ s1), gk(x) =

3∑

j=0

αkj Bi
(j)(x+ s1)

for some constants αkj satisfying the three relations

6αm3αn0 + 2αm1αn2 + 2αm2αn1 + 6αm3αn0 = 0, 1 ≤ m ≤ n ≤ 2.

Proof. This follows immediately from the Classification Theorem. �

The operator P2(x, ∂x) in this latter situation is more complicated. First of all, it features
the factorizations from the previous corollary, as may be obtained from taking α13 = α23 = 0.
Thus to get new factorizations, we can without loss of generality take α13 = α23 = 1. Then the
three relations simplify to αm0 = −αm1αm2/3 for m = 1, 2 plus a choice of either α11 = α21

or α12 = α22. For sake of concreteness, we choose α11 = α21 and take α22 = 1, α12 = 0, and
s1 = 0. This determines all parameters, except for α11 and the associated operator P (x, ∂x)
is explicitly computed to be

P2(x, ∂x) =

(
x4 − 4x3α11 +

10

3
x2α2

11
+

(
4

3
α3

11
+ 4

)
x+

1

9
α4

11
− 8α11

)
∂4
x

+

(
−4x3 + 12x2α11 −

20

3
α2

11x−
4

3
α3

11 − 4

)
∂3
x

+

(
−2x5 + 8x4α11 −

20

3
α2

11
x3 −

(
8

3
α3

11
+ 2

)
x2 −

(
2

9
α4

11
− 4α11

)
x+

10

3
α2

11

)
∂2
x

(9)

+

(
2x4 − 4x3α11 −

4

3
xα3

11 − 16−
2

9
α4

11 + 36α11

)
∂x

+ x6 − 4x5α11 +
10

3
x4α2

11
+

(
4

3
α3

11
+ 8

)
x3 +

(
1

9
α4

11
− 22α11

)
x2 +

16

3
xα2

11
+ 2α3

11
+ 16
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4. Commuting differential operators for the level one kernels

In this section, we explore the commuting differential operators for integral operators with
level one Airy kernels, ie. those defined by bispectral functions Ψ obtained from self-adjoint
rational Darboux transformations of (L(x, ∂x)− s1)

2. There is only one such bispectral func-
tion, determined by the factorization of (L(x, ∂x)− s1)

2 in Corollary 3.15. Using the operator
P1(x, ∂x) described in this Corollary, the associated bispectral function is

Ψ1(x, z) =
1

(x+ s1)(z − s1)
P1(x, ∂x) ·ΨAi(x, z) = Ai(x+ z)−

1

(x+ s1)(z − s1)
Ai′(x+ z).

Let P̃1(z, ∂z) = bΨAi
(P1(x, ∂x)), p1(x) = x+s1 and q1(z) = z−s1. For every R(x, ∂x) ∈ Fx(ΨAi)

and S(z, ∂z) = bΨAi
(R(x, ∂x)), we have the identities

(10)
1

p1(x)
P1(x, ∂x)

∗R(x, ∂x)P1(x, ∂x)
1

p1(x)
·Ψ1(x, z) = (q1(z))S(z, ∂z)(q1(z)) ·Ψ1(x, z),

(11)
1

q1(z)
P̃1(z, ∂z)

∗S(z, ∂z)P̃1(z, ∂z)
1

q1(z)
·Ψ1(x, z) = (p1(x))R(x, ∂x)(p1(x)) ·Ψ1(x, z),

and the more complicated identity
(

1

p1(x)
P1(x, ∂x)R(x, ∂x)p(x) + p(x)R(x, ∂x)

∗P1(x, ∂x)
∗ 1

p1(x)

)
·Ψ1(x, z)(12)

=

(
1

q1(z)
P̃1(z, ∂z)S(z, ∂z)q(z) + q(z)S(z, ∂z)

∗P̃1(z, ∂z)
∗ 1

q1(z)

)
·Ψ1(x, z)

Comparing the orders of these operators, we see that F2ℓ,2m
x,sym(Ψ1) contains the direct sum

F2ℓ,2m
x,sym(Ψ1) ⊇

1

p1(x)
P1(x, ∂x)

∗F2ℓ−4,2m
x,sym (ΨAi)P1(x, ∂x)

1

p1(x)

⊕ p1(x)F
2,2m−4
x,sym (ΨAi)p1(x)⊕ E⊕ C

for all ℓ,m ≥ 2, where here E is a set of additional operators stemming from the equation (12)

E =

{
1

p1(x)
P1(x, ∂x)R(x, ∂x)p(x) + p(x)R(x, ∂x)

∗P1(x, ∂x)
∗ 1

p1(x)
: R(x, ∂x) ∈ F1,1

x (ΨAi)

}
.

Explicit calculation shows that E is two dimensional. Consequently the dimension of F2ℓ,2m
x,sym(Ψ1)

is at least (ℓ− 1)(m+ 1) + 2(m− 1) + 2 + 1 = (ℓ+ 1)(m+ 1)− 1. One can show that this is
precisely the dimension for all m,n > 1 and that both Fx(Ψ) and Fz(ψ) are equal to algebras
of differential operators on a rational curve with a cusipdal singularity of degree 2 at the
origin.

Let T1 be the integral operator

T1 : f(z) 7→

∫ ∞

t1

K1(z, w)f(w)dw, K1(z, w) =

∫ ∞

t2

Ψ1(x, z)Ψ1(x,w)dx.

The specific value of the kernel K1(z, w) is determined via integration by parts to be

K1(z, w) =
q1(w)

q1(z)
KAi(z, w) + CP1

(ψAi(x, z), ψ1(x,w)/p1(x); t2).

From the previous estimate of the dimension of F2ℓ,2m
x,sym(Ψ1), we see that T1 will commute with

a differential operator S1(z, ∂z) in F
4,4
z,sym(Ψ1).

The values of the commuting integral and differential operators will in general depend on
s1, albeit predictably. If we make the s1-dependence of Ψ(x, z) = Ψ(x, z; s1) explicit, we see
Ψ(x, z; s1) = Ψ(x+s1, z−s1; 0) and consequently the differential operator S1(z, ∂z) commuting
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with T1 for arbitrary s1 is the same as in the case s1 = 0, but with z replaced by z − s1 and
t2 replaced by t2 + s1. Thus without loss of generality we will take s1 = 0.

Explicitly computing the condition of the vanishing of the concomitant and solving the
resulting linear system of equations yields the operator of order 4

S1(z, ∂z) =
1

z

(
2∑

k=0

∂kz ak(z)(z − t1)
k∂kz

)
1

z

where here

a2(z) = z2,

a1(z) = −2(z4 + (t2 − t1)z
3 − 3t1),

a0(z) = z3(z3 + 2(t2 − t1)z
2 + (t2 − t1)

2z − 8) + (t1 + t2)z
2/3.

The dimension estimates also imply the existence of a commuting differential operator of
order 6, which we find to be

S̃1(z, ∂z) =
1

z

(
3∑

k=0

∂kz ãk(z)(z − t1)
k∂kz

)
1

z

where here

ã3(z) = z2,

ã2(z) = − 3(z4 + (t2 − t1)z
3 − 4t1),

ã1(z) = 3(z6 + 2(t2 − t1)z
5 + (t2 − t1)

2z4 − 10z3 + (5t1 − 4t2)z
2 − 3t1(t2 − t1)z),

ã0(z) = − z8 − 3(t2 − t1)z
7 − 3(t2 − t1)

2z6 − ((t2 − t1)
3 − 32)z5

+ (42t2 − 63t1)z
4 + (36t21 − 48t1t2 + 12t22)z

3 + t1t2(t1 + t2)z
2 + 12t21 − 6t1t2.

The operators S1(z, ∂z) and S̃1(z, ∂z) commute and thus satisfy an algebraic relation. The
relation is

S̃2
1 = S3

1 −
t21 − t1t2 + t22

3
S1 +

(t1 − 2t2)(2t1 − t2)(t1 + t2)

33
.

The discriminant of the polynomial on the right hand side is

∆ = −
16

27
(260t61 − 780t51t2 − 627t41t

2
2 + 2554t31t

3
2 − 627t21t

4
2 − 780t1t

5
2 + 260t62),

so for generic values of t1 and t2, the associated algebraic variety is an elliptic curve.

5. Commuting differential operators for the level two kernels

In this section, we explore the commuting differential operators for integral operators with
level two Airy kernels, ie. those defined by bispectral functions Ψ obtained from self-adjoint
rational Darboux transformations of (L(x, ∂x) − s1)

2(L(x, ∂x) − s2)
2. We will focus on the

particular case when s1 = s2, leaving the other situation to a future publication. Note also
that due to the nice translation behavior of ψAi(x, z), we can easily rederive the formula for
general values of s1 from the case when s1 = 0. So for sake of simplicity, we will take s1 = 0.

There are many bispectral functions in the level two case, all of which are determined by
the factorizations of L(x, ∂x)

4 in Corollary 3.16, which in turn are determined by a choice
of αjk for j = 1, 2 and 0 ≤ k ≤ 3 satisfying the constraints of the Corollary. The precise
value P2(x, ∂x) and the commuting operator is very complicated in general. To facilitate our
computations, and the inclusion of exact formulas in our paper, we will take α31 = α32 = 1,



ALGEBRAS OF COMMUTING DIFFERENTIAL OPERATORS FOR KERNELS OF AIRY TYPE 17

α11 = α21 and take α22 = 1, α12 = 0, so that P2(x, ∂x) is given by (9). Additionally we will
take α11 = 0 so that P2(x, ∂x) has the simplified formula

P2(x, ∂x) = x(x3 + 4)∂4x − 4(x3 + 1)∂3x − 2x2(x3 + 1)∂2x + 2x(x3 − 8)∂x + x6 + 8x3 + 16.

Let q2(z) = z2 and p2(x) = x(x3 + 4). The corresponding bispectral function is defined by

Ψ2(x, z) =
1

p2(x)q2(z)
P2(x, ∂x) ·ΨAi(x, z)

= Ai(x+ z) +
6(x3 + x2z + 2)

p2(x)q2(z)
Ai(x+ z)−

4(x3w + 3x+ w)

p2(x)q2(z)
Ai′(x+ z).

The Fourier algebras for Ψ2(x, z) are given by algebras of differential operators on some rank
1, torsion-free modules over certain rational curves with cuspidal singularities. Specifically,
let Ax = {f(x) ∈ C[x] : p(x)|f ′(x)} be the coordinate ring of a singular rational curve X with
cusps of order 2 at the roots of p(x). Then

Fx(Ψ2) = {D(x, ∂x) : D(x, ∂x) · Ax ⊆ Ax}

is the algebra of differential operators on X. Likewise, let Az = C[z4, z5] be the affine coor-
dinate ring of a rational curve Z with a higher-order cusp at 0 and consider the torsion-free
rank 1 Az-module Mz = SpanC{z

−2, z−1} ⊕ z2C[z]. Then

Fz(Ψ2) = {D(z, ∂z) : D(z, ∂z) · Mz ⊆ Mz}

is the algebra of differential operators on the line bundle L over Z associated to Mz.
The generalized Fourier map bΨ may be described in terms of bΨAi

by

bΨ(A(x, ∂x)) =
1

q2(z)
bΨAi

[
P2(x, ∂x)

∗ 1

p2(x)
A(x, ∂x)

1

p2(x)
P2(x, ∂x)

]
1

q2(z)
.

Let T2 be the integral operator

T2 : f(z) 7→

∫ ∞

t1

K2(z, w)f(w)dw, K2(z, w) =

∫ ∞

t2

Ψ2(x, z)Ψ2(x,w)dx.

The specific value of the kernel K2(z, w) is determined via integration by parts to be

K2(z, w) =
q2(w)

q2(z)
KAi(z, w) + CP2

(ψAi(x, z), ψ2(x,w)/p2(x); t2).

Computer calculation finds dimF
10,10
x,sym(Ψ2) = 32, and therefore T2 will commute with a differ-

ential operator S2(z, ∂z) in F
10,10
z,sym(Ψ2).

Taking t1 = t2 = 1, and solving the linear system describing the vanishing of the concomi-
tants, we find differential operators of order 10, 12, 14, 16, and 18 commuting with T2. The

operators S2(z, ∂z) and S̃2(z, ∂z) of order 10 and 12 are given by

S2(z, ∂z) =
1

z2

(
5∑

k=0

∂kz (1− z)kak(z)∂
k
z

)
1

z2
,

a0(z) = z14 − 200z11 + 170z10 + 5640z8 − 7360z7 + 2160z6 − 11520z5 − 2880z + 4320,

a1(z) = 5z12 − 580z9 + 380z8 + 6240z6 − 3700z5 − 960z2 − 9600z + 4800,

a2(z) = 10z10 − 560z7 + 180z6 + 960z4 + 1800z3 + 300z2,

a3(z) = 10z8 − 180z5 − 100z4 − 420z + 1260,

a4(z) = 5z6 − 70z2,

a5(z) = z4;
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S̃2(z, ∂z) =
1

z2

(
6∑

k=0

∂kz (1− z)k ãk(z)∂
k
z

)
1

z2
,

ã0(z) = z16 − 340z13 + 504z12 + 21040z10 − 52200z9 + 28812z8

− 192000z7 + 490464z6 − 328320z5 − 201600z + 130464,

ã1(z) = 6(z14 − 220z11 + 300z10 + 7000z8 − 14212z7 + 5148z6

− 16800z5 + 13568z4 + 13568z3 + 2368z2 − 6240z + 12480,

ã2(z) = 3(5z12 − 640z9 + 760z8 + 7800z6 − 8792z5 − 2996z4 − 3120z2 − 36000z + 50400,

ã3(z) = 4z2(5z8 − 310z5 + 270z4 + 600z2 + 1566z − 2268),

ã4(z) = 3(5z8 − 100z5 − 224z + 784),

ã5(z) = 6(z − 2)z2(z + 2)(z2 + 4),

ã6(z) = z4.

From Burchnall-Chaundy Theory and its extensions (see for example [26]), we know that
each pair of operators must satisfy a polynomial relation. Together, the algebra they generate
is the coordinate ring of an affine curve. However, the precise relations that are satisfied are
sufficiently complicated so as to be omitted from the paper.
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[7] W. R. Casper, F. A. Grünbaum, M. Yakimov and I. Zurrián, Reflective prolate-spheroidal operators and

the Adelic Grassmannian, arXiv:2003.11616, to appear in Comm. Pure Appl. Math.
[8] W. R. Casper and M. Yakimov, Integral operators, bispectrality and growth of Fourier algebras, J. Reine

Angew. Math. 766 (2020), 151–194.
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