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Abstract
This paper provides a detailed study of David Hilbert’s axiomatization of the theory
of plane area, in the classical monograph Foundation of Geometry (1899). On the one
hand, we offer a precise contextualization of this theory by considering it against its
nineteenth-century geometrical background. Specifically, we examine some crucial
steps in the emergence of the modern theory of geometrical equivalence. On the other
hand, we analyze from a more conceptual perspective the significance of Hilbert’s
theory of area for the foundational program pursued in Foundations. We argue that this
theory played a fundamental role in the general attempt to provide a new independent
basis for Euclidean geometry. Furthermore, we contend that our examination proves
relevant for understanding the requirement of “purity of the method” in the tradition
of modern synthetic geometry.

Keywords Hilbert · Axiomatic geometry · Polygonal area · De Zolt’s postulate ·
Purity of the method

1 Introduction

Chapter IV of David Hilbert’s classical Foundations of Geometry, first published in
1899, develops the theory of plane polygonal area. This section of the influential
monograph is usually praised not only for its unprecedented level of rigor, being the
first modern axiomatization of this central part of elementary geometry, but also for
the many innovative and original results contained therein. Among these, one can
mention the systematic study of different relations of geometrical equivalence, the
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construction of the theory of area independently of continuity assumptions (viz. the
axiom of Archimedes), as well as a sophisticated but elementary proof of the central
geometrical proposition known as De Zolt’s postulate. Notwithstanding, despite the
importance of this chapter, it has received less attention from historians and philoso-
phers of mathematics than other sections of Foundations. 1

This paper aims to fill this gap in the specialized literature by offering the first
detailed historical discussion of Hilbert’s axiomatic investigations into the theory of
plane area. We will undertake this task by closely examining the development of this
theory in Foundations. In addition, Hilbert’s notes for lecture courses on the founda-
tions of mathematics will also be taken into account. These important sources offer a
unique landscape to elaborate amore accurate historical account of hiswork.2 Hilbert’s
theory of plane area will be investigated with an eye to two interpretative points.

The first point concerns the historical background of Hilbert’s investigations. We
will argue that, to a significant extent, his axiomatization of the theory of area was
the culmination of a rich and intense foundational debate, which took place during
the second half of the nineteenth century. This debate was triggered by the emergence
of the modern theory of geometrical equivalence, which investigates criteria for the
equality of area of polygonal figures on the basis of its decomposition and compo-
sition into polygonal components, respectively congruent. The main issue in these
discussions concerned the role and logical status of a geometrical proposition known
as “De Zolt’s postulate.” This central proposition states that if a polygon is divided
into polygonal parts in any given way, then the union of all but one of these parts is
not equivalent (i.e., equal in area) to the given polygon. In discussing methodolog-
ical and epistemological issues related to this new “geometrical axiom,” geometers
involved in this debate delivered novel insights for the modern synthetic reconstruc-
tion of Euclidean geometry. The contextualization of Hilbert’s investigations within
this specific geometrical background yields a better historical assessment of his con-
tributions in Foundations and sheds new light on a central episode in the emergence of
modern axiomatic geometry. In particular, a welcome offshoot of the present investiga-
tion is a better historical appraisal of the contributions of important nineteenth-century
geometers, such as Friedrich Schur, to the foundations of modern geometry.

The second interpretative issue relates to the historical and conceptual significance
of Hilbert’s theory of plane area for the general axiomatic program pursued in Foun-
dations. As is well known, this program aimed at providing a new independent basis
for elementary Euclidean geometry, by removing the dependence on continuity and
(implicit) numerical assumptions from the classical theories of proportion and plane
area. In this regard, a key technical innovation was the construction of a purely geo-
metrical calculus of segments, which allowed the derivation of the (abstract) algebraic
structure of an ordered field from the axioms for the Euclidean plane. In this paper,
we will argue that the problem of obtaining an adequate proof of the so-called De

1 Hilbert’s theory of plane area in Foundations has been analyzed recently by Baldwin (2018a, b) and
Baldwin and Mueller (2019). These articles offer excellent expositions of the central ideas and results
achieved by Hilbert. Nevertheless, the nineteenth-century geometrical background upon which Hilbert
developed his theory is not taken into particular consideration.
2 Hilbert’s notes for lecture courses on the foundations of geometry, corresponding to the period 1891–1902,
have been published in Hallett and Majer (2004).
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Zolt’s postulate was, for Hilbert, a central issue in the modern axiomatic develop-
ment of the theory of plane area. More specifically, we will contend that a significant
challenge was to deliver a rigorous proof of this proposition that was not only strictly
geometrical—in the sense of avoiding numerical considerations—but also indepen-
dent of the Archimedean axiom.

The paper consists of two thematic parts. The first part provides a historical exami-
nation of the development of the theory of plane area in the secondhalf of the nineteenth
century, which set the stage for Hilbert’s axiomatic investigations. A central aspect
of this geometrical background was a clear distinction between a “synthetic” and a
“metrical” approach to the study of polygonal areas. While the former was identified
with the theory of geometrical equivalence, the latter consisted in the (now standard)
method ofmeasuring the area of polygonal figures bymeans of (positive) real numbers.
To put these geometrical developments into proper context, Sect. 2 presents a brief
overview of Euclid’s theory of area in the Elements. Next, in Sect. 3, we analyze sev-
eral critical steps in the emergence of the modern theory of equivalence. In particular,
Sect. 3.1 discusses some novel results in the study of geometrical equivalence, while
Sect. 3.2 focuses on the contributions of the Italian mathematician Antonio De Zolt.
Section 4 provides then a detailed analysis of the immediate background of Hilbert’s
work in Foundations. Section 4.1 explores the connections between the modern theory
of magnitudes and the foundations of the theory of plane area in the works of Otto
Stolz. In turn, in Sect. 4.2, we examine Schur’s geometrical proof of the comparability
of plane polygons.

The second part of the paper offers a detailed account of Hilbert’s theory of plane
area. In Sect. 5 we analyze Hilbert’s initial reflections on the role and significance
of De Zolt’s postulate in the theory of plane area, as reported in his notes for lecture
courses on the foundations of geometry. This axiomatic development of the theory of
plane area is then examined in Sect. 6. On the one hand, in Sect. 6.1, we discuss a series
of technical innovations and conceptual clarifications advanced by Hilbert concerning
the theory of geometrical equivalence. On the other hand, in Sect. 6.2, we provide a
thorough reconstruction of the central proof of De Zolt’s postulate in Foundations.
Finally, Sect. 7 presents some concluding remarks.3

2 Euclid’s theory of area in the Elements: an overview

The modern debate on the foundations of the theory of equivalence was significantly
motivated by Euclid’s theory of plane area in theElements. In particular, a central issue
concerned the role that the common notions played in the development of this theory.
Hilbert also repeatedly referred to Euclid’s treatment of plane areas in the classical
Greek text, especially when establishing methodological requirements for the founda-

3 Terminological note. We will use the term “area” to denote the surface content, or simply the content,
of a plane rectilinear figure. Hilbert generally used the expression “Flächeninhalt” to refer to this notion.
In turn, we will employ the expression “measure of area” for the metrical concept of area of a polygonal
figure. The corresponding German term used consistently by Hilbert is “Flächenmaß.” The term “polygon”
will always be used in the sense of simple polygon.
Unless otherwise noted, all translations in what follows are by the author.
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tions of this central part of Euclidean geometry. It will be beneficial for our subsequent
discussion to present a brief overview of the theory of plane area in the Elements.4

As is well known, Euclid developed a theory of the comparison of polygonal areas,
not a theory of measure of areas in the modern sense, i.e., as numerical functions that
assign (positive real) numbers to every rectilinear figure. In general terms, Euclid’s
method consisted in studying the equality of area or content of polygonal figures
based on the possibility of decomposing and composing them into polygonal parts,
congruent in pairs, respectively. This strictly geometrical approach to the study of
areas, known as the “theory of equivalence,” was then fundamentally grounded on the
relation of geometrical congruence. Moreover, the common notions played a central
function in this method, since the derivation of the equality of area of two polygons
by the procedure of adding and removing congruent figures was essentially based
on the properties of equality, addition, and subtraction formulated in these general
principles. Recall that, according to Heiberg’s critical edition, the Elements contains
the following five common notions:

CN1: Things which are equal to the same thing are also equal to one another.
CN2: If equals be added to equals, the wholes are equal.
CN3: If equals be subtracted from equals, the remainders are equal.
CN4: Things which coincide with one another are equal to one another.
CN5: The whole is greater than the part.

The main results about the equality of area of polygonal figures are presented in
the propositions I.35-I.45 of the Elements. This set of propositions provides, as it
were, the foundation of Euclid’s theory of equivalence. The fourteen propositions of
Book II are also immediately related to the notion of polygonal area; particularly, in
Proposition II.14 Euclid shows how to construct a square equal in area to a given
polygonal figure. Finally, Book VI also contains important propositions about plane
areas (especially, VI.1, VI.25, VI.28, and VI.29), obtained through the application of
the theory of proportion, previously developed in Book V.5

Proposition I.35 marks then the beginning of Euclid’s studies of polygonal areas6:

I.35. Parallelograms which are on the same base and in the same parallels are
equal to one another.

The general idea of the proof is as follows: by applying I.29 and I.34, Euclid shows
first that the triangle ABE is equal (i.e., congruent) to the triangle DCF . But if the

4 For detailed studies of Euclid’s theory of area, see Mueller (1981) and De Risi (2020).
5 A detail examination of Euclid’s use of the theory of area in the study of similar figures can be found in
Błaszczyk and Petiurenko (2020).
6 Proposition I.34 states that in every parallelogram the opposite sides and angles are congruent, and the
diagonal divides it into two congruent parts. It should be noted that the word employed is not “parallel-
logram,” but “parallelogrammic region” (parallhlÒgrammoncèrion). Some scholars have argued that,
with this expression, Euclid is not alluding to the geometrical figure, but to its content or area. In other
words, by “parallelogrammic region” he might be referring to the more abstract representation of the con-
tent of a figure. On this reading, see De Risi (2020). However, the precise explanation of this notion is
a complex matter, for it requires an account of Euclid’s conception of magnitudes as “abstract objects”
distinguishable from geometrical figures, that is, of the Greek understanding of the so-called method of
“method of definitions by abstraction.”
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Fig. 1 Elements, I. 35
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same triangle DGE is subtracted from each one of those triangles, one obtains the
trapeziums ABGD and EGCF , which must be “equal” (in area) by CN3. Then, if the
triangle BCG is added to those trapeziums, one obtains the parallelograms ABCD
and EBCF , which also must be equal (in area) by CN2.7

As can be noticed in the proof of I.35, Euclid’s strategy to establish the equivalence
of a pair of plane polygons consisted in the addition and subtraction of other polygonal
figures congruent in pairs. This procedure was essentially grounded on the properties
of equality, addition, and subtraction laid down in the common notions, particularly in
CN1-CN3. In other words, the systematic use of the common notions in the study of
plane polygons was grounded on the assumption that polygonal areas were a class of
geometricalmagnitudes.Moreover, Euclid did not introduce any specific term todistin-
guish the equality of area or content from the more basic relation of congruence. Nev-
ertheless, the application of the common notions in this context suggests the distinction
between two different notions of equality of area or equivalence of plane polygons.

The first notion of “equality” is grounded on CN2, that is, on the “equality by the
addition of equals.” Accordingly, two polygons are equal in area if they result from
adding figures, respectively congruent or, in other words, if they are composed by the
same (i.e., congruent) polygonal parts. In turn, the second notion is based on CN3,
namely on the criterion of “equality by difference of equals.” Twopolygons are equal in
area if they can be obtained by subtracting ‘equal” figures from “equal figures.” More
precisely, according to this second notion, two polygons are said to be equal in area if
it is possible to add to them “equal” figures, and obtain a pair of polygons equivalent
(by addition). Euclid did not distinguish in any part of the Elements between these two
criteria of equality of area for plane rectilinear figures. However, the employment of
both CN2 and CN3 in most of the fundamental propositions about polygonal areas, as
illustrated in the proof of I.35, reveals that the second notion is the one operating in
his theory. The precise description and investigation of these two criteria of equality
of area became a central issue in the modern development of the theory of geometrical
equivalence.

Propositions I.36 states that parallelograms with equal bases and in the same par-
allels are also equal (in area). In turn, in I.37 and I.38, Euclid proves that the same
conditions apply for the case of triangles, that is, that triangles with the same (or equal)
bases and in the same parallels are equal (in area). Furthermore, the partial converses

7 A complete proof of this proposition requires the consideration of different cases, depending on whether
the sides have points in common. This was already noticed by Proclus in his commentary to the first book
of the Elements (Fig. 1).
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Fig. 2 Elements, I. 39
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of the last two propositions are formulated in I.39 and I.40, respectively. In particular,
I.39 asserts that:

I.39. Equal triangles which are on the same base and on the same side are also in
the same parallels.

Euclid demonstrates this proposition bymeans of a reductio or an indirect argument.
Here ABC and DBC are the two triangles equal in area, which are on the same base
BC and on the same side (Fig. 2). Let AD be joined.Wemust prove that BC is parallel
to AD. Let us assume that AD is not parallel to BC . Then, it is possible to draw from
A a parallel to BC , which might be called AE (I.31). Let EC be joined. Since the
triangles ABC and EBC are on the same base and on the same parallels, they must be
equal in area (I.37). But ABC is equal in area to DBC , so DBC must also be equal
in area to EBC (CN1). Euclid then claims that this implies that “the greater would be
equal to the less: which is impossible.” Therefore, AE is not parallel to BC . In the
same manner, one can prove that any other straight line drawn from A, and different
from AD, cannot be parallel to BC ; therefore, AD is parallel to BC .

Euclid did not assign any particular foundational role to this proposition; it has
been pointed out by historians of Greek mathematics that he never used I.39 again,
or similarly I.40, in the proofs of any other proposition throughout the Elements.
However, the modern discussions of the theory of equivalence will bestow primary
importance upon this proposition. This might be explained by the fact that this is
the first proposition about polygonal areas where CN5 comes into play. To be more
precise, in the proof of I.39 Euclid did not reach the contradiction by applying the
general principle “the whole is greater than the part,” but instead by resorting to the
sentence “the greater would be equal to the lesser: which is impossible.” It has been
argued by authoritative scholars that this is also the case in other similar reductio
arguments in which Euclid aims to compare figures.8 In any event, it is clear that I.39
is the first proposition in the Elements where one encounters a relation of order for
polygonal areas, and that this relation bears an essential connection to the criterion
formulated in CN5.

Euclid did not offer an explicit definition of the relations of “greater” and “lesser” in
area. Nevertheless, his geometrical practice indicates that he conceived the relation of

8 De Risi (2020) lists several propositions in which Euclid uses the latter sentence, in various similar forms,
in the course of indirect proofs. A clear example is the proof of the proposition I.6 of the Elements, in which
Euclid compares triangles with respect to the relation of congruence. In this recent work, De Risi also puts
into question the authenticity of CN4 and CN5 on the basis of a conceptual analysis of their role in Euclid’s
theory of plane area.
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order for polygonal areas as grounded on the relation of inclusion, or more precisely,
on the mereological relation of parthood. According to this conception, a polygon P
is said to be greater in area than another polygon Q, if there is a polygon P′ properly
contained in P, such that P′ is equal in area to Q. The precise understanding of
how Euclid conceived this relation of order is a major and disputed issue among
scholars. Euclid’s demonstrative practice suggests that the fact that a figure is a proper
part of another did not need to be derived propositionally, but was usually inferred
diagrammatically. Thus, Euclid’s understanding of the relation of order is connected
to the central interpretative issue of the role of diagrams in his geometrical practice.
For our interest, focused on the modern theory of equivalence, it might be sufficient
to point out that Euclid established a connection between the relation of order for
polygonal figures and CN5.

Proposition I.41 deserves also here a particular mention:

I.41. If a parallelogram has the same base with a triangle and be in the same
parallels, the parallelogram is double of the triangle.

To prove this proposition, Euclid relies basically on the equality of area of triangles
with equal bases and altitudes, which was established in I.37. An immediate corollary
of this proposition is that “every triangle is equal in area to a parallelogram with equal
base and half altitude.” Although Euclid did not draw this conclusion from Proposition
I.41, this corollary will play an important role in the modern theory of equivalence.

The cluster of propositions I.42-I.45 features a crucial moment in the systematic
study of plane areas carried out in Book I of the Elements. Euclid achieves there
a series of results, usually known as the “application of areas,” which in general
terms show how any rectilinear figure can be transformed into a parallelogram or a
rectangle equal in area, with a given side. This technique provides a procedure to add,
subtract, and compare any pair of plane polygons in relation to their areas. Moreover,
the method of “application of areas” has paramount importance in Book II, where
Euclid proves important results about the relations between straight line segments and
polygonal areas. This Book also contains the crucial proposition II.14, where Euclid
“completes” his method of transformations of areas by showing how to construct a
square equal in area to any given polygonal figure.

Let us discuss in some detail the content of this cluster of propositions of Book
I. We will direct our attention to the meaning of the method advanced by Euclid,
rather than to the proofs of these propositions. In I.42, Euclid shows how to construct
a parallelogram, in a given angle, equal to a given triangle. In turn, I.43 is not a
construction problem but a theoretical proposition, famously known as the Gnomon
theorem. This theorem, which plays a crucial role in the proofs of the following two
propositions, states that:

I.43. In any parallelogram the complements of the parallelograms about the diam-
eter are equal to one another.

Here one must prove that the parallelograms EBGK and HK FD, the “comple-
ments” about the diameter, are equal in area. Euclid commences by using I.34 to show
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Fig. 3 Elements, I. 43
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Fig. 4 Elements, I. 45

that the pairs of triangles ABC and ACD, AEK and AK H , KGC , and KCF are,
respectively, equal (i.e., congruent). But the triangle AEK “together with” the triangle
KGC is equal (in area) to the triangle AHK “together with” the triangle KCF (CN2).
If these pairs of triangles are subtracted, respectively, from the whole triangles ABC
and ACD, the remainders will be equal in area by CN3. Hence, the parallelograms
EBGK and HK FD are equal in area (Fig. 3).

Now, the Propositions I.44 and I.45 provide the very core of Euclid’s method of
transformations of areas. Let us analyze them in turn.

I.44. To a given straight line to apply, in a given rectilinear angle, a parallelogram
equal to a given triangle.

The details of the proof are not relevant here; for our purposes, it will be sufficient
to stress that Euclid shows how to transform any triangle, but also any parallelogram,
into another parallelogram with a given angle and with a given side. In his influential
editorial notes to theElements, Heath points out that this proposition is one of the “most
impressive results” of Greek geometry. The last step in the method of transformation
of areas is to show how to construct a parallelogram (or a rectangle), equal in area to
any rectilinear figure. This is precisely the construction problem tackled in the next
Proposition I.45 (Fig. 4).

I.45. To construct, in a given rectilinear angle, a parallelogram equal to a given
rectilinear figure.

The proof involves the following ideas. First, the given polygonal figure is decom-
posed into triangles; this “triangulation” is obtained by drawing all diagonals from
one vertex of the figure, chosen arbitrarily.9 Next, utilizing I.42, one constructs the

9 Euclid proves I.45 for the case that the polygonal figure an arbitrary quadrilateral, which can be thus
decomposed into two triangles. However, the same argument can be repeated and applied to a polygon on
n-sides, which proves the theorem in general.
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parallelogram FK HG equal (in area) to the triangle ABD, in the angle HK F equal
to the given angle E . Then, one “applies” to the side GH a parallelogram GHML
equal (in area) to the other triangle DBC and with the angle GHM equal to the angle
E . In other words, one places the new parallelogram GHML adjacent to the first
constructed parallelogram FK HG, at the common side GH . The remainder of the
proof consists in showing, by means of a relatively involved argument, that the figure
thus obtained is indeed a parallelogram.

By relying on I.44 and I.45, one can easily prove that any polygonal figure can
be transformed into a parallelogram with a given angle and with a given side (viz.
with a given height). Nevertheless, the theoretical significance of this corollary—let
us call it I.45B—cannot be underestimated, for it makes truly operational the addition
and subtraction of two-dimensional figures: any pair of polygonal figures can always
be added (or subtracted) by transforming them into two rectangles with a common
height. Euclid did not draw this immediate consequence from the latter couple of
propositions, although influential historians of Greek mathematics have pointed out
that he implicitly used I.45B in the proofs of other important propositions throughout
theElements, such as VI.25.10 Euclid’s reluctance to explicitly formulate this corollary
is tightly bound to deep and difficult interpretative issues regarding the meaning of the
method of transformation of areas in Greek geometry. We briefly address two main
problems, for they will prove to be highly relevant for our subsequent discussion of
the modern geometrical theory of equivalence.

One central aspect is the view that, with the implicit derivation of I.45B, Euclid
provides an elementary method to “measure” the area of any polygonal figure. In
fact, if the height of the constructed rectangle is conceived as the “unit length,” then
this proposition shows how to “calculate” its (measure of) area, i.e., by measuring
the length of the corresponding base. In other words, the (measure of) area of a con-
structed rectangle with unit height would be equal to (the length of) its base. Although
mathematically plausible, this interpretation of Euclid’s method faces very funda-
mental problems.11 First, the idea that the (measure of) area of a polygon is equal to
(the length of) a segment fragrantly violates the fundamental tenet of homogeneity
in Greek mathematics, according to which one can only compare, and operate with,
magnitudes of the same kind. In short, equating plane areas to lengths of segments, and
thus comparing different kinds of geometrical magnitudes, is incompatible with the
Greek notion of geometrical magnitude, for which a geometrical quantity can never
be considered independently from the corresponding geometrical figure. Second, the

10 Proposition VI.25 reads: “To construct one and the same figure similar to a given rectilinear figure and
equal to another given rectilinear figure.”
11 In an often-quoted passage of his editorial notes, Heath proposed to identify the given height of equivalent
parallelogram, constructed in I.44, with a “unit length”:

This proposition [i.e., I.44] will always remain one of the most impressive in all geometry when account is
taken (I) of the great importance of the result obtained, the transformation of a parallelogram of any shape
into another with the same angle and of equal area but with one side of any given length, e.g., a unit length.
(Heath 1956, pp. 342–343)

As is well known, this reading has been fiercely defended by the advocates of the so-called geometric
algebra interpretation of Book II of the Elements. For a detail discussion, see Unguru and Rowe (1981,
1982) and Corry (2013).
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introduction of a unit length presupposes a general and abstract concept of number,
which can be applied to measure any kind of geometrical magnitude; this conception
was absent in the Greek mathematical tradition.

Another crucial matter consists in explaining how exactly the results on the “appli-
cations of areas” ground a procedure to compare any pair of polygonal figures with
respect to their areas. Again, we can address this issue only schematically. Using I.45B,
one can transform any pair of polygons into equivalent rectangles with a given height.
To compare both figures, one only needs to determine whether their bases coincide
or not. If the bases coincide, then by CN4 the two rectangles are not only congruent
but also “equal in area.” In turn, if one rectangle is a proper part of the other, then by
CN5 the former would be lesser in area than the latter. Now, Euclid’s complex theory
of congruence prescribes that to establish that the two rectangles are congruent, one
has to rely ultimately on some kind of superposition argument. In addition, if this is
not the case, we have seen that under certain circumstances, Euclid allows himself
to conclude that one figure is a proper part of another by means of diagrammatic
inferences. Therefore, for brevity’s sake, Euclid’s procedure to compare polygonal
areas depends heavily on intuitive or empirical arguments related to the “movement of
figures,” as well as on diagrammatic inferences concerning the mereological relation
of parthood.12 Naturally, this will be contested vigorously during the emergence of
the modern theory of equivalence.

This concludes our overview of Euclid’s theory of area in theElements. Let us focus
now on the emergence of the modern theory of geometrical equivalence.

3 The emergence of themodern theory of equivalence

We still lack a detailed and comprehensive historical study of the emergence of
the modern geometrical theory of equivalence in the second half of the nineteenth
century.13 This historical development is notably interesting and complex, for it
raised many methodological, foundational, and epistemological issues for the modern
synthetic reconstruction of Euclidean geometry. Pedagogical concerns also had con-
siderable relevance.14 In this section, we will remain content with presenting some
key ideas which directly or indirectly provided the background and motivation for
Hilbert’s investigations. Section 3.1 presents some initial results of the modern the-
ory of equivalence. Section 3.2 briefly analyzes the key contributions of the Italian
mathematician Antonio De Zolt to the emergence of this geometrical theory.

12 For an insightful analysis of the role played by CN4 and CN5 in Euclid’s method of application of areas,
as well as the use of “diagrammatic inferences,” see De Risi (2020).
13 The most important studies are still the classical paper of Amaldi (1900) and the more recent work by
Volkert (1999). In these works, one can find excellent accounts of the main steps in the development of the
modern theory of equivalence. This section is greatly indebted to these accounts.
14 The pedagogical concerns were connected to the remarkable array of geometry textbooks published in
Italy in the second half of the nineteenth century. They aimed at replacing Euclid’s Elements as the teaching
source in secondary schools. For details, see Vecchi (1915) and Giacardi and Scoth (2014).
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3.1 TheWallace–Bolyai–Gerwien theorem

The emergence of the modern theory of equivalence is usually traced back to the
discovery of an important theorem which connects the notions of measure of area
and geometrical “equivalence.”15 The theorem asserts that two polygons with equal
measure of area can always be decomposed into the same number of polygonal parts
(particularly, of triangles), respectively congruent. This theorem was first posed as a
question by the English mathematician William Wallace in 1814, and proved in the
affirmative by John Lowry in the same year.16 However, the true impact of this result
took place almost two decades later, when it was independently rediscovered and
proved by two different mathematicians. In 1832, Farkas Bolyai, the father of János
Bolyai, one of the creators of hyperbolic geometry, provided a new but sketchy proof
of the theorem in question. Then, one year later, in 1833, the German mathematician
and lieutenant Paul Gerwien made a notable contribution by offering a very detailed
and rigorous proof of the theorem, which also included a generalization to spheri-
cal polygons.17 Thus, this theorem is now known as the Wallace–Bolyai–Gerwien
theorem.

Regarding the latter proof, Gerwien’s strategy was to prove the theorem first for the
case of triangles and then arrive at the general result by showing how any polygon can
be decomposed into a finite number of triangles. The details are not important for our
present discussion18, although we should mention that Gerwien’s close examination
of the validity of this theorem for the case of triangles contributed to a more rigor-
ous explanation of the concept of decomposition of a polygon. Moreover, Gerwien
concluded his essay with the following important conclusion:

The present essay reveals that the equality of rectilinear figures can be defined
as follows: Equal figures are those which are composed of the same pieces.
(Gerwien 1833a, p. 234)

This final remark is perhaps the first modern attempt to provide an explicit char-
acterization of the relation of “equality of area.” In fact, this definition is pretty close
to what was later called “equivalence by decomposition” or “equidecomposition,”
namely: two polygons are equidecomposable if it is possible to decompose them into
the same number of polygonal components congruent in pairs. As is well known,
Hilbert coined the term “equidecomposition” [zerlegungsgleichheit] in the second
German edition of Foundations Hilbert (1903).19 It is worth mentioning that Gerwien
could not offer an explicit definition of the concept “area” or “content,” but only char-
acterized the relation “to have the same surface.” A precise definition of area as a class

15 Legendre (1806) introduced the term “equivalence,” to distinguish terminologically the notion of equality
of area from the idea of equality as congruence.
16 See Wallace (1814) and Jackson (1912).
17 Cf. Gerwien (1833a, b).
18 For a detailed analysis of Gerwien’s contributions, and its impact on subsequent discussions, see Volkert
(1999). For the significance of this theorem in the development of the theory of equivalence in the second
half of the nineteenth century, see Amaldi (1900) and Simon (1906).
19 This relation is sometimes also called “equivalence by dissection” or “scissors congruence.”
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of equivalence of equidecomposable polygons was first achieved by members of the
Peano School in the last decade of the nineteenth century.20

The notion of equivalence by decomposition was adopted by the French math-
ematician Jean-Marie Duhamel, who carried out the first critical discussion of the
foundations of the theory of equivalence in the nineteenth century. Duhamel pre-
sented this examination in the second part of his mathematical-philosophical treatise
Des méthodes dans les sciences de raisonnement (1866), which exerted a significant
influence in subsequent investigations. These reflections were mainly elaborated in an
appendix entitled “Note sur l’équivalence”21, which advanced novel ideas not only
from a technical but also from amethodological point of view. One important method-
ological insight concerned the adoption of a unique criterion to establish the equality
of area of two plane figures, namely the relation of equidecomposition. Since this
relation was based on the criterion of “equality by addition of equals” (Euclid’s CN2),
Duhamel restricted the use of the criterion of “equality by difference of equals” (CN3)
from the development of the theory of equivalence. To cope with this methodological
requirement, he offered new proofs of some relevant theorems about the equivalence
of polygons, where the application of the principle “if equivalent figures are subtracted
from equivalent figures the remaining figures are equivalent” was essential. An inter-
esting example is the proof of the theorem “two parallelograms on the same base and
with the same altitude are equivalent”, which corresponds to proposition I.35 of the
Elements.

Duhamel distinguishes between two cases, depending onwhether the sides opposite
to the base have points in common or not. The interesting case is when neither E nor
F lie between C and D (Fig. 5b). The idea of the proof is as follows: Let G be
the intersection point between AE and BD. Subdivide BD in n equal segments,
with length less than BG. Next, from each one of the points G1, G2, . . . ,Gn , draw
parallel lines to the base AB. The resulting partial parallelograms in ABDC will be
all congruent as well as the resulting partial parallelograms in ABFE . Now, the two
lowest partial parallelograms have the common base AB and stand in the situation
described in the first case (Fig. 5a); then, they are equidecomposable. And the same
applies to each one of the partial parallelograms that compose ABDC and ABFE , for
they are, respectively, congruent to the lowest ones with the common base AB. Hence,
ABDC and ABFE can be decomposed in the same number of partial parallelograms,
respectively equidecomposable, and consequently they can be decomposed in the same
number of polygonal parts, respectively congruent.22

A central aspect of the proof of this second case, explicitly acknowledged by
Duhamel, is that it presupposes not only the possibility of subdividing a given segment
in any number of parts of the same length but also the Archimedean property of line
segments. More precisely, if the distance between points D and E were an infinitesi-

20 For the development of the method of “definition by abstraction” in nineteenth-century geometry, see
Mancosu (2016).
21 See Duhamel (1866, pp. 445–450).
22 This proof presupposes then that congruent parallelograms are equidecomposable. Duhamel provided
first a proof of this proposition in Duhamel (1866, pp. 351–352). Moreover, to obtain the desired decom-
position of ABDC and ABFE , one only needs to copy the dividing lines of the lowest parallelograms in
the other partial parallelograms.
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Fig. 5 Duhamel (1866) proof of Elements I. 35

mal (non-Archimedean) quantity, then the segment BG would be incommensurable to
the side BD and no finite number of parallelograms contained in ABCD would ever
complete the parallelogram ABFE .23 This revealed that Archimedes’ axiom was a
necessary condition to build the theory of equivalence upon the relation of equidecom-
position. As is well known, this metageometrical result was first rigorously proved by
Hilbert in the first edition of Foundations (1899). Up to the publication of this work,
all modern presentations of the geometrical theory of equivalence were based on the
relation of equidecomposition.

The critical considerations advanced byDuhamelwere taken up by the Italianmath-
ematician Aureliano Faifofer, in the highly influential textbook Elementi di geometria,
first published in 1878.24 In particular, he followed to a great extent the methodolog-
ical guidelines laid down, but not thoroughly executed, by Duhamel. First, Faifofer
provided explicit definitions of the relation of geometrical equivalence—in terms of
equidecomposition—and addition of polygons. Second, he formulated the properties
corresponding to CN1 and CN2—i.e., transitivity and additivity—as specific geo-
metrical propositions about polygonal areas and provided the corresponding proofs.
Following Duhamel’s “purity of the method” requirement of avoiding the use of CN3,
Faifofer provided new proofs of other propositions where this principle had been used.
In this regard, his proof of theGnonom theorem (Elements, I.43) was particularly inno-
vative by circumventing the critical use of this Euclidean principle. In sum, Faifofer’s
presentation of the theory of equivalence was a notable improvement in the systematic
development of this geometrical theory.

In the first edition of the textbook, a striking aspect of Faifofer’s development
of the theory of equivalence was the lack of an explicit definition of the relation of
lesser and greater in area. In other words, there was no discussion of the criteria
of non-equivalence of polygonal figures. Naturally, this had an immediate impact on
the proofs of those propositions that appealed to the general principle “the whole is
greater than the part” (CN5). A crucial example is the proposition I.39 of theElements,
which Faifofer tried to prove without using the latter common notion. This proof

23 Cf. Duhamel (1866, p. 448).
24 Faifofer’s Elementi became rapidly a main textbook for teaching elementary geometry in Italian sec-
ondary schools. This textbook went under 22 editions, the last published in 1925. For more details, see
Vecchi (1915) and Giacardi and Scoth (2014).
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faced important shortcomings, which were identified by the Italian mathematician
Antonio de Zolt shortly afterward, in a monograph that prompted an intense and
notable debate on the foundations of the theory of equivalence. The publication of De
Zolt’s monograph sparked a decisive momentum in the modern development of the
geometrical theory of equivalence.

3.2 De Zolt’s postulate in the theory of equivalence

In 1881, De Zolt published a short monograph titled Principii della eguaglianza di
poligoni. In the Preface, the author declared that the work aimed to offer a systematic
examination of this central part of elementary geometry. After a brief assessment of
some recent presentations of the theory of equivalence, De Zolt’s focused his attention
on Faifofer’s Elementi. His main criticism of this work concerned the proof of the
theorem corresponding to the proposition I.39 of the Elements. Let us briefly examine
this proof (Fig. 6).

Theorem 275. If two triangles are equivalent and have equal bases, then their
altitudes are also equal. (Faifofer 1878, p. 167)

Similar to Euclid’s proof, the geometrical argument delivered by Faifofer was also
a reductio. Consider the rectangles PBCO and QEFR equivalent to the given tri-
angles ABC and DEF , with equal bases and half altitudes. By transitivity, PBCO
is equivalent to QEFR. Now, assume that the corresponding altitudes MH and NK
of these rectangles are unequal. In that case, Faifofer observed, “one of the rectan-
gles, that which has the lesser altitude, would be equal to a part of the other; and this
excludes the possibility that the two rectangles are equivalent” (p. 167). Therefore,
the altitudes of the rectangles, and respectively of the two triangles, must be equal.

Evidently, a contradiction only arises if one assumes that two rectangles with equal
bases and unequal altitudes cannot be equivalent; or, alternatively, that if one rect-
angle is a proper part of another, they cannot be equivalent. De Zolt noticed that,
although this fact was intuitively evident, a rigorous exposition of the theory of equiv-
alence demanded an explicit justification for it. More precisely, he pointed out that
this notable gap in Faifofer’s proof was a consequence of the fact that the relation of
non-equivalence did not receive adequate treatment in his exposition:

First of all, we notice that the non-equivalence of two figures is much more
complex than it may seem at first. And in fact, to say that two figures are not
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equivalent is to affirm that: if one of them is divided in any given way and in as
many parts as one wants, it is not possible; however, you arrange these parts, to
compose with them the other figure. 25 (De Zolt 1881, p. 12)

Thus, De Zolt claimed that, to obtain a rigorous introduction of the relation of
ordering for polygonal figures, the following proposition must be included either as
an axiom or as a theorem of the theory of equivalence:

If a polygon is divided into parts in a given way, it is not possible, when one of
these parts is omitted, to recompose the remaining parts in such way that they
cover entirely the polygon. (De Zolt 1881, p. 12)

This proposition is now known as “De Zolt’s postulate.” In his monograph, De Zolt
attempted to prove this “fundamental proposition” in the theory of equivalence, but
only managed to sketch a somewhat confusing and clearly flawed argument, which
was unanimously criticized by his contemporaries.26 The details of the argument are
not important here; on the contrary, let us briefly comment on two relevant conceptual
issues. The very formulation ofDeZolt’s postulatewas anchored on a novel conception
of the relation of ordering for polygonal figures.Unlike the criterion suggested byCN5,
this conceptionwas not grounded on the (mereological) relation of parthood, but on the
operations of decomposition and addition. De Zolt explained this new understanding
as follows:

When two polygons are not equal, they can be divided, as it was proved, such
that all the parts of one of them appear in the other, and in the latter there are
parts which are not in the former. In this way, divisibility constitutes the positive
character of the non-equality of the two polygons; of which it will be said lesser
the one which is divisible so that all its parts can figure in the other; and this one,
greater.27 (De Zolt 1881, p. 36)

This description suggests the following alternative definition of the relation of
(strict) order for polygons: “a polygonP is greater (in area) than another polygonQ (in
symbols,Q < P), if and only if there exists another polygonR such thatQ+R = P.”
As a matter of fact, this definition is built upon a “strong trichotomy” principle (using
modern terminology) that states that for any polygons P,Q, there exists a polygon R
such that exactly one of the following conditions holds: P = Q, P = Q + R, or Q =
P + R. In his monograph, De Zolt formulated (a version of) this trichotomy law and
attempted a proof by appealing to his new geometrical postulate28; this shows that he

25 “Notiamo anzitutto come la non-equivalenza di due figure sia fatto assai piú complesso di quanto, a tutta
prima, possa sembrare. E infatti, dire che due figure non sono equivalenti é affermare che: divisa una di esse
figure in un modo equalsivoglia e in quante si vogliano parti, non é possibile, comunque si dispongano tal
parti, comporre con esse l’altra figura.”
26 Some initial critical reactions to De Zolt’s alleged “proof” of his novel postulate can be found in De
Paolis (1886) and Faifofer (1886).
27 “Allorché due poligoni non son eguali, si possono dividere, come fu dimostrate, in modo che tutte le
parti di uno di essi figurino nell’altro, ed in questo sianvi parti che non sono in quello. Cosí fatta divisibilitá
forma il carattere positivo di diseguaglianza dei due poligoni; dei quali, si diraminore quello che é divisibile
in modo che sue parti tutte possano figure nell’altro; e questo, maggiore.”
28 See De Zolt (1881, §5).
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understood that the key role of this fundamental propositionwas to guarantee that plane
polygons canbe (linearly) orderedwith respect to their areas. In sum, the formulation of
De Zolt’s postulate was intimately connected to a new conception of non-equivalence.
Furthermore, this can also be appreciated in the fact that De Zolt never equated his
postulate to the Euclidean principle “the whole is greater than the part.”

The second issue refers to De Zolt’s “quasi-axiomatic” development of the theory
of equivalence. Another salient aspect of De Zolt’s monograph was the explicit for-
mulation and proof of several fundamental properties of geometrical equivalence (viz.
equidecomposition) and non-equivalence, such as transitivity, additivity, subtraction,
and trichotomy, among others. This standpoint will become a central methodological
requirement in the modern theory of equivalence; namely, the explicit derivation as
geometric theorems of the fundamental properties of equivalence, non-equivalence,
and addition, previously stated as general principles of magnitudes in Euclid’s com-
mon notions.

The publication of De Zolt’s monograph marked a new era in the modern investi-
gations into the theory of equivalence. The initial reaction was to include De Zolt’s
postulate as a new axiom of geometry, as can be noticed in the expositions of this the-
ory presented in Faifofer (1882) and De Paolis (1884). In this regard, the widespread
view was that a detailed proof of this geometrical proposition seemed too complicated
and involved for a rigorous but still elementary exposition of the theory of equiva-
lence, intended to teaching geometry in secondary schools. This standpoint was also
adopted in other notable geometry textbooks published in Italy some years later, such
as Lazzeri and Bassani (1891), Veronese and Gazzinaga (1900), and the influential
Enriques and Amaldi (1903).

However, the search for a proof of De Zolt’s postulate prompted an intense and
fruitful foundational debate, which took place during the 1890s, primarily at the
Periodico di Mathematica and the Bollettino dell’Associazione ”Mathesis”.29 These
highly influential journals also had a strong interest in mathematical education. These
critical discussions aimed not only to yield a rigorous proof of the “fundamental
proposition” in the theory of equivalence but also to avoid as much as possible the
deployment of non-elementary means. A close examination of this fascinating debate
is beyond the scope of the present article; nevertheless, we should point out that, as a
result of these discussions, two important proofs of De Zolt’s postulate were obtained,
namely Veronese (1894/1895) and Lazzeri (1895). A salient trait of these proofs was
the appeal to a geometrical notion of measure of area, introduced using the classical
theory of proportion. Finally, this debate also had significant ramifications in Germany
and France, as we will analyze in the next section.

4 The immediate background of Hilbert’s theory of plane area

AlthoughHilbert added a short reference toDeZolt’smonograph in the secondGerman
editionofFoundation (1903), there is no clear indication that he had anydirect informa-

29 Some important moments in the notable Italian debate on the foundations of the theory of equivalence
have been surveyed by Amaldi (1900) and more recently by (Bartocci 2012, pp. 248–258). I would like to
thank an anonymous referee for calling my attention to the latter book.
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tion about the “Italian” debate on the foundations of the theory of equivalence. These
discussions had had, however, some repercussions in the German-speaking world,
mainly through the works of Réthy (1891) and Rausenberger (1893). On the contrary,
Hilbert’s early interest in the theory of equivalence came from different sources. As
can be noticed in his lecture courses, Hilbert’s was deeply influenced by Otto Stolz,
Friedrich Schur, andWilhelm Killing. This section aims to reconstruct this immediate
background of Hilbert’s axiomatic investigations. Section 4.1 examines the contribu-
tions of Stolz to these problems; in turn, Sect. 4.2 focuses on Schur’s important, but
often neglected, work.

4.1 Stolz and themodern theory of magnitudes

Otto Stolz’s engagement with the geometrical theory of equivalence was triggered
by a more general concern on the fundamental notion of extensive magnitude. As is
well known, in the first volume of the influential treatise Vorlesungen über allgemeine
Arithmetik (1885), Stolz laid the groundwork for the modern theory of magnitudes by
providing the first “axiomatic” characterization of this central mathematical concept.
His axiomatic system consisted of fourteen “conditions” [Bedingungen], which every
set of (geometrical) elements must satisfy in order to constitute a “system of absolute
magnitudes.” Stolz’s conditions read as follows30:

1) If A = B, then B = A;
2) If A > B, then B < A (and conversely);
3) For every pair of magnitudes A, B, exactly one of the following conditions holds: A = B or

A > B or A < B;
4) If A = B and B = C , then A = C ;
5) If A = B and B > C , then A > C .
6) If A > B and B > C , then A > C .
7) (A + B) + C = A + (B + C);
8) A + B = B + A;
9) If A = A′ and B = B′, then A + B = A′ + B′;
10) If A > A′ and B = B′, then A + B > A′ + B′;
11) A + B > A;
12) If A > B, then there is in the system one and only one magnitude X such as B + X = A;
13) For each member A of the system and each positive integer n, there is an X in the system such

that nX = A.
14) If A > B, there is a multiple of B which is greater than A: pB > A.

Without going into details, with these conditions Stolz established that any systems
of “absolute magnitudes” can be conceived as an ordered commutative (or Abelian)
semigroup, using modern algebraic terminology.31 Moreover, the ordered Abelian

30 Cf. Stolz (1885, p. 70). For better readability, we have simplified the formulations of conditions 3 and
13.
31 A structure 〈S,+〉 is a semigroup if S is a set and + is an associative binary operation on S. If the binary
operation+ also satisfies the commutative property, then 〈S, +〉 is a commutative (or Abelian) semigroup. A
structure 〈S, +,<〉 is an ordered semigroup if< is a total ordering of S, such as the following compatibility
condition holds: for all a, b, c ∈ S: if a ≤ b, then a+ c ≤ b+ c and c+ a ≤ c+ b. Needless to say, Stolz’s
conditions 1-12 do not form a system of independent axioms, for several conditions can be obtained from
the others.
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semigroup must also be divisible, according to the divisibility property stated in con-
dition 13. Finally, Stolz claimed that if a system of (geometrical) elements also satisfies
condition 14, that is, the so-called axiom of Archimedes, then it constitutes a system
of absolute magnitudes in the strict sense.32

After specifying the fundamental properties which constitute the concept of (exten-
sive)magnitude, Stolz attempted toprove that the set of planepolygons forms a “system
of absolute magnitudes in the strict sense”; in fact, these geometrical elements rep-
resent a more interesting case than the set of straight line segments and the set of
plane angles. The general idea of the proof, which is merely sketched, is to provide
an explicit geometrical “interpretation” of the relations of equality (“=”) and order-
ing (“<”) and the operation of addition (“+”), and then to show that each one of
the “axioms” of absolute magnitudes (in a strict sense) is satisfied under this given
interpretation. Interestingly, Stolz noted that the most problematic aspect of this proof
concerned the relation of ordering. More precisely, he pointed out that a significant
shortcoming in classical Greek geometry was that “the comparability of any two geo-
metrical magnitudes of the same kind is assumed from the outset, that is, without
providing a proof of the possibility of the comparison by geometrical means” (Stolz
1885, p. 74).

Stolz’s demand for a proof of the possibility of comparing any two geometrical
magnitudes, particularly plane polygons, raised a pivotal conceptual and technical
issue for the first time. More precisely, one should distinguish between two different
senses in which two plane polygons are said to be comparable. The first relates to
the validity of the (standard) trichotomy law: the validity of one of the three relations
“P < Q,P = Q,P > Q” implies the non-validity of the other two. Stolz explicitly
states this in his third axiom. In turn, the second sense refers to the fact that, for any two
plane polygons P andQ, always at least one of these three relations is valid. Thus, this
secondmeaning is concerned with the necessary and sufficient conditions for the com-
parability of geometrical magnitudes, such as, for example, the Archimedean axiom.
As was later proved by Hilbert (1899), the latter axiom is a necessary condition for the
comparability of plane polygons, if one adopts the relation of equidecomposition as
the criterion for the equality of area. In a subsequent work, Stolz (1894) explicitly dis-
tinguished between these two different issues involved in the possibility of comparing
plane polygons.

As customary during this period, Stolz used the notion of equidecomposition as
the criterion of equality of area of plane polygons. Moreover, his definition of the
relation greater-than was grounded on the conception of ordering in terms of the
operations of decomposition and addition, succinctly described as follows: “A polygon
is greater than a second, if next to the pieces of the second it still contains others” (Stolz
1885, p. 75). It is plain that this definition of ordering was immediately suggested by
his (axiomatic) conception of absolute magnitudes, particularly by the “axioms” 13
(i.e., the divisibility property) and 12. As for the operation of addition, he succinctly
claimed that a polygon is called the sum of two other polygons, if it is composed
[zusammengesetzt] by them.

32 For a detailed study of Stolz’s contributions to the modern theory of magnitude, see the excellent work
by Ehrlich (2006).

123



David Hilbert and the foundations of the theory of area 667

Stolz focused then his attention on the problem of proving that any two plane poly-
gons are comparable by means of a purely geometrical procedure. Surprisingly, his
strategy consisted in comparing parallelograms with equal angles and altitudes (or
bases) by superimposing them. Thus, the main idea was simply to use Euclid’s well-
known technique of “application of areas,” in order to transform any polygonal figure
into an equidecomposable parallelogram (or rectangle) with a given altitude; the trans-
formed figures could be easily compared by placing one on top of the other. According
to Stolz, the desired transformation could be immediately obtained by applying the
theorem that “a triangle is equivalent (by decomposition) to a parallelogramwith equal
base and half altitude” and the Gnomon theorem.33 Without further ado, Stolz con-
cluded that any two polygons could be compared to one another, since every polygon
can be decomposed into triangles through diagonals.

In a strict sense, Stolz did not provide any argument to show how, by applying
this method to compare polygonal figures, one could prove that if a polygon P is
equivalent to another Q, then P cannot be at the same time greater or lesser than Q
(and conversely). In other words, he did not attempt to prove that, given his definition
of equality of area and ordering, the trichotomy law expressed in the above condition
3 holds. Naturally, such a proof would involve a kind of indirect argument or reductio;
however, Stolz did not even hint at how a contradiction could be obtained in this
context. This critical observationwasmade shortly after by theGermanmathematician
Wilhelm Killing, in a short but insightful review of Stolz’s Allgemeine Arithmetik. In
his critical recension, Killing sharply noted that, in order to obtain a contradiction, the
definition of equidecomposition must be complemented by the postulation of a new
geometrical axiom:

The definition [of equidecomposition] uses an entirely determined decomposi-
tion and an entirely determined arrangement of the parts; so in order for the
definition to be admissible, the following proposition must be assumed: If there
is a decomposition of a polygon A, for which a certain arrangement of the parts
yields a polygon B, then no decomposition of A is possible, for which a new
arrangement of the parts yields a polygonC , in which the polygon B is contained
as a part. 34 (Killing 1886, p. 186)

Killing recognized here the necessity of postulating a version of the so-called De
Zolt’s postulate to ground a relation of ordering for polygonal areas. Moreover, as far
as we know, he discovered and formulated this new geometrical postulate without any
direct knowledge of De Zolt’s seminal work on the theory of equivalence.

In spite of the important gaps in Stolz’s “proof” of the comparability of plane
polygons, his attempt to prove that different kinds of geometrical objects constitute

33 Stolz provided proofs for both theorems without resorting to the geometrical proposition corresponding
to Euclid’s CN3.Additionally, he proved in the sameway that “parallelogramswith equal bases and altitudes
are equivalent (by decomposition), i.e., the proposition I.35.
34 “Die Definition benutzt eine ganz bestimmte Zerlegung und eine ganz bestimmte Anordnung der Theile;
damit die Definition also erlaubt ist, muss folgender Satz vorausgesetzt werden: Wenn es eine Zerlegung
eines Polygons A giebt, für welche eine bestimmte Anordnung der Theile ein Polygon liefert, so ist keine
Zerlegung von A möglich, für welche eine neue Anordnung der Theile ein Polygon C liefert, in welchem
das Polygon B als Theil enthalten ist.”
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a class of “absolute” magnitudes had profound implications for the modern synthetic
reconstruction of elementary geometry. Briefly, this requirement amounted to the elim-
ination of the concept of pure magnitude from the foundations of geometry. More
specifically, this requirement involved two main methodological and epistemological
constraints: first, general principles or axioms of magnitudes must not be directly used
in geometrical proofs; second, the geometrical propositions corresponding to those
axioms must be proved as theorems; otherwise, one would commit a petitio principii.
The systematic application of this requirement constitutes a central tenet of modern
axiomatic geometry.

4.2 Friedrich Schur’s proof of the comparability of plane polygons

Friedrich Schur was another important participant of the foundational debate on the
geometrical theory of equivalence, whose contributions had a considerable influence
on Hilbert’s axiomatic views. In 1892, Schur published a short note discussing Stolz’s
alleged “proof” of the comparability of plane polygons.35 This condensed paper pre-
sented some novel technical insights and introduced instructive considerations from a
methodological and epistemological standpoint.

Schur focused his attention on the role played by the “general principles of mag-
nitudes” in the problem of comparing plane polygonal figures. Interestingly, for the
first time, we find an explicit requirement of “purity of the method” in connection to
this general problem:

A problem as simple as the measurement of plane figures bounded by straight
lines has not yet been rendered with the necessary rigor and purity of themethod,
as it seems to me from the available literature. Not even speaking about the [ille-
gitimate] use of infinite processes, general axioms ofmagnitude are usedwithout
justification, for these are only immediately evident, when the magnitudes are
straight line segments, whose comparison can be carried out by placing them on
top of each other. One of such general principles of magnitudes […] is, for exam-
ple, that the subtraction of equal magnitudes from equal magnitudes yields again
equal magnitudes. […] But before one has not managed to measure plane figures
by segments, which is only possible by the theorem to be proved, the application
of this principle of magnitudes is not by any means justified. 36 (Schur 1892, pp.
2–3)

35 Cf. Schur (1892).
36 “Ein so einfaches Problemwie die Ausmessung ebener geradlinig begrenzter Figuren ist, wie es nach der
mir zugänglichen Literatur den Anschein hat, noch nicht mit der hierbei möglichen Strenge und Reinheit
derMethode dargestellt worden. Um garnicht zu reden von der Herbeiziehung endloser Processe, so werden
mit Unrecht allgemeine Grössenaxiome benutzt, die nur dann unmittelbar klar sind, wenn diese Grössen
geradlinige Strecken sind, ihre Vergleichung also durchAufeinanderlegen bewirkt werden kann. Ein solcher
allgemeiner Grössensatz […] ist z. B. der, dass die Subtraction gleicher Grössen von gleichen Grössen
wieder gleiche Grössen giebt. […] Bevor es aber nicht gelungen ist die ebenen durch Strecken zu messen,
was eben erst durch den zu beweisenden Satz wird, ist die Anwendung obigen Grössensatzes durch nichts
gerechtfertigt.”
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Schur subscribed to thewidespread view that the validity of the “general principles”
of magnitudes was only immediately evident in the case of straight line segments, for
the relation of congruence (and betweenness) turned out to be adequate for their
equality, comparison, and addition. But a natural consequence of this view was that to
compare polygonal areas, one only needed to establish a correspondence between the
set of plane polygons and the linearly ordered set of straight line segments, that is, to
“measure” polygons by means of segments. Thus, Schur tacitly shifted the question
of the possibility of comparing plane areas to the introduction of a measure of area.
More importantly, Schur also explicitly stressed that the notion of measure of area of a
plane polygon must be introduced in an elementary and purely geometrical way. The
appeal to infinite processes such as the passage to limits, which constituted the kernel
of the well-known method of exhaustion, was not in accordance with the requirement
of the “purity of the method.”

Now, as we have seen in the previous Sect. 4.1, Stolz’s purported method to com-
pare any pair of polygonal figures consisted in transforming them into equivalent (viz.
equidecomposable) rectangles with a given altitude, and then to perform the compar-
ison by “superposing” the latter figures. More precisely, these rectangles were to be
obtained by the following procedure: first, one decomposed the given polygon into
triangles; second, these triangles were transformed, one by one, into equivalent and
adjacent rectangles with the same given altitude. Nevertheless, Schur noted that the
whole method of transformation of areas pended on a crucial geometrical fact. Con-
sider two different triangulations of a polygon P. By applying the above method, one
obtains two rectangles R1 and R2 equivalent to P and with the same given altitude.
Clearly,R1 andR2must be equivalent to one another. But is it also immediately evident
that these rectangles must be congruent as well, that is, that their bases must coincide?
According to Schur, this conclusion could only be reached by the tacit assumption of
the general principle of magnitudes “the whole is greater than the part”:

However, here one passed over silently the questionwhether this rectangle is also
uniquely determined, whether another rectangle could be obtained by another
decomposition of the figure into triangles –which is the starting point. This
silence can only be explained so far as the supposition, that a rectangle could
be equal in area to one of its parts, is considered to be impossible readily by the
general principle of magnitudes that the part cannot be equal to the whole. 37

(Schur 1892, pp. 4–5)

Strikingly, Schur did notmake here any allusion toDeZolt’s postulate in connection
to this implicit and problematic use of Euclid’s CN5 in the theory of plane area.
This might suggest that he was not yet completely aware of the intense debate on
this topic, which was taking place at the Italian mathematical community. Moreover,
Schur demanded a proof of the central principle “the whole is greater than the part,”
by arguing that its application to polygonal areas was not entirely self-evident and

37 “Doch ist man hierbei über die Frage mit Stillschweigen hinweggegangen, ob dies Rechteck auch
eindeutig bestimmt sei, ob nicht bei einer andern Eintheilung der Figur in Dreiecke — das ist ja der
Ausgangspunkt — ein anderes Rechteck erhalten wird. Es kann dies Stillschweigen nur so erklärt werden,
dass die Annahme, ein Rechteck könne einem seiner Theile flächengleich sein, ohneWeiteres als durch den
allgemeinen Grössensatz, ausgeschlossen betrachtet wird, der Theil könne dem ganzen nicht gleich sein.”
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beyond all doubt. Additionally, he explicitly raised some methodological constraints
in relation to this proof:

But it is clear that in the case of the above precise definition of equality this
principle is by no means totally self-evident, and a first attempt to prove it leads
to a procedure of exhaustion which, besides the question of the application of
infinite processes, does not even seem to deliver the desired result. And yet here
too, with very simple means and without a postulate, we can achieve full rigor
within the scope of the given definition of equality of area. 38 (Schur 1892, pp.
4–5)

There is a relevant conceptual point to make here. By identifying this fundamental
“gap” in themethod of transformation of areas, Schur raised two different issues, with-
out distinguishing them explicitly. The first concerned the already discussed problem
that, if a polygon could be equivalent (viz. equidecomposable) to a proper part, then
polygons would not be comparable with respect to their areas; in other words, it related
to the fact that a geometrical version of the general principle “the whole is greater than
the part” was a necessary condition for the validity of the standard trichotomy law.
The second problem alluded to the (schematic) introduction of a notion of measure of
area. Schur’s novel insight was to conceive the constructed equivalent rectangle with
a given altitude as the measure of area of the given polygon. However, showing that
this rectangle must be uniquely determined by the polygon amounted to proving that
this notion of measure of area was well defined, namely that it was independent of
the triangulation of the polygon used to calculate its measure of area. Evidently, these
were two different problems that should be distinguished.

In the remainder of the note, Schur attempted to prove the latter fact. His geomet-
rical argument was very sketchy and could hardly be considered a rigorous proof.
Nevertheless, his general proof strategy had a significant impact on future endeavors
to prove De Zolt’s postulate by purely geometrical means. As mentioned, Schur put
forward the following notion of measure of area of a plane polygon:

We can now consider this rectangle, which is uniquely assigned to a polygon, as
the representative of its area, whereby one side of all these rectangles is given
once and for all. (Schur 1892, p. 5)

For the decomposition of a polygon into triangles, Schur employed a method of
triangulation developed by Möbius (1886). It consisted in choosing arbitrarily one
point inside or on the perimeter of the polygon as a common vertex for all triangles,
and the sides of the polygon as their bases. Schur argued then that the fact that this
notion of measure of area of polygons is well defined follows immediately from two
fundamental properties, namely that i) congruent triangles have equal measures of
area, and that ii) this function of measures of area satisfies the additive property. The

38 “Nun ist aber klar, dass bei der obigen scharfen Definition der Gleichheit dieser Satz sich keineswegs so
ganz von selbst versteht, und ein erster Versuch des Beweises leitet auf ein Exhaustionsverfahren, das von
dem dabei angewandten endlosen Processe abgesehen nicht einmal zum Ziele zu führen scheint. Und doch
lässt sich auch hier mit ganz einfachen Mitteln und ohne ein Postulat volle Strenge innerhalb des Rahmens
der gegebenen Definition von Flächengleichheit erreichen.”
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first property was considered trivially evident, so no proof was offered. However,
Schur did not manage to prove the additive property, but only made some confusing
and merely tentative remarks about how this result could be obtained. As we shall
see in Sect. 6.2, this lack of precision was not a coincidence at all, since proving the
validity of the additive property constitutes a central challenge in the development of
the elementary theory of measure of area of polygons.

Someof the gaps inSchur’s original “proof”werefilled by the Italianmathematician
Giovanni Biasi, in an article published two years later in the highly regarded Periodico
dimatematica. According to the author, the short note aimed to provide some important
details and clarifications of the alleged proof, personally communicated by Schur.39

As was to be expected, these clarifications concerned mainly the introduction of the
notion ofmeasure of area of a polygon, whichwas nowmademore precise by resorting
to the theory of proportion and similarity. In this regard, Biasi (or Schur) found that the
following theorem proved to be particularly useful: if the sides of a rectangle are the
extremes of a proportion, and the sides of another rectangle are the middle terms, then
the two rectangles are equivalent (i.e., equidecomposable). This theorem suggested
that the measure of area of a triangle could be defined as the rectangle, which has one
side equal to the unit segment and the other equal to the fourth proportional to the
unit segment, one side of the triangle and half of the corresponding altitude. It also
followed immediately from the latter theorem that this notion was well defined, i.e.,
that the measure of area of a triangle is independent of the side chosen as the base.

Biasi proposed then to define the measure of area of a polygon as the sum of the
measure of areas of triangles which have as bases the sides of the polygon, and as
common vertex any point on its plane.40 The fact that this alternative notion was well
defined became now a “fundamental theorem”:

Theorem The algebraic sum of the [measure of] area of the triangles, which have as
bases the sides of a polygon and as common vertex a point of its plane, is independent
of choice of this point. (Biasi 1894b, p. 86)

Naturally, the proof of this fundamental theorem consisted in showing that the
additive property was valid. Biasi sketched an argument only for the case of triangles,
based on the method developed by Möbius (1886). A central aspect of this method
was that the measure of area of a triangle was endowed with a sign, depending on
whether the figure was considered in its positive or negative orientation. The proof
of the general case could be easily obtained, according to Schur, by repeating the
argument for the particular case of triangles.

To sumup, Schur outlined a proof of the comparability of plane polygonal figures by
purely geometrical means, which consisted in constructing an application from the set
of plane polygons to the (linearly ordered) set of straight line segments employing the
theory of proportion and similarity. An immediate consequence of this correspondence
was that the general principle “the whole is greater than the part” was valid for the
case of polygonal areas, although Schur did not make any explicit allusion to De
Zolt’s postulate. The critical observations made by Schur were accepted by Stolz in a

39 Cf. Biasi (1894a, 1894b).
40 Cf. Biasi (1894b, pp. 86–87).
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later work, where the latter also presented a new proof of the comparability of plane
polygons based on the admission of the latter postulate as a new geometrical axiom.41

Finally, we shall conclude this section with a brief mention of Killing’s work. We
have seen that Killing seemed to have independently discovered and formulated a
version of De Zolt’s postulate. But in the second volume of his geometrical treatise
Einführung in die Grundlagen der Geometrie (1898), he also provided a very detailed
proof of this central proposition. Briefly, the general idea of the proof consisted in
deriving the geometrical postulate from the fundamental properties of the functions of
measure of area of plane polygons, which, however, Killing introduced analytically
using definite integrals.42 Thus, he resorted to the standard analytic method of inte-
gration and to infinite processes, such as the passage to the limit. Although notably
rigorous, Killing’s proof violated the “purity of the method” requirement laid down
by Schur. In his forthcoming investigations, Hilbert will repeatedly emphasize the
non-elementary character of this proof and its dependence on continuity assumptions,
especially the Archimedean axiom.

5 Hilbert’s notes for lecture courses in 1898/1899

In the previous Sects. 3 and 4, we have offered a general picture of the debate on the
foundations of the theory of plane area, which took place during the second half of the
nineteenth century. These discussions posed important foundational, methodological,
and epistemological problems regarding the adequate development of this central part
of elementary geometry. These problems were not always stated in a clear and precise
way. To a significant extent, the modern axiomatic treatment of the theory of area,
especially in Hilbert’s works, will contribute to putting some of these problems and
claims on a solid footing. In this section, we shall analyze Hilbert’s early reception
of this debate, as documented in his notes for lecture courses on the foundations of
geometry, particularly those immediately prior to the publication of Foundations.

Hilbert’s first “axiomatic” discussion of problems related to the foundations of the
theory of plane area took place in a summer course entitled Über den Begriff des
Unendlichen (Hilbert 1898), held in the Easter break of 1898. The course was targeted
to Oberlehrer and aimed at presenting new views of some classical problems and
results in “elementary mathematics” that, according to Hilbert, should be part of the
mathematical curricula in secondary schools.43 One of these results concerned the
definition of the geometrical operation of segment multiplication. Hilbert claimed,
without proof, that if segment multiplication was defined by the standard construction
of the fourth proportional (Elements, VI.12), then the classical “Theorem of Pascal”
(better known as Pappus’ theorem) could be used to show that this operation satisfies
relevant algebraic properties, such as commutativity and associativity. More precisely,

41 Cf. Stolz (1894).
42 Cf. Killing (1898, pp. 22–33). For a modern presentation of this proof, see Boltianskii (1978).
43 For an overview of the content of this course, see the introduction to chapter 3 of Hallett and Majer
(2004).
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Hilbert referred to a special case of Pascal’s (or Pappus’) theorem on conic section,
according to the following affine version:

Pascal’s theorem (affine version) Let A, B,C, and A′, B ′,C ′, be two sets of points on
two intersecting lines that are distinct from the point of intersection of the lines. If
CB ′ is parallel to BC ′ and C A′ is parallel to AC ′, then BA′ is parallel to AB ′.44

As is well known, the unveiling of deep connections between Pascal’s theorem
and the algebraic properties of segment multiplication was an original result in Foun-
dations; nevertheless, in this course Hilbert raised the question whether this fruitful
theorem in the context of projective geometry could be used now to obtain a proof of
De Zolt’s postulate, which he called here the “Killing-Stolz postulate”:

Thus, it all comes down to the theorem: two equivalent rectangles with an equal
side must also have the other side equal or the Killing-Stolz postulate: However,
one decomposes a rectangle into n triangles, after removing one of them, one
can never cover the rectangle with the remaining n−1 triangles. (So the content
is independent of the arrangement of the parts) […]
Does the Killing-Stolz postulate follow from [the theorem of] Pascal? Is the
Archimedean axiom a consequence of the Killing-Stolz postulate? 45 (Hilbert
1898, p. 176. My emphasis.)

These two questions contain in nuce the general guidelines that Hilbert will follow
shortly after in his axiomatic reconstruction of the theory of plane area. On the one
hand, Hilbert set himself the goal of exploring the possibility of using a segment
arithmetic based on Pascal’s theorem to provide a rigorous (and strictly geometrical)
proof of De Zolt’s Postulate. On the other hand, he asked whether such proof could be
carried out without assuming the Archimedean axiom. Both questions will receive a
precise answer in Foundations. Finally, these lecture notes show that Hilbert’s initial
engagement was clearly influenced by the works of Stolz (1885, 1894) and Killing
(1898).

In the winter semester of 1898/1899, Hilbert offered a new lecture course on the
foundations of Euclidean geometry. This lecture course constituted the basis for the
first edition of Foundations.46 In these notes, Hilbert pointed out more expressly
that the core issue in the development of the theory of equivalence was to guarantee
the existence of a relation of (total) ordering for plane polygons, and that this was

44 Cf. Hilbert (1898, p. 171). Hilbert did not explicitly provide this formulation in his lecture course, but
introduced several diagrams that unequivocally suggest this affine version of Pascal’s theorem on conic
sections. For the corresponding formulation in Foundations, see Hilbert (1971, p. 46).
45 “Also es kommt auf den Satz an: 2 gleiche Rechtecke mit einer gleichen Seite müssen auch die andere
gleich haben oder das Killing-Stolzsche Postulat: Wie man auch ein Rechteck in n Dreicke zerlege, man
kann nach Fortnahme eines nie durch die n−1 übrigen das Recheck bedecken. (Also Inhalt von Anordnung
der Teile unabhängig.) […]
Folgt das Killing-Stolzsche Postulat aus Pascal? Ist das Archimedische Axiom eine Folge des Killing-
Stolzschen Postulates?”.
46 There are two existing notes corresponding to this lecture course, namely Grundlagen der Euklidis-
chen Geometrie (Hilbert 1898/1899a) and Elemente der Euklidischen Geometrie (Hilbert 1898/1899b). For
details, see the introduction to chapter 4 of Hallett and Majer (2004).
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precisely the fundamental role of De Zolt’s postulate (or Killing-Stolz postulate) in
this geometrical theory:

Indeed everything is correct, but all claims are empty andmeaningless, as long as
it has not been shown that, first, there are polygons of different areas and, further,
that if two rectangles have one side equal and the other different, they are not
equal in area. […] This is the proof of the theorem established by Killing.47

(Hilbert 1898/1899a, p. 279)

Moreover, Hilbert also explained why De Zolt’s postulate could not be assumed as
an axiom in any rigorous axiomatic treatment of the theory of plane area:

If two triangles with equal bases have equal content, then they also have equal
altitudes. Are there at all triangles, which are not equivalent? Totum parte majus
est is applicable? Not apriori, of course, for this general principle of magnitudes
is converted into a geometrical theoremas soon as it is applied to our geometrical
concepts. Stolz believes that this proposition must be either taken as an axiom,
and Killing proves it with the help of the Archimedean axiom. Both fail to meet
the central point, namely that the theorem is provable without Archimedes. 48

(Hilbert 1898/1899a, p. 279. My emphasis)

Hilbert subscribed here to the general dictum that “in mathematics nothing capable
of proof ought to be believed without proof”.49 Admitting De Zolt’s postulate as a new
geometrical axiomwas a clear violation of this critical principle.More interestingly, he
also outlined an original view regarding the selection of axioms in modern axiomatic
geometry. Specifically, this epistemological conception was related to the understand-
ingofDeZolt’s postulate as the precise “geometrical interpretation”ofEuclid’s general
principle of magnitudes “the whole is greater than the part.” According to this identi-
fication, what the former proposition actually stated was not just another geometrical
fact about the equivalence of plane figures, but a crucial property of polygonal magni-
tudes. However, a successful axiomatization of geometry demanded that one must be
able to prove from the axioms of geometry that polygonal areas satisfy all the relevant
properties of magnitudes. Therefore, De Zolt’s postulate could not be simply assumed
as an axiom, but had to be derived as a geometrical theorem. Put differently, the admis-
sion of De Zolt’s postulate as a new axiom relied on the fundamental assumption that
plane polygons satisfy all the properties of magnitudes, a presupposition that must be
adequately justified in any modern axiomatization of geometry. Finally, Hilbert also

47 “Zwar Alles richtig, aber sämtliche Behauptungen sind leer und bedeutungslos, so lange nicht vor Allem
gezeigt ist, dass es Polygone verschiedenen Inhaltes giebt und ferner, dass wenn 2 Rechtecke mit gleicher
einer und verschiedener anderer Seite nicht inhaltsgleich sind. […] Es handelt sich um den Beweis eines
von Killing aufgestellte Satzes.”
48 “Wenn 2 Dreiecke mit gleicher Grundlinie gleichen Inhalt haben, so haben sie auch gleiche Höhe. Giebt
es überhaupt Dreiecke, die nicht inhaltsgleich sind? Totum parte majus est ist [here] anwendbar? Apriori
natürlich nicht, da eben dieser allgemeine Grössensatz sich in einen geometrischen Satz verwandelt, sobald
er auf unsere geometrischen Begriffe angewandt wird. Stolz glaubt den Satz entweder als Axiom nehmen zu
müssen, und Killing beweist ihnmit Hülfe des Archimedischen Axioms. Beides trifft nicht dasWesentliche,
in dem der Satz ohne Archimedisches beweisbar ist.”
49 Dedekind (1888, p. 790).
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required that the proof of De Zolt’s postulate should be carried out without assuming
the Archimedean axiom.

One last remark to conclude this section. Although Schur (1892) was mentioned
in the bibliography, his contributions were not explicitly acknowledged in either ver-
sions of the 1898/1899 lecture course. This might be seen as a significant lack of
consideration on Hilbert’s part, concerning the works which substantially influenced
his axiomatic investigations in Foundations.50

6 The theory of plane area in Foundations of geometry

The axiomatic construction of the theory of plane area is carried out in Chapter IV
of Foundations. Hilbert stresses that in these investigations only the line and plane
axioms of incidence, betweenness, and congruence are assumed; thus, no continuity
axioms—especially the Archimedean axiom—are employed. The key idea of this new
development of the theory of plane area is summarized as follows:

The theory of proportion discussed in Chapter III and the segment arithmetic
introduced there make it possible to develop Euclid’s theory of area with the aid
of aforementioned axioms, i.e., to develop it in the plane independently of the
axiom of continuity.
Since by the development in Chapter III the theory of proportion rests essen-
tially on Pascal’s Theorem (Theorem 40) the same is true of the theory of area.
This development of the theory of area appears as one of the most remarkable
applications of Pascal’s Theorem in elementary geometry. (Hilbert 1971, p. 61)

The removal of the dependence on the axiom of Archimedes in the construction
of the theory of plane area was an original result in Foundations, and a fundamental
task in the project of providing a new independent foundation for this central part of
elementary geometry. It should be noted that Hilbert accomplished this primary objec-
tive by means of several technical innovations. First, he put forward a new criterion
of geometrical equivalence of polygonal figures, namely the relation of equicomple-
mentability, which allowed to circumvent the admission of continuity conditions. In
addition, he proved that the notion of equidecomposition and equicomplementabil-
ity were equivalent only in the presence of the Archimedean axiom. Second, Hilbert
resorted to his previous construction of a segment arithmetic based on Pascal’s the-
orem and to the theory of proportion, based on the former, to introduce a notion of
measure of area of a plane polygon. This geometrical definition of ameasure of area—
i.e., an associated segment—not only solved the problem of the strictly geometrical
ordering of polygonal areas, but also yielded a rigorous proof of De Zolt’s postulate
which did not assume the Archimedean axiom. Hilbert succeeded thus in showing that
a solid axiomatic foundation for the theory of plane area is possible independently of
continuity assumptions, and therefore, of the concept of real number.

50 Schur was deeply disappointed about the fact that, in his opinion, his contributions to the theory of plane
area were not dully recognized by Hilbert in the Festschirft. He expressed this disappointment in a letter to
Hilbert dated January 5, 1900. This letter has been partially published in Toepell (1985).

123



676 E. N. Giovannini

In this section we discuss in detail Hilbert’s development of theory of area in
Foundations. Section 6.1 analyzes a series of technical and conceptual clarifications
in relation to the central concepts of the theory of equivalence. Section 6.2 focuses
on the construction of a theory of area measure and the notable proof of De Zolt’s
postulate.

6.1 Equivalence, decomposition, and addition of polygons

Hilbert began his exposition of the theory of area by providing precise definitions of
the concepts of polygon, decomposition, and addition of polygons. This constituted
a remarkable improvement of rigor, for these notions were usually described in a
very informal or intuitive way. In particular, Hilbert’s analysis and treatment of the
notions of decomposition and addition of polygons introduced significant conceptual
improvements in the development of the theory.

The definition of polygon given by Hilbert corresponds to a definition originally
advanced by Poinsot (1810), according to which a polygon consists of a cyclically
ordered sequence of points (vertices) together with the segments determined by ver-
tices adjacent in the cyclic sequence. Thus, this characterization of a polygon is based
on the idea of a closed polygonal segment or broken line:

Definition 1 A set of segments AB, BC,CD, . . . , K L is called a polygonal segment
that connects the points A and L . Such a segment will also be briefly denoted by
ABCD . . . K L . The points inside the segments AB, BC,CD, . . . , K L as well as the
points A, B,C, D, E, . . . , K , L are collectively called the points of the polygonal
segment. If the points A, B,C, D, E, . . . , K , L all lie in a plane and the point A
coincides with the point L , then the polygonal segment is called a polygon and is
denoted as the polygon ABCD . . . K . The segments AB, BC,CD,

. . . , K A are also called the sides of the polygon. The points A, B,C, D, . . . , K are
called the vertices of the polygon. Polygons of 3, 4, …, n vertices are called triangles,
quadrilateral, …, n-gons. (Hilbert 1971, pp. 8–9)

It is worth noting that, while this definition stipulates that all vertices of a polygon
must lie in one plane51, it remains silent on whether all vertices needs to be distinct.
Nor does this definition make explicit that no two intermediate segments must be
collinear, that is, that no three consecutive intermediate vertices must lie on the same
line. However, this does not pose a problem for the development of the theory, for
Hilbert immediately restricted his study to polygons which have distinct points as
vertices.52

Hilbert then restricted his theory of polygonal area to the particular case of simple
polygons, which he defined as follows:

51 If all the vertices of a polygon lie in one plane, then we speak of a plane polygon. If the polygon vertices
are not all coplanar, then the polygon is said to be skew. For a study of skew polygons, see Gerretsen and
Verdenduin (1983).
52 A definition of plane polygons which does not demand that all their vertices are distinct can be found
in Meister (1771). For analysis of the consequences of adopting this definition, see Grünbaum (2012). In
his classical Proof and Refutations, Imre Lakatos (1976) presents a rich philosophical discussion around
these two confronting definitions of polygons.
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Fig. 7 Non-juxtaposable
polygons

P1

P2

Definition 2 If the vertices of a polygon are all distinct, none of them falls on a side
and no two of its nonadjacent sides have a point in common, the polygon is called
simple. (Hilbert 1971, p. 9)

An important technical innovation was introduced by Hilbert in his definition of
decomposition and addition of simple polygons:

Definition 3 If two points of a simple polygonP are joined by some polygonal segment
that lies entirely in the interior of the polygon and which has no double point, two new
simple polygons P1 and P2 are formed whose interior points lie in the interior of P. P
is then said to decompose into P1 and P2 or P is decomposed into P1 and P2 or P1
and P2 compose P [setzen P zusammen]. (Hilbert 1971, p. 60)

In a strict sense, this definition stipulates that a polygon can be decomposed by
a polygonal segment into two other polygons. For a more precise formulation, one
needs to incorporate a recursive definition of decomposition of a polygon into several
polygons. More interestingly, Hilbert introduced a conceptual clarification regarding
the operation of composition or addition of two polygons, by characterizing it by
means of the concept of decomposition.

The precise definition and the adequate treatment of the operation of addition of
simple polygons were a central challenge in the modern development of the theory
of equivalence. The usual standpoint in nineteenth-century geometry treatises was to
characterize this notion informally as the juxtaposition or the nonoverlapping union
of two polygons at a common edge. However, this definition runs into important
difficulties, for it is not the case that any two polygons can always be juxtaposed.
Consider, for example, a regular star pentagon and a regular decagon with sides equal
or greater to the distance of two consecutive vertices of the pentagon (Fig. 7)53. These
two polygons cannot have two points in common at their edges, without also having
common points in their interiors; therefore, they cannot be directly “added.”

Hilbert’s original solution to this problem consisted in introducing the notion of
addition bymeans of the equalityP = P1+P2, instead of simply defining the operation
P1 +P2 for any two polygons. But this amounted to imposing a key restriction on the
operation: Hilbert’s definition of addition presupposed the existence of the sum poly-
gon, whichmeans that onemust first prove or admit the existence of a polygonP1+P2,

53 Cf. Puig Adam (1980)
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Fig. 8 Equicomplementable polygons. (Hilbert 1971, p. 60)

before one can reason about that sum. Stated differently, by adopting Hilbert’s defi-
nition, the operation of addition was restricted to the case of “compatible” polygons,
that is, to polygons that always have segments as common boundaries. The operation
of addition consisted then in removing the common segment, not necessarily a side of
a polygon.54

As we have mentioned, Hilbert distinguished then between two different notions
or criteria of geometrical equivalence, namely the usual relation of “equidecom-
position” [zerlegungsgleichheit] and the novel relation of “equicomplementability”
[ergänzungsgleichheit]:55

Definition 4 Two simple polygons are called equidecomposable if they can be decom-
posed into a finite number of triangles that are congruent in pairs.

Definition 5 Two simple polygons P and Q are called equicomplementable if it is
possible to adjoin to them a finite number of pairs of equidecomposable polygons
P′,Q′;P′′,Q′′; . . . ;P′′′,Q′′′ such that the composed polygons P+P′ +P′′ + . . .+P′′′
and Q + Q′ + Q′′ + . . . + Q′′′ are equidecomposable with each other. (Hilbert 1971,
p. 60. Figure 8)

Up to the time of the appearance of Hilbert’s Foundations, all modern reconstruc-
tions of the geometrical theory of equivalence were exclusively based on the notion
of equidecomposition. To a significant extent, this was related to a methodological
requirement of “purity,” first introduced by Duhamel (1866), which consisted in
demanding that the equivalence of two plane polygonal figures were to be estab-
lished by means of a unique criterion. Recall that in the case of the relation of
equidecomposition, the equality of area was established by applying only the property
originally expressed in Euclid’s CN2. In turn, with his notion of equicomplementabil-
ity, Hilbert incorporated a second criterion of equality of area, grounded now also on

54 Intuitively, a polygon P is compatible with a polygon Q if and only if, for some polygon R, we have
that P + Q = R. For a discussion of the notion of “compatible” (geometrical) magnitudes in an abstract
setting, and in connection to De Zolt’s postulate, see Giovannini, Haeusler et al. (2019).
55 The expression “equivalence by decomposition” and “equivalence by complementation” are alternative
translations for the terms “zerlegungsgleichheit” and “ergänzungsgleichheit,” respectively. Hilbert intro-
duced the term “equidecomposition” [Zerlegungsgleichheit] in the second German edition of Foundations,
in 1903; in turn, in the first edition he used the term “equality of area” [Flächengleichheit]. On the other hand,
the expression “equicomplementability” [Ergänzungsgleichheit] occurred for the first time in the seventh
edition, in 1930. In all previous editions,Hilbert employed the term “equality of content” [Inhaltsgleichheit].
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CN3, for two equicomplementable polygons results from subtracting pairs of, respec-
tively, congruent polygons (viz. triangles) to a pair of equidecomposable polygons.
It is worth noting that Hilbert explicitly suggested that, by incorporating the notion
of equicomplementability, he was actually retrieving a central element of Euclid’s
classical geometrical practice:

If we proceed with these definitions to consider the theorems in elementary
geometry about the equality of area and the related construction problems, we
find that it is always here a matter of the equicomplementability of the figures.
The theorems, for example, that two parallelograms and also two triangles with
the same base and height are equal to each other, that for every polygon one can
determine a triangle of equal area, as well as the Pythagorean theorem, are all
proved in the sense that the equicomplementability of the polygons in question
is recognized. The derivation of all these theorems is done entirely without the
use of continuity considerations.56 (Hilbert 1917, pp. 97–98)

Hilbert’s next task was to prove that these relations of equidecomposition and
equicomplementability satisfy the basic properties of the equivalence, comparison,
and addition of magnitudes. As we have seen in Sect. 5, this was one of the most
fundamental requirements in the modern reconstruction of the theory of equivalence.
In his lecture notes, Hilbert stated this point very clearly regarding the transitive
property of equidecomposition:

Nowwefirst prove the theorem: if two polygons are equidecomposable to a third,
then they are equidecomposable to one another. (Euclid has this theorem too; but
he proves it by invoking a general principle about magnitudes–a misconception
we have already mentioned several times). (Hilbert 1898/1899b, p. 369)

Accordingly, Hilbert formulated the following two important properties of equiva-
lence: 1) the combination of equidecomposable polygons results in equidecomposable
polygons; and 2) if equidecomposable polygons are removed from equidecomposable
polygons the remaining polygons are equicomplementable. These propositions corre-
spond to the additive and subtraction properties of the relation of equidecomposition,
respectively. Hilbert did not prove these properties, but considered them to be triv-
ial corollaries of the definitions. It should be noted that Hilbert neither proved nor
formulated the additive property of the relation of equicomplementability. This might
respond to the fact that there are important difficulties with this proof, which are related
to the definition of the operation of addition.

On the contrary, Hilbert formulated (a version of) the transitive property as Theorem
43:

56 “Gehen wir mit diesen Begriffsbildungen an die Betrachtung der elementargeometrischen Sätze über
Flächengleichheit und der damit zusammenhängenden Konstruktions-Aufgaben, so finden wir, dass es sich
hier immer um die Ergänzungsgleichheit der Figuren handelt. Die Sätze z. B., dass zwei Parallelogramme
und ebenso zwei Dreiecke mit gleicher Grundlinie und Höhe einander gleich sind, dass sich zu jedem
Polygon ein Dreieck von gleicher Fläche bestimmen lässt, sowie auch der Pythagoräische Lehrsatz werden
alle in dem Sinne bewiesen, dass die Ergänzungsgleichheit der betreffenden Polygone erkannt wird. Die
Herleitung aller dieser Sätze geschieht vollkommen ohne Anwendung von Stetigkeits-Betrachtungen.”
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Fig. 9 Transitivity property of equidecomposition. Adapted from (Hilbert 1971, p. 60)

Theorem 43 If two polygons P1 and P2 are equidecomposable with a third polygon
P3, then they are equidecomposable with each other. If two polygons are equicomple-
mentable with a third one, then they are equicomplementable with each other. (Hilbert
1971, p. 61)

Hilbert outlined a proof of the first part of this theorem, which corresponds to
the relation of equidecomposition. The main idea was to consider simultaneously in
P3 two nets of polygonal segments that decomposed P1 and P2, respectively, into
congruent triangles. The intertwining of these two nets in P3 decomposes the triangles
that compose P1 and P2 into other polygons, which in turn can also be decomposed
into triangles through diagonals. These triangles can then be rearranged in suitable
ways so that they compose as partial sums the triangles of P1, but also the triangles
which form P2. Hence, by definition, P1 and P2 are equidecomposable (Fig. 9).

Hilbert’s proof of the transitivity of the relation of equidecomposition was thus
grounded on the accompanying figure or diagram. A more rigorous proof would
require a precise derivation of the mutual division into triangles of both nets of polyg-
onal segments, as a consequence of the axioms of betweenness or Jordan’s theorems
for simple polygons.57 However, this proof would be rather long and tedious. More
importantly, Hilbert did not attempt to prove the second part of the theorem, dealing
with the relation of equicomplementability, and limits himself to point out that “the
second assertion of Theorem 43 follows now with no difficulty” (Hilbert 1971, p. 61).
Contrary to Hilbert’s opinion, this proof is problematic given the restriction imposed
on the notion of addition of polygons. This might be a reason why he chose not to
provide this proof.58

Hilbert proceeded then to examine the application of these notions of “equidecom-
position” and “equicomplementability” to the basic theorems about the equality of area
of plane figures. As already mentioned, the main concern was to establish whether,

57 See Theorem 9 and Theorem 10 in (Hilbert 1971).
58 In a Supplement to the tenth edition ofFoundations, Bernays (1971) identified this problemwithHilbert’s
notions equicomplementability and addition of polygons, and provides a solution based on the more general
notion of a polygonal, i.e., a collection of a finite number of triangles in the plane which satisfies the
triangulation property. A similar strategy is applied by Hartshorne (2000), who gives an alternative proof
of the transitivity property of “equicomplementability” using set-theoretic tools. On this issue, see also
Robering (2016).
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and under which conditions, these two notions were equivalent. Accordingly, Hilbert
formulated the following theorems:

Theorem 44 Two parallelograms with the same bases and with the same altitudes are
equicomplementable with each other.59

Theorem 45 Every triangle ABC is equidecomposable with a parallelogram of an
equal base and of half the altitude.60

Theorem 46 Two triangles with equal bases and altitudes are equicomplementable.61

The key result here is the proof of the theorem that two parallelograms (or two trian-
gles) with equal bases and altitudes are equidecomposable, that is, the corresponding
version of Theorem 46 for the relation of equidecomposition. In Sect. 3.1, we have
seen that the standard proof of this theorem, due by Duhamel (1866), was grounded on
the Archimedean property of line segments (Sect. 3.1). Hilbert’s original contribution
consisted in providing a proof of the impossibility of proving this theorem without
the admission of the axiom of Archimedes. More precisely, he showed that in every
non-Archimedean geometry it is possible to specify triangles which equal bases and
altitude which are equicomplementable, but which are not equidecomposable. Since
this proof constitutes a central result in Foundations in relation to the theory of area,
it is worthwhile to present Hilbert’s geometrical argument briefly.

Let e be an infinite element anda a finite element of a non-Archimedean geometry.62

On a ray of this non-Archimedean geometry construct the segments AB = e and
AD = a. Thus, there is no integer n such that n · e ≥ a. By Theorem 46, the triangles
ABC and ABC ′ are equicomplementable (Fig. 10). Consider now the triangle ABC .
Since in every triangle the sum of any two of its sides is greater than the third side63, it
follows that BC < 2e. Moreover, every segment lying in the interior of ABC is also
less than 2e. Assume now that there are decompositions of ABC and ABC ′ into a finite
number k of triangles congruent in pairs, i.e., ABC and ABC ′ are equidecomposable.
Every side of a partial triangle in the decomposition of ABC is less than 2e. Therefore,
the perimeter of this triangle is less than 6e, and the sum of the perimeters of all
these k triangles is less than 6k · e. From the supposition that ABC and ABC ′ are

59 Hilbert (1971, p. 62).
60 Hilbert (1971, p. 62).
61 Hilbert (1971, p. 62).
62 As an example of a non-Archimedean geometry, Hilbert refers to the model provided in §12 of Foun-
dations (Hilbert 1971). Schematically, this “analytical model” consists of the set �(t) of all algebraic
functions of one variable t obtained by finitely many applications of the operations of addition, subtraction,

multiplication, division, and the fifth operation
√
1 + ω2, where ω denotes a function which is obtained by

these five operations. A relation of ordering on the functions in �(t) is defined as follows: a is said greater
than b if a−b is always positive for a sufficiently large t . Likewise, a is said lesser than b if a−b is always
negative for a sufficiently large t . Clearly, in an analytic geometry constructed over the “complex number
system” �(t), the Archimedean axiom is not valid. On the one hand, every constant function c in �(t) is
lesser than the function ω(t) = t . On the other hand, there is no natural number n such that the relation
n · c > ω(t) holds. For more details on this model, see Volkert (2015).
63 Hilbert observes that the property of triangle inequality is an immediate consequence of his Theorem
23: “In every triangle the greater angle lies opposite to the greater side” (Hilbert 1971, p. 22).
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Fig. 10 Equidecomposition in non-Archimedean geometries (adapted from (Hilbert 1971, p. 63))

equidecomposable, it follows that the sums of the perimeters of the k triangles which
decompose ABC ′ must also be less than 6k ·e. But the side AC ′ is evidently a summand
in the latter summation, that is, AC ′ < 6k ·e. Then, since a < AC ′ (by Theorem 23), it
results that a < 6k ·e. This contradicts the initial hypothesis about the relation between
the segments e and a. Hence, the triangles ABC and ABC ′ are not equidecomposable.
QED.

Hilbert proved thus that the relations of equidecomposition and equicomple-
mentability are equivalent only if the axiom of Archimedes is assumed. This follows
from the fact that the Wallace–Bolyai–Gerwien theorem can only be proved with the
aid of the Archimedean axiom. Indeed, in the proof just given, the triangles ABC
and ABC ′ have the same measure of area (since they have a common base and equal
altitudes), but are not equidecomposable. Consequently, the construction of the theory
of plane area independently of Archimedean axiom is only possible on the basis of
the relation of equicomplementability.

From the seventh edition of Foundations, published in 1930, Hilbert also included
the following theorem about the equicomplementability of polygons:

Theorem 47 For every triangle and hence for every simple polygon it is always
possible to construct a right-angled triangle, one of whose legs is 1 and which is
equicomplementable with the triangle or polygon.64

It is striking that Hilbert did not include this theorem in previous editions of Foun-
dations, since this result had played a key role in the historical development of the
theory of equivalence. In particular, the standard method to compare polygonal fig-
ures, as implemented, for instance, by Stolz (1885) and Schur (1892), was essentially
grounded on this theorem. We surmise that this significant omission was related to
two main reasons. First, Hilbert appealed to a geometrical notion of measure of area
to compare any two polygonal figures; nevertheless, to introduce measures of area he
resorted to the arithmetic of segments, and not to the usual method of transformation
of polygons into equivalent parallelograms with a given base. Hence, this theorem
did not play such a significant role in his reconstruction of the theory of equivalence.
Second, the problems we havementioned concerning the proofs of the main properties
(viz. additivity and transitivity) of the relation equicomplementability made the proof

64 Hilbert (1971, p. 63). We have introduced some minor modifications in this translation.
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of Theorem 47 particularly challenging. In fact, Hilbert did not provide a detailed
proof of this theorem in Foundations.

Hilbert then reached the central problem in the development of the theory of equiva-
lence, namely to prove that plane polygons can be totally ordered based on the relation
of equicomplementability or, as he alternatively put it, to show that “not all polygons
are equicomplementable.” As we have seen, this boiled down to prove the propo-
sition I.39 of Euclid’s Elements, which he reformulated in terms of the relation of
equicomplementability:

Theorem 48 If two equicomplementable triangles have the same bases, then they also
have the same altitudes.65

Hilbert added the following observation about this theorem:

This fundamental theorem is found in the first book of Euclid’s Elements as
Theorem 39. In the proof Euclid appeals to the general theorem of magnitudes
“Kaì tÕ Ólou toν̃ m\eroue meι̃zÒu ™stw” (The whole is greater than any of its
parts), a method that is equivalent to the introduction of a new geometric axiom
of equicomplementability.
However, it is possible to establish Theorem 48 and also the theory of area in
the manner proposed, i.e., with the aid of the plane axioms alone and without
the use of the Archimedean axiom. In order to see this, one needs the concept of
measure of area [Inhaltmaßes]. (Hilbert 1971, p. 64. My emphasis)

Thus, Hilbert appealed to the introduction of a measure of area of plane polygons
to prove De Zolt’s postulate and the key Theorem 48. This means that the problem of
the total ordering of polygonal areas was solved by developing an (elementary) theory
of measure of area, or more precisely, by proving that there was a correspondence
between the concept(s) of geometrical equivalence (viz. equicomplementability) and
the concept of measure of area. It is worth noting then that Hilbert’s development of
the theory of geometrical equivalence differed from Euclid’s theory in (at least) one
crucial respect, for the comparability of polygonal areas was grounded ultimately on
a geometrical notion of measure of area. In the next section, we focus on Hilbert’s
careful construction of a theory of area measure, which resulted in his novel and
rigorous proof of De Zolt’s postulate.

6.2 The proof of De Zolt’s postulate

Hilbert’s proof of De Zolt’s postulate in Foundations constituted a landmark in the
modern theory of area, in the sense that it became almost immediately the “canonical”
or “standard” proof of the geometrical postulate. This might be credited not only to the
notable success of the epochal monograph, but also to the very character or structure of
the proof. Since the proof did not depend on any continuity assumption—specifically,
the Archimedean axiom—but made an essential appeal to a purely geometrical notion
ofmeasure of area, it couldwell be considered as elementary. However, this elementary

65 Hilbert (1971, p. 64).
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character did not prevent that Hilbert’s proof could be still regarded as complex and
involved, at least for an exposition of the theory of equivalence in elementary geometry
textbooks.66

It is worth noting that the proof ofDeZolt’s postulate underwent significant changes
over the several editions ofFoundations. In particular, the seventh edition of 1930 intro-
duced completely reworked proofs of a pair of auxiliary theorems, which constitute the
core of the proof of the central geometrical postulate. Notwithstanding, these changes
did not modify the general idea or strategy of the geometrical argument. As mentioned
earlier, the central idea of Hilbert’s elementary proof consisted in deriving De Zolt’s
postulate as an immediate consequence of the existence of a function of area measure
of plane polygons, introduced in a purely geometrical fashion. Hilbert’s functions of
measure of area did not take numerical values (i.e., positive real numbers) as usual;
in other words, they did not rest on the possibility of measuring the length of line
segments by means of real numbers. On the contrary, Hilbert defined the measure of
area of a plane polygon as a characteristic segment or, more precisely, as an element
of the ordered field generated by his arithmetic of segments or Streckenrechnung, in
German. The main strategy of the proof was to obtain, by means of strictly geometri-
cal arguments, the standard properties of area measures and to prove that equivalent
polygons (viz. equicomplementable polygons) have equal measures of area. De Zolt’s
postulate was then a corollary of the latter geometrical fact.

Hilbert’s axiomatic construction of a theory of measure of area was thus grounded
on the arithmetic of segments and the theory of proportion and similar triangles, based
on the former, developed in Chapter III of Foundations. These important geometrical
results are very well known, but let us recall them briefly.67 Hilbert’s construction of
a segment arithmetic consisted in defining pure geometrically the operations of addi-
tion and multiplication of segments and then in proving that these operations satisfy
the relevant algebraic properties. In particular, segment multiplication was defined by
appealing to the standard geometric construction of the fourth proportional (Elements,
VI.12), which Descartes had used for the first time to define the product of two line
segments as another segment. This definition of segment multiplication required fix-
ing a unit segment and the validity of the parallel axiom. Hilbert’s key realization was
that the classical theorems of Desargues and Pascal could be used to prove that these
operations satisfy all the properties of an ordered field.68 In particular, he showed that

66 This observation wasmade, for example, by Tarski in his work “On the equivalence of polygons” (1924):

As is well known, David Hilbert showed that the preceding statement [i.e., De Zolt’s postulate] can be
proved with the help of axioms usually cited in elementary geometry textbooks. Because of the difficulty
of that proof, however, one does not make use of it in a secondary-school class. (Tarski 1924, p. 79)

67 The development of a geometrical calculus of segments is often mentioned as one of the most important
contributions of Hilbert’s early axiomatic work and has been studied at length in the literature. For some
recent studies, see, for example, Hallett (2008); Giovannini (2016), and Baldwin (2018a).
68 The importance of the theorems of Desargues and Pascal (or, better, Pappus) in the context of projective
geometry was well known by the last decade of the nineteenth century. Particularly, Wiener (1893) and
Schur (1898) showed that these theoremswere essential to von Staudt’smethod to introduce coordinates into
projective geometry—i.e., his famous Wurfrechnung—, for they could be used to prove the fundamental
theorem of projective geometry without assuming any continuity axiom. Hilbert’s novel insight was to
explore the significance of these theorems in the context of Euclidean geometry. For an excellent and
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while the former theorem was essential to prove the associative law under multiplica-
tion, the latter warranted the commutative property of the same operation. In modern
terminology, Hilbert proved that while any plane where Desargues’s theorem holds
can be coordinatized by a division ring or skew field, Pascal’s theorem guarantees that
the plane can be coordinatized by an ordered field. Hilbert accomplished then a “purely
geometrical” or “internal” introduction of number into geometry, in the sense that the
coordinateswere now elements of the field generated by his segment arithmetic. As is
well known, the adequate introduction of number into geometry was an overwhelming
aim in Foundations69 :

But, lest science should fall prey to an unfruitful formalism, it will have to reflect
on itself in a later phase of development and at least examine the grounds upon
which it arrived at the introduction of number.70 (Hilbert 1898/1899a, p. 222;
Emphasis in original)

The geometrical derivation of the structure of an ordered field from the structure
of the Euclidean plane also allowed Hilbert to provide an adequate definition of pro-
portionality for line segments and to reconstruct the theory of similar triangles. More
specifically, the proportionality of line segments was defined as the equality of the
product of two pairs of line segments:

Definition 6 If a, b, a′, b′ are any four segments let the proportion a : b = a′ : b′
denote nothing else but the segment equation ab′ = ba′. (Hilbert 1971, p. 55)

A crucial aspect of this approach was that, starting from a definition of segment
multiplication, Hilbert regained directly the notion of proportionality for line seg-
ments, thereby avoiding the reference to the axiom of Archimedes.71 Moreover, this
definition rested essentially on the commutative property of the multiplication of line
segments and, therefore, on Pascal’s theorem. The fact that the construction of a seg-
ment arithmetic—but also his new original proof of Pascal’s theorem—did not assume
the Archimedean axiom was then essential for the general aim of providing a rigorous
foundation of the theory of plane area independently of any continuity assumption,
and therefore, of the concept of real number.

Back to the construction of the elementary theory of measure of area, Hilbert
started as customary by defining a measure of area for triangles. The measure of
area of a triangle was defined as a characteristic segment s, which was obtained
as the semi-product of the base by the corresponding altitude, in symbols, 1

2bh. This

detailed study of the significance of the theorems Desargues and Pappus in modern axiomatic geometry,
see Pambuccian and Schacht (2019).
69 On the chief significance of the introduction of number into geometry for Hilbert’s axiomatic project,
see Pambuccian (2013). I would like to thank an anonymous reviewer for calling my attention to this point.
70 “Aber, wenn die Wissenschaft nicht einem unfruchtbaren Formalismus anheimfallen soll, so wird sie
auf einem späteren Stadium der Entwicklung sich wieder auf sich selbst besinnen müssen und mindestens
die Grundlagen prüfen, auf denen sie zur Einführung der Zahl gekommen ist.”
71 As is well known, Descartes derived his definition of segmentmultiplication fromPropositionVI.2 of the
Elements on the proportionality of similar triangles; consequently, he assumed not only the classical theory
of proportion of Book V in its entirety but also the validity of the Archimedean axiom. This constitutes a
crucial difference with Hilbert’s treatment of segment multiplication in Foundations.
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Fig. 11 Measure of area of a
triangle

associated segment s should be taken as an element of the orderedfield generated by the
segment arithmetic. Thus, amain innovationofHilbert’s approach in relation toSchur’s
strategy discussed in Sect. 4.2, which also associated line segments to polygonal areas,
was that this set of segments was now endowed with the algebraic structure of an
ordered field. In other words, Hilbert’s elementary theory of measure of area did not
consist in just building an application or mapping from the set of plane polygons to
the linearly ordered set of line segments, but to the richer algebraic structure of an
ordered field. Thiswas especially important because some basic algebraic properties of
multiplication, such as commutativity and distributivity over addition, were essential
to prove the fundamental properties of measure of area functions, and then to provide
a rigorous foundation for the theory of plane area.

The main problem in the introduction of a measure of area function consisted in
proving that these functions are well defined, in the sense that the measure of area of a
triangle is independent of the side chosen as the base and of the corresponding altitude.
This fundamental property was proved based on above definition of proportionality
of line segments and the following central theorem about the triangle similarity:

Theorem 41 If a, b and a′, b′ are corresponding sides of two similar triangles, then
the proportion a : b = a′ : b′ holds. (Hilbert 1971, p. 55)

The independence of the measure of area of a triangle from the side chosen as
the base follows immediately from this theorem. In fact, consider a given triangle
ABC and draw the corresponding altitudes ha = AD and hb = BE (Fig. 11). Then,
from the similarity of the triangles BCE and ACD, one obtains (by Theorem 41) the
following proportion: a : hb = b : ha , that is, a.ha = b.hb. The same argument can
be applied to the side c and the corresponding altitude hc. Hence, one can conclude
that a.ha = b.hb = c.hc.72

Hilbert assigned a sign to the measure of area of a triangle, depending on whether
one considers its positive or the negative orientation. More precisely, if all the points
in the interior of triangle ABC lie to the left of the sides AB, BC , CA, then ABC is

72 In the Appendix II of Foundations, Hilbert shows that if the standard triangle congruence axiom (III.5) is
replaced by aweaker version, which restricts its application only to triangles with the same orientation, this
central property of a measure of area of triangles fails. Moreover, in this “non-Pythagorean geometry,” the
proposition I.39 of the Elements, as well as De Zolt’s postulate, do not generally hold. See Hilbert (1902).
In addition, it should be noted that in order to define a measure of area of triangles in this prescribed way,
one must also show that every triangle has at least one height which is completely in its interior. I would
like to thank Klaus Volkert for this observation.
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called the positive orientation of the triangle. In turn, if all the interior points of ABC
lie to the left of the sidesCB, BA, AC , thenCBA is said to be the negative orientation.
In other words, the orientation of a triangle is established by considering the order
of the corresponding vertices in a clockwise (i.e., negative) or counterclockwise (i.e.,
positive) direction. Thus, the measure of area of a triangle ABC , positively oriented,
is a positively directed segment s. In symbols, the measure of a positively oriented
triangle ABC is denoted as [ABC], from which it follows that [CBA] = −[ABC].
The orientation assigned to triangles is essential to guarantee a fundamental property
of a measure of area function, namely for any triangle T , positively oriented, the
measure of area of T is always > 0. Moreover, from the above definition of measure
of area of a triangle it follows that if T and T ′ are congruent triangles, then T and
T ′ have the same measure of area. This is the second fundamental property of the
measure of area.

The possibility of decomposing any polygon into triangles in an entirely determined
way naturally suggested the definition of its measure of area: the measure of area of
a polygon (positively oriented) is the sum of the measure of area of the triangles
(positively oriented) in which it is decomposed under a given triangulation. The most
critical task and the central challenge in the development of a theory ofmeasure of area
of plane polygons was to prove that this function is well defined, i.e., that the measure
of area is uniquely determined by the polygon or, equivalently, that it is independent
of the triangulation which is used for its calculation. This can be appreciated in the
fact that this is the part of Hilbert’s proof that underwent the most substantial changes
in the several editions of Foundations.

More specifically, Hilbert advanced two different geometrical arguments to prove
that his functions of area measure of polygons are well defined. The first argument
was presented, with minor modifications, from the Festschrift to the sixth edition of
Foundations, published in 1923. In turn, the second argument appeared for the first
time in print in the seventh edition of 1930. However, these two different arguments
followed the same general strategy, which consisted in proving first that the function
of measure of area of triangles satisfies the additive property, that is, that if a triangle
is decomposed into a (finite) number k of triangles, then the sum of themeasure of area
of the k triangles (positively oriented) is equal to the measure of area of the original
triangle (also positively oriented). From this fundamental property of area measure of
triangles, he quickly derived that every polygon uniquely determines its measure of
area independently of the triangulation used for its calculation.

To be more precise, Hilbert’s original proof that the measure of area of triangles
satisfies additivity was based significantly on the work of Louis Gérard, particularly
on (Gérard 1898). In general terms, the proof strategy was built on the notion of
transversal decomposition of a triangle, that is, the decomposition which results from
a segment joining a vertex of a triangle with a point on the opposite side. From
the distributive law of the segment arithmetic, it followed immediately that the area
measure of an arbitrary triangle is equal to the sum of the measures of area of the two
triangleswhich are obtained from a transversal decomposition.Moreover, by repeating
the same reasoning, one could show that in general the measure of area of any triangle
is equal to the sum of the measures of area of the triangles which arise by applying
successively transversal decompositions of the given triangle in any (finite) number
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Fig. 12 Theorem 49 of (Hilbert
1971)
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of times. Then, by means of a simple geometrical argument, Hilbert showed that any
arbitrary decomposition of a triangle into partial triangles is reducible to transversal
decompositions.73

In turn, Hilbert’s second proof made a fundamental appeal to a notion of oriented
measure of area of a triangle. This strategy had its conceptual roots in a method devel-
oped byAugustMöbius in an influential paper on the theory of content of polyhedra.74

However, to our knowledge, Hilbert did not make any explicit reference to Möbius’
method neither in the several editions of Foundations nor in unpublished sources. We
will focus now on this second proof strategy, which Hilbert considered more clear and
illuminating for the grounding of a theory of measure of area.

Hilbert’s geometrical argument proceeded in two steps. First, he formulates and
proves the following auxiliary theorem:

Theorem 49 If O is a point outside a triangle ABC, then the relation

[ABC] = [OAB] + [OBC] + [OCA]

holds for the area [Inhaltmaß] of the triangle. (Hilbert 1971, p. 65)

The complete geometrical proof of this theorem demands considering several cases
concerning the position of the point O with respect to the sides of the triangle. Hilbert
only proved the casewhereO lies in the exterior of the triangle, but in the interior of one
of its angles (Fig. 12). Schematically, the argument runs as follows: let the segments
AO and BC meet at a point D. By resorting to the distributive law of multiplication
over addition of the segment arithmetic, one obtains the following relations:

[OAB] = [ODB] + [DAB],
[OBC] = −[OCD] − [ODB],
[OCA] = [OCD] + [DCA].

By adding the left and right terms of the equalities, respectively, one obtains the
equality [OAB]+[OBC]+[OCA] = [DAB]+[DCA]. But from the application of

73 For an detailed presentation of Hilbert’s original proof strategy, see Zacharias (1930) and Hessenberg
(1967). A modern reconstruction can be found in Hartshorne (2000).
74 Cf. Möbius (1886). The basic ideas of this method were already developed by Möbius in his book Der
barycentrische Calcul Möbius (1885).
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Fig. 13 Theorem 50. Adapted
from (Hilbert 1971)
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the distributive law of multiplication over addition it results that [DAB] + [DCA] =
[ABC]. Hence, [OAB] + [OBC] + [OCA] = [ABC], namely the desired result.
The remaining cases can be proved easily by repeating a similar argument.

The second step consists in proving properly that the additive property of the area
measure of triangles is valid for any arbitrary decomposition of a triangle into partial
triangles. This is formulated as Theorem 50:

Theorem 50 If a triangle ABC is decomposed into a finite number of triangles �k ,
then the area [Inhaltmaß] of the positively oriented triangle ABC is equal to the sum
of the areas [Inhaltmaße] of all positively oriented triangles �k .

Hilbert’s proof of this key theorem in the elementary theory of measure of area
can be reconstructed as follows. Consider a given decomposition into triangles of a
triangle ABC and let ABC be its positive orientation. Let DEF and DEG be two
adjacent triangles in this decomposition, such that the common side DE lies in the
interior of ABC . Choose a point O in the plane outside the triangle ABC (Fig. 13).
By Theorem 49, the following equalities hold:

[DEF] = [ODE] + [OEF] + [OFD]
[GED] = [OGE] + [OED] + [ODG].

Adding the right and left terms of these segment equalities, respectively, the terms
[ODE] and [OED] will cancel each other out (since [OED] = −[ODE]), that is,
the measure of area of the triangle defined by O and the common side DE will be
canceled out on the right-hand side of this equality. Similarly, adding the measure of
area of another adjacent triangle (positively oriented)

[EGH ] = [OEG] + [OGH ] + [OHE],

the term [OGE] will also cancel out on the right-hand side of the equality. Repeat
now this process and add in the same manner the measure of area of all positively
oriented triangles �k which form the given decomposition of the triangle ABC . It
is clear that for every segment DE , which lies in the interior of the triangle ABC ,
the measure of area [ODE] will cancel out on the right-hand side of the equality.
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Fig. 14 Additive property of
measure of area of triangles
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In other words, the measure of area of triangles defined by O and all segments of
the triangle net which lie in the interior of the triangle ABC will cancel out. Thus,
what remains is the sum of the measure of areas of the triangles defined by O and
the points used for the decomposition of the triangle ABC lying on its sides, i.e.,
AA1, . . . , Al B, BB1, . . . , BmC,CC1, . . . ,Cn A (Fig. 14).Denoting

∑n
k=1[�k] as the

sum of the measure of areas of all positively oriented triangles �k , one obtains that

n∑

k=1

[�k] =[OAA1] + · · · + [OAl B]

+ [OBB1] + · · · + [OBmC]
+ [OCC1] + · · · + [OCn A]

Hence, by theorem 49,
∑n

k=1[�k] = [OAB]+[OBC]+[OCA] = [ABC]. QED.
The final step to prove that the function of measure of area for plane polygons is

well defined was just hinted by Hilbert. In fact, he just restricted himself to provide
the following definition, accompanied by an informal remark:

Definition 7 Let the area [P] of a positively oriented simple polygon be defined as
the sum of the areas [Inhaltmaße] of all positively oriented triangles into which the
polygon splits in some definite decomposition. By an argument similar to the one
used in Section 18 for the proof of the Theorem 43, it becomes apparent that the area
[Inhaltmaß] of [P] is independent of the manner of decomposition into triangles and
thus it is uniquely determined only by the polygon. (Hilbert 1971, p. 67)

From the above definition of measure of area of polygons, it follows immediately
that congruent polygons have equal measure of area. Then, by Theorem 50, it fol-
lows that equidecomposable polygons have equal measure of area. From this one
can also show by a very simple argument that equicomplementable polygons have
equal measure of area. Hilbert used this relation of implication between the concepts
of equidecomposition and equicomplementary and the notion of measure of area to
provide the desired proof of central proposition I.39 of the Elements, which in his
reconstruction asserts that if two equicomplementary triangles have the same base,
they also have the same altitude (Theorem 48). More precisely, let b be the base of
the triangles and call h and h′ the corresponding altitudes. Then, from the assumption
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that the two triangles are equicomplementary, one deduces that they must have equal
measure of area, that is,

1

2
bh = 1

2
bh′.

From this equality it follows immediately that h and h′ are equal, that is, the triangles
will necessarily have the same altitude.75

Hilbert also provided a proof of a version of the Wallace–Bolyai–Gerwien theorem
corresponding to his notion of equicomplementability, namely that if two polygons
have equal measures of area, then they are equicomplementable. This theorem is
obtained easily by transforming the two polygons with equal measures of area into two
equicomplementable right triangles with a unit leg (by Theorem 47), and then showing
that these triangles must be congruent and, therefore, equicomplementable. These
results regarding the co-implication between equicomplementability and measure of
area are gathered together in the following theorem:

Theorem 51 Two equicomplementable polygons have the same measure of areas
[Inhaltmaße] and two polygons with the same area [Inhaltmaß] are equicomple-
mentable. (Hilbert 1971, p. 69)

Theorem 51 ensures that if two equicomplementable rectangles have a common
side, then their other side must also coincide. Moreover, this theorem is also often
expressed bymeans of its contrapositive, namely that if two polygons do not have equal
measures of area, then they are not equicomplementable. Thus, De Zolt’s postulate
becomes just a corollary of the latter theorem. Hilbert formulates the fundamental
geometrical postulate according to the following version:

Theorem 52 (De Zolt’s postulate) If a rectangle is decomposed by lines into several
triangles and one of these triangles is omitted, then it is impossible to fill out the
rectangle with the remaining triangles. (Hilbert 1971, p. 69)

To prove this central theorem, one only needs to show that a polygon can never
be equicomplementable to a proper polygonal component. Let a given polygon P be
decomposed into several polygonal parts P1,P2, . . . ,Pn . By the additive property of
measure of area, it follows that:

[P] = [P1] + [P2] + . . . + [Pn]

But since the measure of area of each one of the polygonal parts P1,P2, . . . ,Pn

is greater than 0, the measure of area of the polygon P is greater than any of its
polygonal components, such as, for example, P1. Hence, by Theorem 51, P cannot be
equicomplementable to P1. De Zolt’s postulate is then a special case of this result.

75 Note that Hilbert’s proof of the key Theorem 48 relies essentially on a notion of measure of area
of a triangle, particularly, on Theorem 50. This reveals that, in certain (important) cases, the numbering
or counting of theorems in Chapter IV of Foundations does not necessarily follow a “logical order” of
justification. I would like to thank Günther Eder for this observation.
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With the proof of De Zolt’s postulate, Hilbert achieved the goal of providing a solid
foundation of the theory of plane area. The problem of the comparability of plane
polygons with respect to the relation of equicomplementability was thus solved by
resorting to a notion of measure of area. This conclusion followed essentially from the
fact that there is a perfect correspondence between his notions of equicomplementabil-
ity and measure of area, as proved in Theorem 51.76 Nevertheless, this appeal to a
“metrical” concept of area was not problematic from the standpoint of his axiomatic
project, for this notion was defined in pure geometric fashion without relying on the
concept of real number or on any continuity assumption. 77

7 Conclusions

The central aim of this paper was to provide a detailed historical account of Hilbert’s
axiomatization of the theory of plane area. More specifically, our goal was two-fold:
first, to examine and assess this geometrical theory against its historical background;
second, to elucidate from amore conceptual perspective its role and significance for the
general foundational program carried out in Foundations. From a historical perspec-
tive, we have seen that Hilbert’s central contribution was to elevate the construction
of the elementary theory of area to an unprecedented level of rigor. This specific
contribution involved several elements. Hilbert’s treatment of the central notions of
decomposition and addition of polygons introduced important conceptual clarifica-
tions, and resulted inmore rigorous proofs of the fundamental properties of geometrical
equivalence. Moreover, the original distinction between the relations of equidecompo-
sition and equicomplementability was essential for the principal objective of removing
the dependence on theArchimedean axiom from the development of the theory of plane
area. These conceptual clarifications impacted on Hilbert’s notable proof of De Zolt’s
postulate, an important contribution to modern axiomatic geometry.

From a conceptual viewpoint, our examination of Hilbert’s theory of plane area has
contributed to clarifying its significance in the geometrical program executed in Foun-
dations.More precisely,we have seen howHilbert’s two key technical innovations, i.e.,
his calculus of segments and his definition of proportionality, were structurally con-
nected to the axiomatic reconstruction of the theory of plane area. As clearly revealed

76 Let a relation of greater (“<”) and lesser (“>”) in area be introduced as follows: a polygon P is called
greater than a polygonQ (andQ lesser than P), if there is a polygon P′ properly contained in P such that P′
andQ are equicomplementable. Then, from Theorem 51, it follows that P � Q if and only if [P] � [Q]. As
mentioned, Hilbert also proved that the Archimedean axiom required to prove that the same co-implication
is valid for the relation of equidecomposition.
77 In his modern reconstruction of Hilbert’s theory of area, Hartshorne (2000) has suggested that the detour
in Hilbert’s proof of De Zolt’s postulate through a theory of area measure might be unavoidable: “This
proof [of De Zolt’s postulate] is analytic in that it makes use of the field of segment arithmetic and similar
triangles. We do not know any purely geometric proof, for example of (I.39), that triangles on the same base
with equal content [i.e., equicomplementable] have the same altitude” (p. 210). The same observation has
been made by Volkert (2010, 2015) and Baldwin (2018b). Interestingly, Hilbert’s construction of models
of non-Pythagorean geometries in the Appendix II of Foundations seems also to suggest this connection
betweenDeZolt’s postulate and a notion of areameasure of polygons (see footnote 71 above). The presumed
impossibility of proving De Zolt’s postulate with elementary means and without relying on some measure
of area raises then interesting and complex technical issue and deserves further investigation.
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in his lecture courses, Hilbert’s fundamental concern about the foundations of this
theory was to guarantee the existence of a relation of total order for polygonal areas.
More importantly, this problem should be solved in a purely geometrical fashion, by
delivering an elementary proof of De Zolt’s postulate which did not depend on the
Archimedean axiom. Both the construction of the segment arithmetic and the theory
of proportion played an essential role in this task.

On the one hand, Hilbert’s segment arithmetic allows one to derive the algebraic
structure of an ordered field from the axioms for the Euclidean plane,without assuming
any continuity axioms. A crucial element in this construction was a new proof of (an
affine version of) Pascal’s theorem, based exclusively on theplane axiomsof incidence,
betweenness, and congruence. The commutative and distributive laws of segment
multiplication, obtained by the latter theorem, were then essential for the rigorous
and purely geometrical introduction of measure of area functions, for they delivered
central properties such as additivity. On the other hand, Hilbert’s original strategy of
starting from the definition of segment multiplication to regain directly the notion
of proportionality for line segments had significant implications for the development
of the theory of area, namely: it allowed to define measures of area according to the
standard formulas. In sum, we have seen howHilbert explored the potentiality of these
two technical innovations to achieve a rigorous development of the theory of plane
area, which was in accordance with the general methodological and epistemological
requirements that he laid down for his axiomatization of Euclidean geometry.

Our discussion of the theory of plane area has also proved to be instructive for
the understanding of the central requirement of “purity of the method” in modern
synthetic geometry. In this specific context, this methodological requirement was usu-
ally equated to the demand of avoiding the concept of real number and continuity
assumptions when laying down the foundations of geometry. In this paper, we have
seen that Hilbert advanced an alternatively, or better complementary, interpretation of
“purity,” which consisted in the exclusion of the concept of “extensive” or “measur-
able” magnitude from the axiomatic reconstruction Euclidean geometry. Specifically,
this meant that the usual “general principles of magnitudes” had to be converted into
geometrical theorems by interpreting the relations and operations of magnitudes as
specific geometrical relations and operations for every (relevant) kind of geometrical
object. Indeed, simply assuming that geometrical objects (such as segments, angles,
and plane figures) bear all the fundamental (algebraic) properties of magnitudes was
tantamount to accepting without proof that they behave like “numbers.” This can be
considered an additional reason for the demand of proving De Zolt’s postulate as a
geometrical theorem in late nineteenth-century geometry.

Finally, Hilbert’s construction of the theory of area independently of Archimedes’
axiom naturally posed the question of whether an analogous development of the the-
ory of volume in space was possible. Hilbert himself raised the challenge as the
third of his famous “Mathematical Problems” in 1900. As is well known, Max Dehn
promptly answered the question in the negative by proving that the Wallace–Bolyai–
Gerwien theorem is not generally valid in space for polyhedra, or more precisely,
that there are polyhedra (specifically, tetrahedra) with equal volume which are nei-
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ther equidecomposable nor equicomplementable.78 This notable result inspired a rich
array of investigations on the foundations of the theory of equivalence of polyhedra.79

Schatunowsky (1903), for instance, developed an elementary theory of volume with-
out resorting to either the concept of limit or continuity axioms, in which a proposition
analogous to De Zolt’s postulate was valid, but the Wallace–Bolyai–Gerwien did not
generally hold.80 In turn, Süß (1921) provided a rigorous treatment of the theory of
equivalence of polyhedra based on Cavalieri’s principle on the equality of volume of
solids, that is, on non-elementarymethods.81 The formulation of De Zolt’s postulate in
solid geometry, as well as the specification of the necessary and sufficient conditions
to prove it, then poses interesting historical and conceptual problems that have to be
investigated in a different paper.
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