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Abstract 

Testate amoebae are a diverse group of shelled protists frequently used as model organisms in 

microbial biogeography. Relatively few species have been reported for the Southern 

Hemisphere, however, it remains unclear whether this lower diversity is real or an artifact of 

under-sampling or misidentifications, which would reduce their potential to address 

macroecological questions. We evaluated testate amoebae diversity from the full range of 

habitats occurring within two Tierra del Fuego peatlands and compared it with the reported 

diversity for the area and from the Northern Hemisphere peatlands. We recorded 87 species, of 

which 69 are new for the region and 45 of them probably new to science and likely to have 

restricted geographical distributions. Combined with previous studies, the total diversity of 

testate amoebae only from Tierra del Fuego peatlands now reaches 119, as compared with 183 

reported from all Northern Hemisphere peatlands. Our results demonstrate that the number of 

Gondwanian and Neotropical endemic testate amoeba may be substantially higher than currently 

known. Previous reports of Holarctic taxa in Tierra del Fuego may result from forcing the 

identification of morphotypes to the descriptions in the most common literature (force-fitting) 

South American species into species common in literature from other regions. 
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Introduction 

Understanding global biodiversity patterns requires taxonomy and biodiversity inventories of 

comparable quality and coverage depth at the global and regional scales. Both of these 

conditions are best fulfilled for larger organisms while data are more limited for microbial taxa 

(Decaëns, 2010; Wilkinson, 1998). Nevertheless, an increasing number of studies have aimed to 

compile existing data on various groups of unicellular and multicellular microscopic organisms, 

including nematodes (e.g. van den Hoogen et al. 2019), rotifers (Fontaneto et al., 2008), fungi 

(Tedersoo and Lindahl, 2016), bacteria (Delgado-Baquerizo et al., 2018), protists or 

microorganisms in general (Bass et al., 2007), ciliates (Azovsky and Mazei, 2013; Foissner, 

1997), flagellates (Azovsky et al., 2020, 2016) and testate amoebae (Fernández et al., 2016, 

2015). Still it is clear that the intensity of research effort on both taxonomy and biogeography is 

very unevenly distributed across the globe and this potentially undermines any efforts to infer 

general patterns from existing data (Mazei et al., 2017). As filling this important research gap is 

a daunting task, a useful approach is to focus on comparable ecosystem types or biomes that 

occur in distant regions, ideally in both hemispheres (Bahl et al., 2011; Sharifian et al., 2020).  

One such example is Sphagnum-dominated peatlands, which are common in the boreal 

regions and in some austral regions such as Tierra del Fuego. Our focus here is on testate 

amoebae, a group of shell-producing protozoa, which are common and diverse in soils and 

freshwater habitats and have been best studied in such peatlands. Testate amoebae are considered 

as valuable bioindicators for environmental conditions, due to their narrow ecological tolerance 

and the fact that their diversity can be predicted from current and past climatic conditions as well 

as soil characteristics (Fernández et al., 2017; Lara et al., 2016; Singer et al., 2019). Moreover, 

due to the long-term persistence of their shells in the environment they are commonly used as 
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proxies in palaeoecological studies of lakes and peatlands (Amesbury et al., 2016; Mitchell et al., 

2008). They also include clear examples for endemism in microbial biogeography (Heger et al., 

2011; Qin et al., 2016). Therefore, knowing the geographical distribution of testate amoebae is 

fundamental for assessing the geographical range within which models - that are typically 

developed for a given region - are valid. 

Testate amoebae are a polyphyletic group distributed within three major eukaryotic 

lineages, Amoebozoa (Arcellinida, characterized by blunt pseudopodia), Rhizaria (Euglyphida 

and Tectofilosida, with thread-like pseudopodia) and Stramenopiles (Amphitremida; thread-like 

pseudopodia and double aperture) (Kosakyan et al., 2016). Generally, their diversity evaluation 

is based on microscopic observations; species are defined mostly by the overall shape, size and 

composition of their test (shell). Their global diversity is currently estimated to ca. 2000 taxa 

(Meisterfeld, 2002a, 2002b), but recent molecular studies revealing the existence of cryptic 

species suggest that their true diversity is much higher (Kosakyan et al., 2012). Such closely-

related cryptic species were also shown to have diverging ecologies (Singer et al., 2018) and 

distribution (Singer et al., 2019). However, until a vast barcoding effort is achieved to expand the 

testate amoeba molecular database combined with the development of protocols adapted to these 

particular organisms, morphological identification of taxa remains the only option available to 

study their diversity. This approach has proven to be accurate for past and present bioindication 

(Mitchell et al., 2008; Swindles et al., 2019). Indeed, morphological diversity can be considered 

as a good proxy for specific diversity (Kosakyan et al., 2012) and even genus-level identification 

was shown to be significantly correlated to species-level diversity (Wilkinson and Davis, 2000).  

Most studies on testate amoebae have focused on boreal Sphagnum-dominated peatlands, 

where they are known to be highly diverse and functionally important; they can constitute half of 

(Mitchell et al., 2008; Swindles et al., 2019)
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the microbial biomass and are considered as the top microbial predators (Gilbert et al., 1998a, 

1998b; Jassey et al., 2012; Mitchell et al., 2008). Amesbury et al. (2016) compiled a dataset from 

31 studies in 18 boreal countries, building a list of 183 species and varieties, similar numbers are 

expected for other widely studied Northern Hemisphere countries such as China and Canada 

(Smith and Wilkinson, 2007). As Sphagnum-dominated peatlands are also found in the Southern 

Hemisphere under comparable climates, it is possible to directly compare the diversity of testate 

amoebae of both hemispheres and thus to test if geographical distance has an impact on diversity 

or taxonomic composition.  

Only few testate amoeba species have been documented from Southern Hemisphere 

Sphagnum-dominated peatlands (e.g. 44 from Galápagos; Fournier et al. 2016; 34 from New 

Zealand; Mckeown et al., 2021; 21 from Malvinas/Falkland Islands; Mauquoy et al., 2020). 

Tierra del Fuego is located in southern South America (Fig. 1), encompasses the southernmost 

extensive area of peatland development (Lindsay et al., 1988) and is therefore an ideal region to 

conduct comparative studies of Sphagnum-dominated peatland biodiversity between the 

Northern and Southern Hemispheres. In the Big Island of Tierra del Fuego, Vucetich (1974) 

reported 30 species in Sphagnum peatlands located near Ushuaia. More recently, van Bellen et 

al. (2014) reported 32 species from five peatlands in the same region. As only 12 species were 

common to the two studies it is likely that the impoverished austral fauna is an artefact of under-

sampling and more work is needed to assess the true diversity of testate amoebae in peatlands of 

this region. Moreover, these studies focused exclusively on the Sphagnum matrix, and peatland 

pools have been overlooked. Contrary to the common belief that testate amoebae only occur in 

the water column by resuspension of benthos and detached from surrounding macrophytes, 

sampling and
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planktonic communities have been well documented in lakes and rivers (Lansac-Tôha et al., 

2009; Mucio Alves et al., 2008; Velho et al., 2003). 

Among the relatively few diversity studies in the Southern Hemisphere, a recent 

systematic analysis of testate amoeba diversity and distribution in Chile has revealed the 

existence of a high diversity (352 taxa) including 24 novel taxa. This study performed a detailed 

examination of latitudinal diversity patterns and testing macroecological hypotheses (Fernández 

et al., 2016, 2015). Although very detailed in the geographical coverage of samples, this study 

did not pursue an in-depth exploration of the diversity within any given ecosystem type. 

Addressing such a question would require a detailed study of the main microhabitats within 

single ecosystem type, as was done for example in the Russian taiga wherein 80 taxa were 

observed, while the next highest diversity reported in less systematic previous studies was 65 

(Tsyganov et al., 2015). It is therefore likely to still find ca. 1/3 more diversity by enhancing the 

coverage of environmental heterogeneity in a rather well-studied biome even using only 

morphological approaches. 

In this work, we aimed at re-evaluating the diversity of Southern Hemisphere testate 

amoebae in Sphagnum-dominated peatlands by surveying all landscape elements and micro-

habitats along a transect crossing the dome-shape microtopography of two peat bogs. We 

hypothesized that the testate amoeba diversity from Tierra del Fuego peatlands was formerly 

underestimated by sampling only the Sphagnum bryosphere. Given that the vast majority of the 

species known today were found in Sphagnum lawns, we predicted that richness would be higher 

there than in the pools, while amongst the latter, vegetated pools would host richer assemblages 

than clear water ones, on account of their higher substrate diversity. In addition, species richness 

in the water column of pools would be lower than that of substrate-associated assemblages. 
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Materials and methods 

Study sites and sampling 

Rancho Hambre and Andorra are two Sphagnum magellanicum-dominated peat bogs located in 

Tierra del Fuego, Argentina. Rancho Hambre peat bog (RH) is located in the Tierra Mayor 

Valley Natural Reserve and its area is approximately 41.3 ha. It is located among the 

southernmost ridges of the Andes at 32 km from Ushuaia City. Andorra peat bog (AN) is in a 

relatively narrow NW-SE oriented valley near the Beagle Channel at 32 km from RH and 7 km 

from Ushuaia City; its total area is ca. 55 ha, (Fig. 1). Both have been classified as ombrotrophic 

dome-shaped peat bogs (Roig and Roig, 2004). The landscape of these peat bogs is composed of 

a terrestrial matrix dominated by the peat-forming moss Sphagnum magellanicum, containing 

patches of both clear and vegetated pools (Fig. 1 A-E). 

While the Sphagnum-matrix only includes the S. magellanicum bryosphere as a micro-

habitat for microbial communities, separate micro-habitats can be distinguished in the pools: the 

water column, sediments and bryosphere from different moss species. Sphagnum magellanicum 

is present in the margins of all pools, as it constitutes the peat bog matrix, whereas S. fimbriatum 

and S. anioniauncinata can also be present. The Sphagnum-matrix presents more terrestrial 

characteristics as compared to the pools (lower pH and higher conductivity), holding lower 

diversity of algal communities and distinctive bacterial composition (Mataloni, 1999; Oloo et al., 

2016). Meanwhile, the physical and chemical characteristics of the pools are mainly dictated by 

their minero-ombrotrophic status and their degree of development toward terrestrial conditions. 

These vary both among and within peat bogs (González Garraza et al., 2019, 2012) and drive the 
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structure of phytoplanktonic and periphytic desmids (González Garraza et al., 2019) and 

planktonic communities in general (Lara et al., 2015; Quiroga et al., 2013).  

In order to retrieve as much diversity as possible, our sampling design covered the full 

range of habitats occurring within the two peat bogs. Along a transect perpendicular to the dome-

shape of each peat bog (Fig. 1 A-B), we randomly selected sites of each landscape element: five 

clear pools (CP), four vegetated pools (VP) and four Sphagnum-matrix sites (SM). At each of the 

18 pool sites [(5 + 4) x 2], we collected samples from all present micro-habitats, while in the case 

of SM the only micro-habitat present was the S. magellanicum bryosphere. The total number of 

samples was 75, collected in November-December 2016, during austral summer. 

Plankton samples of ca. 50 L of water were concentrated by means of a 20 µm pore 

diameter plankton net and fixed with 2% formaldehyde. Composite benthic samples were taken 

with a large sterile pipette and fixed in 2% formaldehyde. For moss-associated communities, we 

separately collected the top 5 centimeters of three to five stems of each moss species that were 

submerged in the pools, and fixed with 4% formaldehyde. The micro-organisms were separated 

from the mosses by shaking with distilled water and filtering through a 1-mm mesh handheld 

sieve (Booth et al, 2011 modified). The filtrate was collected and fixed with 2% formaldehyde. 

 

Laboratory procedures 

All samples were observed with an optic microscope Olympus CX 41 equipped with a digital 

camera Infinity (Lumenera Scientific, Canada). For each sample, slides were analyzed 

systematically in the search of new morphotypes until the diversity was saturated (curves not 

shown). Taxonomic identifications were based on a vast range of literature, most importantly 

Vucetich (1975, 1974, 1973), Lena and Cachi (1972), Lena and Zaidenwerg (1975), Zapata 
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(2005), Zapata et al. (2007), Tsyganov et al. (2016), Fernández and Zapata (2011), Fernández et 

al. (2015); we also used the excellent website on amoeboid protist systematics maintained by 

Ferry Siemensma (http://www.arcella.nl; updated version on Feb, 2019). When discriminating 

species, we applied a criterion of morphological discontinuity; species were considered different 

when the length or the width of the shell or the aperture varied by more than 10% between the 

most resembling specimens, without any intermediate state. This approach can be regarded as 

conservative, given that variation between individuals from a single species should fall below 

that range, even when showing considerable phenotypic plasticity (Mulot et al., 2017; Singer et 

al., 2015).  

 

Statistical analyses and data compilation 

In order to assess if our sampling design was successful to retrieve the total richness of each peat 

bog, we estimated this value based on the asymptotes of the species accumulation curves using. 

In addition, non-parametric estimators of richness Chao2, ICE and Jacknife2 were calculated 

(Chao et al., 2009; Lee & Chao, 1994). All numerical analyses were performed using R-studio 

(packages Biodiversity R and vegan) (R Core Team, 2017). 

For analysing the geographical distribution of the diversity, species were classified into 

one of four categories (1) cosmopolitan taxa, such as Assulina muscorum, Nebela collaris, 

Centropyxis aerophila, Heleopera petricola, Padaungiella lageniformis, Trinema lineare, etc. 

(Vucetich, 1973; 1974; Hoogenraad, 1979; Smith et al, 2008, Fernandez et al., 2015); (2) taxa 

distributed Southwards from the Cancer Tropic desert belt (= Apodera 
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endemics to South America such as Certesella australis (Vucetich, 1973) and (4) unknown 

distribution (Table 1).  

In order to compare the diversity found in Tierra del Fuego peatlands with a broadly 

studied Northern Hemisphere region, the European dataset of Amesbury et al. (2016) was used. 

This compiled list of species derived from 1799 samples from 113 sites in 18 European 

countries: Poland, Switzerland, Sweden, Russia, France, Finland, Netherlands, United Kingdom, 

Greece, Scotland, Northern Ireland and England, as well as one sample from Turkey and one 

from Israel. This dataset was built by compiling taxonomic lists of ecological studies and some 

degree of taxonomical errors are expected. However, it is sufficiently robust for the purpose of 

diversity comparison between hemispheres. To avoid overestimation of differences between 

Southern and Northern Hemispheres, morphotypes corresponding to the same species were 

grouped together. 

 

Results 

A total of 87 species belonging to 30 genera were identified. The species accumulation curves 

reached the asymptote for both peat bogs when all samples were included (i. e. 38 samples for 

RH and 37 for AN; Fig. 2). Total richness of RH was 83 and the estimators indicated that 

between 3 and 14 more species could occur. For AN, the total richness was 49 and between 2 

and 10 species more were estimated. 

Forty-five (51.7%) of the species found in this study are probably new for science. This 

proportion is constant among landscape elements and microhabitats (Table 2). However, the 

number of species in clear and vegetated pools is twice that of the Sphagnum matrix.  
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The total richness more than doubled that of previous records for the region. This is the 

first record for 69 species for Tierra del Fuego, with only 18 species in common with previous 

studies. Of the 119 species known to date from Tierra del Fuego peatlands, 61 (51.3%) are 

cosmopolitan (17 Cercozoa, 40 Amoebozoa and four Stramenopile, Table 1), while 8 (6.7%, 

including Apodera vas, Alocodera cockayni, Certesella certesi, and Certesella martiali) have 

been only reported from locations south of the Tropic of Cancer and five (4.2%, Certesella 

australis, Sphenoderia ovoidea and Trigonopyxis microstoma) only from South America. The 

distribution of the 45 (37.8%) newly reported species cannot be identified yet. Remarkably, this 

is the second record for three species only known so far from other locations in the Southern 

Hemisphere: Amphitrema paparoensis described from New Zealand, Amphitrema congolense, 

from the Republic of Congo and Hoogenraadia sylvatica from the Buenos Aires Province in 

Argentina (Fig 3). 

While 183 species were listed from 1799 samples from European peatlands, only 41 are 

in common with the 116 species recorded in 225 samples from Tierra del Fuego. Thus, 142 

(78%) of European species and 75 (63%) of Tierra del Fuego species were exclusive to their 

respective region. 

 

Discussion 

Our goal was to reassess if the diversity of testate amoebae differed between the Southern 

Hemisphere and the Northern Hemisphere by focusing on Sphagnum peatlands, a well-defined 

ecosystem extensively surveyed for testate amoebae in the Northern Hemisphere. Our study 

revealed a large number of morphotypes that do not correspond to any previously described 

Our goal was to reassess if the diversity of testate amoebae differed between the Southern 

Hemisphere and the Northern Hemisphere by focusing on 

Discussion

Our goal was to reassess if the diversity of testate amoebae differed between the Southern 

(78%) of European species and 75 (63%) of Tierra del Fuego species

in common with the 116 species recorded in 225 sampl

(78%) of European species and 75 (63%) of Tierra del Fuego species

While 183 species were listed from 1799 samples from European peatlands, only 41 are 

in common with the 116 species recorded in 225 sampl

sylvatica from the Buenos Aires Province in 

described from New Zealand, 

is the second record for three species only known so far from other locations in the Southern 

described from New Zealand, 

cannot be identified yet. Remarkably, this 

is the second record for three species only known so far from other locations in the Southern 

) only from South America.

cannot be identified yet. Remarkably, this 

2%, 

) only from South America.

martiali

Certesella 

martiali) have 

Certesella 



12 
 

species, thus suggesting the potential magnitude of the diversity with restricted distributions in 

the Southern Hemisphere. 

Southern Hemisphere testate amoebae are less studied than their Northern counterparts, 

with the possible exception of Chile (Fernández et al., 2015). This remains also true for 

peatlands, which is the best studied ecosystem type overall. We therefore expected to find many 

new species in Tierra del Fuego bogs. In this work, we analysed 75 samples from only two 

peatlands while Vucetich (1974) and van Bellen et al. (2014) studied, respectively, three and five 

peatlands; 125 samples were examined in van Bellen et al. (2014). Still, we observed that 69 

(79.3%) out of 87specieswere novel for the region and 45 (51.7%) were undescribed (Table 2). 

We attribute this high novelty primarily to our sampling design that aimed to cover all possible 

habitats within these peatland ecosystems and was indeed effective to retrieve virtually all the 

diversity, independently from the total richness at each site (83 taxa for RH and 49 for AN). By 

contrast, ecologically oriented studies designed to build transfer functions for paleohydrological 

reconstruction typically include mostly or only Sphagnum mosses from wet (pools, hollows) to 

drier (lawns, hummocks) microsites (e. g. Lamentowicz and Mitchell 2005; Swindles et al. 2014; 

van Bellen et al. 2014; Zhang et al. 2018). Pools, typically the richest environments in our study 

are typically only marginally studied (i.e. only Sphagnum samples but not plankton and benthos). 

Bog pools located only a few meters apart can present different physical and chemical 

conditions such as pH, conductivity and nutrients concentrations (González Garraza et al., 2012). 

Testate amoeba communities are known to vary in relation to such environmental conditions (Ju 

et al., 2014; Mitchell et al., 2000) and these patterns may be explained, at least partly, by the 

impact of such environmental heterogeneity on potential food resources, such as bacteria, fungi, 

algae and other micro-eukaryotes (González Garraza et al., 2019; Oloo et al., 2016; Quiroga et 
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al., 2015). Meanwhile, only a few studies have covered the diversity in the different landscape 

elements that are pools and moss matrix, in which communities are also affected by 

metacommunity processes (e. g. mass effect, patch dynamics or species sorting; Leibold et al. 

2004).  

determined by -diversity) above in- -diversity), suggesting that 

diversity patterns below the landscape level are strongly regulated by environmental conditions 

at local scales (Tsyganov et al., 2015). This suggests that testate amoeba species richness at the 

landscape level will only be detected by sampling designs covering the full range of biotopes 

present. To the contrary, designs covering only a few ecosystem times will miss a part of the 

diversity. In line with this, as surveys in the Northern Hemisphere focus mostly on Sphagnum-

associated communities, it is not impossible that an unknown diversity is yet to be discovered in 

these systems too. Our study thus suggests that this habitat should be studied more intensively 

also in the Northern Hemisphere peatlands. 

Within pools, different micro-habitats hold species with distinct adaptations for 

locomotion and hunting. An example of this is described for some Netzelia species (earlier 

classified as Difflugia), presenting gas vacuoles for flotation in plankton (Meisterfeld, 1991; 

. The existence of planktonic testate amoebae has been previously 

reported in Brazilian rivers and lakes (Lansac-Tôha et al., 2009; Mucio Alves et al., 2008; Velho 

et al., 2003). Here, contrary to our hypothesis, taxonomic richness was higher in both the 

sediments and the water column than in the bryosphere (Table 2). This shows that pools are not 

simply sinks in which living amoebae or empty shells accumulate but are a habitat with their 

own specific communities. 
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Moreover, testate amoebae richness differed between the three mosses associations, 

suggesting that the host moss have an influence on microbial communities as shown for 

rainforest mosses differing in architecture and likely hydrological dynamics (Acosta-Mercado et 

al., 2012). Although there are no studies to our knowledge dealing with associations of testate 

amoebae with different macrophytes, the mechanical conditions such as the physical support 

offered by the different mosses could affect the periphytic communities. Vickery (2006) 

suggested that differences in leaf arrangement could explain the differences in testate amoeba 

community richness between Sphagnum capillifolium and S. papillosum bryospheres. Altogether, 

these results show the importance of considering all micro-niches when setting species checklists 

for particular regions. In addition, the comparison of our results with previous studies shows that 

it is indispensable to include the full range of micro-habitats and to describe clearly the habitats 

studied. Only so will it be possible to compare studies accurately and to assess patterns of testate 

amoeba diversity and ecology to address bioindication and microbial biogeography at broader 

scales. 

Patagonia is considered as a protist endemism hotspot (Fernández et al., 2015; Vucetich, 

1974; Woelfl, 2006). Indeed, a similar trend in distribution types was observed for peatland 

diatoms. Nearly half (49.5%) of the observed morphotypes could not be assigned to any species 

and 22 of them were described as new taxa (Casa, 2020; Casa et al., 2018, 2017a, 2017b). 

However, given the above-mentioned uncertainty, it is clearly impossible to determine if testate 

amoeba species richness from Tierra del Fuego peatlands is indeed higher as compared to other 

regions or if the large number of species recorded simply results from our sampling protocol. 
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The 116 species now reported from 225 samples from two Tierra del Fuego peatlands, including 

75 species exclusive to the region is remarkably high compared to the total of 183 species 

reported from 1799 samples distributed throughout Europe. Furthermore, 60% (142) of these 

European species were not found in Tierra del Fuego bogs.  

However, these numbers should be taken with caution. Indeed, we believe that 

identification may in many cases suffer from force-fitting (i. e. forcing the identification of 

morphotypes to the descriptions in the most common literature) which overestimates the 

geographical range of many species and underestimates local endemism. This is particularly 

evident in Euglyphida, for which scanning electronic microscopic imaging is often needed to 

observe diagnostic traits (Chatelain et al., 2013; Tsyganov et al., 2017). 

Furthermore, taxonomic uncertainties are a major issue in testate amoebae biogeography 

(Heger et al., 2009). Indeed, there is a lack of consensus on species validity, ancient literature is 

often difficult to access and no curated list of valid species exists. The genus Amphitrema 

illustrates this well: while A. wrightianum is frequently reported in the literature, A. paparoensis, 

described from New Zealand (van Oye, 1956), is similar in morphology, but can be 

differentiated by its test with scattered particles on the surface. Therefore, previous studies in the 

region could have misidentified the less known A. paparoensis. Likewise, A. congolense (van 

Oye, 1958) presents a similar general morphology, but the pseudostomes are difficult to observe, 

as they are surrounded by large particles (Fig. 3 A-C). This species has not been cited since its 

original description and its existence has likely remained ignored in later works. Furthermore, 

the validity of these taxa has not been assessed by detailed molecular and morphological studies. 

Similar cases may exist in other genera, e. g. Difflugia, Centropyxis, Heleopera and 

Pseudodifflugia.  
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The high morphological variability observed for some testate amoebae (Krashevska et al., 

2020; Luketa, 2017, 2015) calls for combined morphological and molecular studies. However, at 

least some of the observed morphological diversity may result phenotypic plasticity as 

demonstrated by experimental studies (Mulot et al., 2017; Wanner, 1999). However, until a vast 

effort to document the molecular diversity based on environmental DNA or an in-depth revision 

of their taxonomy combining molecular and morphological approaches is completed (e. g. 

Kosakyan et al. 2015; Singer et al. 2019), species morphology remains the best proxy for specific 

diversity (Kosakyan et al., 2012). 

 

Biogeographical considerations 

Cosmopolitan species accounted for half of the testate amoeba diversity known for Tierra del 

Fuego peatlands (Table 2). A typical example is Assulina muscorum which has been recorded in 

identical ecosystems around the world. This species is supposed to be good a disperser and has a 

wide ecological tolerance which would explain is broad geographical range with only limited 

genetical diversity (Lara et al., 2011). However, even apparently clear examples of cosmopolitan 

distribution may be misleading. For example, several Euglypha species of presumably global 

distribution have been previously recorded in Andorra bog by van Bellen et al. (2014), including 

E. rotunda, E. strigosa and E. tuberculata. Van Bellen and co-workers based the identification of 

species only on overall shell size. This is common practice in palaeoecological studies where 

shells are often not very well preserved (Amesbury et al., 2016). We also found three species 

similar to the former ones in the same peat bog, for which the shape of the anterior thickening of 

apertural plates and its denticulation -a trait used to discriminate among Euglypha species 

(Tsyganov et al., 2017)- did not correspond with the original description of any known species. 
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The three species named here Euglypha sp. 1, 2 and 3- we observed are thus different from the 

E. rotunda, E. strigosa and E. tuberculata, and could potentially represent 

endemic forms. Therefore, for biogeographic studies and diversity inventories it is important to 

work at the finest taxonomic level possible to detect patterns of spatial distribution (Singer et al., 

2019). This may, unfortunately mean that much of the published ecological studies are of limited 

use for such purpose, despite their value in other respects.  

As in previous studies, we also species Apodera vas, Alocodera cockayni, Certesella 

certesi and Certesella martiali which are all known to be restricted to regions South of the 

Tropic of Cancer. Additionally, Amphitrema paparoensis, Amphitrema congolense and 

Hoogenraadia sylvatica are recorded here for the first time since their descriptions from 

Southern Hemisphere locations. These species are probably not found north of the Cancer tropic 

desert belt (Smith et al., 2008), but while not being cosmopolitan, if the morphotypes we 

identified indeed correspond to these taxa, their geographical distribution would be immense. 

Indeed, even though H. sylvatica has been only reported to date from Argentina, the absolute 

distance between records locations terra typica exceeds 2000 km, while A. congolense was 

described from 10000 km away. Zapata and Fernández (2008) reported considerable 

morphological variability within A. vas, suggesting the existence of several species. If true some 

of these at least may have more restricted geographical distributions.  

Some species are morphologically clearly distinct and can be securely considered as 

endemic to the Southern cone of South America. The best example is Certesella australis is, 

which, to our knowledge, is restricted to this region and it has been suggested that climatic 

conditions may limit its extension northwards (Fernández et al., 2016). Many other species from 

the American continent may also have such restricted distribution, but the scarcity of studies and 
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specialists in the region makes it impossible to assess this at present (Mazei et al., 2017). An 

atmospheric circulation modelling study showed that the dispersal potential of free-living 

microbes is clearly related to their size (Wilkinson et al., 2012). In line with this, a barcode 

sequence of Sphenoderia valdiviana, a small euglyphid species described from South-Central 

Chile (Chatelain et al., 2013), was later found in the Dominican Republic, at high elevation i.e. 

2240 m.a.s.l. (Lara et al., 2016). Nevertheless, this, together with the high number of undescribed 

morphotypes found in our samples (Table 2), suggests that the number of South American 

endemic species is likely to be substantially higher than currently known.  

This study allowed us to expand the number of testate amoeba species in Tierra del 

Fuego peatlands from 50 to 119. This number is considerably higher than the richness known for 

entire under-sampled countries such as Peru, Colombia, Ecuador or Mexico (Bobrov and 

Krasilnikov, 2011; Escobar et al., 2005; Haman and Kohl, 1994; Krashevska et al., 2007). It is 

obviously impossible for the diversity of testate amoebae in a single ecosystem type of Tierra del 

Fuego to be higher than in any of these countries. The data from the better-sampled Chile is here 

informative. A total of 314 species have been recorded considering all types of ecosystems, 10% 

of which were endemic to Chile (Fernández et al., 2015). However, species accumulation curves 

for this country did not reach saturation, suggesting the existence of many more species. 

Furthermore, these authors made predictions on the magnitude of local diversity, estimating the 

richness of Chilean Tierra del Fuego to about 25 species (Fernández et al., 2016); an estimate 

way below values we actually found in the two studied peatlands. This supports our primary 

statement that biodiversity inventories extended to the widest possible variety of microhabitats 

are needed to understand (testate amoebae) global biodiversity patterns. 
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Conclusions 

The detailed analysis of testate amoebae from a broad range of micro-habitats in two peatlands 

of Tierra del Fuego revealed the existence of a high diversity, including a number of previously 

undocumented morphotypes, many of which likely represent new species probably endemic to 

the Tierra del Fuego region. The diversity of testate amoebae in Southern South America and 

much of the Southern Hemisphere and tropics remains poorly documented. Previous level of 

knowledge was sufficient to build inference models for paleoecology at regional level, but much 

more work is needed to describe the full diversity and understand the geographical distribution as 

well as the ecological preferences of species. This would best be done in a concerted way by 

applying a standard sampling design worldwide and with a common taxonomic framework based 

on combined morphological and molecular analyses.  
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Fig 1. Location of Rancho Hambre (RH), Andorra (AN) in Tierra del Fuego Province, Argentina 

(top). Satellite view of RH (A) and AN (B) with sampled transects (---). Landscape elements 

detailed: matrix of S. magellanicum (C), clear pool (D) and vegetated pool (E). 
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Fig 2. Species accumulation curves (Observed richness) and richness estimators (Chao2, ICE 

and Jacknife2). 

Observed richness) and richness estimators (Chao2, ICE ) and richness estimators (Chao2, ICE ) and richness estimators (Chao2, ICE 
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Fig 3. Species that are recorded for the first time since their description (specimens stained with 

Rose Bengal): Amphitrema congolese after Van Oye (1958) showing the characteristic mineral 

grains around the pseudostomes (A), A. congolense from Tierra del Fuego general appearance 

(B) and detail of one of the pseudostomes (C), Amphitrema paparoensis after Van Oye (1956) 

(D), A. paparoensis from Tierra del Fuego not stained showing characteristic brownish color and 

scattered mineral grains on the test surface (E), Hoogenraadia sylvatica after Vucetich (1973) 

ventral (F) and lateral view (G), H. sylvatica from Tierra del Fuego ventral view (H) and detail 

of the pseudostome (I). Scale bar = 20 µm 

  

from Tierra del Fuego ventral view (H) and detail 

Vucetich (1973) 

from Tierra del Fuego ventral view (H) and detail 

from Tierra del Fuego not stained showing characteristic brownish color and 

Vucetich (1973) 

from Tierra del Fuego not stained showing characteristic brownish color and 

Vucetich (1973) 
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Table 1. List of species and species registered in peatlands from Tierra del Fuego (Argentina) in 
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Amphitrema congolense van Oye, 1958   +     

Amphitrema paparoensis van Oye, 1956    +     

Amphitrema sp.   +     

Amphitrema stenostoma Nusslin, 1884  +      

Amphitrema wrightianum Archer, 1869  + +     

Archerella flavum (Archer, 1877) Loeblich et Tappan, 1961 +       

Amebozoa        

Alocodera cockayni (Penard, 1910) Jung, 1942 + + +     

Apodera vas (Certes, 1889) Loeblich et Tappan, 1961 + + +     

Arcella hemisphaerica Perty, 1852 +  +     

Arcella sp. 1   +     

Arcella sp. 2   +     

Argynnia caudata Leidy, 1879 +       

Argynnia dentistoma var. hesperia (Penard, 1902) Wailes, 
1913 
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Argynnia dentistoma var. oblonga (Penard, 1902) Gauthier-
Lievre, 1958 
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Argynnia similis (Vucetich, 1973) +       
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Centropyxis aculeata (Ehrenberg, 1832) Stein, 1859    +     

Centropyxis aerophila Deflandre, 1929   +     

Centropyxis cassis (Wallich, 1864) Deflandre, 1929  + +     

Centropyxis cf. discoides morphotype 1 Penard, 1902   +     

Centropyxis cf. discoides morphotype 2 Penard, 1902    +     

Centropyxis platystoma (Penard, 1890) Deflandre, 1929 + + +     

Centropyxis sp. 1   +     

Centropyxis sp. 2   +     

Certesella australis Vucetich, 1973  +  +     

Certesella certesi (Penard, 1911) Loeblich et Tappan, 1961 + + +     

Certesella martiali (Certes, 1889)  Loeblich et Tappan, 1961 + + +     

Cryptodifflugia oviformis Penard, 1902   +     

Cryptodifflugia sp.   +     

Cyclopyxis arcelloides type (Penard, 1902) Deflandre, 1929 
sensu van Bellen et al. (2014) 

 
+ 

 
 

   

Cyclopyxis eurystoma Deflandre, 1929   +     

Cyclopyxis sp. 1   +     

Cyclopyxis sp. 2   +     

Cyclopyxis sp. 3   +     

Difflugia acuminata Ehrenberg, 1838 +       

Difflugia bacillifera Penard, 1890    +     

Difflugia echinulata Pénard, 1911 +       

Difflugia cf. elegans morphotype 1 Penard, 1890   +     

Difflugia cf. elegans morphotype 2 Penard, 1890   +     

Difflugia globulosa type (Dujardin, 1837) Penard, 1902 
sensu van Bellen et al. (2014) 

 
+ 

 
 

   

Difflugia lanceolata Penard, 1890  +      

Difflugia cf. lucida Penard, 1890  + +     

Difflugia oblonga Ehrenberg, 1838 +       

Difflugia pulex Penard, 1890  + +     

Difflugia rubescens Penard, 1891  +      

Difflugia pristis type Penard, 1902 sensu van Bellen et 
al.,2014 

 
+ 

 
 

   

Difflugia lanceolata

sensu

Difflugia

Difflugia globulosa
van Bellen 

Difflugia lanceolata

elegans 

elegans morphotype 2 

Difflugia globulosa type (Dujardin, 1837) Penard, 1902 

Difflugia echinulata Pénard, 1911

elegans morphotype 1 Penard, 1890

morphotype 2 

Penard, 1890 

Pénard, 1911

morphotype 1 Penard, 1890

Ehrenberg, 1838

Penard, 1890 

Ehrenberg, 1838

type (Penard, 1902) Deflandre, 1929 type (Penard, 1902) Deflandre, 1929 

+

+ +

+ +

+
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Difflugia cf. pyriformis morphotype 1 Perty, 1852    +     

Difflugia cf. pyriformis morphotype 2 Perty, 1852    +     

Difflugia sp. 1   +     

Difflugia sp. 2   +     

Difflugia sp. 3   +     

Difflugia sp. 4   +     

Difflugia sp. 5   +     

Difflugia sp. 6   +     

Difflugia sp. 7   +     

Difflugia sp. 8   +     

cf. Difflugia sp. 9   +     

Heleopera petricola Leidy, 1879 + + +     

Heleopera rosea Penard, 1890   +     

Heleopera sphagni Leidy, 1874 + +      

Heleopera cf. sylvatica Penard, 1890 + + +     

Heleopera sp. 1   +     

Heleopera sp. 2   +     

Heleopera sp. 3   +     

Heleopera sp. 4   +     

Hoogenraadia sylvatica Vucetich, 1973   +     

Lesquereusia spiralis (Ehrenberg, 1840)    +     

Microchlamys sp.   +     

Nebela collaris-bohemica type sensu van Bellen et al.,2014  +      

Nebela lageniformis var. cordiformis Heinis, 1914 +       

Netzelia sp. 1   +     

Netzelia sp. 2   +     

Netzelia sp. 3   +     

Padaungiella lageniformis (Penard, 1890) Lara et Todorov, 
2012 

  
+  

   

Padaungiella wailesi (Deflandre, 1936) Lara et Todorov, 
2012 

+ + 
 

 
   

Padaungiella sp. 1   +     

Netzelia sp. 3

Netzelia 

Netzelia sp. 2

Nebela lageniformis 

Netzelia sp. 1

sp.

Nebela collaris bohemica

Nebela lageniformis 

Lesquereusia spiralis

bohemica

Vucetich, 1973

(Ehrenberg, 1840) 

Vucetich, 1973

(Ehrenberg, 1840) 

+

+

+

+

+

+
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Padaungiella sp. 2   +     

Phryganella acropodia type (Hertwig et Lesser, 1874) 
Hopkinson, 1909 sensu van Bellen et al. (2014) 

 
+ 

 
 

   

Phryganella sp.   +     

Pontigulasia bigibbosa Penard, 1902 +       

Pontigulasia compressa Carter, 1864 +       

Pontigulasia contusa Jung, 1942 +       

Pontigulasia sp.   +     

Pyxidicula operculata (Agardh, 1827) Ehrenberg, 1838   +     

Pyxidicula cf. patens morphotype 1 Claparède et Lachman, 
1858 

  
+  

   

Pyxidicula cf. patens morphotype 2 Claparède et Lachman, 
1858  

  
+  

   

Trigonocyrillium    +     

Trigonopyxis microstoma Hoogenraad et de Groot, 1948  + + +     

Cercozoa        

Assulina muscorum Greeff, 1888 + + +     

Assulina seminulum (Ehrenberg, 1848) Leidy, 1879 + + +     

Corythion dubium Taranek, 1871 +       

Corythion sp. 1   +     

Corythion sp. 2   +     

Corythion -Trinema type sensu van Bellen et al. (2014)  +      

Diaphoropodon mobile Archer 1869   +     

Euglypha ciliata (Ehrenberg, 1848) Leidy, 1878 +       

Euglypha cristata Leidy, 1874 +       

Euglypha rotunda type (Ehrenberg, 1845) sensu van Bellen 
et al. (2014) 

 
+ 

 
 

   

Euglypha sp. 1   +     

Euglypha sp. 2   +     

Euglypha sp. 3   +     

Euglypha strigosa (Ehrenberg, 1848) +       

Euglypha strigosa type (Ehrenberg, 1848) sensu van Bellen 
et al. (2014) 

 
+ 

 
 

   

Euglypha tuberculata type (Ehrenberg, 1848) sensu van 
Bellen et al. (2014) 

 
+ 

 
 

   

et al.

Euglypha 

Euglypha 

Euglypha rotunda 
(2014)

Euglypha sp. 1

Euglypha ciliata (Ehrenberg

Euglypha cristata Leidy, 1874

Euglypha rotunda type (Ehrenberg, 1845) sensu van Bellen

Diaphoropodon mobile

(Ehrenberg

Leidy, 1874

type sensu

Diaphoropodon mobile Archer 1869

(Ehrenberg

sensu van Bellen 

(Ehrenberg, 1848) Leidy, 1879Leidy, 1879

+

+

+

+
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cf. Frenzelina sp.   +     

Nadinella sp. 1   +     

Nadinella sp. 2   +     

Pseudodifflugia cf. klarae Kiss et Török, 2009   +     

Pseudodifflugia fascicularis Penard, 1902  +      

Pseudodifflugia sp. 1   +     

Pseudodifflugia sp. 2   +     

Pseudodifflugia fulva (Archer, 1869) Penard, 1902  +      

Schwabia sp.   +     

Sphenoderia lenta Schlumberger, 1845  +      

Sphenoderia ovoidea Jung, 1942   +     

Trinema cf. enchelys (Ehrenberg, 1838)   +     

Trinema lineare Penard, 1890  + +     

Trinema penardi  Thomas et Chardez, 1958   +     

Unknown species 1   +     

Unknown species 2   +     

Unknown species 3   +     

Total 30 32 87 61 8 5 45 

 

  

+

+

+
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Table 2. Global distribution of species registered in Tierra del Fuego peatlands to date and only 
by our study, per landscape element and per micro-habitat. Average number of species per 
landscape element and per micro-habitat and number of replicates for each. SD: standard 
deviation. 
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Tierra del Fuego peatlands 
(past and present study) 

   51,00 6,70 4,20 38,00 

Per sample (present study)  75 
11,79 
(6,41) 

36,65 
(16,62) 

11,20 
(9,17) 

6,45 
(5,65) 

45,70 
(15,81) 

Clear pools 76 10 
28,70 

(12,94) 
36,46 

(11,73) 
10,56 
(5,84) 

5,21 
(2,50) 

47,77 
(10,48) 

Vegetated pools 53 8 
24,62 
(6,43) 

32,29 
(7,28) 

15,44 
(3,49) 
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(2,66) 
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(3,21) 
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Fig. S1. (A) Amphitrema papparoensis, (B) Amphitrema wrightianum, (C) Amphitrema sp. 1, 
(D) Amphitrema congolense lateral view, (E) Amphitrema congolense detail of the pseudostome. 
Scale bar: 20 µm. 
 

Amphitrema papparoensis, (B) Amphitrema wrightianum
lateral view, (E) Amphitrema congolense

Amphitrema wrightianum
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Fig. S2. (A) Alocodera cockayni, (B) Apodera vas, (C) Certesella australis, (D) Certesella 
martiali, (E) Certesella certesi, (F) Padaungiella sp. 1, (G) Padaungiella lageniformis, (H) 
Padaungiella sp. 2. Scale bar: 50 µm. 
 

Fig. S2. 
martiali
Padaungiella

(A) Alocodera cockayni, 
, (E) Certesella certesi

Padaungiella sp. 2. 

Alocodera cockayni, 
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Fig. S3. (A) Arcella hemisphaerica, (B) Arcella sp. 1, (C) Arcella sp. 2, (D) Microchlamys sp. 
pseudostome view, (E) Microchlamys sp. lateral view, (F) Pyxidicula cf. patens morpho 1, (G) 
Pyxidicula cf. patens morpho 2, (H) Pyxidicula operculata. Scale bar: 20 µm. 
 

Arcella
sp. lateral view, (F) 

Pyxidicula operculata

Arcella sp. 1, (C) 
sp. lateral view, (F) 

sp. 1, (C) 
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Fig. S4. (A) Centropyxis sp. 1, (B) Centropyxis platystoma, (C) Centropyxis sp. 2, (D) 
Centropyxis aerophila, (E) Centropyxis sp. 3, (F) Centropyxis cassis, (G) Centropyxis cf. 
discoides morpho 1, (H) Centropyxis cf. discoides morpho 2, (I) Centropyxis aculeata. Scale 
bars: 20 µm.  
 

, (E) 
morpho 1, (H) 

sp. 1, (B) 
, (E) Centropyxis

Centropyxis

sp. 1, (B) Centropyxis platystoma
Centropyxis
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Fig. S5. (A) Cyclopyxis sp. 1, (B) Cyclopyxis sp. 2, (C) Cyclopyxis eurystoma, (D) Cyclopyxis 
sp. 3, (E) Netzelia sp. 2, (F) Netzelia sp. 3, (G) Netzelia sp. 1, (H) Phryganella sp. Scale bar: 20 
µm. 
 

Cyclopyxis sp. 2, (C) 
sp. 3, (G) 

sp. 2, (C) 
Netzelia
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Fig. S6. (A) Difflugia cf. pyriformis morpho 1, (B) Difflugia cf. pyriformis morpho 2, (C) 
Difflugia bacillifera, (D) Difflugia sp. 1, (E) Difflugia sp. 2, (F) Difflugia sp. 3, (G) cf. Difflugia 
sp. 4, (H) Difflugia cf. lucida, (I) Difflugia pulex, (J) Difflugia sp. 5, (K) Difflugia sp. 6, (L) 
Difflugia sp. 7, (M) Difflugia sp. 8, (N) Difflugia sp. 9, (O) Difflugia cf. elegans morpho 1, (P) 
Difflugia cf. elegans morpho 2. Scale bar: 20 µm. 
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Fig. S7. (A) Heleopera sp. 1, (B) Heleopera rosea, (C) Heleopera petricola, (D) Heleopera cf. 
sylvatica, (E) Heleopera sp. 2, (F) Heleopera sp. 3, (G) Heleopera sp. 4. Scale bar: 20 µm. 
  

Fig. S7. (A) 
sylvatica, (E) 

(A) Heleopera
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Fig. S8. (A) Hoogenraadia sylvatica pseudostome view, (B) Hoogenraadia sylvatica lateral 
view, (C) Trigonopyxis microstoma, (D) Lesquereusia spiralis, (E) Pontigulasia sp., (F) 
Trigonocyrillium ryptodifflugia sp., (H) Cryptodifflugia oviformis. Scale bar: 10 µm. 

 

Fig. S8. (A) 
view, (C) Trigonopyxis microstoma
Trigonocyrillium

Hoogenraadia sylvatica 
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Fig. S9. (A) Schwabia sp., (B) Diaphoropodon mobile, (C) Nadinella sp. 1, (D) Nadinella sp. 2, 
(E) cf. Frenzelina sp., (F) Pseudodifflugia cf. klarae, (G) Pseudodifflugia sp. 1, (H) 
Pseudodifflugia sp. 2. Scale bar: 10 µm. 
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Fig. S10. (A) Euglypha sp. 1, (B) Euglypha sp. 2, (C) Euglypha sp. 3, (D) Assulina seminulum, 
(E) Assulina muscorum, (F) Trinema penardi, (G) Trinema cf. enchelys, (H) Trinema lineare, (I) 
Corythion sp. 1, (J) Corythion sp. 2, (K) Sphenoderia ovoidea. Scale bar: 10 µm. 
 

Fig. S10. 
Assulina muscorum

Corythion sp. 1, (J

(A) Euglypha
Assulina muscorum

Fig. S10. 
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Fig. S11. (A) Incertae sedis 1, (B) Incertae sedis 2, (C) Incertae sedis 3. Scale bar: 10 µm. 
 

  

Incertae sedis 3. Scale bar: 10Incertae sedis 3. Scale bar: 10
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