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A B S T R A C T   

Selection of the most suitable spectral vegetation indices which are applicable to the remote 
sensing of the forest species composition and status, is an important task aimed at the evaluation 
of the large-scale plant communities. There are 80 vegetation indices have been collected in the 
present work using the hyperspectral data, including that for the Acer platanoides L., 
A. saccharinum L. and A. pseudoplatanus L. The obtained data showed that 40 vegetation indices 
were significantly differed between species in their values simultaneously (all over the experi-
ment) in all the following pairs: A. saccharinum – A. platanoides, A. saccharinum – 
A. pseudoplatanus and A. platanoides – A. pseudoplatanus. A. platanoides – A. pseudoplatanus: 
Boochs2, MCARI2, TCARI2, Vogelmann2 and Vogelmann4; A. platanoides – A. saccharinum: 
Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI3, CRI4, Datt, Datt2, Datt3, Datt5, DDn, DWSI4, 
EGFN, EGFR, EVI, GI, GMI1, GMI2, Green NDVI, Maccioni, MCARI2, mSR2, MTCI, NDVI2, 
NDVI3, OSAVI2, PARS, PSSR, REP_Li, SR1, SR2, SR3, SR4, SR8, Vogelmann2 and Vogelmann4; 
A. pseudoplatanus – A. saccharinum: Carter3, Carter5, CRI3, Datt5, Datt6, DWSI4, EGFN, EGFR, GI, 
GMI1, Green NDVI, NDVI3, PARS, SR3, SR4, SR5, SR8 and TGI. The selected list of the vegetation 
indices may be recommended for the identification of the maple species using the method of the 
remote hyperspectral sensing.   

1. Introduction 

Vegetation cover is a key component for understanding the terrestrial ecosystems (Houborg et al., 2015). Remote hyperspectral 
sensing provides an powerful tool in researches of the vegetation patterns, including that related to the vegetation types, changes in 
growth characteristics, physiology, and morphology (Xue and Su, 2017). It is an art combined with science and information technology 
that helps monitor and manage crop health, soil architecture, weather forecast, temperature, humidity, etc, in real-time (Singh et al., 
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2020). Hyperspectral imaging implies conducting an analysis of the sunlight or the artificial light reflected from plant leaves using a 
large number of the spectral bands that increases accuracy, flexibility, quantity and quality of the information obtaining on the 
vegetation cover. Application of the hyperspectral technique in the ecological monitoring depends on five components. The first of 
them is choice an ideal energy source or illumination which provides electromagnetic radiation to target objects; second atmosphere 
and radiation: when sunlight travels to the earth’s surface, it comes in contact with the atmosphere and reacts as energy in the form of 
radiation, the same thing happens with light reflectance; further, third component is interaction of radiation with the target and 
recording of the reflected energy; fourth component is transmission and ground-level processing. The fourth component comes in 
picture after the energy perceived has to be transmitted in the form of an electronic signal. Whereas, fifth and last component is 
interpretation, analysis, and application of data that is detected by ground station through various sensors (Fig. 1). The energy/r-
adiations recorded by ground stations is generally processed and generate the output as an image. 

Development of the hyperspectral imaging methods is necessary for the phenotyping analysis and classification of plants, moni-
toring the soil properties, detecting the crop diseases, estimating crop properties, classifying weeds, mapping crop area, investigating 
vegetation properties which help in various type of stresses like biotic and abiotic related studies in plants. Plant leaves contain the thin 
layer of cells that form the leaf’s top surface, known as the epidermis. Under the epidermis, two layers of cells are present. Palisade 
parenchyma cells are on the top and are arranged vertically; this layer contains the photosynthetic pigment chlorophyll that captures 
the solar energy during photosynthesis. The second lower layer is the spongy parenchyma that has irregularly shaped cells with many 
air spaces that allow circulation of gases and play an important role in gaseous exchange. Plant palisade parenchyma cells also contain 
pigments other than chlorophyll for example carotenoids, anthocyanins that absorb almost all the visible electromagnetic energy, 
especially in the blue and red regions (Wolf and Wolf, 1955). Green light is not absorbed by a leaf, hence vegetation appears green to 
our eyes. On the other hand, NIR (Near-infrared) is not absorbed by the pigment system of leaf cells resulting in approximately total 
energy exiting from the lower and top epidermis of the leaf towards the sky (Wu et al., 2014) (Fig. 2). When the plant becomes 
dehydrated, sick, afflicted with disease, etc., the spongy layer deteriorates, and the plant absorbs more of the near-infrared light, rather 
than reflecting it. 

Thus, observations of how NIR changes in comparision to red light, provides an accurate indication of the presence of chlorophyll, 
which correlates with plant health (Akhtman et al., 2017). These observations also provide classification of tree plants with the help of 
hyperspectral imaging platforms and sensors (Fricker et al., 2019). Hyperspectral sensors are connected with different platforms like 
airplanes, UAVs, satellites, and close-range platforms to capture high resolutions images. Hyperspectral imaging platforms and sensors 
are categorized into 4 groups 1) Satellite-Based Hyperspectral Imaging 2) Airplane-Based Hyperspectral Imaging 3) UAV-Based 
Hyperspectral Imaging and 4) Close-Range (Ground- or Lab-Based) Hyperspectral imaging (Table 1) (Lu et al., 2020). 

Satellite-based hyperspectral imaging methods have broad perspectives for studying the qualitative and quantitative characteristics 
of massive woodlands. Today, there is a wide variety of hyperspectral imaging systems that provide spectral or three-dimensional 
information. In the past 40 years, attempts to identify the species of woody plant samples using hyperspectral imaging methods has 
increased steadily (Fassnacht et al., 2016). It happened due to the increasing availability of multispectral cameras, due to decrease in 
their cost as well as due to decrease in their size and weight. Development of unmanned vehicles, and fundamentally new cameras are 
the other promising tools that add to the purpose (Fassnacht et al., 2014). Unmanned aerial vehicles (UAVs) are well adapted and 
flexible platforms for cameras these days. 

Different approaches and technologies along with different types and combinations of sensors (SAR, LiDAR, and others), cameras 
(multispectral, hyperspectral, and infrared) have been used for the identification of tree species (Fricker et al., 2019; Hycza et al., 2018; 
Mäyrä et al., 2021). However, many queries regarding the reliability of existing approaches to the tree species classification remain 
unanswered (Fassnacht et al., 2014). Large-scale tree species recognition remains a fundamental problem when conducting an in-
ventory of green spaces (Hycza et al., 2018). Studies demonstrate the combination of GPS-based field surveys and drone-operated 
hyperspectral aerial photography can be used effectively to accurately map the infected areas (Adão et al., 2017). Hyperspectral 
imaging is an advanced technique and is capable of acquiring a detailed spectral response of target features. Data obtained using 
hyperspectral sensors provide near continuous spectral reflectance curves. Signatures drawn using these spectral reflectance curves are 
unique spectral signatures, that enables the calculation of narrow band vegetation indices and consequently, better separation of plant 
species from each other (Lu et al., 2020). For this report we have selected Acer L. genus for remote sensing based vegetation study. The 

Fig. 1. Diagrammatic representation of hyperspectral Imaging platforms and sensors-based monitoring.  
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species of the genus Acer L. are widely used in urban landscaping, artificial forests, and ameliorative plantings. 
The species: Acer platanoides L., A. saccharinum L., A. pseudoplatanus L. are among the leading species in the landscaping of the 

inhabited localities of the Rostov region, Russia (Kozlovsky, 2009). Within the genus these species fall into three sections: 

Fig. 2. Cellular leaf structure and its interaction with electromagnetic energy. Mostly visible light is absorbed, while almost half of the near-infrared energy is re-
flected. These reflections are detected with the help of various hyperspectral imaging platforms and sensors. 

Table 1 
Hyperspectral imaging sensors and their applications along with imaging platforms.  

S. 
NO 

Hyperspectral 
Imaging platforms 

Hyperspectral Imaging sensors (number 
of spectral channels; spectral range, nm) 

Application Reference 

1. Satellite-Based 
Hyperspectral 
Imaging 

Hyperion (220; 430–2400), PROBA- 
CHRIS (62; 773–1036), and TianGong-1 
(128; 400–2500), HySI (55; 400–1000), 
HICO (128; 350–1070), DESIS (235; 
400–1000), HISUI (185; 400–2500). 

Monitoring different crop and soil 
properties, detecting crop disease, 
estimating crop properties 
(chlorophyll, LAI, biomass), 
assessing crop 
residues, classifying crop types, 
investigating soil features 

(Apan et al., 2004; Dutta et al., 2006;  
Moharana and Dutta, 2016; Wu et al., 2010; 
Bannari et al., 2015; Galloza and Crawford, 
2011; Camacho Velasco et al., 2016;  
Gomez et al., 2008; Zhang et al., 2013) 

2. Airplane-Based 
Hyperspectral 
Imaging 

AVIRIS (224; 400–2500), CASI (288; 
380–1050), HyMap (128; 440–2500), 
Probe-1 hyperspectral (128; 400–2500), 
RDACS-H4 hyperspectral (384; 
400–2450), AHS-160 hyperspectral 
Sensor (220; 400–2500), HIS (100; 
500–2500), PHI -1 (244; 400–800), 
APEX (199; 380–2500). 

Investigating vegetation 
Properties, analyzing soil properties 
and moisture, detecting crop disease 
and or identifying pest infestation, 
classifying weeds, mapping crop 
area 

(Estep et al., 2004; Palacios-Orueta and 
Ustin, 1998; Zhang et al., 2014; Nigam 
et al., 2019; SW et al., 2019; Ran et al., 
2015; Shivers et al., 2018; Haboudane 
et al., 2002; Liu et al., 2008; Goel et al., 
2003) 

3. UAV-Based 
Hyperspectral 
Imaging 

Headwall Micro- and Nano-Hyperspec 
(270 (Nano), 324 (Micro); 400–1000), 
VNIR (224; 400–1000), UHD185-Firefly 
(125; 450–950), PIKA II sensor (240; 
400–900), HySpex VNIR (108; 
400–1000). 

Estimating LAI and Chlorophyll, 
Estimating biomass, water, 
Classification of weeds, 
Detecting disease 

(Lucieer et al., 2014; Gonzalez-Dugo et al., 
2015; Hruska et al., 2012; Pablo J.  
Zarco-Tejada et al., 2013; Glenn et al., 
2012; Fenghua et al., 2017; Aasen and 
Bolten, 2018; Honkavaara et al., 2012; Yue 
et al., 2017; Pölönen et al., 2013; Kaivosoja 
et al., 2013; Akhtman et al., 2017; Izzo 
et al., 2019; Scherrer et al., 2019) 

4. Close-Range (Ground- 
or Lab-Based) 
Hyperspectral 
Imaging 

Headwall hyperspectral camera (324; 
400–2500), visible and near-infrared 
HIS camera (360; 440–1000), HySpex 
hyperspectral camera (360; 960–2500), 
Integrated a Pika XC hyperspectral line 
imaging scanner (138; 400–1000), Pika 
XC-2 hyperspectral camera (447; 
400–1000), Cubert UHD185 
hyperspectral camera (125; 450–950) 

Investigating 
biochemical 
components of crops, 
detecting crop 
disease, Identifying 
vegetation 
species or weeds, Phenotyping 
analysis and classification of plants, 
Monitoring soil 
properties 

(Feng et al., 2017; Mohd Asaari et al., 2018; 
Zhu et al., 2020; Morel et al., 2018;  
Nagasubramanian et al., 2019; Lopatin 
et al., 2017; Behmann et al., 2014;  
Antonucci et al., 2012; Malmir et al., 2019;  
Eddy et al., 2008)  
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A. platanoides refers to the Platanoideа Pax; A. pseudoplatanus – to the Acer Pax; and A. saccharinum to the Pubra Pax. The species 
between these sections are distinguished not only phylogenetically and morphologically, but also by the number of pigments in their 
leaves (Shi-Bao et al., 1992). Shi-Bao et al. (1992) notes that the qualitative composition of anthocyanins in the spring and autumn 
maple leaves may be an additional trait applicable for their identification at the section level. The species: Acer platanoides, 
A. saccharinum, A. pseudoplatanus are frost-resistant, drought-resistant, and relatively durable (ontogenesis lasts 50-60 years) under 
regional conditions. At the same time, the climatic characteristics of the Rostov region are, in general, considered unfavorable for the 
woody plant growth. Their negative impact may be increased on the background of specific factors of the urban environment. 
Therefore, urban green spaces are need to be monitored for species composition and plant health. However, large plantations do not 
allow to perform such monitoring using standard methods (Methodology for the inventory of urban green spaces, 1997). 

In the present work, the vegetation indexes have been calculated using a close-range (ground- or lab-based) hyperspectral imaging 
camera Cubert UHD-185 for the A. platanoides, A. saccharinum and A. pseudoplatanus leaves to test their values for the normal type of 
distribution, and estimated the difference between the spectral indices of the leaves of different types of maples. The data obtained 
allowed us to select the most informative indices among them also helped in validation of remote sensing data with real time ground 
data of vegetation (Goetz, 2009; Hycza et al., 2018; Wang et al., 2021). 

2. Materials and methods 

2.1. Research region 

The research was performed in the Botanic Garden of the Southern Federal University (SFedU), Rostov-on-Don, Russia (Fig. 3). The 
climate of the Rostov region is temperate continental, arid, average annual rainfall- 548 mm, and most of the precipitation falls in the 
frost-free period. The summer is hot, the average temperature of July month is +22 ... + 23◦С., maximum +40◦С. Winter is moderately 
mild, the average temperature January month is − 5◦С, the average absolute minimum of air temperature is − 20 .- 25◦С, the absolute 
minimum is − 32◦С. The growing season lasts 216 days (from April 1 to November 4), the frost-free period is 258 days. 

2.2. Research methods 

Spectral characteristics of plants were studied using Cubert UHD185 hyperspectral camera (Cubert GmbH, Germany) and standard 
methods (Aasen et al., 2015; Bareth et al., 2015). Plants of A. platanoides, A. saccharinum, A. pseudoplatanus were studied for four years 
and were grown in the same soil, sunlight, and agronomical conditions of the introductory nursery of the Botanical garden of SFedU. 
The planting rows were oriented due to north-south directions. At the beginning of the experiment all the plants were at the same stage 
(virginil) of ontogenesis after that they developed synchronously. The phenologic phases for the maples growing in the Rostov region 
are presented in Table 2. 

Five samples of each maple species were randomly selected from plantings. Each sample was imaged using a hyperspectral camera 
5 times. Hyperspectral imaging was performed in 5 repetitions from 12:00 to 14:00 on sunny and cloudless days (August 22, 2019, 
September 05, 2019, September 13, 2019, September 20, 2019, and September 30, 2019) for what the most sunlit part of the plant 
crown was chosen. Сamera was installed on the south-east side of the trees at a distance of 90 cm and at an angle of 90◦ to the ground. 

Fig. 3. Geographical location of research region in botanical garden of the Southern Federal University (SFedU), Rostov-on-Don, Russia.  
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The reflected electromagnetic sun radiation from the leaves was recorded in the range 450–950 nm (Fig. 4). In total, 375 images were 
obtained. Each image was represented as a single black-and-white image, 1000 × 1000 pixels in size. By 125 hyperspectral images, 50 
× 50 pixels in size; the square resolution was up to 35 mm2. From 60 to 100 spectral profiles measured at the adaxial side of leaves were 
randomly selected from each image. From 1500 to 2500 profiles were obtained per one experimental variant. Filter Savitsky- 
Golayfilter (length 12 nm) was applied to decrease the measurement error and to avoid spectral data artifacts at the stage of the 
preliminary data processing. For each variant of the experiment were calculated 80 vegetation indices. Their titles and formulas for 
calculations are given in Table 3. 

Thus, 1200 sample groups (15 experimental variants x 80 vegetation indices) were performed for the subsequent statistical pro-
cessing (see Table 4). The sample size of each sample group was from 1500 to 2500 indices values. Sample groups were processed in the 
statistical calculation environment R (R Core Team), using the «hsdar » package (Lehnert et al., 2019). The following test methods 
were applied to check the normality of the distribution of vegetation indices values: Norm test Shapiro–Wilk, Pearson’s chi-squared, 
Lilliefors, Cramer–von Mises.Pairwise comparison of vegetation indices values in different Acer species were performed using the 
Wilcox Test for independent samples (Mann Whitney U test). 

3. Results and discussion 

Tests of the normality, i.e., distribution of vegetation indices values for three Acer species obtained during the first period of the 
experiment (August 22, 2019) are shown in Table 3. Results obtained during the study on September 05, 2019, September 13, 2019, 
September 20, 2019, and September 30, 2019 are shown in supplementary Table 2. 

The data processing of the experimental results obtained has shown that only 192 statistical samplings of indices values, from that 
of a total 1200 (80 indices, 3 Acer species, 5 experiments) were distributed according to the normal law (the case when at least one of 

Table 2 
Phenological phases of development of A. platanoides, A. saccharinum, A. pseudoplatanus in the Rostov region.  

Phenological phase Сalendar date ±SD (day) 

A. platanoides A. pseudoplatanus A. saccharinum 

Blossoming buds IV.11 ± 1.6 IV.14 ± 1.6 IV.12 ± 2.1 
Leaf blossoming IV.16 ± 1.6 IV.18 ± 1.5 IV.18 ± 2.0 
Leaves are fully unfurled IV.23 ± 1.7 IV.28 ± 1.7 IV.27 ± 2.1 
Autumn leaf coloring – beginning IX.24 ± 2.6 IV.19 ± 4.5 IX.23 ± 3.1 
Autumn leaf coloring – mass X.03 ± 2.5 X.03 ± 6.3 X.08 ± 2.8 
Leaf fall – beginning IX.29 ± 1.8 IX.30 ± 2.9 X.02 ± 2.6 
Leaffall – massive X.13 ± 1.4 X.14 ± 2.7 X.19 ± 2.1 
Leaffall – end X.24 ± 1.6 X.22 ± 3.5 X.31 ± 2.5  

Fig. 4. Recording spectral characteristics of A. platanoides.  

P.A. Dmitriev et al.                                                                                                                                                                                                    



Remote Sensing Applications: Society and Environment 25 (2022) 100679

6

Table 3 
Vegetation indices tested for their ability to distinguish different Acer species.   

Indexname Formulafor calculating References 

1 Boochs D703 (Boochs et al. 1990) 
2 Boochs2 D720 (Boochs et al. 1990) 
3 CARI R700 * abs(a * 670 + R670 + b)/R670 * (a2 + 1)0.5a = (R700 * R550)/150, b = R550 – (a * 550) Kim et al. (1994) 
4 Carter2 R695/R760 (Carter, 1994) 
5 Carter3 R605/R760 (Carter, 1994) 
6 Carter4 R710/R760 (Carter, 1994) 
7 Carter5 R695/R670 (Carter, 1994) 
8 Carter6 R550 (Carter, 1994) 
9 CI R675 *R690/R2

683 Zarco-Tejada et al. (2003) 
10 CI2 R760/R700– 1 Gitelson et al. (2003) 
11 ClAInt ∫735nm

600nm
R  

Oppelt and Mauser (2004) 

12 CRI1 1/R515 – 1/R550 Gitelson et al. (2003) 
13 CRI2 1/R515 – 1/R770 Gitelson et al. (2003) 
14 CRI3 1/R515 – 1/R550* R770 Gitelson et al. (2003) 
15 CRI4 1/R515 – 1/R700* R770 Gitelson et al. (2003) 
16 D1 D730/D706 Zarco-Tejada et al. (2003) 
17 D2 D705/D722 Zarco-Tejada et al. (2003) 
18 Datt (R850– R710)/(R850– R680) Datt (1999) 
19 Datt2 R850/R710 Datt (1999) 
20 Datt3 D754/D704 Datt (1999) 
21 Datt4 R672/(R550*R708) Datt (1998) 
22 Datt5 R672/R550 Datt (1998) 
23 Datt6 R860/R550* R708 Datt (1998) 
24 DD (R749– R720) – (R701– R672) leMaireetal., (2004) 
25 DDn 2 * (R710– R660– R760) leMaireetal., (2004) 
26 DPI D688*D710/D2

697 Zarco-Tejada et al. (2003) 
27 DWSI4 R550/R680 Apan et al. (2004) 
28 EGFN (max(D650:750) + max(D500:550))/(max(D650:750) + max(D500:550)) Peñuelas et al. (1994) 
29 EGFR max(D650:750)/max(D500:550) Peñuelas et al. (1994) 
30 EVI 2,5 * ((R800– R670)/(R800 – 6 * R670 – 7,5 *R475 + 1)) Huete et al. (1997) 
31 GI R554/R677 Smith et al. (1995) 
32 Gitelson 1/R700 Gitelson et al. (1999) 
33 Gitelson2 (R750– R800/R695– R740) – 1 Gitelson et al. (2003) 
34 GMI1 R750/R550 Gitelson et al. (2003) 
35 GMI2 R750/R700 Gitelson et al. (2003) 
36 Green NDVI (R800– R550)/(R800 + R550) Gitelson et al. (1996) 
37 Maccioni (R780– R710)/(R780– R680) Maccioni et al. (2001) 
38 MCARI ((R700 – R670) – 0.2 * (R700 – R550)) * (R700 – R670) Daughtry et al. (2000) 
39 MCARI2 ((R700– R670) – 0.2 * (R700– R550)) * (R700/R670) Daughtry et al. (2000) 
40 MPRI (R515 – R530)/(R515 + R530) Hernández-Clemente et al. (2011) 
41 MSAVI 0,5 * (2 * R800 + 1–((2 * R800 + 1)2–8 * (R800– R670))0,5) Qi et al. (1994) 
42 mSR2 (R750/R705) – 1/(R750/R705 + 1)0,5 Chen (1996) 
43 MTCI (R754– R709)/(R709– R681) Dash and Curran (2004) 
44 MTVI 1,2 * (1,2 * (R800– R550)–2,5 * (R670– R550)) Haboudane et al. (2002) 
45 NDVI (R800– R680)/(R800 + R680) (Tucker, 1979), 
46 NDVI2 (R750– R705)/(R750 + R705) Gitelson and Merzlyak (1994) 
47 NDVI3 (R682 – R553)/(R682 + R553) (S.Gandia et al., 2004) 
48 OSAVI (1 + 0,16) * (R800– R670)/(R800 + R670 + 0,16) Rondeaux et al. (1996) 
49 OSAVI2 (1 + 0,16) * (R750– R705)/(R750 + R705 + 0,16) Wu et al. (2008) 
50 PARS R746/R513 Chappelle et al. (1992) 
51 PRI (R531– R570)/(R531 + R570) (Jordan, 1969) 
52 PRI_norm PRI * (− 1)/(RDVI * R700/R670) (P. J. Zarco-Tejada et al., 2013) 
53 PRI*CI2 PRI * CI2 Garrity et al. (2011) 
54 PSRI (R678– R500)/R750 Merzlyak et al. (1999) 
55 PSSR R800/R635 Blackburn (1998) 
56 PSND (R800– R470)/(R800– R470) Blackburn (1998) 
57 RDVI (R800– R670)/(R800 + R670)0,5 Roujean and Breon (1995) 
58 REP_Li 700 + 40 * ((Rre – R700)/(R740 – R700) 

Rre = (R670 – R780)/2 
Guyot and Baret (1988) 

59 SAVI (1 + L)/(R800– R670)/(R800 + R670 + L) Huete (1988) 
60 SPVI 0,4 * 3,7 * (R800– R670) – 1,2 * ((R530 – R670)2)0,5 (M Vincini et al., 2006) 
61 SR R800/R680 Jordan (1969) 
62 SR1 R750/R700 Gitelson and Merzlyak (1997) 
63 SR2 R752/R690 Gitelson and Merzlyak (1997) 
64 SR3 R750/R550 Gitelson and Merzlyak (1997) 
65 SR4 R700/R670 McMurtrey et al. (1994) 
66 SR5 R675/R700 Chappelle et al. (1992) 
67 SR6 R750/R710 Zarco-Tejada and Miller (1999) 

(continued on next page) 
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the four test methods confirmed the normal distribution). None of the test methods confirmed the normal type of distribution for any of 
the vegetation indices simultaneously for all three species of Acer in all five experiments. It makes impossible to use the parametric 
criteria to compare the values of vegetation indices of different Acer species. We applied a non-parametric Wilcox Test for independent 
samples (Mann Whitney U test). Mean values of the vegetation indices (X±SD) and results of the pairwise comparison or the vegetation 
indices (by the Wilcox Test) are presented in Table 5. 

Number of the vegetation indices, the values of which were significantly differed in the compared Acer species pairs according to 
the Wilcox Test, appeared to be large (Table 6). 

At the same time, we found 40 vegetation indices that significantly differed between species in their values simultaneously in all 
pairs: A. saccharinum vs. A. platanoides, A. saccharinum vs. A. pseudoplatanus and A. platanoides vs. A. pseudoplatanus in all five 
observation periods. They are: Carter2, Carter4, Carter5, CI, CI2, CRI2, CRI3, CRI4, D1, Datt2, Datt4, Datt5, Datt6, DWSI4, EGFN, 
EGFR, GI, Gitelson2, GMI1, GMI2, Green NDVI, MCARI, MCARI2, mSR2, MTVI, NDVI2, OSAVI2, PRI, PRI*CI2, PRI_norm, RDVI, 
REP_Li, SR1, SR3, Sum_Dr1, TGI, TVI, Vogelmann2, Vogelmann3 and Vogelmann4. When analyzing the nature of the observed dif-
ferences, it was found that for some indices their values in the compared pairs of maples retained the same trend in all five experiments 
(Fig. 5a). For other indices, the trends of their values in some periods of observation changed to the opposite (Fig. 5b). We excluded the 
second group of vegetation indices as unreliable since there is a possibility that the observed difference in the indices values in the 
compared pairs may be a result of the influence of random factors. Vegetation indices suitable to identify (in our opinion) the Acer 
species are listed in Table 7. 

Most of the vegetation indices, which enable to distinguish between different maple species, were found to be designated to the 
calculations on basis of the 475-860 nm spectral band. Indices calculated using the channels N 55, 62, 74, 75 were found to be more 
informative. They are: Boochs2, Carter5, CI2, CRI4, Datt3, Datt5, EVI, GMI1, GMI2, MCARI2, mSR2, MTCI, NDVI2, OSAVI2, PARS, 
REP_Li, SR1, SR2, SR3, SR4, SR5, TCARI2, TGI, Vogelmann2, Vogelmann4 (Table 8). 

4. Conclusion 

In our study, values of 80 vegetation indices for the leaves of three maple species, A. platanoides, A. pseudoplatanus and 
A. saccharinum have been calculated. It was observed, that most of the studied indices values were not distributed according to the 
normal law. For this reason, we used the nonparametric Wilcox Test criterion for independent samples. Mann Whitney U test for 
parawise comparisons of different indices for Acer species. Forty vegetation indices were found to be significantly differed simulta-
neously in the following pairs: A. saccharinum vs. A. platanoides, A. saccharinumvs vs. A. pseudoplatanus and A. platanoides vs. 
A. pseudoplatanus in all experiments.They are: Carter2, Carter4, Carter5, CI, CI2, CRI2, CRI3, CRI4, D1, Datt2, Datt4, Datt5, Datt6, 
DWSI4, EGFN, EGFR, GI, Gitelson2, GMI1, GMI2, Green NDVI, MCARI, MCARI2, mSR2, MTVI, NDVI2, OSAVI2, PRI, PRI*CI2, 
PRI_norm, RDVI, REP_Li, SR1, SR3, Sum_Dr1, TGI, TVI, Vogelmann2, Vogelmann3 and Vogelmann4. From the data obtained, we have 
selected the following indices reliable for the Acer species distinguishing: For the pair A. platanoides vs. A. pseudoplatanus – Boochs2, 
MCARI2, TCARI2, Vogelmann2 and Vogelmann4; for the pair A. platanoides vs. A. saccharinum – Carter2, Carter3, Carter4, Carter5, CI, 
CI2, CRI3, CRI4, Datt, Datt2, Datt3, Datt5, DDn, DWSI4, EGFN, EGFR, EVI, GI, GMI1, GMI2, Green NDVI, Maccioni, MCARI2, mSR2, 
MTCI, NDVI2, NDVI3, OSAVI2, PARS, PSSR, REP_Li, SR1, SR2, SR3, SR4, SR8, Vogelmann2 and Vogelmann4; for the pair 

Table 3 (continued )  

Indexname Formulafor calculating References 

68 SR8 R515/R550 (R et al., 2012) 
69 Sum_Dr1 ∑795

i=626
D1i  

Elvidge and Chen (1995) 

70 Sum_Dr2 ∑780

i=680
D1i  

Filella and Peñuelas (1994) 

71 TCARI 3 * ((R700– R670) – 0,2 * (R700– R550) *(R700/R670)) Haboudane et al. (2002) 
72 TCARI/OSAVI TCARI/OSAVI Haboudane et al. (2002) 
73 TCARI2 3 * ((R750– R705) – 0,2 * (R750– R550) *(R750/R705)) Wu et al. (2008) 
74 TCARI2/OSAVI2 TCARI2/OSAVI2 Wu et al. (2008) 
75 TGI − 0.5 * (190 * (R670 – R550) – 120 * (R670 – R480)) Hunt et al. (2013) 
76 TVI 0,5 * (120 * (R750– R550)–200 * (R670– R550)) Broge and Leblanc (2001) 
77 Vogelmann R740/R720 Vogelmann et al. (1993) 
78 Vogelmann2 (R734– R747)/(R715 + R726) Vogelmann et al. (1993) 
79 Vogelmann3 D715/D705 Vogelmann et al. (1993) 
80 Vogelmann4 (R734– R747)/(R715 + R720) Vogelmann et al. (1993) 

Notes: Rxxx: Reflectance at the wavelength “xxx”, Dxxx: First derivation of reflectance values at the wavelength “xxx”. 
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A. pseudoplatanus vs. A. saccharinum – Carter3, Carter5, CRI3, Datt5, Datt6, DWSI4, EGFN, EGFR, GI, GMI1, Green NDVI, NDVI3, PARS, 
SR3, SR4, SR5, SR8 and TGI. Thus, the species A. platanoides, A. pseudoplatanus, and A. saccharinum can be identified using vegetation 
indices calculated from hyperspectral imaging data in this study. Also, the results of the study may be used to develop approaches for 

Table 4 
Shapiro–Wilk (1), Pearson’s chi-squared (2), Lilliefors (3), Cramér–von Mises (4) norm 
tests of the VIs values for A. platanoides, A. pseudoplatanus and A. saccharinum. 
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Table 5 
Statistical characteristics of vegetation indices (VIs) values of A. platanoides (pl), A. pseudoplatanus (ps) and A. saccharinum 
(sa). 
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Table 6 
Number of the vegetation indices significantly differing between the compared Acer species pairs according to the Wilcox Test.  

Species A. saccharinum A. platanoides A. pseudoplatanus 

A.saccharinum 0 68 63 
A. platanoides 68 0 56 
A. pseudoplatanus 63 56 0  

Fig. 5. Dynamics of changes in the values of vegetation indices during the five experiments. A - kept the trend in all experiments; B - did not save the unidirectional 
trend. 
Notes: For all the compared Acer pairs shown in the figure, the values of the vegetation indices during the five experiments significantly differ according to the Wilcox 
Test at a confidence level of 0.95 (Table 5). 
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operational inventory of green spaces and for remote sensing base monitoring and classification of tree speices. 
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Table 7 
Vegetation indexes suitable to distinguish Acer species.  

Compared species Vegetation indexes 

A. platanoides vs A. 
pseudoplatanus 

Boochs2, MCARI2, TCARI2, Vogelmann2, Vogelmann4 

A. platanoides vs A. saccharinum Carter2, Carter3, Carter4, Carter5, CI, CI2, CRI3, CRI4, Datt, Datt2, Datt3, Datt5, DDn, DWSI4, EGFN, EGFR, EVI, GI, GMI1, 
GMI2, Green NDVI, Maccioni, MCARI2, mSR2, MTCI, NDVI2, NDVI3, OSAVI2, PARS, PSSR, REP_Li, SR1, SR2, SR3, SR4, SR8, 
Vogelmann2, Vogelmann4 

A. pseudoplatanus vs A. 
saccharinum 

Carter3, Carter5, CRI3, Datt5, Datt6, DWSI4, EGFN, EGFR, GI, GMI1, Green NDVI, NDVI3, PARS, SR3, SR4, SR5, SR8, TGI  

Table 8 
Channels used for calculating vegetation indexes suitable to distinguish Acer species. 
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Hernández-Clemente, R., Navarro-Cerrillo, R.M., Suárez, L., Morales, F., Zarco-Tejada, P.J., 2011. Assessing structural effects on PRI for stress detection in conifer 

forests. Remote Sens. Environ. 115, 2360–2375. https://doi.org/10.1016/J.RSE.2011.04.036. 
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task generation for wheat based on classified hyperspectral data from UAV combined with farm history data. Remote Sens. Agric. Ecosyst. Hydrol. XV 8887, 
88870H. https://doi.org/10.1117/12.2029165. 

Kim, M.S., Daughtry, C., Chappelle, E., McMurtrey, J., Walthall, C., 1994. The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically 
Active Radiation (A Par). Undefined. 

Lehnert, L.W., Meyer, H., Obermeier, W.A., Silva, B., Regeling, B., Thies, B., Bendix, J., 2019. Hyperspectral data analysis in R: the hsdar package. J. Stat. Software 89 
(12), 1–23. https://doi.org/10.18637/jss.v089.i12. 

Liu, J., Miller, J.R., Haboudane, D., Pattey, E., Hochheim, K., 2008. Crop fraction estimation from casi hyperspectral data using linear spectral unmixing and 
vegetation indices. Can. J. Rem. Sens. 34, S124–S138. https://doi.org/10.5589/M07-062. 

Lopatin, J., Fassnacht, F.E., Kattenborn, T., Schmidtlein, S., 2017. Mapping plant species in mixed grassland communities using close range imaging spectroscopy. 
Remote Sens. Environ. 201, 12–23. https://doi.org/10.1016/J.RSE.2017.08.031. 

Lu, B., Dao, P.D., Liu, J., He, Y., Shang, J., 2020. Recent advances of hyperspectral imaging technology and applications in agriculture, 2020 Rem. Sens. 12, 2659. 
https://doi.org/10.3390/RS12162659, 2659 12.  

Lucieer, A., Malenovský, Z., Veness, T., Wallace, L., 2014. HyperUAS—imaging spectroscopy from a multirotor unmanned aircraft system. J. Field Robot. 31, 
571–590. https://doi.org/10.1002/ROB.21508. 

Maccioni, A., Agati, G., Mazzinghi, P., 2001. New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. 
J. Photochem. Photobiol. B Biol. 61, 52–61. https://doi.org/10.1016/S1011-1344(01)00145-2. 

Malmir, M., Tahmasbian, I., Xu, Z., Farrar, M.B., Bai, S.H., 2019. Prediction of soil macro- and micro-elements in sieved and ground air-dried soils using laboratory- 
based hyperspectral imaging technique. Geoderma 340, 70–80. https://doi.org/10.1016/J.GEODERMA.2018.12.049. 
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