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A B S T R A C T   

Deflection of a relativistic electron beam by means of the pyroelectric deflector is demonstrated 
experimentally for the first time. The operating principle of the pyroelectric deflector is based on 
the generation of a strong transverse electric field in a vacuum in the gap between a pair of 
pyroelectric crystals due to the pyroelectric effect. The experiments on observation of deflection 
of 7 MeV electron beam for 26 mrad in the transverse electric field with a strength of about 100 
kV/cm arising at a variation of the temperature of a pair of pyroelectric crystals in vacuum are 
described. The possibility for application of the installed sequentially pyroelectric deflectors in 
pyroelectric undulator for production of undulator radiation by relativistic electron beam without 
any external high voltage power supply is discussed.   

1. Introduction 

Usually, a beam of accelerated charged particles is controlled by a transverse magnetic or electric field. For instance, dipole 
magnets are used to control beam turning [1]. The transverse electric field is used, for example, to control low-energy beams or in 
kickers of high-energy beams [2]. A natural transverse electric field between crystallographic planes or rows in crystals is used for 
beams steering due to channelling or above-barrier motion of particles in a crystal [3,4]. Besides, steering of the low energy beam is 
possible due to surface charge, which is produced on dielectrics by incident beam [5–7]. Recently, the pyroelectric deflector of charged 
particles beam has been proposed in Ref [8]., where the deflection of the non-relativistic electron beam was demonstrated experi
mentally. Here we describe our first experiments on the deflection of the relativistic electron beam by the pyroelectric deflector and 
discuss the possibility for application of pyroelectric deflectors in the pyroelectric undulator. 
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2. Deflection of charged particle in transverse electric field 

At the motion of the particle with charge q, mass m, velocity V, and momentum p in the transverse electric field E, the centrifugal 
force pV

R should be equal to the force acting on the particle from the field qE. Therefore, one can write the following equation 

pV
R

= qE (1)  

where R is the radius of the particle’s trajectory curvature. One can find the radius of the curvature from Eq. (1) 

R =
εβ2

qE
(2)  

where ε = mc2
̅̅̅̅̅̅̅̅
1− β2

√ is the full energy of the particle, β = V
c, c is the light velocity Eq. (2). can be written as a function of the kinetic energy 

εkin of an accelerated particle 

R =
εkin

qE
⋅

εkin + 2mc2

εkin + mc2 (3) 

The deflection angle α = l
R of the particle which passed path l in the transverse electric field E is 

α =
qEl
εkin

γ
γ + 1

=
qEl
εkin

εkin + mc2

εkin + 2mc2 (4)  

where γ is the relativistic factor, α is in radian units. In the non-relativistic case at εkin << mc2, Eq. (4) takes the form 

α =
qEl
2εkin

(5) 

Eq. (5) has been used in the analysis of the deflection of the non-relativistic electron beam in [8]. In the ultra-relativistic case at εkin 

>> mc2, Eq. (4) takes the form 

α =
qEl
εkin

(6) 

Below we describe our experiments on a deflection of the relativistic electron beam by the pyroelectric deflector. 

3. Pyroelectric deflector 

The electric field can be created in a vacuum due to the pyroelectric effect at the variation of the temperature of pyroelectrics 
installed in vacuum [9,10]. The circuit diagram of the pyroelectric deflector is shown in Fig.1. 

Two pyroelectric crystals with parallel polarization vectors P→ are installed on grounded metal plates at some distance one from 
another in a vacuum. Both crystals can be heated or cooled simultaneously by adding and reducing some amount of heat Q. Surface 
charges of opposite signs arise on free crystal surfaces at the variation of the temperature. The electric field E→ appears between free 
crystal surfaces. A similar configuration of crystals was proposed in Ref [11]. for the production of X-rays by electrons accelerated 
along vector E→ between free crystal surfaces. Here we use the electric field as the transverse electric field for deflection of external 
relativistic electron beam moving along the crystal surfaces between crystals. The electron beam is deflected for angle α in the 
transverse electric field. 

4. Experimental 

The experiment was carried out on a modified ROENTGEN setup [12] at the exit of electron microtron of the synchrotron complex 
"Pakhra" [13] in the Lebedev Physical Institute in Troitsk, Russia. The microtron provided a pulsed electron beam of energy of 7 MeV at 
an average beam current of 2 nA. The repetition rate was 50 Hz, the duration of each pulse was 4 μs. The transverse size of the beam 
was about 1 × 5 mm. 

Fig. 2 shows the general scheme of the experiment. Accelerated electron beam passed bending magnet 1 and penetrated to the 
vacuum chamber 3. The pyroelectric deflector 2 was installed in the middle of vacuum chamber 3 on the linear translator 4, which 
allowed to regulate the position of the deflector relative to the electron beam. Pyroelectric crystals are shown by the square in the 
centre of the deflector. The removable screen 5 was installed at an angle of 45◦ relative to the electron beam. Screen 5 consists of a 
powder zinc sulfide scintillator (ZnS:Cu) deposited on 1 mm thick aluminium plate. The grid with rectangles 5 × 5

̅̅̅
2

√
mm in size was 

drown on the surface of the scintillator. The distance between the centre of the pyroelectric deflector 2 and the screen 5 was 500 mm. 
The position of the electron beam spot on the screen was observed through glass window 10 by web camera 8 installed at the right 
angle relative to the primary beam axis. The removable Faraday cup 6 made it possible to measure the beam current. The gas-filled 
position-sensitive proportional chamber 7 monitored the beam position and profile. The proportional chamber was used for 
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preliminary tuning of the electron beam. 
The semiconductor X-ray detector 9 of type Amptek XR-100T CdTe was used to measure spectra of X-ray radiation generated by 

electrons accelerated in the deflector between free surfaces of pyroelectric crystals. The distance between the centre of deflector 2 and 
the entrance window of the detector 9 was 500 mm. The 100 µm beryllium entrance window of the detector was inserted in a vacuum. 
The area of the detector is 25 mm2, the registration efficiency of the X-ray detector is close to 100% in the energy range from 3 to 100 
keV. X-rays emitted from free surfaces of both crystals at grazing angles only could penetrate to the detector. The signals from the 
detector were processed by the digital processor PX-5. The X-ray spectrometer was calibrated by energy with the use of the X-ray lines 
of the 237Np isotope before performing the experiments. 

The pyroelectric deflector is made as a separate assembly. The design of the pyroelectric deflector is shown in Fig. 3. Two pyro
electric crystals 1 are glued by conductive epoxy to the duralumin disks 2 of diameter 38 mm and height 5 mm which served as heat 
conductors. Two thermocouples of K-type 6 were installed at the heat-conductors 2 and used to measure the temperature. Both 
measured temperatures were practically equal in the experiments. Therefore, in the following discussions of the temperature, we mean 
both temperatures. The heating of pyroelectric crystals in a vacuum was performed by semiconductor elements. Application of 
semiconductor elements for heating of the pyroelectrics in vacuum was proposed recently [14]. Crystals 1 were heated by diodes 3 
through duralumin heat-conductors 2. We used commercially available silicon diodes of type MUR1560 with maximum current of 15 
Amps and maximum junction temperature of 175 ◦C as heating diodes. 

The units of crystal 1, heat conductor 2 and diode 3 are fixed on the metal plates 4. The metal plates served as heat radiators at the 

Fig. 1. Pyroelectric deflector circuit diagram.  

V.I. Alekseev et al.                                                                                                                                                                                                     



Chinese Journal of Physics 77 (2022) 2298–2306

2301

cooling of the crystals after tuning off the current through diodes. Two such units are connected by brass rods 5. We used two identical 
pyroelectric single crystals LiNbO3 in the form of a parallelepiped. The size of the crystal’s base is 20 × 20 mm and the height of every 
crystal is 10 mm. The Z-axis of the LiNbO3 crystal is perpendicular to the base of the parallelepiped. The distance between the free 
surfaces of the crystals was d=11 mm. The polarization vectors of both crystals were co-directed, as shown in Fig.1. Synchronous 
heating or cooling of both crystals leads to arising of a negative charge on the free surface of one crystal and a positive charge on the 
free surface of another crystal. The charges induce the electric field between crystals, as shown in Fig. 1. The back surfaces of the 
crystals were grounded through the heat conductors. Heating diodes 3 were electrically isolated from the heat-conductors 2. 

The pressure of residual gas in the vacuum chamber during the experiments was about 5•10− 5 Torr. The beam parameters were 
tuned using the proportional chamber and Faraday cap to provide an ellipsoid-like shape of the beam passing through the middle of the 
deflector. Then, the current through the diodes was turned on and both crystals were synchronously heated. After that, the current was 
turned off and crystals were synchronously cooled due to thermal radiation. During heating and cooling, the transverse electric field 
arose in the deflector, the electron beam deflected, and the beam spot position on the screen was shifted. 

5. Results 

Some photographic images of the electron beam spots on the screen are shown in Fig. 4(a). The temperature of the pyroelectric 
crystals, the beam positions, and deflection angles of the electron beam in some moments of time are noted in the bottom of Fig. 4(a). 

One can see from Fig. 4(a), that the electron beam is deflected in one direction at heating and in opposite direction at natural 
cooling of crystals of the pyroelectric deflector. More detailed results of measurements are given in Fig. 4(b), where the deflection 
angle and measured temperature are shown as functions of time. 

The heating of crystals began from the initial temperature of the crystals 33 ◦C due to turning on stabilized current of 4.5 Amps 
through each diode. The voltage of 1.2 Volts was on each diode at the beginning of the heating and it was some reduced during the 
heating because of increasing of the temperature of the silicon junctions. The heating was stopped and natural cooling began by 
turning off the current through diodes at 244th second. The natural cooling in vacuum was mainly due to thermal radiation from 
crystals, and heat conductors, and metal plates. 

The deflection angle increased for 244 s and reached maximum magnitude +26 mrad at increasing the temperature at about 38.8 
◦C. The reduction of the deflection angle began immediately after turning off the current through diodes and stopping the heating. The 
deflection angle and electric field strength became equal to zero on 610th second at the temperature of about 57.4 ◦C. During the 
natural cooling of the crystals, the signs of the charges on the crystal surfaces and electric field vectors became opposite and the 
deflection angle became negative. The deflection angle reached value − 26 mrad at the 2264th second and the deflection angle became 
equal to zero again after following natural cooling up to temperature 33.5 ◦C during 7200 s. In the experiments, we observed that spark 
discharges appeared in the deflector at a sufficient increase of the range of the temperature variation relative to the above described 
one. 

Thus, we experimentally observed maximum deflection angles αmax=±26 mrad with an accuracy of about 5%. One can find the 
maximum values of the strength of the transverse electric field Emax in the deflector from Eq. (4). 

Fig. 2. The scheme of the experiment. 1 - Bending magnet, 2 - pyroelectric deflector, 3 - vacuum chamber, 4 – linear translator, 5 – removable 
scintillation screen, 6 – removable Faraday cup, 7 - proportional chamber, 8 - web camera, 9 - X-ray detector, 10 – glass window. 
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Emax =
αmaxεkin

el
εkin + 2mec2

εkin + mec2 (7)  

where e,me are electron charge and mass respectively. From Eq. (7) we find Emax = ±97.2 kV
cm at εkin = 7 MeV, and the path of electrons 

between crystals l = 2 cm. 
Independent measurement of the field strength between crystals was performed due to X-ray radiation of electrons accelerated 

between crystals. This radiation was observed in Ref [11]. The X-ray radiation is produced by electrons that are emitted from the 
negatively charged surface and are accelerate in the gap between crystals toward the positively charged surface. When accelerated 
electrons collide with the positively charged surface of the crystal, they produce characteristic and bremsstrahlung X-ray radiation. 
The maximum energy of the bremsstrahlung quanta ℏωmax is practically equal to the maximum energy of the accelerated electrons eU, 
where U is the difference of the potentials between crystal surfaces. Thus, we can estimate the strength of the electric field EX− ray

max from 
our X-ray data as 

Fig. 3. The design of the pyroelectric deflector. 1 - Pyroelectric crystals, 2 – duralumin heat-conductors, 3 – heating diodes, 4 –metal plates, 5 – 
metal rods, 6 – K-type thermocouples. The ellipse shows the position of the incident electron beam in the deflector. 
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Fig. 4. The deflection of an electron beam. (a) Three photographic imagines of the electron beam spot on the screen when the deflector was turned 
off and at maximum deflection angles at heating and cooling of pyroelectric crystals. (b) The deflection angle of the electron beam and measured 
temperature as functions of time. Experimental points are connected by lines for clarity. 

V.I. Alekseev et al.                                                                                                                                                                                                     



Chinese Journal of Physics 77 (2022) 2298–2306

2304

EX− ray
max =

eU
ed

=
ℏωmax

ed
(8)  

where d is the distance between crystals. Unfortunately, our attempts to measure a spectrum of X-ray radiation by the X-ray detector 
shown in Fig. 2 during experiments with accelerated electron beam were not successful because of the low intensity of radiation and 
significant spectral background from the accelerator. Therefore, we performed measurements of spectrum of X-ray radiation from the 
pyroelectric deflector under the same conditions at the same variations of the temperature as described above but with tuned-off 
accelerator. The spectrum of X-ray radiation from the pyroelectric deflector measured during one cycle of heating and cooling is 
shown in Fig. 5. 

The spectrum contains peaks with energies 16.62 keV and 18.62 keV which correspond to Kα and Kβ lines respectively of char
acteristic X-ray radiation of Nb atoms from LiNbO3 crystal. The bremsstrahlung radiation has maximum energy ℏωmax = 110 keV. With 
use of Eq. (8) we obtain EX− ray

max = 100 kV
cm. 

6. Discussion and perspectives 

We measured the maximum strength of the electric field in the gap between pyroelectric crystals by two independent experimental 
methods. In the first one, where Emax is estimated by Eq. (7), the electric field strength is averaged along the incident electron beam 
trajectory. In the second one, where EX− ray

max is estimated by Eq. (8), the electric field strength is averaged in the perpendicular direction 
along the symmetry axis of the deflector. In spite of so different methods and areas of averaging, results of both measurements of the 
electric field strength are in good agreement with an accuracy of about 3%. The agreement is because the electric field between free 
surfaces of crystals is almost uniform similar to one in a parallel-plate capacitor. Thus, the transverse electric field strength of about 
100 kV

cm was observed experimentally in the pyroelectric deflector. 
Theoretical estimation of the electric field strength in the deflector can be performed using pyroelectric properties of the crystals 

using Eq. (4.2) from Ref [8]. This estimation at conditions described in the present paper gives strength 211 kV
cm at the variation of the 

temperature of crystals by 38.8 ◦C. The calculated strength exceeds experimentally observed one in more than two times. The 
discrepancy may be because of a leakage of the charge from the free crystal surfaces and some difference of temperatures between 
crystals and heat-conductors, where the temperature probes are installed. 

Note, that the deflecting field, produced by a transverse electric field with strength 100 kV/cm, is equivalent to the deflecting field 
produced by a transverse magnetic field with inductance 333 H or 0.0333 T for ultra-relativistic particles at V → c. 

As we noted above, the range of the temperature variation ΔT in the experiment was 38.8 ◦C. But we observed instability of the 

Fig. 5. The spectrum of X-ray radiation from the pyroelectric deflector measured during one cycle of heating and cooling without an external 
electron beam. 
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deflection angle and spark discharges at increasing the range at ΔT >40 ◦C. Therefore, the stability and reproducibility of the electric 
field strength should be studied as functions of the residual gas pressure, the range of the temperature variation, the state of pyro
electric crystals surfaces, the shape of the crystals. 

The concept of a pyroelectric deflector can be as the basis for the development of a pyroelectric undulator. Several installed 
sequentially pyroelectric deflectors with opposite directions of crystals polarization can lead to undulatory motion of relativistic 
charged particles and to the emission of undulator radiation. Such undulator can be considered as a kind of electrostatic undulator. The 
electrostatic undulator was first proposed in Refs [15,16]. The project of the electrostatic undulator of the ultra-relativistic beam with 
conductive electrodes and external high voltage power supply was proposed in Refs [17,18]. The undulator based on fringing E-field 
superlattice for electron beam with mildly relativistic energy was proposed in Ref [19]. The undulator based on separate pyroelectric 
deflectors was proposed in Refs [8,20]. In the present paper, we demonstrated experimentally operation of the pyroelectric deflector 
with the relativistic electron beam. 

The pyroelectric undulator can produce radiation during heating or cooling of the undulator only and cannot operate continuously. 
However, the pyroelectric undulator could be light, small, cheap and it does not need any external high voltage power supply. The 
pyroelectric undulator can be applied for the production of electromagnetic radiation in conditions, where such properties of the 
undulator are acceptable. The pyroelectric undulator can operate during heating or cooling of all pyroelectric deflectors simulta
neously. The phase of the undulator radiation should be changed by π at heating or cooling. Pyroelectric crystals or pyroelectric 
ceramics [21] can be applied in the pyroelectric undulator. Besides, the high voltage produced due to the piezoelectric effect in a 
vacuum [22] can be used for the power supply of the electrostatic undulator. 

7. Conclusion 

The obtained results allow concluding that a pyroelectric deflector can be used for slow steering of a relativistic electron beam. The 
slow operation of the deflector is due to the slow variation of the temperature of the pyroelectric crystals. The pyroelectric deflector 
does not need in any external high-voltage power supply because the high voltage is produced inside of the vacuum chamber due to the 
pyroelectric effect. The electric field strength of about 100 kV/cm was observed in the experiment. The power of several Watts from a 
low-voltage source is enough for the supply of the deflector. The possibility for the development of small, light, cheap pyroelectric 
undulator based on pyroelectric deflectors is discussed. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

The work was financially supported by a Program of the Ministry of Education and Science of the Russian Federation for higher 
education establishments (project No. FZWG-2020–0032 (2019–1569)), and by Russian Foundation of Basic Research (project No. 
19–32–50085), and by the Ministry of Science and Higher Education of Russia (project No. RFMEFI62119 X 0035). The experiments 
were performed using the equipment of the Shared Research centre of FSRC “Crystallography and Photonics” RAS. A.V. Shchagin is 
thankful to R. Tatchyn for discussion about applicability of the pyroelectric effect in electrostatic undulator that was happened in 
Kharkov in 2000s. 

References 

[1] M.G. Minty, F. Zimmermann, Measurement and control of charged particle beams, Springer – Verlag, Berlin Heidelberg New Yourk (2003). 
[2] D.W.O. Heddle, Electrostatic Lens Systems, 2nd edition, CRC Press, 2000. 
[3] V.M. Biryukov, Y.A. Chesnokov, V.I. Kotov, Crystal Channeling and Its Application At High-Energy Accelerators, Berlin Heidelberg New, Springer – Verlag, 

1997. 
[4] A.I. Akhiezer, N.F. Shul’ga, V.I. Truten, A.A. Grinenko, V.V. Syshchenko, Dynamics of high-energy charged particles in straight and bent crystals, Phys. Usp. 38 

(1995) 1119–1145. 
[5] K.A. Vokhmyanina, G.P. Pokhil, P.N. Zhukova, E. Irribarra, A.S. Kubankin, R.M. Nazhmudinov, A.N. Oleinik, I.A. Kishin, V.S. Sotnikova, Guiding of a beam of 

10 keV electrons by micro size tapered glass capillary, Nucl. Instrum. Methods B 355 (2015) 307–310. 
[6] O.S. Druj, V.V. Yegorenkov, A.V. Shchagin, V.B. Yuferov, Electron beam transport in dielectric tubes, East Eur. J. of Phys. 1 (2014) 70–73. 
[7] A. Yu. Basai, C.A. Vorobiev, V.V. Kaplin, E.I. Rosum, A.M. Slupsky, Deflection of a 1.5 MeV electron beam by curved tubes, Sov. Tech. Phys. Lett. 14 (9) (1988) 

849–854. 
[8] A.N. Oleinik, A.S. Kubankin, R.M. Nazhmudinov, K.A. Vokhmyanina, A.V. Shchagin, P.V. Karataev, Pyroelectric deflector of charged particle beam, JINST 11 

(2016). P08007. 
[9] G. Rosenman, D. Shur, Ya.E. Krasik, A. Dunaevsky, Electron emission from ferroelectrics, J. Appl. Phys. 88 (2000) 6109–6161. 

[10] J.D. Brownridge, S.M. Shafroth, Electron and positive ion beams and x-rays produced by heated and cooled pyroelectric crystals such as LiNbO3 and LiTaO3 in 
dilute gases: phenomenology and applications. Trends in Lasers and Electro-Optics Research, Nova Science, New York, 2004, pp. 57–95. 

[11] J.A. Geuther, Y. Danon, High-energy X-Ray production with pyroelectric crystal, J. Appl. Phys. 97 (2005), 074109. 
[12] V.I. Alekseev, K.A. Vokhmyanina, A.N. Eliseev, P.N. Zhukova, A.S. Kubankin, R.M. Nazhmudinov, N.N. Nasonov, V.V. Polyanskii, V.I. Sergienko, Measuring 

coherent peaks of polarization bremsstrahlung from relativistic electrons in polycrystalline targets in backscattering geometry, Tech. Phys. Lett. 38 (2012) 
294–296. 

V.I. Alekseev et al.                                                                                                                                                                                                     

http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0001
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0002
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0003
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0003
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0004
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0004
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0005
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0005
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0006
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0007
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0007
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0008
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0008
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0009
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0010
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0010
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0011
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0012
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0012
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0012


Chinese Journal of Physics 77 (2022) 2298–2306

2306

[13] V.I. Alekseev, V.A. Baskov, V.A. Dronov, A.I. L’vov, A.V. Koltsov, Yu.F. Krechetov, E.I. Malinovsky, L.N. Pavlyuchenko, V.V. Polyanskiy, S.S. Sidorin, A quasi- 
monochromatic electron beam of the accelerator “Pakhra” for calibration of detectors, J. Phys.: Conf. Ser. 1390 (2019) 012127, https://doi:10.1088/1742- 
6596/1390/1/012127. 

[14] O.O. Ivashchuk, A.V. Shchagin, A.S. Kubankin, V.Y. Ionidi, A.S. Chepurnov, Semiconductor driver of pyroelectric accelerator of charged particles, Probl. At. Sci. 
Technol., Series: Nuclear Physics Investigations 6 (2019) 81–84. 

[15] V.L. Ginzburg, On the radiation of microwaves and their absorption in the air, Izv. Akad. Nauk. SSSR, Ser. Fiz. 11 (1947) 165–182. 
[16] H. Motz, Applications of the radiation from fast electron beams, J. Appl. Phys. 22 (1951) 527–535. 
[17] R. Tatchyn, A segmented electrostatic undulator design for generating arbitrarily polarized soft x rays at the Stanford Positron Electron Project, J. Appl. Phys. 69 

(1989) 4107–4119. Erratum: J. Appl. Phys. 69 (1991) 4457. 
[18] R. Tatchun, Variableperiod electrostatic and magnetostatic undulator designs for generating polarized soft x rays at PEP, Rev. Sci. Instrum. 60 (1989) 

2571–2578. Erratum: Rev. Sci. Instrum. 62 (1991) 1376. 
[19] N. Kukhtarev, T. Kukhtareva, Compact crystal accelerator-undulator based on fringing E-field super lattice, in: Proc. SPIE 8847, Photonic Fiber and Crystal 

Devices: Advances in Materials and Innovations in Device Applications VII, 2013, 88470F. 
[20] A.A. Kaplii, A.N. Oleinik, A.S. Kubankin, A.V. Shchagin, Pyroelectric undulator, patent RU168703U1 (2016). 
[21] A.V. Shchagin, V.S. Miroshnik, V.I. Volkov, A.N. Oleinik, Ferroelectric ceramics in a pyroelectric accelerator, Appl. Phys. Lett. 107 (2015), 233505. 
[22] O.O. Ivashchuk, A.V. Shchagin, A.S. Kubankin, I.S. Nikulin, A.N. Oleinik, V.S. Miroshnik, V.I. Volkov, Piezoelectric Accelerator, Sci. Rep. 8 (2018) 16488, 

https://doi.org/10.1038/s41598-018-34831-8. 

V.I. Alekseev et al.                                                                                                                                                                                                     

http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0013
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0013
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0013
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0014
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0014
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0015
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0016
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0017
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0017
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0018
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0018
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0019
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0019
http://refhub.elsevier.com/S0577-9073(21)00193-3/sbref0021
https://doi.org/10.1038/s41598-018-34831-8

	Pyroelectric deflector of relativistic electron beam
	1 Introduction
	2 Deflection of charged particle in transverse electric field
	3 Pyroelectric deflector
	4 Experimental
	5 Results
	6 Discussion and perspectives
	7 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	References


