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THE GEODESIC FLOW ON NILMANIFOLDS
ASSOCIATED TO GRAPHS

GABRIELA P. OVANDO

Abstract. We study the geodesic flow on nilmanifolds associated to graphs.
We are interested in the construction of first integrals to show complete inte-
grability on some compact quotients. We start on the corresponding Lie group
equipped with a left-invariant metric, which is induced to the quotients. Also
examples of integrable geodesic flows and of non-integrable ones are shown.

1. Introduction

In this work we deal with the integrability of the geodesic flow on nilmanifolds.
The condition of integrability imposes obstructions to the topology of the sup-
porting manifold [21, 22]. In known examples constructed by starting with a Lie
group N , one is able to construct a set of linearly independent first integrals in
involution on the tangent space TN , and doing some extra work, one can induce
the first integrals to T (Γ\N), for a cocompact lattice Γ < N . These first integrals
cannot be analytic in most of these examples. And in any case, finding enough
functions in involution requires a case-by-case process by hand, which shows that
the integrability question is not well understood. Even under restricted conditions,
for instance on locally homogeneous manifolds, there is no general theory to decide
the complete integrability of the geodesic flow. In [14] the authors studied some
relationships between the algebra of first integrals and the algebraic geometric
structure of the underlying Lie group, more specifically the corresponding isometry
group.

Lie groups and their compact quotients were already used to answer nice geomet-
rical questions [1, 2, 4, 3, 12, 18, 19]. For 2-step nilpotent Lie groups, Butler intro-
duced in [5] the notion of non-integrable Lie algebras, and proved that the geodesic
flow on compact quotient manifolds arising from Lie groups with non-integrable
Lie algebras cannot be integrable. It is not hard to see that non-integrable Lie
algebras are singular. In the same work Butler proved non-commutative integra-
bility for manifolds associated to almost non-singular Lie algebras. Since Bolsinov
and Jovanović [1] proved that integrability in the non-commutative sense implies
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Liouville integrability, one gets the integrability of the geodesic flow on manifolds
T (Γ\N), whereN is associated to an almost non-singular Lie algebra. Thus we have
some questions between the type of the Lie algebra n, as non-singular, almost non-
singular, or singular, and the integrability of the geodesic flow on M := T (Γ\N):

n almost non-singular =⇒ integrability on M ;
n non-integrable =⇒ the geodesic flow on M non-integrable.

n non-integrable =⇒ n singular.
In this work we study the integrability question on a family of nilmanifolds arising
from graphs. This family was introduced by Dani and Mainkar in [8] to study
Anosov automorphisms on nilmanifolds. More recently, in [9] the authors find
Heisenberg-like algebras in this family and they give conditions on the graph G
and on a lattice Γ ⊂ N for which the compact quotient Γ\M has a dense set of
smoothly closed geodesics.

We start with preliminaries to study the geodesic flow on nilmanifolds. The
structure of N is used when indentifying TN with T ∗N via the metric. More
details can be found in [14]. Summarizing, we get the following results:

• There is a family of compact manifolds M = Γ\N with integrable geodesic
flow such that the Lie algebra of N is singular. They are associated to the
star graphs on (k + 1)-vertices, Sk, for k ≥ 3. For k = 2 the Lie algebra
arising from the graph is the Heisenberg Lie algebra of dimension three.
Topologically the compact quotients are S1-fiber bundles over T 2k.

• Nilmanifolds Γ\N for N constructed from complete graphs on s-vertices,
Ks, are:

– Non-integrable for s = 2n+ 1; this generalizes the example in [5].
– Almost non-singular for s = 2n.

• Let G denote a connected graph on k vertices with k ≤ 4. Then, except for
the complete graph K3, any 2-step nilpotent Lie group NG, as well as the
corresponding compact quotient, admits a completely integrable geodesic
flow.

• For the graphG = K3, we prove that the geodesic flow on the corresponding
manifold TNG is completely integrable, although it cannot be completely
integrable on T (Γ\NG) for any discrete cocompact subgroup Γ < NG [5, 7].
We find five linearly independent invariant functions.

• For the path graph in four vertices P , although integrability of the geodesic
flow can be derived from the almost singularity property, we explicitly show
a set of first integrals in involution on TNP .

Tools and techniques used here have no direct relationship with the previous
theory developped in the 80s. We refer to Hamiltonian sytems constructed with
an algebraic data as in the Adler–Kostant–Symes scheme [15, 20], or the work by
Thimm concerning the geodesic flow, see [23]. In the present paper first integrals are
constructed either related to Killing vectors or as invariant functions. The invariant
notion is attached to the natural action of the Lie group N on TN induced by
translations on the left by elements of the group. Notice that invariant functions are
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trivially induced to any tangent space T (Γ\N). The geometry of 2-step nilpotent
Lie groups equipped with a left-invariant metric as well as the geometry around
closed geodesics on compact quotients was extensively studied in [10].

In most examples given here, we show explicit computations, in the framework of
Lie groups and Lie algebras. All these objects are assumed over the real numbers.

2. Preliminaries

In this section we recall basic notions for the study of the geodesic flow and
we introduce the tools to study the geometry of 2-step nilpotent Lie groups when
equipped with a left-invariant metric. In fact, this is determined at the Lie algebra
level. We are interested in Lie algebras which can be constructed from graphs.

2.1. The geodesic flow on nilmanifolds. Here we consider the geodesic flow on
Lie groups equipped with a left-invariant metric. We recall the general setting.

Let TN denote the tangent bundle of the Lie group N . The geodesic field is
related to the Hamiltonian vector field of the energy function E : TN → R (see for
instance [11]),

E(p, Y ) = 1
2 〈Y, Y 〉.

We identify TN with N ×n. In fact, for p ∈ N and vp ∈ TpN we associate the pair
(p, Y ) ∈ N ×n, where Y is the left-invariant vector field on N such that Y (p) = vp.
Therefore making use of these identifications one also has

T(p,Y )(TN) ' n× n = {(U, V ) : U, V ∈ n}.

The manifold TN is considered with the product metric

〈(U, V ), (U ′, V ′)〉(p,Y ) = 〈U,U ′〉+ 〈V, V ′〉,

and it has a canonical symplectic structure which is induced by the canonical
symplectic structure on T ∗N via the metric. This gives the definition of a Poisson
bracket on C∞(TN), denoted by { , }, as

{f, g} = Ω(Xf , Xg), for f, g ∈ C∞TN,

where Ω is the canonical symplectic form on TN , and Xf , Xg are the Hamiltonian
vector fields of f and g, respectively. Recall that for a smooth function h : TN → R,
the Hamiltonian vector field of h, denoted by Xh, is implicitly given by

dh(p,Y )(U, V ) = Ω(p,Y )(Xh(p, Y ), (U, V )).

On the other hand, the gradient field of h, denoted by gradh, is given by the
formula

dh(p,Y )(U, V ) = 〈grad(p,Y ) h, (U, V )〉.
The geodesic field on TN is the vector field associated with the geodesic flow

Φt(p, Y ) = γ′(t),

where γ(t) is the geodesic on N with initial conditions γ(0) = p, γ′(0) = (p, Y ).
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We say that a smooth function f : TN → R is a first integral of the geodesic
flow if the derivative of f in the direction of XE vanishes: XE(f) = 0; equivalently,
if

{f,E} = 0.
Notice that the gradient field of the energy function for a left-invariant metric

is gradE(p, Y ) = (0, Y ). The proof of the following proposition arises from the
definitions above; see [14].

Proposition 2.1. Let N denote a Lie group equipped with a left-invariant metric.
Let f, g ∈ C∞(TN) be smooth functions with grad(p,Y ) f = (U, V ) and grad(p,Y ) g =
(U ′, V ′). Then

(i) the Hamiltonian vector field for a smooth f : TN → R is

Xf (p, Y ) = (V, adt(V )(Y )− U), (2.1)

where adt(V ) denotes the transpose of ad(V ) with respect to the metric on n;
(ii) the Poisson bracket follows

{f, g}(p, Y ) = 〈U, V ′〉 − 〈V,U ′〉+ 〈Y, [V ′, V ]〉. (2.2)

Let f, g : TN → R be smooth functions. We say that they are in involution
whenever they Poisson commute:

{f, g} = 0.

The definition above says that {f, g} = 0 if and only if df(Xg) = 0 if and only
if Xg(f) = 0 (and also Xf (g) = 0). Therefore f is constant along integral curves
of Xg (analogously for Xf ).

The question of explicitly finding functions in involution is a research topic with
several open questions. If M is a Riemannian manifold and X∗ is a Killing vector
field on M , then the function fX∗ : TM → R defined as fX∗(v) = 〈X∗(π(v)), v〉 is
a first integral of the geodesic flow. But in general it is not clear if one can produce
enough functions in involution for proving the complete integrability.

We shall discuss later the question of invariant functions. Indeed, a Lie group N
acts on its tangent bundle q · vp = dLqvp, that in terms of the identification above
gives

q · (p, Y ) = (qp, Y ).
A function f : TN → R is called invariant if f(qp, Y ) = f(p, Y ) for all p, q ∈ N ,
that is, f is invariant under the action of N .

Definition 2.2. We say that a Riemannian manifold (M, 〈 , 〉) has completely in-
tegrable geodesic flow (in the sense of Liouville) if there exist n first integrals of the
geodesic flow, fi : TM → R, where n = dimM , such that {fi, fj} = 0 for all i, j
and the gradients of f1, . . . , fn are linearly independent on an open dense subset
of TM .

Integrability or non-integrability are difficult questions. Integrability imposes
topological restrictions on compact manifolds.
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Let N denote a Lie group equipped with a left invariant metric g. We say that
Λ ⊂ N is a lattice if Λ is a discrete subgroup such that the quotient Λ\N is a
compact space. Sometimes one also says that Λ is a discrete cocompact subgroup
of N .

Mal’cev [17] has shown that a simply connected nilpotent Lie group N admits a
lattice if and only if its Lie algebra admits a basis with rational structure constants.
In this case the metric g is induced to the quotient and is also denoted by g. It
satisfies

g(dpmX, dpmY ) = g(X,Y ), for X,Y ∈ n, m ∈ N,
where p : N → Λ\N is the canonical projection. One looks for first integrals not
only on N but on the compact quotients Λ\N .

Theorem 2.3 ([7, Theorem 1.3]). Let n be a non-integrable 2-step nilpotent Lie
algebra with associated simply connected Lie group N . Assume that there exists a
discrete, cocompact subgroup Λ of N . Then for any such Λ and any left-invariant
metric g on N , the geodesic flow of (Λ\N, g) is not completely integrable.

The precise definition of non-integrable 2-step nilpotent Lie algebra will be given
in the next subsection.

2.2. 2-step nilpotent Lie groups and graphs. Let N denote a 2-step nilpotent
Lie group equipped with a left-invariant metric 〈 , 〉. Its Lie algebra n decomposes
as the orthogonal direct sum

n = v⊕ z,

where v = z⊥ and z is the center of n. In this situation each element Z ∈ z induces
a skew-symmetric linear map on v, j(Z) : v→ v, given by

〈j(Z)U, V 〉 = 〈[U, V ], Z〉 (2.3)

for all U, V ∈ v. The geometry of N is encoded in the maps j(Z) [10].
Recall that whenever N is simply connected, the exponential map, exp : n→ N ,

is a diffeomorphism with inverse map log : N → n. Moreover, one has the formula

exp(X) exp(Y ) = exp(X + Y + 1
2[X,Y ]), for all X,Y ∈ n.

This formula enables the realization of the Lie group at the Lie algebra level. In
fact, via the exponential map we define a product on the Lie algebra: take the
left-invariant vector fields X,Y ∈ n and define a product X ·Y by X+Y + 1

2 [X,Y ].
In this way the exponential map, as the only one-parameter group on N with
initial condition X ∈ n, becomes the map that, whenever X =

∑
i xiXi for a

basis of vector fields {Xi}, sends X to the vector (x1, x2, . . . , xn) in Rn, in usual
coordinates.

In particular, for a 2-step nilpotent Lie group, after equations (2.1) and (2.2),
one has:

• For the energy function E : TN → R, its Hamiltonian vector field is

XE(p, Y ) = (Y, j(Yz)Yv).

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



320 GABRIELA P. OVANDO

• A function f : TN → R with gradient grad f(p, Y ) = (U, V ) is a first
integral of the geodesic flow on TN if and only if

〈Y,U〉 = 〈j(Yz)Vv, Yv〉. (2.4)

A distinguished family of 2-step nilpotent Lie algebras can be constructed start-
ing with a graph G. Let G be a directed graph with at least one edge. Denote the
vertices of G by S = {X1, . . . , Xm} and its edges by E = {Z1, . . . , Zq}.

The Lie algebra nG is the vector space direct sum nG = v ⊕ z, where we let E
be a basis over R for z and S be a basis over R for v. Define the bracket relations
among elements of S according to adjacency rules:

• if Zk is a directed edge from vertex Xi to vertex Xl then define the skew-
symmetric bracket [Xi, Xl] = Zk.

• If there is no edge between two vertices, then define the bracket of those
two elements in S to be zero.

Extend the bracket relation to all of v by using bilinearity of the bracket.

Remark 2.4. In [16] it was proved that the 2-step nilpotent Lie algebras associated
with two directed graphs are Lie isomorphic if and only if the graphs from which
they arise are isomorphic.

Choose the inner product on nG so that S ∪ E is an orthonormal basis for nG.
Observe that if Zk is a directed edge from Xi to Xl then the map j(Zk) defined
in equation (2.3) satisfies j(Zk)Xi = Xl and j(Zk)Xp = 0 for any other Xp ∈ S
where p 6= i, l.

Example 2.5. The star graph Sk has k + 1 vertices V0, V1, . . . , Vk and edges Zi.
The vertices V0 and Vi are joined by the edge Zi, so that the Lie bracket gives
[V0, Vi] = Zi. Setting Z = a1Z1+· · ·+akZk, the matrix presentation of j(Z) : v→ v
in the basis V0, V1, . . . , Vk is given by

0 −a1 −a2 . . . −ak
a1 0 0 . . . 0
a2 0 0 . . . 0
...

...
...

. . .
...

ak 0 0 . . . 0

 .

Therefore j(Z) is singular for k + 1 > 2, that is for the star graph with k + 1 > 2
vertices.

Example 2.6. The complete graph on n vertices Kn is the graph that has an
edge between every pair of distinct vertices. The graph K2 corresponds to the
known Heisenberg Lie algebra of dimension three; it has two vertices V1, V2 and
one edge Z,

•
V1

-•
V2

Z
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so that the corresponding map j(Z) is non-singular. The complete graph K3 has
three vertices V1, V2, V3 and three edges Z1, Z2, Z3.

•
V1

�
�
�
��

Z1

• V2

Z2

• V3Z3

A
A
A
A
AAUXXX

XXX
Xy

Let nK3 denote the corresponding 2-step nilpotent Lie algebra where we have the
Lie brackets

[V1, V2] = Z1, [V2, V3] = Z2, [V3, V1] = Z3.

Let 〈 , 〉 denote the metric on nK3 for which this basis is orthonormal. The map
j(Z) : v→ v has a matrix presentation in the basis {V1, V2, V3} of v given by

j(aZ1 + bZ2 + cZ3) =

0 −a −c
a 0 −b
c b 0

 .

Notice that the dimension ker j(Z) = 1, for every Z ∈ z − {0}. More generally,
consider the complete graph on n vertices, Kn. The dimension of the center is

dim z =
(
n
2

)
= dim so(n). Thus,

• if n is odd, every j(Z) is a singular map for every Z ∈ z;
• if n is even, there exists Z ∈ z such that j(Z) is non-singular. In fact, as-

suming V1, V2, . . . , V2s are vertices and Zij = [Vi, Vj ], take the non-singular
map j(Z) with matrix

j(Z12 + Z34 + · · ·+ Z2s−1,2s) =



0 −1
1 0

0 −1
1 0

. . .
0 −1
1 0


.

We say that a 2-step nilpotent Lie algebra n is
• non-singular if ad(X) : n→ z is surjective for all X /∈ z;
• almost non-singular if j(Z) is non-singular for every Z in an open dense

subset of z;
• singular if j(Z) is singular for all Z in z.

Every 2-step nilpotent Lie algebra belongs to one and only one of the types
non-singular, almost non-singular, or singular [13].
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Notice that
• the fact of n being non-singular is equivalent to asking j(Z) to be non-

singular for any Z ∈ z− {0} for a (any) metric on n (in fact, this does not
depend on the choice of the left-invariant metric; see for instance [10]);

• whenever a 2-step nilpotent Lie algebra n is equipped with a metric, if
there are two nonzero elements Z,Z ′ ∈ z such that j(Z) is non-singular
and j(Z ′) is singular, then the Lie algebra n is almost non-singular.

Remark 2.7. Assume that G is a graph with at least one edge. If the graph G is
isomorphic to the complete graph K2 then its Lie algebra nG is non-singular (this
Lie algebra is also isomorphic to the Heisenberg Lie algebra of dimension three).

Assume that G is not isomorphic to K2. Thus G contains an edge Z and a
vertex X such that the edge Z is not incident to it. Then j(Z)X = 0, and therefore
nG is either almost non-singular or singular. Lemma 3.3 in [9] proved that the Lie
algebra nG is non-singular if and only if G = K2.

Further if G has more than one connected component, nG is almost non-singular
if and only if each connected component is either non-singular or almost non-
singular [9].

Definition 2.8. Let n be a 2-step nilpotent Lie algebra, n∗ its dual space, and for
λ ∈ n∗ let ad∗(X)λ denote the element in n∗ given by ad∗(X)λ(Y ) = −λ([X,Y ]),
for all X,Y ∈ n.

(i) For λ ∈ n∗, let nλ := {X ∈ n : ad∗(X)λ = 0}.
(ii) A λ ∈ n∗ is called regular if nλ has minimal dimension.
(iii) A pair µ, λ ∈ n∗ is called generic if dim[nλ, nµ] is minimal. The Lie algebra n

is called non-integrable if for a dense open subset of generic pairs λ, µ, one
has [nλ, nµ] 6= 0.

Remark 2.9. Let λ ∈ n∗. Indeed, nλ is the isotropy algebra for the coadjoint
representation: p · λ = −λ ◦Ad(g−1), for p ∈ N . Notice that λ is regular whenever
the dimension of the orbit of λ under the coadjoint representation is maximal. It
is clear that the center z ⊂ n is contained in nλ for any λ ∈ n∗.

We can read the non-integrability notion making use of tools at the Lie algebra
level. Let 〈 , 〉 denote an inner product on the Lie algebra n, with respect to which
there is the following splitting as direct sum of vector spaces n = v⊕z, with v = z⊥.

For any λ ∈ n∗ there exists unique Z ∈ z and V ∈ v such that λ = `V+Z , where
`V+Z(X) = 〈V + Z,X〉. Thus we denote n`V +Z

directly by nV+Z . So
nV+Z = {X ∈ n : 〈V + Z, ad(X)U〉 = 0 for all U ∈ n}

=
{
n if Z = 0,
z⊕ ker j(Z) if Z 6= 0.

Assume that `V+Z is regular; thus for n non-singular or almost non-singular, it
is clear that nV+Z = z. In both cases, for both λ, µ regular, one has [nλ, nµ] = 0.

Corollary 2.10. A 2-step nilpotent non-integrable Lie algebra is singular.

Rev. Un. Mat. Argentina, Vol. 61, No. 2 (2020)



GEODESIC FLOW ON NILMANIFOLDS ASSOCIATED TO GRAPHS 323

Example 2.11. In [5] Butler showed an example of a non-integrable Lie algebra.
Its Lie group has Lie algebra isomorphic to K3.

More generally, assume that n is odd, n = 2k + 1 > 2, and G = Kn is the
complete graph. As mentioned above the Lie algebra nG is singular. Roughly
speaking, the graph K2k+1 can be constructed from the complete graph K2k by
adding one vertex and all the edges joining the added vertex with the previous
ones.

Let S denote the set of vertices, assume |S| = n with n = 2k + 1, and choose
the vertex V2k+1 ∈ S. Denote by Zij (or Zi,j) the basis element in z such that
Zi,j := [Vi, Vj ].

Take Z ∈ z defined as Z :=
∑k
i=1 Z2i−1,2i ∈ z. Then the restriction of j(Z) to

the vector subspace w1 spanned by V1, V2, . . . , V2k—see matrix in Example 2.6—is
a non-singular linear map, and V2k+1 ∈ ker j(Z) since j(Z2i−1,2i)V2k+1 = 0 for
all i.

Analogously, take V1 in the kernel of j(Z̃) for Z̃ =
∑k
i=1 Z2i,2i+1 so that the re-

striction of j(Z̃) is non-singular on the vector subspace w2 of dimension 2k spanned
by V2, V3, . . . , V2k+1. It is clear that `Z and `Z̃ are regular in n∗G. Moreover, V1 ∈ nZ̃ ,
V2k+1 ∈ nZ , and [V1, V2k+1] = Z1,2k+1. This implies that K2k+1 is non-integrable.

Proposition 2.12. Let n = 2k + 1 ∈ N with k ≥ 1, and let G = Kn denote the
complete graph on n vertices. The corresponding Lie algebra nG is non-integrable.

The proposition above and Theorem 1.3 in [7] imply that the 2-step nilpotent
Lie group NG, constructed by starting with the complete graph G = Kn, with n
odd, has no completely integrable geodesic flow on Λ\NG, for any left-invariant
metric and any lattice Λ ⊂ NG.

Example 2.13. Connected graphs with n vertices and the type of their Lie alge-
bras:

(i) n = 2: the complete K2, nK2 non-singular;
(ii) n = 3: the complete K3, with nK3 singular, the star graph S3 with nS3

singular;
(iii) n = 4: the star graph S4 with nS4 singular and the (corresponding to) almost-

non-singular Lie algebras: the complete graph K4, the cycle C4, the path in
four vertices P4, and the graphs G1 and G2. See [9].

S4

•V1
?

•V0 • V3

• V2

-

@
@
@
@R

C4

•V1

6
•V2 • V3

• V4

-

?�

P4

•V1

6
•V2 • V3

• V4

-

?
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K4

•V1

6
•V2 • V3

• V4

-

?�

@
@
@
@R

�
�

�
�	

G1

•V1

6
•V2 • V3

• V4

-

�

@
@
@
@R

G2

•V1

6
•V2 • V3

• V4

-

�

@
@
@
@R

�
�

�
�	

3. Involution of invariant functions

The goal now is the study of invariant functions. Invariant functions descend to
any compact quotient Λ\N for any lattice Λ ⊂ N . Therefore it is desirable to have
a good number of independent invariant functions.

Under the natural action of N on TN ' N × n given by n · (p, Y ) = (np, Y ),
a function f : TN → R is invariant if f(p, Y ) = f(e, Y ) for all p ∈ N , Y ∈ n.
For instance if the metric on the Lie group N is left-invariant, the corresponding
energy function is invariant.

Concerning invariant functions in C∞(TN) for a Lie group N , from notions and
properties above one proves the following statements.

(i) The gradient field for an invariant function f : TN → R has the form
grad(p,Y )(f) = (0, V )

for some V ∈ n. In fact, denote by U, V the components of the gradient:
grad f(p, Y ) = (U, V ). Since f(e, Y ) = f(p, Y ), one has df(p,Y )(U ′, V ′) =
d
ds

∣∣
s=0 f(e, Y + sV ) = 〈U,U ′〉 + 〈V, V ′〉, so that U = 0. The corresponding

Hamiltonian vector field is given by
Xf (p, Y ) = (V, adt(V )Y ),

where adt(V ) denotes the transpose of ad(V ) relative to the metric on n. In
particular, an invariant function f : TN → R is a first integral of the geodesic
flow if and only if

0 = 〈Y, [V, Y ]〉 for (0, V ) = grad f(p, Y ).
(ii) The set of invariant functions {f : TN → R : f is invariant} is in correspon-

dence with the set of functions on n: {F : n→ R}.
Given an invariant function f : TN → R define F : n → R as F (Y ) =

f(e, Y ), and conversely, given F : n → R define an invariant function f :
TN → R by

f(p, Y ) = F (Y ) for all p ∈ N , Y ∈ n.

(iii) Let f1, f2 : TN → R be invariant functions. Then their corresponding gra-
dients follow grad(fi)(p, Y ) = (0, VFi

) for i = 1, 2 and the Poisson bracket
is

{f1, f2}(p, Y ) = −〈Y, [VF1 , VF2 ]〉, (3.1)
where VFi

= gradn Fi. In fact, on the one hand grad fi(p, Y ) = (0, Vi), so
that

{f1, f2}(p, Y ) = −〈Y, [V1, V2]〉,
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but one also knows that d
ds

∣∣
s=0 fi(e, Y + sV ′) = d

ds

∣∣
s=0 Fi(Y + sV ′) =

dFiY
(V ′) = 〈gradn Fi(Y ), V ′〉. These equations prove the equality (3.1).

The next proposition specifies some invariant functions which are first integrals
of the geodesic flow. Notice that for every (p, Y ) ∈ TN , one has grad fZ0(p, Y ) =
(0, Z0) and grad gA(p, Y ) = (0, AY ). See the proof in [14].

Proposition 3.1. Let (N, 〈·, ·〉) be a Lie group with a left-invariant metric.
(i) The function fZ0 : TN → R, defined by fZ0(p, Y ) = 〈Y,Z0〉, is a first integral

of the geodesic flow for all Z0 ∈ z. Moreover, the family {fZ0}Z0∈z is a
Poisson-commutative family of first integrals.

(ii) Let A : n → n be a symmetric endomorphism of n and let gA : TN → R
denote the quadratic polynomial given by gA(p, Y ) = 1

2 〈Y,AY 〉. Then gA is a
first integral of the geodesic flow if and only if 〈Y, [AY, Y ]〉 = 0 for all Y ∈ n.

Let N denote a Lie group with Lie algebra n. The Gauss map G : TN → n is
given by G(p, Y ) = Y . Thus its differential dG(p,Y )(U, V ) = V . Geometrically the
Gauss map sends an element Yp ∈ TN to dLp−1Yp and takes this as the initial value
corresponding to the left-invariant vector field Y . A smooth function F : n → R
corresponds to a smooth function f : TN → R defined as f = F ◦ G. Thus for
F1, F2 ∈ C∞(n),

{F1 ◦G,F2 ◦G}(p, Y ) = {F1, F2} ◦G(p, Y )
= −〈Y, [VF1 , VF2 ]〉.

The Gauss map in this context was previously studied in [11]. We notice that the
Poisson bracket on the Lie algebra n has symplectic leaves given by the “coadjoint”
orbits, which are induced from n∗ to n via the corresponding metric. However, the
Gauss map G does not send (p, Y ) ∈ TN to a vector in n which is tangent to a
coadjoint orbit, that is, one should project it if necessary.

For invariant functions, the Poisson bracket on n (see [10]) is in correspondence
with the Poisson bracket on TN , {f1, f2}(p, Y ) = {F1, F2}(e, Y ), and via the rela-
tion fi(p, Y ) = Fi(Y ) = Fi ◦ G(p, Y ), one has {f1, f2}(p, Y ) = {F1, F2} ◦ G(p, Y ).
We summarize these results below.

Proposition 3.2. Let N denote a Lie group with Lie algebra n. Let G : TN → n
denote the Gauss map.

(i) For functions F1, F2 : n → R one has Fi ◦ G : TN → R, so that for every
(p, Y ) ∈ TN :

{F1 ◦G,F2 ◦G}(p, Y ) = {F1, F2} ◦G(p, Y ) = −〈Y, [VF1 , VF2 ]〉, (3.2)

where VFi = gradn Fi, so that grad(Fi◦G) = (0, VFi). Clearly Fi◦G : TN → R
is invariant by construction.

(ii) Given a smooth function f : TN → R there exists F : n→ R so that F ◦G = f
if and only if f is invariant. In this case we have the commutative diagram
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TN -G
n

f
?

�
�

�
�	

R

F

So for smooth invariant functions fi : TN → R, with associated functions
Fi : n→ R, where fi = Fi ◦G, for i = 1, 2, the Poisson bracket follows as in
equation (3.2): {f1, f2}(p, Y ) = {F1, F2} ◦G(p, Y ).

In the following paragraphs we shall show a construction of invariant functions
for 2-step nilpotent Lie groups.

Assume that N is a 2-step nilpotent Lie group with Lie algebra n. Let 〈 , 〉 denote
a left-invariant metric on N which gives the orthogonal decomposition

n = v⊕ z, for v = z⊥.

Assume that A : n→ n is a symmetric linear map, preserving this decomposition.
In particular, Av ⊆ v. Thus the map gA given by gA(p, Y ) = 〈AY, Y 〉 is a first
integral of the geodesic flow if and only if

〈j(Yz)AYv, Yv〉 = 0, for all Y = Yz + Yv ∈ n,

which is equivalent to
j(Z)A = Aj(Z), for all Z ∈ z.

Moreover, the maps gA, gB are involution (for respective symmetric maps A,B :
v→ v) if and only if

j(Z)AB = j(Z)BA, for all Z ∈ z.

See [14] for details.
L. Butler in [5] exhibited the following polynomial first integrals for the geodesic

flow. The statement given in [11] is more adequate for our work here.

Proposition 3.3. Let N denote an almost non-singular 2-step nilpotent Lie group
equipped with a left-invariant metric 〈 , 〉. Let n denote its Lie algebra with orthogo-
nal splitting n = v⊕ z, where dim v = 2n. For i = 1, . . . , n, the invariant functions
fi : TN → R given by

fi(p, Y ) = 〈V, j(Z)2iV 〉, Y = V + Z ∈ n = v⊕ z,

are first integrals of the geodesic flow.

Example 3.4. Let P denote the graph which is the path of length three on four
distinct vertices. Assume that the vertices are V1, V2, V3, V4 and let nP be the
2-step nilpotent Lie algebra associated with this graph with the Lie brackets

[V1, V2] = Z1, [V2, V3] = Z2, [V3, V4] = Z3.
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Assume a metric that makes of the set V1, V2, V3, V4, Z1, Z2, Z3 an orthonormal
basis. Then j(Zi) is singular for every i but j(Z1 + Z3) is non-singular. Thus
nP is almost non-singular. Note that a general j(aZ1 + bZ2 + cZ3) in the basis
V1, V2, V3, V4 has a matrix of the form

j(Z) =


0 −a 0 0
a 0 −b 0
0 b 0 −c
0 0 c 0

 .

It is not hard to prove that a symmetric map on v inducing an invariant function
on TNP of the form gA(p, Y ) = 1

2 〈AY, Y 〉 gives a first integral of the geodesic flow
only for A = Id. In fact, one verifies that Id is the only solution for symmetric
maps S : v → v satisfying the condition [S, J(Z)] = 0 for all Z ∈ z. Thus we
consider the function h̄ : nP → R given by h̄(V + Z) = 〈V, j(Z)2V 〉, where

j(Z)2 =


−a2 0 ab 0

0 −a2 − b2 0 bc
ab 0 −b2 − c2 0
0 bc 0 −c2

 .

This induces an invariant first integral on TNP given by h(p, Y ) = h̄(Y ) as in
Proposition 3.3. The gradient of h is given by gradh(p, Y ) = (0, 2([j(Z)V, V ] +
j(Z)2V ), where Y = V + Z ∈ nP . Summarizing, we get the following set of
invariant functions in involution:

• g(p, Y ) = 1
2 〈Y, Y 〉;

• h(p, Y ) = 〈Y, j(Z)2Yv〉, where Yv denotes the projection of Y ∈ nP onto v;
• the three functions for the center fi(p, Y ) = 〈Y,Zi〉 for i = 1, 2, 3.

Invariant functions clearly descend to any space T (Λ\NP ) for any cocompact lat-
tice Λ, since the Lie algebra has rational structure constants. We need two more
functions to have the complete integrability (in the Liouville sense) in this case.

Remark 3.5. The coadjoint action of N to n∗ is induced to n via the metric,
obtaining

p · Y = Adt(p−1)(Y ) for all g ∈ N , X ∈ n,

where Adt(p) denotes the transpose of the adjoint map relative to the metric,
〈Adt(p)(Y ), Y 〉 = 〈Y,Ad(p)X〉 for all p ∈ N , X,Y ∈ n. Also tangent vectors to the
orbit are induced by vector fields on n, that is X ∈ n gives X̃(Y ):

X̃(Y ) = d

ds

∣∣∣∣
s=0

exp(sX) · Y = − adt(X)(Y ).

Given a function F : n → R one can consider its restriction to a coadjoint orbit.
But functions which are not trivial on n can become constant on a coadjoint orbit.
Take for instance n a 2-step nilpotent Lie algebra equipped with a metric and
consider the function F : n→ R given by F0(Y ) = 〈Y,Z0〉, where Z0 ∈ z is a fixed
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vector. It is not hard to see that gradn F0(Y ) = Z0. But the restriction of F0 to
the coadjoint orbit gives

dF0Y (X̃) = d

ds

∣∣∣∣
s=0
〈Adt(exp−sX)(Y ), Z0〉 = −〈Y, ad(X)Z0〉 = 0,

which proves the assertion. Notice that the example holds for any Lie algebra with
non-trivial center.

3.1. The situation on K3. Here we come back to the 2-step nilpotent Lie group
and quotients associated to the complete graph K3. The corresponding simply
connected Lie group NK3 admits a lattice Γ and, as already said, no quotient
Γ\NK3 can be endowed with Riemannian metric—induced from a left invariant
metric on NK3—such that the corresponding geodesic flow is completely integrable.
This question was discussed in [7]. However, the geodesic flow on NK3 can be
completely integrable.

Take the notation of Example 2.6. Choose the metric on the Lie algebra nK3

for which the set V1, V2, V3, Z1, Z2, Z3 is an orthonormal basis. By Proposition 3.1
one has the set of invariant functions on TNK3 given by

2E(p, Y ) =
3∑
i=1
〈Y, Vi〉2 +

3∑
i=1
〈Y,Zi〉2

fZj (p, Y ) = 〈Zj , Y 〉, for j = 1, 2, 3.
The invariant function

G(p, Y ) = 〈Y,Z1〉〈Y, V3〉+ 〈Y, Z2〉〈Y, V1〉+ 〈Y,Z3〉〈Y, V2〉
is also a first integral of the geodesic flow. The gradient of G is given by

gradG(p, Y ) = (0, 〈Y,Z2〉V1 + 〈Y, Z3〉V2 + 〈Y,Z1〉V3

+ 〈Y, V3〉Z1 + 〈Y, V1〉Z2 + 〈Y, V2〉Z3),
so that it is not hard to prove that it satisfies the condition (2.4):

〈Y, [Y, 〈Y,Z2〉V1 + 〈Y, Z3〉V2 + 〈Y,Z1〉V3]〉 = 0.
On the other hand it is clear that G is in involution with fZ1 , fZ2 , fZ3 .

At this point we have five invariant first integrals which can be induced to
the quotient. One needs one more first integral, which can be taken from Killing
vector fields. To compute a right-invariant vector field, write the operation on the
Lie group, which for coordinates x1, x2, x3, z1, z2, z3 is given by

(x1, x2, x3, z1, z2, z3)(x′1, x′2, x′3, z′1, z′2, z′3)
= (x1 + x′1, x2 + x′2, x3 + x′3, z1 + z′1 + 1

2 (x1x
′
2 − x′1x2),

z2 + z′2 + 1
2 (x2x

′
3 − x3x

′
2), z3 + z′3 + 1

2 (x3x
′
1 − x1x

′
3)).

So the right-invariant vector field V ∗1 at p = (x1, x2, x3, z1, z2, z3) is given by
V ∗1 (p) = ∂x1 + 1

2x2∂z1 − 1
2x3∂z3 , which implies that fV ∗

1
(p, Y ) = 〈V1 + x2Z1 −

x3Z3, Y 〉. Its gradient field is
grad fV ∗

1
(p, Y ) = (〈Y,Z1〉V2 − 〈Y,Z3〉V3, V1 + x2Z1 − x3Z3).
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Straighforward computations show that the functions fZi , G, E, fV ∗
1

, for i = 1, 2, 3,
are linearly independent in a dense subset of TNK3 .

This proves that the geodesic flow on TNK3 is completely integrable. But accord-
ing to the non-integrability condition on nK3 , the geodesic flow cannot be Liouville
integrable on T (Γ\NK3) for any cocompact discrete subgroup Γ < N .

Remark 3.6. If the smoothly closed geodesics in a nilmanifold Γ\N are dense,
then the nilmanifold has the density of closed geodesics property. In [9] the authors
give conditions on the graph G and on a lattice Γ ⊂ N for which the quotient Γ\N ,
a compact nilmanifold, has a dense set of smoothly closed geodesics.

In particular, in the situation of the graph K3 the following is proved. Let Γ
be the lattice in NK3 given by exp(Λ), where Λ is the vector lattice in n given by
Λ = span2πZ{β}, for β the orthonormal basis determined by the graph. Then the
quotient Γ\NK3 has the density of closed geodesics property.

4. Geodesic flow and graphs

Here we study the integrability of the geodesic flow on 2-step nilpotent Lie groups
arising from graphs. We consider two situations: the family of star graphs on k+ 1
vertices and graphs in j vertices, with j ≤ 4. We show complete integrability of
geodesic flows on compact manifolds induced from star graphs as well as on the
corresponding simply connected Lie groups. The corresponding Lie algebras are
singular.

For graphs with j vertices, j ≤ 4, Liouville integrability is proved for the almost
non-singular cases.

4.1. Star graphs. Let Sk be the star graph on k + 1 vertices introduced in Ex-
ample 2.5. Let NSk

denote the simply connected 2-step nilpotent Lie group for the
Lie algebra associated to it. Consider its presentation by the underlying manifold
R2k+1 as follows. Let v = (x0, x1, . . . , xk) and v′ = (x′0, x′1, . . . , x′k) be elements in
Rk+1; then the group operation on R2k+1 is given by

(v, z1, z2, . . . , zk)(v′, z′1, z′2, . . . , z′k) =
(
x0 + x′0, x1 + x′1, . . . , xk + x′k,

z1 + z′1 + 1
2 (x0x

′
1 − x′0x1),

z2 + z′2 + 1
2 (x0x

′
2 − x′0x2),

...
zk + z′k + 1

2 (x0x
′
k − x′0xk)

)
.

(4.1)

Denote by ∂u the partial derivation on R2k+1 with respect to the variable u. A basis
of left-invariant vector fields is given by

V0(p) = ∂x0 − 1
2x1∂z1 − 1

2x2∂z2 · · · − 1
2xk∂zk

,

Vi(p) = ∂xi + 1
2x0∂zi ,

Zi(p) = ∂zi
, for all i = 1, . . . , k,
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where p = (x0, x1, . . . , xk, z1, . . . , zk) ∈ N . These vector fields satisfy the non-
trivial Lie bracket relations

[V0, Vi] = Zi, for all i = 1, 2, . . . , k.
Consider the metric on R2k+1 which makes this set into an orthonormal basis. In
canonical coordinates such metric is given by

g =
(

1 + 1
4

k∑
j=1

x2
j

)
dx2

0 +
k∑
j=1

(x0xj
4 dxj −

xj
2 dzj

)
dx0

+
k∑
i=1

(
1 + x2

0
4

)
dx2

i −
1
2

k∑
i=1

x0dzidxi +
k∑
i=1

dz2
i .

Notice that the exponential map exp : nSk
→ NSk

is

exp
( k∑
i=0

xiVi +
k∑
j=1

zjZj

)
= (x0, x1, . . . , xk, z1, z2, . . . , zk),

where Vi, Zj denote the left-invariant vector fields above.
Any right-invariant vector field on NSk

can be regarded as a Killing vector field.
In particular, we have the following basis of right-invariant vector fields:

V ∗0 (p) = ∂x0 + 1
2x1∂z1 + 1

2x2∂z2 + · · ·+ 1
2xk∂zk

,

V ∗i (p) = ∂xi − 1
2x0∂zi ,

Z∗i (p) = ∂zi , for all i = 1, . . . , k.
Notice that ∂z is both left and right-invariant. We induce smooth functions on TN
given by

fV ∗
0

(p, Y ) = 〈V0 +
k∑
i=1

xiZi, Y 〉,

fV ∗
j

(p, Y ) = 〈Vj − 〈W,V0〉Zj , Y 〉,
fZj (p, Y ) = 〈Zj , Y 〉,

(4.2)

which are first integrals of the geodesic flow, for all j = 1, . . . , k and for exp(W ) =
p ∈ NSk

. It is not hard to see that for j = 1, . . . , k the corresponding gradient
fields are given by

grad fV ∗
j

(p, Y ) = (−〈Y,Zj〉V0, Vj − 〈W,V0〉Zj)
grad fZj

(p, Y ) = (0, Zj),

which are linearly independent whenever (a) 〈Y, V0〉 6= 0 or (b) 〈Y, V0〉 = 0 and∑k
j=1〈Y, Vj〉〈Y, Zj〉 6= 0. This follows from the computations. In fact, for the first

component we have
∑k
i=1 ai〈Zi, Y 〉 = 0, and on the other hand, on the second

component:
k∑
i=1

ai(Vi − 〈W,V0〉Zi) +
k∑
i=1

biZi + cY = 0.
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Notice that there is only one term involving V0 in this equation, and the coefficient
is 〈Y, V0〉. So if 〈Y, V0〉 6= 0 then c = 0 and so

∑k
i=1 aiVi = 0 implies that ai = 0

for all i, and from this bi = 0 for all i = 1, . . . , k. If 〈Y, V0〉 = 0 the condition (b)
asserts the linear independence. This proves the first part of the following result.

Lemma 4.1. Let Sk denote the star graph on k+1 vertices. The smooth functions
on TNSk

denoted by fV ∗
j

(as in equation (4.2)) are pairwise in involution for j =
1, . . . , k.

Moreover, the geodesic flow on TNSk
is completely integrable (in the Liouville

sense) since the set of first integrals {E, fZj
, fV ∗

j
}kj=1 satisfies that any pair of first

integrals is in involution and the corresponding gradients are linearly independent
on an open dense set.

We only have to prove that {fV ∗
j
, fV ∗

i
} = 0 for all i, j = 1, . . . , k. In fact, for

i 6= j straighforward computations show that

{fV ∗
j
, fV ∗

i
}(p, Y ) = 〈Y, [Vi, Vj ]〉 = 0,

which finishes the proof of the lemma.

Note that all first integrals above are polynomial functions of degree one or two.
In fact, writing W =

∑k
i=0 wiVi+

∑k
i=1 uiZi and Y =

∑k
j=0 yjVj +

∑k
j=1 zjZj , the

first integrals follow:

g(p, Y ) = 1
2 (y2

0 + y2
1 + · · ·+ y2

k + z2
1 + · · ·+ z2

k)
fV ∗

1
(p, Y ) = y1 − w0z1

...
fV ∗

k
(p, Y ) = yk − w0zk

fZ1(p, Y ) = z1

...
fZk

(p, Y ) = zk.

Remark 4.2. Take coordinates (x0, x1, . . . , xk, z1, . . . , zk) for p ∈ NSk
and coordi-

nates (y0, y1, . . . , yk, t1, . . . , tk) on nSk
(= v⊕ z) relative to a basis of left-invariant

vector fields. Let F : TNSk
→ R2k+1 be given by F (p, Y ) = (E(p, Y ), fZ1(p, Y ),

. . . , fZk
(p, Y ), fV ∗

1
(p, Y ), . . . , fV ∗

k
(p, Y )). Let c ∈ R2k+1, namely c = (C0, U1, . . . ,

Uk, T1, . . . , Tk); then the set F−1(c) gives a symplectic leaf on TNSk
. In fact,

whenever (p, Y ) ∈ F−1(c) one has
• E(p, Y ) = 1

2 (y2
0 + · · ·+ y2

k + t21 + · · ·+ t2n) = C0 and
• ti = Ti for i = 1, . . . , k and yj − x0Tj = Yj , for j = 1, . . . , k,

so that there are no restrictions in the coordinates x1, . . . , xk, z1, . . . , zk to belong
to F−1(c).
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Let γ denote a geodesic on NSk
. Set γ(t) = exp(X(t)+Z(t)), where X(t) ∈ v and

Z(t) ∈ z, with initial condition X0 + Z0, satisfy the following system of equations
(see [10]):

x′′0 = −a1x
′
1 − a2x

′
2 − · · · − akx′k

x′′1 = a1x
′
0

...
x′′k = akx

′
0

z′1 = a1 + 1
2 (x0x

′
1 − x′0x1)

...
z′k = ak + 1

2 (x0x
′
k − x′0xk),

where Z0 = a1Z1 + a2Z2 + · · ·+ akZk, X(t) =
∑
xi(t)Vi, and Z(t) =

∑
j zj(t)Zj .

The map j(Z0) shown in Example 2.5 is singular. Its kernel is {V ∈ v : V =∑k
j=0 vjVj , where 〈V, V0〉 = 0 and (v1, . . . , vk) · (a1, . . . , ak) = 0}, denoting with ·

the usual inner product for vectors in Rk. Thus if {gt} denotes the geodesic flow
in TN , for every n ∈ N , and X0 ∈ v, Z0 ∈ z, then

gt(dLn(X0 + Z0) = dLγ(t)(etj(Z0)X0 + Z0),

where γ(t) denotes the unique geodesic with γ′(0) = dLn(X0 + Z0).

A Riemannian compact manifold arises as a quotient Λ\NSk
, where Λ is a dis-

crete cocompact subgroup of NSk
. In fact, Λ\NSk

becomes a Riemannian manifold
with the metric that makes the projection π : NSk

→ Λ\NSk
a Riemannian sub-

mersion.
Each (2k+1)-tuple (r,m) = (r, r1, . . . , rk,m1, . . . ,mk) ∈ (Z)2k+1 defines a lattice

in NSk
by

Λ(r,m) = rm0Z× 2r1Z× · · · × 2rkZ×m1Z×m2Z× · · · ×mkZ, (4.3)

for m0 = m1m2 . . .mk.
Note that there are non-isomorphic lattices in this family so that we get many

non-diffeomorphic compact manifolds.
Since the quotient projection π : NSk

→ Λ(r,m)\NSk
is a Riemannian submersion

and furthermore a local isometry, we can identify the tangent bundle T (Λ(r,m)\NSk
)

with (Λ(r,m)\NSk
)× nSk

. The projection π maps geodesics into geodesics and the
energy function Ẽ on T (Λ(r,m)\NSk

) is related to the energy function E on TNSk

by
Ẽ(Λ(r,m)p, Y ) = E(p, Y ) = 1

2 〈Y, Y 〉,
and clearly it is well defined.

All invariant first integrals on TNSk
descend to the quotients, since they do not

depend on the coordinates of p ∈ NSk
. One defines

f̃Zj
(Λ(r,m)p, Y ) = fZj

(p, Y ), for all j = 1, . . . , k,
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which are first integrals of the geodesic flow of T (Λ(r,m)\NSk
). Moreover, such first

integrals are in involution, since for all f, g ∈ C∞(T (Λ(r,m)\NSk
)) we have

{f ◦ π, g ◦ π} = {f, g} ◦ π.

Note that the integrals fV ∗
j

, j = 1, . . . , k, do not descend directly to the quotient.
However, one can construct first integrals on the quotient with the following argu-
ment. Let (p, Y ) ∈ TNSk

and q ∈ Λ(r,m). Take W,W ′ ∈ nSk
such that expW = p,

expW ′ = q. Observe that (W+W ′)v = Wv+W ′v, where Uv denotes the orthogonal
projection of U ∈ nSk

over v = z⊥. So we get

fV ∗
j

(qp, Y ) = 〈Y, Vj〉 − 〈Zj , Y 〉〈(W +W ′), V0〉
= fV ∗

j
(p, Y )− fZj

(p, Y )〈W ′, V0〉.

Since 〈W ′, V0〉 ∈ Z, we have

fV ∗
j

(qp, Y ) = fV ∗
j

(p, Y ) mod fZj
(p, Y )Z

for every j = 1, . . . , k, and since fZj is a first integral of the geodesic flow, we have
that the function

f̂V ∗
j

(p, Y ) = sin
(

2π
fV ∗

j
(p, Y )

fZj (p, Y )

)
descends to Λ(r,m)\NSk

and is constant along the integral curves of the geodesic
vector field in T (Λ(r,m)\NSk

). In order to get a smooth first integral let

F̄j(p, Y ) = e−1/fZj
(p,Y )2

f̂j(p, Y )

and let us define
F̃j(Λrp, Y ) = F̄j(p, Y ).

So the functions F̃k are smooth (non-analytic) first integrals for the geodesic flow on
T (Λ(r,m)\NSk

). It follows, from a direct calculation making use of properties of the
Poisson bracket, that the families fZi

, F̃j , i = 1, . . . , k, are in involution. In fact,
for a pair of differentiable functions on M and for h : R→ R, one has {f, h ◦ g} =
h′{f, g}. To prove the linear independence, notice that the new gradients can be
written in terms of the gradients on NSk

, which are multiplied by differentiable real
functions. The independence follows by asking that the corresponding determinant
be non-trivial on the right open set. So the geodesic flow in T (Λ(r,m)\NSk

) is
completely integrable in the sense of Liouville.

Theorem 4.3. Let NSk
be the 2-step nilpotent Lie group attached to the star

graph in k+1 vertices Sk, endowed with the standard metric, and let Λ(r,m) denote
the lattice in (4.3). If Λ(r,m)\NSk

is the corresponding compact manifold with the
induced metric, then the geodesic flow in T (Λ(r,m)\NSk

) is completely integrable
with smooth first integrals {E, fZi , F̃i}, for i = 1, . . . , k.

See explanations on the proof and the topology of these compact manifolds
in [6], where the author worked on the cotangent setting. Another difference is the
presentation of the Lie group. See the isomorphism in equation (4.4) below.
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Let H̃ ⊂ NSk
be the normal subgroup of dimension 2k defined as H̃ = {g ∈ NSk

:
g = (v, z) and v = (0, x1, . . . , xk)}. Note that H̃ is abelian and Λ̃(r,m) = H̃ ∩Λ(r,m)
is a lattice in H̃. So Λ̃(r,m)\H̃ ' T 2k.

Note that NS1 is (isomorphic to) the Heisenberg Lie group H3. A known pre-
sentation of H3 is given in terms of matrices as the set

1 x z
0 1 y
0 0 1

 for x, y, z ∈ R


together with the usual product of matrices. The subgroup Γr consisting of matrices
of the form

Γr =


1 rn q

0 1 m
0 0 1

 for m,n, q ∈ Z


for a fixed r ∈ N gives rise to a cocompact lattice in H3. The lattice Γr induces an
action on H3 so that the class of (x, y, z) ∈ H3 is (x, y, z) = {(x + rn, y + m, z +
rn+ s) : n ∈ Z, m ∈ Z, s ∈ Z}.

Denoting by Γ̄r the subgroup isomorphic to Z and by Γ̃ the subgroup isomorphic
to Z2 given respectively by

Γ̄r = {(rn, 0, 0) : n ∈ Z} ' rZ, Γ̃ = {(0,m, q) : m, q ∈ Z} ' Z× Z,

we get the semidirect product group Γ̄r n Γ̃, where the action is given by rn ·
(m, q) = (m, q + rnm), via identifications. So the map Ψ : Γ̄r n Γ̃ → Γr given as
(rn, (m, q)) → (rn,m, q) is a group isomorphism, and the action of Γr on H3 by
translations on the left is equivalent to an action of Γ̄r n Γ̃ on H3.

Now the action of Γ̃ on H3 gives

(0,m, q) · (x, y, z) = (x, y +m, z + q), so that Γ̃\H3 ' R× T 2.

One also has

(rn, 0, 0) · (0,m, q) · (x, y, z) = (0,m, q) · (rn, 0, 0) · (x, y, z).

Finally, the action of Γ̄r on R× T 2 induces the action of S1 on R× T 2 and Γr\H3
is a S1-fiber bundle over T 2:

S1 → Γr\H3 → T 2.

A similar procedure generalizes to H2n+1 showing that Heisenberg nilmanifolds
Γ\H2n+1, as topological spaces, are Tn-fiber bundles over Tn+1 (see [1]).

Analogously, one shows the fibration we get from the nilmanifolds arising from
every star graph. In fact, one defines similar subgroups Γr, Γ̄r, and Γ̃ in NSk

. This
is explained above.
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A presentation of NSk
is given by the (k + 2)× (k + 2)-matrices of the form



1 x0 z1 z2 . . . zk
0 1 x1 x2 . . . xk
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0
. . .

...
0 1




,

where we think in the usual matrix multiplication. The map Ψ sending

1 x0 z1 z2 . . . zk
0 1 x1 x2 . . . xk
0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0
. . .

...
0 1


7→ (x0, x1, x2, . . . , xk, z1 − 1

2x0x1, . . . , zk − 1
2x0xk)

(4.4)
gives an isomorphism between the above group and the one defined with the mul-
tiplication operation of equation (4.1).

For a fixed r, take the lattice Γr ⊂ NSk
given by matrices of the form

Γr =





1 rn q1 q2 . . . qk
0 1 m1 m2 . . . mk

0 0 1 0 . . . 0
0 0 0 1 . . . 0

0 0
. . .

...
0 1


, for n,mi, qj ∈ Z, ∀ i, j


.

One starts with the abelian subgroup Γ̃ = {(0,m1,m2, . . . ,mk, q1, q2, . . . , qk) :
mi, qj ∈ Z}, which acts on the left on NSk

by

(0,m1,m2, . . . ,mk, q1, q2, . . . , qk) · (x0, x1, . . . , xk, z1, . . . , zk)
= (x0, x1 +m1, . . . , xk +mk, z1 + q1, . . . , zk + qk).

This shows that Γ̃\NSk
' R × T 2n. Let X0 ∈ NSk

denote the element X0 =
(x0, x1 +m1, . . . , xk +mk, z1 + q1, . . . , zk + qk) and take the action of Γ̄r on Γ̃\NSk

where Γ̄r = {(rn, 0, . . . , 0) : n ∈ Z} < NSk
:

(rn, 0, . . . , 0) ·X0 = (x0 + rn, x1 +m1, . . . , xk +mk,

z1 + q1 + rnx1 + rnm1, . . . , zk + qk + rnxk + rnmk).

As above for H3 one has Γr ' Γ̄r × Γ̃ and the action of Γr on NSk
translates

into an action of Γ̄r n Γ̃ on NS−k, showing that the compact manifold Γr\NSk
is

a S1-fiber bundle over T 2k:

S1 → Γr\NSk
→ T 2n.
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The action of S1 on each torus T 2 is induced by the matrix action on each subspace
(zi, xi) for i = 1, . . . , k: (

1 r
0 1

)
,

as already explained on the Heisenberg Lie group H3.

Remark 4.4. Let ϕt denote the geodesic flow. It was proved in [6] that ϕt is
non-degenerate in the sense of KAM theory. Moreover, the topological entropy of
ϕt vanishes. Indeed, π1(Γ1\NSk

) has no abelian subgroup of finite index. For more
information on the topology see [6].

4.2. Non-commutative integrability and graphs. Here we prove the integra-
bility of geodesic flows on manifolds associated to graphs in a low number k of
vertices, where k ≤ 4.

Let H : TN → R denote a smooth function. One says that H is integrable in the
non-commutative sense of Nekhorosev, or simply integrable, if one has the following
conditions. Assume that F = (H = f1, . . . , fn−k, g1, . . . , g2k) is a smooth map on
TN , where dimN = n and k ≥ 0, that satisfies the three conditions:

(i) rank dF = n+ k on an open, dense subset of TN ;
(ii) for all a, b = 1, . . . , n− k and all c = 1, . . . , 2k: {fa, fb} = {fa, gc} = 0;
(iii) for each regular value c ∈ Rn+k, each connected component of F−1(c) is

compact.
In this situation, the Theorem of Nekhorosev describes the level sets of F and

the flow for the Hamiltonian XH in terms of a flow on the torus. In [5] Butler
proves integrability in the non-commutative sense of the geodesic flow for D\N ,
where D is a cocompact lattice on N and N is a 2-step nilpotent Lie group whose
Lie algebra is almost non-singular. In fact, one can find 3s+ t first integrals, where
dim v = 2s and dim z = t. These functions can be obtained in both ways studied in
this section: invariant functions from Proposition 3.3 and the n functions arising
from a basis of right-invariant vector fields.

Since Bolsinov and Jovanović proved that integrability in the non-commutative
sense implies Liouville integrability (see [1]), the previous results of Butler give the
Liouville integrability for an important family of 2-step nilpotent Lie groups and
their compact quotients.

Let us explain the construction. Let N denote a Lie group equipped with a
left-invariant metric and with Lie algebra n = v ⊕ z, with dim v = 2n, dim z = m.
Making use of Killing vectors we construct 2n + m first integrals of the geodesic
flow. With Proposition 3.3 we construct n invariant first integrals. Assume that
this is a Lie algebra. In this Lie algebra we have n+m first integrals which are in
involution. So that we get 2n+m+ n+ n+m = 2m+ 4n = dimTN . This gives
the complete integrability for almost non-singular Lie algebras. As a corollary we
obtain the next result.

Corollary 4.5. Let G denote a connected graph on k vertices with k ≤ 4. Then,
except for the complete graph K3, any 2-step nilpotent Lie group NG so as the
corresponding compact quotient admits a completely integrable geodesic flow.
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Take the graphs in Example 2.13: For two vertices, we have the Heisenberg Lie
algebra of dimension three whose geodesic flow is completely integrable with any
left-invariant metric. For three vertices, the connected graphs are S3 and K3, which
were explained above. We need to concentrate in algebras coming from graphs with
four vertices.

Example 4.6. Let P be the path in four vertices. Let NP denote the 2-step
nilpotent Lie group associated to P . Then NP has dimension seven. Take p =
exp(W ) and the functions on TNP given by

fV ∗
1

(p, Y ) = 〈V1 + 〈W,V2〉Z1, Y 〉,
fV ∗

2
(p, Y ) = 〈V2 − 〈W,V1〉Z1 + 〈W,V3〉Z3, Y 〉,

fV ∗
3

(p, Y ) = 〈V3 − 〈W,V2〉Z2 + 〈W,V4〉Z3, Y 〉,
fV ∗

4
(p, Y ) = 〈V4 − 〈W,V3〉Z3, Y 〉.

In this situation we do not need the functions of Proposition 3.3. In fact, Killing
vectors obtained as right-invariant vector fields give rise to a subalgebra of first
integrals of dimension 7. Among these first integrals, we have three from the
center which are in involution and also two more functions, fV ∗

1
and fV ∗

4
, which are

in involution. In this situation, since nP is almost non-singular, we could apply the
result in [1] to get the complete integrability. But we are also able to give explicitly
a family of first integrals in involution. In fact, we already have five first integrals
in involution as in Example 3.4. Choose the first integrals above, fV ∗

1
and fV ∗

4
. It

is not hard to prove that the corresponding gradient fields are given by
grad fV ∗

1
(p, Y ) = (〈Y,Z1〉V2, V1 + 〈W,V2, V2〉Z1),

grad fV ∗
4

(p, Y ) = (−〈Y,Z3〉V3, V4 − 〈W,V3〉Z3).
Making use of this information and by doing similar computations as already

shown for Lie groups associated to star graphs, one can prove the following:
The set E, h, fZ1 , fZ2 , fZ3 , fV ∗

1
, fV ∗

4
is a set of first integrals in involution.

The map h above was defined in Example 3.4.
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