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Abstract

Using the technique of the metrization theorem of uniformities with countable bases, in this
note we provide, test and compare an explicit algorithm to produce a metric d(x, y) between the
vertices x and y of an affinity weighted undirected graph.
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1 Introduction

The construction of metrics in data sets is a problem of current interest in data analysis. Of course
the metrics built on a given data set should reflect, in a quantitative form, the affinity of the
different data points. There are many reasons for the search of such metric structures on data
sets. In particular adequate metrics provide notions of neighborhood of a given point which are
not provided a priori directly by the affinity. But more important is the fact that in metric spaces
many of the properties of Euclidean spaces still hold and covering and partitions can be done with
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a metric control which is natural for each setting. Metrization of data structures is relevant and
pointed out in many of the pioneering works on data analysis and learning such as [1], [2], [3], and
[4].

Perhaps the best known metrization method is that of diffusive metrics due to Coifman and Laffon
[5]. Once a Laplace type operator is built from the affinity matrix between data, the spectral
analysis of this operator provides a diffusion kernel which gives a family of metrics on the data
set at different times. The size of the eigenvalues allows the detection of the main features of and
hence the approximation of a high dimensional space by another space with small dimension. In
pure mathematics the problem of metrization of general topological spaces is old and well known.
In particular, the metrization of the topology induced on a set X by a uniformity on X × X was
considered and solved in [6], see also [7] and [8] when the uniform structure has a countable basis.
The result is that a topology induced by a uniform structure is metrizable if an only if the uniformity
has a countable basis. Even when so stated the results seems to have a qualitative character its
proof entails a quantitative lemma due to Frink that allows to obtain a metric from the affinity
going through the uniform structure induced by the affinity between the data points.

The first use of this quantitative lemma is due to Macias and Segovia ([9]) in order to show that
quasi-distances are equivalent to powers of metrics. In [10] sufficient conditions on a general affinity
kernel K on an abstract set X are given in order to obtain a Newton type potential form for K in
terms of a natural metric on X. Loosely speaking [10] shows that, with a quantitative transitivity
hypothesis, we have thatK(x, y) = φ(d(x, y)) for some “metric” d and some quasi-convex decreasing
function φ defined on the positive real numbers.

In this note we aim to provide, test and compare an explicit algorithm in order to obtain a metric
type function d(x, y) between the vertices x and y associated to an affinity weighted graph. The
algorithm gives actually a uniform family of metrics that provide together a profuse enough family
of balls.

The second section of this note is devoted to state and prove the main result as a consequence of
Frink’s Lemma as stated and proved in [8]. Section 3 describes the algorithm for the case of finite
X. In Section 4 we test and compare the algorithm in some special weighted graphs.

2 Pseudometrization of Affinity Kernels and Weighted
Undirected Graphs Through Frink’s Lemma

Even when the problem is motivated by the finite setting provided by weighted graphs, the basic
theory does not need any assumption regarding cardinality. Hence, in this section, we assume that
X is a set and K : X ×X → [0,∞) is a nonnegative function such that for x and y in X, K(x, y)
is a measure of affinity between x and y.

A pseudo-metric on the set X is a function d : X ×X → [0,∞) such that

(p-m.1) d(x, x) = 0 for every x ∈ X;

(p-m.2) d(x, y) = d(y, x), x, y ∈ X;

(p-m.3) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

A pseudo-metric is a metric if d(x, y) = 0 only when x = y.

Let us now proceed to state Frink’s Lemma as given in Chapter 6 of Kelley’s book [8]. Some
notation to simplify further statements is in order. With △ we denote the diagonal of X ×X. In
other words △ = {(x, x) : x ∈ X}. Given a subset U of X × X we write U−1 to denote the set
{(x, y) ∈ X×X : (y, x) ∈ U}. We say that U is symmetric if U = U−1. Given two subsets U and V
of X ×X, the composition is defined by V ◦ U = {(x, z) ∈ X ×X : there exist y ∈ X with (x, y) ∈
U and (y, z) ∈ V }.
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Lemma 2.1. Let X be a set and let {Um : m = 0, 1, 2, . . .} be a sequence of subsets of X × X
satisfying the following properties

i) U0 = X ×X;

ii) Un = U−1
n for every n;

iii) △ ⊂ Un for every n;

iv) Un+1 ◦ Un+1 ◦ Un+1 ⊆ Un for every n.

Then, there exist a pseudo-metric d defined on X such that for every n = 1, 2, 3, . . .

Un ⊂ {(x, y) ∈ X ×X : d(x, y) < 2−n} ⊂ Un+1.

The above control of the given sequence {Un : n = 0, 1, 2, . . .} by the level sets of the pseudo-metric
d seems to be of qualitative character. Nevertheless, when the sequence Un is itself given by level
sets of some function K on X ×X, this control becomes quantitative and allows to find a natural
notion of distance provided by K.

In the sequel, for a given subset V of X ×X we shall use V (n) to denote the composition V ◦ V ◦
V . . . ◦ V n times.

Let us now prove that under some mild conditions in K it is possible to construct increasing
sequences {λ(k) : k = 0, 1, 2, . . .} such that Uk+1 ◦ Uk+1 ◦ Uk+1 ⊆ Uk whenever Uk = {K > λ(k)}.
Hence the sequence Uk so obtained, fulfills the main requirement in Lemma 2.1.

Lemma 2.2. Let X be a set and let K be a nonnegative symmetric real function defined on X×X
satisfying

a) K(x, x) = supy∈X K(x, y) for every x ∈ X;

b) 0 < Λ∞ = sup{α > 0 : {K > α}(m) = X ×X for some integer m} ≤ ∞.

Then, for every Λ with 0 < Λ < Λ∞ there exists a finite sequence 0 = λ(0) < λ(1) < . . . < λ(k) = Λ
such that {K > λ(i)}(3) ⊆ {K > λ(i− 1)} for every i = 1, 2, . . . , k. Moreover, △ ⊂ {K > λ(i)} for
every i = 0, 1, 2, . . . , k.

Proof. Let us first notice that the set A = {α > 0 : {K > α}(m) = X ×X for some integerm} is an
interval or the whole half line R+. This fact follows from the monotonicity of the level sets of K.
In other words if α ∈ A and 0 < β < α then {K > β} ⊃ {K > α}, so that {K > β}(m) ⊃ {K >
α}(m) = X ×X and β ∈ A. On the other hand, for each α ∈ A we have that △ ⊂ {K > α}. This
follows from property a) of the kernel K. In fact, if for some x0 ∈ X we have K(x0, x0) ≤ α, then
supy∈X K(x0, y) ≤ α and for no m ∈ N the point (x0, x0) would belong to {K > α}. But since

α ∈ A, for some m, {K > α}(m) = X ×X ⊃ {(x0, x0)}.

Let us pick 0 < Λ < Λ∞. From the above remarks, we have that Λ ∈ A and △ ⊂ {K > Λ}.
Set mΛ = min{m ∈ N : {K > Λ}(m) = X × X}. In other words, {K > Λ}(mΛ) = X × X but
{K > Λ}(mΛ−1) $ X × X. We may assume that mΛ ≥ 3. Now, consider the set A1 = {α >
0 : {K > Λ}(3) ⊆ {K > α}}. If A1 = ∅, the sequence that we are looking for has only two
elements λ(0) = 0 and λ(1) = Λ. And the desired inclusion {K > λ(1)}(3) ⊆ X ×X = {K > λ(0)}
holds trivially. If A1 ̸= ∅ take Λ1 ∈ A1 with Λ1 > supA1 − ε for some fixed as small as desired
and positive ε. Set now A2 = {α > 0 : {K > Λ1}(3) ⊆ {K > α}}. If A2 = ∅, then we are
done with λ(0) = 0, λ(1) = Λ1 and λ(2) = Λ. So may keep iterating this selection process by
choosing λi ∈ Ai = {α > 0 : {K > Λi−1}(3) ⊆ {K > α}} with Λi > supAi − ε. Since for
{K > Λ}(mΛ) = X × X, after at most the integer part of mΛ/3 plus one iterations the process
stops providing a finite sequence of levels Λ0 := Λ > Λ1 > Λ2 > . . . > Λk. Taking λ(i) = Λk−i for
i = 0, 1, . . . , k we get the desired result.
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Let us point out that for discrete settings or for continuous kernels K the choice of the sequence
Λi in the argument above can be accomplished by taking the maximum of each Ai. Hence the
ε-approximation argument is not necessary. From the above two lemmas we are in position to state
and prove the main results of this section.

Theorem 2.3. Let X be a set. Let K be a nonnegative symmetric function defined on X × X
satisfying a) and b) in Lemma 2.2. Then for every sequence λ = {λ(i) : i = 0, 1, . . . , k = k(λ)} as
in Lemma 2.2, there exists a pseudo-metric dλ defined on X such that

1) {K > λ(i)} ⊆ {dλ < 2−i} ⊆ {K > λ(i− 1)} for every i = 1, 2, . . . , k;

2) the function

δλ = 2−λ−1◦K ,

with λ−1 the inverse of any increasing extension of λ(i) to the whole interval [0, k(λ)], is
equivalent to the pseudo-metric dλ with constants that are uniform in λ. Precisely,

δλ(x, y)

4
< dλ(x, y) ≤ 2dλ(x, y).

Proof. From Lemma 2.2 the sequence Ui = {K > λ(i)} satisfies i) to iv) of Lemma 2.1. Hence there
exists a pseudo-metric dλ defined on X such that 1) holds. In order to prove 2) take (x, y) ∈ X×X
such that dλ(x, y) > 0. Hence for some i = 0, 1, . . . , k(λ) we have

2−(i+1) ≤ dλ(x, y) < 2−i.

The inequality dλ(x, y) < 2−i and the second inclusion in 1) shows that K(x, y) > λ(i − 1). The
inequality 2−(i+1) ≤ dλ(x, y) and the first inclusion in 1) shows that K(x, y) ≤ λ(i + 1). If λ is
any strictly increasing extension of the sequence λ(i) for i = 0, . . . , k to the interval [0, k] and λ−1

denote its inverse function, we have that 2−(i+1) ≤ dλ(x, y) < 2−i, and

i− 1 < (λ−1 ◦K)(x, y) ≤ i+ 1.

From this inequalities it readily follows that δλ = 2−λ−1◦K is equivalent to dλ. In fact,

1

4
= 2−(i+1)2i−1 < dλ(x, y)2

(λ−1◦K)(x,y) ≤ 2−i2i+1 = 2.

Let us point out that the function δλ in the above result satisfies a triangle type inequality with
triangular constant equal to 8 no matter what the kernel K or the sequence λ, satisfying Lemma 2.2,
are. In fact,

δλ(x, z) ≤ 4dλ(x, z) ≤ 4(dλ(x, y) + dλ(y, z)) ≤ 8(δλ(x, y) + δλ(y, z))

for every x, y and z ∈ X.

Regarding the extension of λ in order to produce the function λ−1 needed to explicitly give the

quasi-metric δλ, let us observe that two extremal cases can be explicitly given. In fact, let λ
−1

:

[0, λ(k)] → [0, k] with λ
−1

(t) = i for λ(i− 1) < t ≤ λ(i) and i = 1, . . . , k. Also λ
−1

(0) = 0. Another
possible λ−1 is a lower case λ−1 : [0, λ(k)] → [0, k−1] given by λ−1(t) = i−1 for λ(i−1) < t ≤ λ(i)
for i = 1, . . . , k.

It is also worth noticing that Frink’s metric and hence also δλ, do not reflect the scaling factor
associated to the choice of Λ in Lemma 2.2. This is due to the fact that Frink’s metric dλ takes
only values between zero and one. So that, being δλ equivalent to dλ, also our quasi-metric δλ is
bounded.

The sequence λ(i) contains also the information of a family of δλ balls defined directly as level sets
of the affinity kernel K.
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Proposition 2.1. For 0 < r < 1 we have that the open δλ ball centered at x ∈ X with radious r,
is given by

Bδλ(x, r) = {y ∈ X : K(x, y) > λ(log2
1
r
)}.

Proof. The inequality K(x, y) > λ(log2
1
r
) is equivalent to δλ(x, y) < r which defines Bδλ(x, r).

Let us point out that the actual construction of the sequence λ(i) will depend only on K itself.
Hence the δλ balls are strictly provided only by K.

3 The Algorithm for the Explicit Computation of the
Sequences λ. The Finite Case

In this section we consider the case of X = {1, 2, . . . , n} for some large integer n. The kernel K
defined on X ×X can be regarded as an n× n symmetric matrix with positive entries Kij . Since
each Kij is positive the hypothesis b) in Lemma 2.2 holds trivially since Λ∞ ≥ minKij > 0. Instead
hypothesis a) in Lemma 2.2 holds if Kii = supj Kij .

In order to construct sequences λ, and then δλ, associated to this matrix K we shall need to deal
in the algorithm with the composition of neighborhoods of the diagonal.

Let U and V be two subsets of {1, 2, . . . , n}2 = X × X. Then, as before V ◦ U = {(i, k) : (i, j) ∈
U and (j, k) ∈ V for some j = 1, 2, . . . , n}.

Proposition 3.1. For a given U ⊆ {1, 2, . . . , n}n set AU = (aij(U)) to denote the n×n rest matrix
defined by aij(U) = 1 of (i, j) ∈ U and aij(U) = 0 otherwise. Then the set V ◦ U is given by the
non vanishing entries of the product matrix AUAV . Precisely

V ◦ U =

{
(i, j) ∈ {1, . . . , n}2 :

n∑
k=1

aik(U)akj(V ) ≥ 1

}
.

Proof. Notice that
∑n

k=1 aik(U)akj(V ) ≥ 1 if and only there exists k ∈ {1, . . . , n} such that
aik(U) = 1 and akj(V ) = 1. In other words, if and only if (i, k) ∈ U and (k, j) ∈ V , as desired.

The next result is important at showing when the iterated composition of a neighborhood of the
diagonal finally covers the whole space {1, 2, . . . , n}2.

Lemma 3.1. Let U be a set in {1, 2, . . . , n}2 such that U contains the three main diagonals of
{1, 2, . . . , n}2. Precisely, (i, i − 1), (i, i) and (i, i + 1) belong to U for every i = 1, 2, . . . , n. Then
there exists m such that U (m) = {1, 2, . . . , n}2.

Proof. From the representation of U in terms of the matrix AU and the current hypothesis in U we
have that the matrix AU has ones at least in the three main diagonals. In other words, ai,j ≥ 0,
ai,i = ai−1,i = ai,i+1 = 1. Then A2

U has positive values at least in the entries of the five diagonals
△ = {(i, i) : i = 1, . . . , n}, △+

1 = {(i, i + 1) : i = 1, . . . , n − 1}, △−
1 = {(i − 1, i) : i = 2, . . . , n},

△+
2 = {(i, i + 2) : i = 1, . . . , n − 2} and △−

2 = {(i − 2, i) : i = 3, . . . , n}. Iteration of the above
argument shows that the composition of U becomes wider around the diagonal and after a finite
number of compositions the set {1, . . . , n}2 is completely covered.

We are now in position to describe the basic steps of an algorithm to find a sequence λ(i) associate
to the kernel K.

Algorithm. Let K = (Kij) be a n× n symmetric matrix with positive entries.
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Step 1. Compute the minimum of the values ofK on the three main diagonals Λ0 = min{Ki−1,i;Ki,i;
Ki,i+1 : i = 1, . . . , n},

Step 2. Build the matrix A0 = A{(i,j):Kij≥Λ0} as in Proposition 3.1;

Step 3. Compute A3
0;

Step 4. Define U0 as the subset of those (i, j) in {1, . . . , n}2 such that the entry in (i, j) of A3
0 is

positive;

Step 5. Find Λ1 = max{α : {K ≥ α} ⊇ U0};

Step 6. Build the matrix A1 = A{(i,j):Kij≥Λ1} as in Proposition 3.1;

Step 7. Compute A3
1;

Step 8. Define U1 = {(i, j) : the entry (i, j) of A3
1 is positive};

Step 9. Find Λ2 = max{α : {K ≥ α} ⊇ U1};

...

The iteration stops after a finite number of steps so we get the sequence Λ0,Λ1, . . . ,Λk. It is clear
that Λk < Λk−1 < · · · < Λ2 < Λ1. Without any extra condition on K it could happen that Λ0 ≤ Λ1.
But if Λ0 is larger than all the entries of K outside the three main diagonals we have

Λk < Λk−1 < · · · < Λ2 < Λ1 < Λ0

Step k + 1. Set λ(i) = Λk−i; i = 0, . . . , k;

Step k + 2. Compute a version of λ−1;

Step k + 3. Define δλ(i, j) = 2−λ−1(Kij);

Step k + 4. Plot δλ balls Bδλ(i, r) = {j : Kij > λ(log2
1
r
)} for i fixed and 0 < r < 1.

The script in Python for this algorithm is the following.

Listing 1: Algorithm in Python

import numpy as np
import matp lo t l i b . pyplot as p l t
import networkx as nx

## Value o f n
n=n
## Compute minimum of K
Kmin=np . amin (K)
## Compute Lambda 0
lambda 0=0

aux=np . z e r o s ( ( n ) )
for i in range (n−1):
## Compare inner va l u e s main d iagona l s
aux [ i ]=min (K[ i , i ] ,K[ i , i +1])
## Compare the remaining va l u e s in the main d iagona l s
aux [ n−1]=K[ n−1,n−1]
lambda 0=min( aux )
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## Define matrix A
A=np . z e r o s ( ( n , n ) )

for i in range (n ) :
for j in range (n ) :
i f K[ i , j ]>=lambda 0 :
A[ i , j ]=1

## Compute B=Aˆ3
B=(A. dot (A) ) . dot (A)

## Compute Bpos
Bpos=np . z e ro s ( ( n , n ) )
for i in range (n ) :
for j in range (n ) :
i f B[ i , j ]>=1:
Bpos [ i , j ]=1

## Compute C
C=K∗Bpos

## Compute minimum of the p o s i t i v e va l u e s o f C
auxC=np .max(K)
for i in range (n ) :
for j in range (n ) :
i f C[ i , j ]>0:
auxC=min(auxC ,C[ i , j ] )
lambda 1=auxC

## I t e r a t e
## Var iab l e s

lambda i=np . z e ro s ( ( n ) )
lambda i [0 ]= lambda 0
lambda i [1 ]= lambda 1

A i=np . z e ro s ( ( n , n , n ) )
A i [ 0 , : , : ] =A

B i=np . z e ro s ( ( n , n , n ) )
B i [ 0 , : , : ] =B

Bpos i=np . z e ro s ( ( n , n , n ) )
Bpos i [ 0 , : , : ] = Bpos

C i=np . z e ro s ( ( n , n , n ) )
C i [ 0 , : , : ] =C

## While
h=1
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while lambda i [ h]>Kmin :
## Define matrix A
for i in range (n ) :
for j in range (n ) :
i f K[ i , j ]>=lambda i [ h ] :
A i [ h , i , j ]=1

## Compute B=Aˆ3
B i [ h , : , : ] = ( A i [ h , : , : ] . dot ( A i [ h , : , : ] ) ) . dot ( A i [ h , : , : ] )

## Bpos
for i in range (n ) :
for j in range (n ) :
i f B i [ h , i , j ]>=1:
Bpos i [ h , i , j ]=1

## Compute C
C i [ h , : , : ] =K∗Bpos i [ h , : , : ]

## Compute minimum of the p o s i t i v e va l u e s o f C
auxC=np .max(K)
for i in range (n ) :
for j in range (n ) :
i f C i [ h , i , j ]>0:
auxC=min(auxC , C i [ h , i , j ] )
lambda i [ h+1]=auxC
h+=1

## End wh i l e

## Rearranging Lambda
lambda i=lambda i [ 0 : h+1]
lambda i=lambda i [ : : − 1 ]

## Inver se func t i on o f Lambda
def l ambda funct inv ( t , lambd ) :
i f t<0:
print ( ’ t must be l a r g e r or equal to the minimum value o f lambda ’ )
i f 0<=t<lambd [ 0 ] :
inv=0
for kk in range ( l en ( lambd)−1):
i f lambd [ kk]<=t<lambd [ kk+1] :
inv=kk+1
i f t>=lambd [ l en ( lambd )−1] :
inv=len ( lambd )
return inv

## Compute the matrix
def d i s t f r i n k i n v ( nodo1 , nodo2 ) :
d i s tF inv=2∗∗(− l ambda funct inv (K[ nodo1 , nodo2 ] , lambda i ) )
return d i s tF inv
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d i s t a r r ay F inv=np . z e ro s ( ( n , n ) )
for v in range (n ) :
for w in range (n ) :
d i s t a r r ay F inv [ v ,w]= d i s t f r i n k i n v (v ,w)

## Construct the graph s t a r t i n g from K
G = nx . Graph ( )
G = nx . from numpy matrix (np . matrix (K) )

## Plot the graph
l ayout = nx . sp r i n g l ayou t (G)

p l t . f i g u r e ( )
p l t . t i t l e ( ’Graph ’ )
node co l o r=np . ones (n)
nx . draw (G, layout , node co l o r=node co lor , w i t h l a b e l s=False )
nx . draw networkx labe l s (G, layout , f o n t s i z e =12, f o n t f am i l y=’ sans−s e r i f ’ )
p l t . show ( )

## Drawing b a l l s cen tered at i
for k in range (n ) :
for v in range (h+1):
i f d i s t a r r ay F [ i ] [ k ] > lambda i [ v ] :
node co l o r [ k]=h−v

node co l o r [ i ]=h+1

4 Test and Comparison with the Diffusive Metric for
Newtonian Type Affinities

The results in [10] suggest testing the algorithm on affinities defined as discretizations of Newtonian
type potentials of the form

Kα(x, y) =
1

|x− y|α

for α positive. Once a discretization of Kα is given we may run our algorithm and also the well
known diffusion metric introduced in [5]. See also [11]. Let us recall that the diffusive metric at
time t > 0 is given by

dt(i, j) =

{∑
l

e2tνl |xl
i − xl|2

} 1
2

where xl, νl, l = 1, . . . , L are the eigenvectors and the eigenvalues of the Laplace operator on the
graph with affinity given by the metric Kij .

We shall only write down the comparison of the families of δλ-balls, dt-balls and Euclidean balls for
a couple of values of the radio, when we consider the discretization

Kij =

{
2, for i = j

|i− j|−α, for i ̸= j

with i, j = 0, . . . , 59.
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It is worthy pointing out at here that the choice of 60 points of discretization is only taken for the
sake of getting better images for the graphs. In particular for the visibility of some edges.

Fig. 1. Graph

Let us also point out that in the following graphs, the numerical label of each vertex is assigned
according to the order of the rows in the affinity matrix, but a priori has nothing to do with distance
or affinity.

Fig. 1 labels with the integers 0, 1, . . . , 59 the 60 vertices of our graph.

(D) Y, G, 0.11, T, 0.135, L, 0.31, P,
0.404327

(F)Y, 0.0169492, G, 0.037037, T, 0.111111,
L, 0.333333, P, 1

(E)Y, G, 1, T, 3, L, 27, P, 59

Fig. 2. Center at 50

We shall now plot some balls centered at two different vertices, 25 and 50, each for the three
metrics, the Euclidean metric (E), the Diffusive metric (D) with t = 0.005 and Frink’s metric (F).
The comparison of both, (D) and (F) with the Euclidean (E) is essential because K itself is built
in terms of (E). Let us say again that we are interested in the shape of the balls but not in the
particular radii for which those balls are attained. This fact is particularly clear in this case where
the Euclidean metric is unbounded. Nevertheless we shall write out the values of the radii for which
each ball in each metric is plotted. Actually the following pictures show in different colors the annuli
between two consecutive balls. We use yellow for the center, green for the first annulus, turquoise
for the second, lavender for the third and purple for the last annulus.
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In the Fig. 2 and Fig. 3 we use capital letters, Y,G, T, L and P for denote the colors. The sequences
of letters and numbers describe the inner and outer radii of each annulus.

It is worthy noticing that the sequence of raddi for (D) has been chosen in such a way that the
dt balls become as close as possible to Euclidean balls. At least for this simple situation, of a
kernel defined by a metric, the metrization scheme, (F), introduced here seems to reproduce the
exact shapes of the balls associated to the metric defining the kernel. It could be argued that the
exponential character of Frink’s construction provides only a few balls of the graph. Nevertheless
we know from the very proof of our main result that we have at hand changing the initial parameter
Λ < Λ∞ to produce a profuse diversity of sequences λ(i). Another somehow arbitrary step of the
algorithm is the use of the main three diagonal of our affinity matrix K. Starting with the main
five diagonals will produce another family of F-balls and annuli.

(D)Y, G, 0.13, T, 0.17, L, 0.212, P, 0.404327
(F)Y, 0.0169492, G, 0.037037, T, 0.111111,
L, 0.333333, P, 1

(E)Y, G, 1, T, 3, L, 27, P, 59

Fig. 3. Center at 25
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