
EvoMaster: A Search-Based System Test Generation
Tool
Andrea Arcuri1, Juan Pablo Galeotti2, Bogdan Marculescu1, and Man
Zhang1

1 Kristiania University College, Department of Technology, Oslo, Norway 2 FCEyN-UBA, and ICC,
CONICET-UBA, Depto. de Computaci’on, Buenos Aires, Argentina

DOI: 10.21105/joss.02153

Software
• Review
• Repository
• Archive

Editor: George K. Thiruvathukal

Reviewers:
• @mado89
• @s0nata
• @UTH-Tuan

Submitted: 07 January 2020
Published: 03 January 2021

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC BY 4.0).

Statement of Need

Testing web/enterprise applications is complex and expensive when done manually. Often,
software testing takes up to half of the development time and cost for a system. So much
testing is needed because the cost of software failure is simply too large: for example, in 2017,
304 software failures (reported in the media) impacted 3.6 billion people and $1.7 trillion in
assets worldwide (Tricentis, 2017). Unfortunately, due to its high cost, software testing is
often left incomplete, and only applied partially.
To address this problem, in Software Engineering (SE) research a lot of effort has been spent
in trying to design and implement novel techniques aimed at automating several different
tasks, where software testing is among the most studied tasks. Search-Based Software Test-
ing (SBST) (Harman et al., 2012) casts the problem of software testing as an optimization
problem, aimed at, for example, maximizing code coverage and fault detection.
Our SBST tool called EvoMaster addresses these challenges by using evolutionary techniques
to automatically generate test cases. It currently focuses on RESTful web services, which are
the pillars of modern web and enterprise applications (Allamaraju, 2010; Fielding, 2000).
The EvoMaster tool is aimed at:

• practitioners in industry that want to automatically test their software.

• researchers that need generated test cases for their studies.

Tool Summary

EvoMaster (Arcuri, 2018a) is a SBST tool that automatically generates system-level test
cases. Internally, it uses an Evolutionary Algorithm and Dynamic Program Analysis to be able
to generate effective test cases. The approach is to evolve test cases from an initial population
of random ones, using code coverage and fault detection as fitness function.
Key features:

• At the moment, EvoMaster targets RESTful APIs compiled to JVM 8 and 11 bytecode.

• The APIs must provide a schema in OpenAPI/Swagger format (either v2 or v3).

• The tool generates JUnit (version 4 or 5) tests, written in either Java or Kotlin.

Arcuri et al., (2021). EvoMaster: A Search-Based System Test Generation Tool. Journal of Open Source Software, 6(57), 2153. https:
//doi.org/10.21105/joss.02153

1

https://doi.org/10.21105/joss.02153
https://github.com/openjournals/joss-reviews/issues/2153
https://github.com/EMResearch/EvoMaster
https://doi.org/10.5281/zenodo.4300745
https://luc.edu/cs/people/ftfaculty/gkt.shtml
https://github.com/mado89
https://github.com/s0nata
https://github.com/UTH-Tuan
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.02153
https://doi.org/10.21105/joss.02153

• Fault detection: EvoMaster can generate tests cases that reveal faults/bugs in the tested
applications. Different heuristics are employed, like checking for 500 status codes and
mismatches from the API schemas.

• Self-contained tests: the generated tests do start/stop the application, binding to an
ephemeral port. This means that the generated tests can be used for regression testing
(e.g., added to the Git repository of the application, and run with any build tool such
as Maven and Gradle).

• Advanced whitebox heuristics: EvoMaster analyses the bytecode of the tested applica-
tions, and uses several heuristics such as testability transformations and taint analysis
to be able to generate more effective test cases.

• SQL handling: EvoMaster can intercept and analyse all communications done with
SQL databases, and use such information to generate higher code coverage test cases.
Furthermore, it can generate data directly into the databases, and have such initialization
automatically added in the generated tests. At the moment, EvoMaster supports H2
and Postgres databases.

• Blackbox testing mode: can run on any API (regardless of its programming language),
as long as an OpenAPI schema is provided. However, results will be worse than whitebox
testing (e.g., due to lack of bytecode analysis).

Published Results

When addressing the testing of real-world web/enterprise applications, there are many chal-
lenges. The tested code can for example have complex execution flows, where the boolean
predicates in if and loop statements depend on specific input data. Furthermore, the exe-
cution flow could depend on interactions with external entities, such as databases, GUIs and
remote web services. The search space of all possible test inputs is huge, where only a tiny
subset lead to maximize code coverage and detect faults.
To face and overcome those challenges, EvoMaster has been used to experiment with several
novel techniques. These techniques are now integrated in EvoMaster, where their best settings
(based on empirical studies) are on by default.
This research work led to several publications: novel search algorithms such as MIO (Arcuri,
2017a, 2018b), addressing the white-box testing of RESTful APIs (Arcuri, 2017b, 2019),
resource-dependency handling (Zhang et al., 2019), accesses to SQL databases (Arcuri &
Galeotti, 2019), and novel testability transformations (Arcuri & Galeotti, 2020).

Related Work

In the recent years, different techniques have been proposed for black-box testing of RESTful
APIs (Atlidakis et al., 2019; Ed-douibi et al., 2018; Karlsson et al., 2020; Viglianisi et al.,
2020). Those present different variants of random testing, enhanced with heuristics based
on the information provided in the API schemas. As those techniques are black-box, they
do not access the source-code/bytecode of the tested APIs, and so cannot exploit any such
information to improve the generation of test cases.
At the time of this writing, EvoMaster appears to be the only tool that can do both black-box
and white-box testing, and that is also released as open-source. Supporting black-box testing
is important, as it is easier to setup and use. However, white-box testing leads to better
results (e.g., higher code coverage and fault detection), as it can exploit more information on
the system under test.

Arcuri et al., (2021). EvoMaster: A Search-Based System Test Generation Tool. Journal of Open Source Software, 6(57), 2153. https:
//doi.org/10.21105/joss.02153

2

https://doi.org/10.21105/joss.02153
https://doi.org/10.21105/joss.02153

Acknowledgements

We thank Annibale Panichella for providing a review and fix of our implementation of his
MOSA algorithm. We also want to thank Agustina Aldasoro for her contributed bug fixes.
This work is funded by the Research Council of Norway (project on Evolutionary Enterprise
Testing, grant agreement No 274385), and partially by UBACYT-2018 20020170200249BA,
PICT-2015-2741.

References

Allamaraju, S. (2010). Restful web services cookbook: Solutions for improving scalability and
simplicity. ” O’Reilly Media, Inc.”.

Arcuri, A. (2018a). EvoMaster: Evolutionary Multi-context Automated System Test Gen-
eration. IEEE International Conference on Software Testing, Verification and Validation
(ICST), 394–397. https://doi.org/10.1109/icst.2018.00046

Arcuri, A. (2017a). Many Independent Objective (MIO) Algorithm for Test Suite Generation.
International Symposium on Search Based Software Engineering (SSBSE), 3–17. https:
//doi.org/10.1007/978-3-319-66299-2_1

Arcuri, A. (2017b). RESTful API Automated Test Case Generation. IEEE International
Conference on Software Quality, Reliability and Security (QRS), 9–20. https://doi.org/
10.1109/qrs.2017.11

Arcuri, A. (2018b). Test suite generation with the Many Independent Objective (MIO) algo-
rithm. Information and Software Technology, 104, 195–206. https://doi.org/10.1016/j.
infsof.2018.05.003

Arcuri, A. (2019). RESTful API Automated Test Case Generation with EvoMaster. ACM
Transactions on Software Engineering and Methodology (TOSEM), 28(1), 3. https://doi.
org/10.1145/3293455

Arcuri, A., & Galeotti, J. P. (2019). SQL data generation to enhance Search-Based System
Testing. Genetic and Evolutionary Computation Conference (GECCO), 1390–1398. https:
//doi.org/10.1145/3321707.3321732

Arcuri, A., & Galeotti, J. P. (2020). Testability Transformations For Existing APIs. IEEE
International Conference on Software Testing, Verification and Validation (ICST). https:
//doi.org/10.1109/ICST46399.2020.00025

Atlidakis, V., Godefroid, P., & Polishchuk, M. (2019). RESTler: Stateful REST API Fuzzing.
Proceedings of the 41st International Conference on Software Engineering, 748–758. https:
//doi.org/10.1109/ICSE.2019.00083

Ed-douibi, H., Cánovas Izquierdo, J. L., & Cabot, J. (2018). Automatic Generation of Test
Cases for REST APIs: A Specification-Based Approach. 2018 IEEE 22nd International
Enterprise Distributed Object Computing Conference (EDOC), 181–190. https://doi.org/
10.1109/EDOC.2018.00031

Fielding, R. T. (2000). Architectural styles and the design of network-based software archi-
tectures [PhD thesis]. University of California, Irvine.

Harman, M., Mansouri, S. A., & Zhang, Y. (2012). Search-based software engineering:
Trends, techniques and applications. ACM Computing Surveys (CSUR), 45(1), 11. https:
//doi.org/10.1145/2379776.2379787

Karlsson, S., Causevic, A., & Sundmark, D. (2020). QuickREST: Property-based Test Gen-
eration of OpenAPI Described RESTful APIs. IEEE International Conference on Software

Arcuri et al., (2021). EvoMaster: A Search-Based System Test Generation Tool. Journal of Open Source Software, 6(57), 2153. https:
//doi.org/10.21105/joss.02153

3

https://doi.org/10.1109/icst.2018.00046
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1109/qrs.2017.11
https://doi.org/10.1109/qrs.2017.11
https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1016/j.infsof.2018.05.003
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3293455
https://doi.org/10.1145/3321707.3321732
https://doi.org/10.1145/3321707.3321732
https://doi.org/10.1109/ICST46399.2020.00025
https://doi.org/10.1109/ICST46399.2020.00025
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/ICSE.2019.00083
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.21105/joss.02153
https://doi.org/10.21105/joss.02153

Testing, Verification and Validation (ICST). https://doi.org/10.1109/ICST46399.2020.
00023

Tricentis. (2017). Software Fail Watch 5th Edition. https://www.tricentis.com/resources/software-
fail-watch-5th-edition/.

Viglianisi, E., Dallago, M., & Ceccato, M. (2020). RESTTESTGEN: Automated Black-Box
Testing of RESTful APIs. IEEE International Conference on Software Testing, Verification
and Validation (ICST). https://doi.org/10.1109/ICST46399.2020.00024

Zhang, M., Marculescu, B., & Arcuri, A. (2019). Resource-based test case generation for
RESTful web services. Genetic and Evolutionary Computation Conference (GECCO),
1426–1434. https://doi.org/10.1145/3321707.3321815

Arcuri et al., (2021). EvoMaster: A Search-Based System Test Generation Tool. Journal of Open Source Software, 6(57), 2153. https:
//doi.org/10.21105/joss.02153

4

https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1109/ICST46399.2020.00023
https://doi.org/10.1109/ICST46399.2020.00024
https://doi.org/10.1145/3321707.3321815
https://doi.org/10.21105/joss.02153
https://doi.org/10.21105/joss.02153

	Statement of Need
	Tool Summary
	Published Results
	Related Work
	Acknowledgements
	References

