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Are CD45RO+ and CD45RA‑ genuine markers 
for bovine memory T cells?
Kandel Anmol, Hada Akanksha and Xiao Zhengguo* 

Abstract 

Effective vaccination induces memory T cells, which protect the host against pathogen re-infections. Therefore, 
detection of memory T cells is essential for evaluating vaccine efficacy, which was originally dependent on cytokine 
induction assays. Currently, two isoforms of CD45 tyrosine phosphatase, CD45RO expression and CD45RA exclusion 
(CD45RO+/ CD45RA-) are used extensively for detecting memory T cells in cattle. The CD45RO+/CD45RA- markers 
were first established in humans around three decades ago, and were adopted in cattle soon after. However, in the 
last two decades, some published data in humans have challenged the initial paradigm, and required multiple mark-
ers for identifying memory T cells. On the contrary, memory T cell detection in cattle still mostly relies on CD45RO+/
CD45RA- despite some controversial evidence. In this review, we summarized the current literature to examine if 
CD45RO+/CD45RA- are valid markers for detecting memory T cells in cattle. It seems CD45RA and CD45RO (CD45RA/
RO) as markers for identifying bovine memory T cells are questionable.
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Introduction
Memory T cells induced by effective vaccines respond 
rapidly during pathogen re-challenge, ensuring immune 
protection to the host (Robinson and Amara 2005, Rosato 
et al. 2017, Iwasaki and Omer 2020). Therefore, detection 
of memory T cells is the gold standard for analyzing the 
efficacy of vaccines in humans and domestic animals like 
cattle (Flaxman and Ewer 2018). Currently, bovine mem-
ory T cells are detected as CD45RO+/CD45RA- (How-
ard et al. 1991, Bembridge et al. 1995, Sopp and Howard 
2001, Silflow et al. 2005, Maggioli et  al. 2015, Frie et  al. 
2017, Mitoma et  al. 2021), which were adopted a few 
years after their initial establishment in humans (Akbar 
et al. 1988a; Merkenschlager et al. 1988; Terry et al. 1988; 
Birkeland et  al. 1989; Deans et  al. 1989; Richards et  al. 
1990). However, in the last two decades, reports con-
trasting initial observations have been published in both 

humans and cattle. Several experiments have suggested 
that human memory T cells may express CD45RO or 
CD45RA or both (Arlettaz et al. 1999; Wills et al. 1999; 
Gattinoni et  al. 2011; Ahmed et  al. 2016; Hong et  al. 
2016; Jung et  al. 2021). Similarly, some reports in cattle 
have contradicted CD45RO+/CD45RA- as markers in 
the identification of memory T cells (Hagberg et al. 2008; 
Guerra-Maupome et al. 2019).

There are three subtypes of T cells: CD4+, CD8+ and 
γδ. While the immune memory by both CD4+ and CD8+ 
subtypes are the essential targets of most bovine vac-
cines, establishment of memory by γδ T cells is still under 
debate, despite some evidence supporting their recall 
responses (Blumerman et al. 2007, Lalor and McLough-
lin 2016, Lau and Sun 2018, Comeau et  al. 2020); for 
instance, recently, a M bovis specific γδ T cell subtype has 
been reported in cattle (Guerra-Maupome et  al. 2019). 
Vaccine-induced effective memory can initiate protec-
tive immune responses upon pathogen re-challenge, as 
evidenced by decreased pathogen load, increased anti-
gen-specific antibody titers, and appropriate induction of 
effector cytokines (Graham et al. 2006; Buddle et al. 2011; 
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Blodörn et al. 2014; Taylor et al. 2015). Memory T cells, 
including CD4+ and CD8+ subtypes, play critical roles in 
inducing these responses and protecting the host from 
re-infection with pathogens (Laidlaw 2015; Kandel et al. 
2021). Unlike their short-lived counterparts in humans 
(Doherty et al. 1996; Sierra et al. 2002; Hammarlund et al. 
2003), long-lived memory CD4+ T cells could be induced 
in cattle (Rhodes et al. 1999; Brown et al. 2002; Norimine 
et al. 2002; Mitoma et al. 2021), which can enhance the 
cytotoxic function of parasite-specific CD8+ T cells 
under in vitro conditions (Taracha et al. 1997), and assist 
in the activation of B cells (Brown et al. 1994; Norimine 
et al. 2002). Specifically, vaccines against the intracellular 
pathogens such as Foot and mouth disease virus (FMDV), 
Bovine viral diarrhea virus (BVDV), and Mycobacterium 
tuberculosis induce antigen-specific memory CD8+ T 
cells, which mount effective cytotoxic responses in syn-
ergy with the memory CD4+ T cells (Childerstone et al. 
1999; Rhodes et al. 1999; Gaddum et al. 2003; Hogg et al. 
2009; Maggioli et  al. 2015; Elnaggar et  al. 2021). Addi-
tionally, memory CD4+ T cells might reinforce memory 
B cell responses (Brown et al. 1994, Norimine et al. 2002), 
and increase the production of pathogen-specific anti-
bodies against bovine extracellular pathogens such as 
Cooperia oncophora and Fasciola hepatica (Skirrow and 
BonDurant 1990, Kooyman et  al. 2002, Kanobana et  al. 
2003, Kandel et al. 2021). Despite the debate in γδ T cells, 
memory CD4+ and memory CD8+ subtypes are the hall-
marks of effective vaccination in cattle.

Even though several assays are available, none can 
detect all antigen-specific memory T cells. So far, the 
most common method for identifying memory T cells 
has been cytokine induction assays, where peripheral 
blood mononuclear cells (PBMCs) from healthy indi-
viduals were stimulated with PMA and ionomycin, fol-
lowed by either monensin or brefeldin A (BFA) (Picker 
et al. 1995, Bining and Miller 1997, Hamann et al. 1997, 
Waldrop et al. 1997, Bercovici et al. 2000, Kemp and Bru-
unsgaard 2001, Sattler et al. 2009). Alternatively, PBMCs 
or lymphoid cells from the immune animals were stimu-
lated with specific antigens in vitro to induce the produc-
tion of cytokines such as interferon-gamma (IFNγ) and/
or interleukin-4 (IL4) by the antigen-specific memory 
T cells, which could be detected through ELISpot or 
flow cytometry (Calarota and Baldanti 2013, Flaxman 
and Ewer 2018). In addition to the cytokine induction 
assay, currently, memory T cells can be easily identified 
using markers in flow cytometry. In this regard, human 
research has utilized multiple markers besides CD45RA/
RO (Wills et  al. 1999; Gattinoni et  al. 2011; Mahnke 
et  al. 2013; Jung et  al. 2021); for example, several pro-
teins including CD127, CD27, CD95, CD11a, CD18 and 
CD28 have been included in the evaluation of human 

memory CD8+ T cells (Hamann et  al. 1997, Samji and 
Khanna 2017, Martin and Badovinac 2018). Nonetheless, 
bovine memory T cells are commonly detected using 
CD45RO+/CD45RA-, despite conflicting evidence (Hag-
berg et  al. 2008; Guerra-Maupome et  al. 2019; Kandel 
et  al. 2022). Recently, we sought to validate CD45RO+/
CD45RA- as markers for memory T cells in cattle using 
the conventional cytokine induction assay (Kandel et al. 
2022).  A weak correlation between CD45RA/RO expres-
sion and memory T cells in cattle was revealed  (Kandel 
et al. 2022). In this review, we examined the current lit-
erature, and discussed some of our findings to assess the 
reliability of CD45RO+/CD45RA- as authentic markers 
for memory T cells in cattle.

Alternative splicing generates CD45RA/RO 
in humans
CD45, a tyrosine phosphatase membrane protein, is 
expressed commonly on the surface of multiple immune 
cells, including T lymphocytes (Tonks et  al. 1988; Her-
miston et  al. 2003). In humans, the CD45 precursor 
mRNA (i.e., CD45 pre-mRNA) contains at least 33 cod-
ing regions, also known as exons. Differential splicing at 
exons A/4, B/5 and C/6 leads to the generation of multi-
ple protein products called CD45 isoforms (Gerdy et al. 
2000; Hermiston et al. 2003; Lynch 2004; Tong et al. 2005; 
Holmes 2006). Among the isoforms, high molecular 
weight, CD45RA, includes A/4 but excludes exons B/5 
and C/6, whereas the low molecular weight counterpart, 
CD45RO, excludes all (4/A, 5/B and 6/C), as shown in 
Fig.  1. Unfortunately, the information on CD45 splicing 
has not been explored in cattle, but genetic analysis sug-
gests that at least six CD45 isoforms may exist, of which, 
some have already been detected at the protein level 
using antibodies (Bembridge et  al. 1995; Guerra-Mau-
pome et al. 2019; Jonsson et al. 2021; Kandel et al. 2022).

The initial research in humans suggested that expres-
sion of CD45RA marks the naïve, and that of CD45RO 
indicates memory T cells (Akbar et  al. 1988a, Merken-
schlager et  al. 1988, Richards et  al. 1990, Wallace and 
Beverley 1990, Litjens et  al. 2008, Machura et  al. 2008), 
which was similarly established in cattle soon after (How-
ard et  al. 1991; Bembridge et  al. 1995). Although how 
CD45RO is spliced in cattle is unknown, a protein of a 
molecular weight similar to that in humans (i.e., 180 kDa) 
was precipitated (Bembridge et al. 1995), using the most 
popular monoclonal antibody clone IL-A116 (Bembridge 
et al. 1995; Ballingall et al. 2001; Endsley et al. 2006; Denis 
et al. 2011; Hogg et al. 2011; Blunt et al. 2015; Maggioli 
et al. 2015; Frie et al. 2017; Elnaggar et al. 2021; Jonsson 
et  al. 2021; Mitoma et  al. 2021). Similarly, there are ten 
monoclonal antibodies that recognize the high molecular 
weight isoform in cattle (Dutia et  al. 1993, Howard and 
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Naessens 1993); among them, clones CC76 and GC6A 
have already been applied to detect the bovine homo-
logue of CD45RA (Endsley et al. 2007; Denis et al. 2011; 
Kandel et al. 2022).

Memory T cells are not restricted to CD45RO+/
CD45RA‑ in humans
Human memory T cells have been extensively detected 
using CD45RA/RO as markers. Initially, research sug-
gested CD45RO+/CD45RA- T cells as memory (Akbar 
et al. 1988b; Birkeland et al. 1989; Deans et al. 1989), as 
they demonstrated antigen-specific proliferation, and 
enhanced B cell activation in vitro (Morimoto et al. 1985, 

Akbar et al. 1988b, Sanders et al. 1988, Lecomte and Fis-
cher 1992); these results led to the establishment of initial 
paradigm, which supported that after antigen stimula-
tion the naïve T cells downregulate CD45RA and highly 
upregulate CD45RO to become memory (Table 1). How-
ever, an increasing number of evidence in the past two 
decades have contrasted the initial paradigm. A number 
of studies have reported that memory T cells could be 
found within both CD45RO+ and CD45RA+ fractions 
(Michie et  al. 1992; Callan et  al. 1998; Wills et  al. 1999; 
Lee et  al. 2001; Khan et  al. 2002; Gattinoni et  al. 2011; 
Ahmed et al. 2016; Jung et al. 2021). Specifically, a sub-
set of CD45RA+ T cells express features similar to those 
shown by antigen-primed memory population, which is 
contrary to the established paradigm that defines them 
as the naïve T cells (De Jong et  al. 1992; Hintzen et  al. 
1993; Okumura et al. 1993; Roederer et al. 1995; Richards 
et al. 1997; Caccamo et al. 2018). Importantly, the expres-
sion of  CD45 isoform on the surface of human memory 
T cells has been found interchangeable (Hamann et  al. 
1997; Arlettaz et  al. 1999; Wills et  al. 1999; Gattinoni 
et al. 2011). For example, TEMRA, a newly defined sub-
set of memory T cells re-expressed CD45RA (Willinger 
et al. 2005; Tian et al. 2017; Verma et al. 2017; Vandamme 
et al. 2020), and demonstrated effective immunity against 
pathogens such as dengue virus (DENV) in humans (Tian 
et  al. 2017; Tian et  al. 2019). Moreover, identification 
of human memory T cells only based on CD45 isoform 
expression has been suggested unreliable in both CD4+ 
and CD8+ subtypes (De Jong et  al. 1992; Hintzen et  al. 
1993; Hamann et  al. 1997). As a result, a combination 
of markers, including CD45RA/RO, are being used for 
characterization of different subsets of memory T cells 
(De Jong et al. 1992, Callan et al. 1998, Samji and Khanna 
2017, Martin and Badovinac 2018, Jung et  al. 2021). To 
illustrate, a subset of memory CD4+ T cells called stem 
cell like memory (Tscm) has been characterized based 
on their expression of CD45RA/RO, CD95, CD122 and 
CD11a (Gattinoni et al. 2011; Ahmed et al. 2016). In sum-
mary, human memory T cells are heterogenous, and not 

Fig. 1  Splicing of CD45 pre-mRNA results in generation of distinct 
isoforms. The figure demonstrates alternative splicing of CD45 
isoforms in humans as information on cattle has not been published 
yet. CD45 pre-mRNA has 33 exons in humans, numbered from 1 to 33 
in this figure. Differential splicing of exons 4/A, 5/B and 6/C generates 
at least six CD45 isoforms. The shortest CD45RO is generated 
by skipping all three differentially spliced exons. This figure was 
adapted from mini review published by Bio-Rad Laboratory (Bio-Rad 
Laboratories, Inc 2016), and modified/animated with https://​biore​nder.​com/

Table 1  CD45RA/RO expression on the human memory T cells

T cell subtype Memory related to CD45RA/RO References

CD4+ T cells CD45RO+ (Akbar et al. 1988a, Merkenschlager et al. 1988, Wallace and Beverley 1990, Litjens et al. 2008, 
Machura et al. 2008)

CD45RA+ (Warren and Skipsey 1991, Zola et al. 1992, Richards et al. 1997, Wilamasundera et al. 1998, 
Gattinoni et al. 2011, Ahmed et al. 2016)

CD45RO+ CD45RA+ (Arlettaz et al. 1999)

CD8+ T cells CD45RO+ (Richards et al. 1990, Machura et al. 2008)

CD45RA+ (Callan et al. 1998, Wills et al. 1999, Faint et al. 2001, Gattinoni et al. 2011, Ahmed et al. 2016)

https://biorender.com/
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strictly restricted to CD45RO+/CD45RA-, but could also 
exist as CD45RA+/CD45RO- and CD45RO+/CD45RA+.

Establishment of CD45RO+/CD45RA‑ as marker 
for memory T cells in cattle
In cattle, antigen-specific memory T cells are examined 
with cytokine induction assays, and CD45RO+/CD45RA- 
markers in flow cytometry (Silflow et  al. 2005; Endsley 
et al. 2006; Blunt et al. 2015; Maggioli et al. 2015; Guerra-
Maupome et al. 2019; Elnaggar et  al. 2021), which were 
established a few years after their initial discovery in 
humans.

Historically, Bembridge et  al.  demonstrated that the 
ovalbumin (OVA)-specific memory CD4+ T cells were 
CD45RO+ in cattle (Bembridge et  al. 1995). They iso-
lated CD45RO+ and CD45RO- CD4+ T cells from OVA-
immunized PBMCs and tested their antigen-specific 
proliferative responses. The CD45RO+ fraction demon-
strated a significantly higher capacity to proliferate than 
CD45RO- (Bembridge et  al. 1995). Further, when both 
fractions were stimulated with autologous PBMC or Con 
A for 27 h, only the CD45RO+ samples showed signals 
for IFNγ and IL4 in polymerase chain reaction (PCR), 
indicating the association of CD45RO expression with 
memory T cells in cattle (Bembridge et  al. 1995). How-
ever, there was some disagreement in the CD8+ T cell 
subtype, as Theileria-specific memory CD8+ T cells were 
found in both CD45RO+ and CD45RO- fractions (How-
ard et al. 1991; Bembridge et al. 1995).

Sopp and Howard further investigated the expres-
sion of CD45RO in the IFNγ- and IL4-inducing memory 
T cells in healthy cattle (Sopp and Howard 2001). They 
stimulated the PBMCs or lymphocytes isolated from dif-
ferent lymphoid tissues with PMA, ionomycin and BFA 
for 5 h at 37°C, and tested their expression of CD45RO 
(Sopp and Howard 2001). The majority of memory T 
cells that produced IFNγ and IL4 were CD45RO+ (Sopp 
and Howard 2001). With contradictory evidence on the 

CD8+ subtype, the evidence from Bembridge et  al. and 
Sopp and Howard collectively suggested CD45RO+ as 
a marker for detecting memory T cells in cattle (Bem-
bridge et  al. 1995, Sopp and Howard 2001). Further, 
these findings were supported by a number of observa-
tions, where in  vitro stimulated antigen-specific mem-
ory T cells expressed CD45RO (Totté et al. 2010; Denis 
et al. 2011; Totte et al. 2013; Maggioli et al. 2015; Elnag-
gar et  al. 2021), but downregulated the expression of 
CD45RA (Sopp and Howard 2001, Endsley et  al. 2007, 
Denis et  al. 2011). While CD45RO+/CD45RA-  markers 
were primarily used to detect memory T cells in cattle, 
additional molecules such as CD62L and/or CCR7 were 
also included for further characterization of memory T 
cells into effector memory (Tem: CD62L−/CCR7-) and 
central memory (Tcm: CD62L+/CCR7+) subsets (End-
sley et  al. 2007; Blunt et  al. 2015; Maggioli et  al. 2015), 
which is consistent with previously published human 
findings (Sallusto et  al. 2004). While Tcm cells display 
stem cell like characteristics and differentiate into effec-
tor memory subsets, those of Tem exhibit rapid effector 
functions in vitro (Sallusto et al. 1999; Sallusto et al. 2004; 
Mahnke et al. 2013).

CD45RO+/CD45RA‑ as markers for memory T cells 
is controversial in cattle
Although commonly used for detecting memory T cells, 
CD45RO+/CD45RA- markers have also been challenged 
by some published reports in cattle (Table  2). Memory 
T cells in cattle may not always express CD45RO, and 
therefore can also be detected in the CD45RO- frac-
tion. For instance, when PBMCs from the vaccinated 
cattle were stimulated with homogenate derived from 
Dictyocaulus viviparous, Hagberg et  al. did not found 
antigen-specific proliferation in the CD45RO expressing 
CD4+ and CD8+ T cell subtypes (Hagberg 2008; Hag-
berg et  al. 2008) (Table  2). In support, experiments on 
memory CD8+ T cells have also generated inconsistent 

Table 2  CD45RO expression on the bovine memory T cells

T cell subtype Memory related to CD45RA/RO References

CD4+ CD45RO+ (Howard et al. 1989, Sopp and Howard 2001, Totté et al. 2010, Blunt 
et al. 2015, Maggioli et al. 2015, Elnaggar et al. 2021, Mitoma et al. 
2021)

CD45RO+/CD45RA- (Sopp and Howard 2001, Endsley et al. 2007, Denis et al. 2011)

CD45RO- (Hagberg et al. 2008, Kandel et al. 2022)

CD8+ CD45RO+ (Sopp and Howard 2001, Denis et al. 2011, Elnaggar et al. 2021)

CD45RO+/CD45RA- (Denis et al. 2011)

CD45RO- (Bembridge et al. 1995, Hagberg et al. 2008, Kandel et al. 2022)

γδ CD45RO+ (Howard et al. 1992, Collins et al. 1996, Blumerman et al. 2007)

CD45RO- (Kandel et al. 2022)
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results (Howard et  al. 1991; Bembridge et  al. 1995; Sta-
bel et al. 2007; Hogg et al. 2009; Denis et al. 2011); while 
S. uberis specific memory CD8+ T cells were detected 
within the CD45RO+ (Denis et al. 2011), Theileria parva 
specific memory CD8+ T cells were also observed in the 
CD45RO- fraction (Howard et al. 1991, Bembridge et al. 
1995). Moreover, recent data suggest that the expres-
sion of CD45RO in the M. bovis specific γδ subtype is 
not associated with memory (Guerra-Maupome et  al. 
2019). Importantly, in support to these contradictory 
findings, we recently reported the presence of CD45RO- 
memory T cells in CD4+, CD8+, and γδ subtypes (Kan-
del et  al. 2022). In fact, we demonstrated that 20% of 
examined cattle (7 out of 28) do not express CD45RO 
on their T cells (designated as RO null); and, the absence 
of CD45RO does not affect their CD45RA expression 
(Kandel et al. 2022). Furthermore, IFNγ and IL4 produc-
ing memory T cells were induced in the RO null cattle, 
in a frequency similar to those in RO+, suggesting that 
induction of memory T cells in cattle might not necessar-
ily depend on CD45RO expression. In RO+ cattle, a frac-
tion of IFNγ and IL4 inducing memory T cells were found 
CD45RA+ with a relatively higher frequency in CD8+ 
(> 50%) than in the CD4+ subtype (< 20%), which was 
similarly noticed in RO null (Kandel et al. 2022). Further-
more, in each subtype, the proportion of total CD45RA+ 
T cells in RO+cattle was not significantly different from 
those in RO null (Kandel et al. 2022). These findings indi-
cate that, at least in the RO null cattle, the transition from 
CD45RA to CD45RO isoform was not detected, which 
contradicts the initial hypothesis. In γδ T cell  subtype, 
almost 90% of the cells were CD45RO+, but only 10% 
of them induced IFNγ (Kandel et al. 2022). Altogether, a 
weak association between CD45RA/RO expression and 
memory were detected in each subtype, suggesting that 
the relevance of CD45RO+/CD45RA- as memory T cell 
marker in cattle is still controversial (Table 2).

CD45RA/RO expression is strongly associated 
with distinct T cell subtypes in cattle
Our analysis further suggests that CD45RA/RO expres-
sion is associated with distinct bovine T cell subtypes. 
Within the total lymphocytes, most (∼90%) of the cells 
expressed either CD45RA or CD45RO, and the fre-
quency of CD45RA+ cells was significantly higher than 
that of CD45RO+ (Kandel et al. 2022). However, when T 
cells were analyzed, differential clustering of CD45RA/
RO expression were noticed in each subtype. While 
CD45RA expression was high in CD8+ (around 80%), 
CD45RO was dominantly expressed in CD4+ (about 60%) 
and γδ (about 90%) subtypes (Kandel et  al. 2022). Fur-
thermore, when CD45RA/RO expressions in IFNγ- and 

IL4-inducing memory T cell subtypes were examined, 
similar pattern of clustering were consistently detected. 
While the cytokine-producing cells within CD8+ T cells 
were mostly CD45RA+, those within the CD4+ and γδ 
subtypes were CD45RO+ (Kandel et  al. 2022). Interest-
ingly, our data is supported, at least partially, by some 
evidence reported in cattle (Bembridge et al. 1995, Sopp 
and Howard 2001, Guerra-Maupome et  al. 2019), and 
humans (Prince et  al. 1992; Zola et  al. 1992; Qin et  al. 
1993; Cossarizza et  al. 1996; Sathaliyawala et  al. 2013; 
Yang et al. 2014). Therefore, we believe that CD45RA/RO 
expression is strongly related to T cell subtypes in cattle.

Appropriate functions of CD45RA/RO isoforms are 
largely unknown
The specific functions of CD45RA and CD45RO isoforms 
are not well defined in mice and humans (Trowbridge 
and Thomas 1994, Penninger et  al. 2001, Hermiston 
et al. 2005), and have not been studied in cattle. Appar-
ently, results from the transgenic mouse models and 
transfected cell lines were hard to interpret due to sub-
optimal expression of these isoforms on their T cells. 
Although no conclusive results were obtained, experi-
ments indicated that a certain level of isoform expression 
is required for T cells to function optimally (Dawes et al. 
2006). With contradictory results, the appropriate func-
tion of CD45RA/RO in T cells is largely unknown (Mit-
tler et  al. 1991; Janeway Jr 1992; Leitenberg et  al. 1996; 
Dornan et al. 2002).

Conclusions
Detection of memory T cells is essential for examin-
ing the efficacy of bovine vaccines. Memory T cells in 
cattle are often detected as CD45RO+/CD45RA-, but 
some reports have questioned these markers. Recently, 
we found that CD45RA/RO expression is not associ-
ated with cytokine-producing memory T cells in cat-
tle, further questioning their reliability as markers for 
bovine memory T cells. In fact, CD45RA/RO expression 
is highly associated with distinct T cell subtypes. Future 
research should identify novel biomarkers for memory T 
cells in cattle and examine the functions of CD45RA and 
CD45RO proteins in bovine T cells.
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