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APilot randomized trial to examine effects of
a hybrid closed-loop insulin delivery system
on neurodevelopmental and cognitive out-
comes in adolescents with type 1 diabetes
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Type 1 diabetes (T1D) is associated with lower scores on tests of cognitive and
neuropsychological function and alterations in brain structure and function in
children. This proof-of-concept pilot study (ClinicalTrials.gov Identifier
NCT03428932) examined whether MRI-derived indices of brain development
and function and standardized IQ scores in adolescents with T1D could be
improved with better diabetes control using a hybrid closed-loop insulin
delivery system. Eligibility criteria for participation in the study included age
between 14 and 17 years and a diagnosis of T1D before 8 years of age. Ran-
domization to either a hybrid closed-loop or standard diabetes care groupwas
performed after pre-qualification, consent, enrollment, and collection of
medical background information. Of 46 participants assessed for eligibility, 44
met criteria and were randomized. Two randomized participants failed to
complete baseline assessments and were excluded from final analyses. Parti-
cipant data were collected across five academic medical centers in the United
States. Research staff scoring the cognitive assessments as well as those pro-
cessing imaging data were blinded to group status though participants and
their families were not. Forty-two adolescents, 21 per group, underwent cog-
nitive assessment and multi-modal brain imaging before and after the six
month study duration. HbA1c and sensor glucose downloads were obtained
quarterly. Primary outcomes included metrics of gray matter (total and
regional volumes, cortical surface area and thickness), white matter volume,
and fractional anisotropy. Estimated power to detect the predicted treatment
effectwas 0.83with two-tailed,α = 0.05. Adolescents in the hybrid closed-loop
group showed significantly greater improvement in several primary outcomes
indicative of neurotypical development during adolescence compared to the
standard care group including cortical surface area, regional gray volumes,
and fractional anisotropy. The two groups were not significantly different on
total gray and white matter volumes or cortical thickness. The hybrid closed
loop group also showed higher Perceptual Reasoning Index IQ scores and
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functional brain activity more indicative of neurotypical development relative
to the standard care group (both secondary outcomes). No adverse effects
associated with study participation were observed. These results suggest that
alterations to the developing brain in T1D might be preventable or reversible
with rigorous glucose control. Long term research in this area is needed.

Multiple studies have documented the potentially deleterious effects
of type 1 diabetes (T1D) on the humanbrain. The detrimental effects of
hypoglycemia are well known, especially in childrenwhose developing
brains are highly vulnerable to hypoglycemic insult1,2. Though near
normalization of glucose and HbA1c values in children are considered
the gold standard in clinical care, such goals have been very difficult to
achieve in practice. As a result, clinical care of pediatric patients with
T1D over the past two decades evolved to include tolerance of mild to
moderate hyperglycemia, particularly during sleep when detection
and treatment of early signs of hypoglycemia are often difficult3,4.

As clinical care of children with T1D increasingly emphasized
reducing episodes of acute hypoglycemia, questions arose about the
potential negative sequelae of long-term, mild-to-moderate hypergly-
cemia. The extant literature indicates that hyperglycemia in children
with T1D is associated with lower standardized IQ and neuropsycho-
logical test scores, problems with attention, executive and psychoso-
cial function, and long-term differences in brain structure and
function5–10. Moreover, we recently completed a longitudinal study of
144 children with T1D and 72 age- and sex-matched typically devel-
oping children without diabetes as a component of our Diabetes
Research in Children Network (DirecNet) investigation. Participants
were between the ages of 4 and 9 years when recruited and were
followed over four successive time points spanning 5–7 years. Lower
scores on standardized measures of cognitive function were observed
in the T1D group throughout the study accompanied by between-
group differences in both total and regional gray and white-matter
volumes, cortical thickness and area, microstructural properties of
white-matter tracts, structural and functional brain connectivity, and
functional brain activity11–17. Differences between childrenwithT1D and
the comparison groupwithout diabetes for some brainmeasures were
observed towiden over time18. In the T1D group persistent elevation of
blood sugars was observed, with 50% of sensor glucose greater than
the target (i.e., >180mg/dl) at all time points suggesting continuing
metabolic insult to the developing brain over time. Measures of
hyperglycemia were correlated with both cognitive and brain
variables18. Results from our longitudinal study indicate that detect-
able changes in brain structure and function and cognitive function
arise early and persist over time in children with early-onset diabetes.
These changes appear to be primarily associated with hyperglycemia.

We designed the current proof-of-concept pilot study with the
principal aim to investigate whether MRI metrics of gray and white-
matter development in adolescents with early-onset T1D can be
improved with rigorous diabetes control using currently available,
hybrid closed-loop insulin delivery diabetes technology. Forty-six
adolescents ranging in age from 14 to 17 years with T1D since before
age 8 years and on insulin therapy (either multiple daily injections
(MDI) or open-loop pumps) were recruited. Informed written con-
sent was obtained from the parents/guardians and the child’s assent
was obtained as per local guidelines. After a run-in phase to collect
baseline glucose sensor data, 44 participants whomet the eligibility
criteria were randomized to use either a hybrid closed-loop device
with 24-hour sensor-augmented therapy (CL group; Medtronic
MiniMed 670G® insulin pump) or standard care (SC group; either
MDI or open-loop pump). Participants not previously wearing a
continuous glucose monitor (CGM) wore a blinded Medtronic
iPro®2 Professional CGM device at baseline, 3 and 6 months for at

least 6 days or continued to use their home unblinded CGM (Dex-
com G5 or G6) over a 6-month period. Detailed patient instructions
on device use were provided by team personnel with expertise in
diabetes management and technology. Glucose and device use data
were collected by downloading the CGM at 0, 3, and 6 months in
both groups. All participants were administered the same standar-
dized cognitive assessment and multimodal brain imaging evalua-
tion utilized in our longitudinal study18. Full clinical, cognitive, and
imaging evaluations were obtained at baseline and 6 months with
repeatedmeasurement of glycemic status using downloaded sensor
data and HbA1c at baseline, 3 months, and 6 months. Of the 44
randomized participants, 42 completed the required baseline pro-
cedures and were assigned to either the SC or the CL condition.
These participants were included in the final analyses following the
intention-to-treat principle using mixed-effects modeling, and sta-
tistical procedures available in standard image analysis software.
Our primary hypothesis was that greater reduction of hyperglyce-
mia in the CL group, relative to the SC group, would result in greater
improvement in key brain metrics—total/regional gray and white
matter, cortical surface area and thickness, white-matter micro-
structure (fractional anisotropy)—indicative of neurotypical devel-
opment during adolescence19–23. The secondary hypothesis was that
the CL group would show higher scores on a standardized IQ
assessment and functional brain activity more indicative of neuro-
typical development relative to the SC group. Finally, we conducted
post hoc analyses to determine if improvements in key indices of
hyperglycemia, specifically, time in range (glucose between 70 and
180mg/dl) and % glucose >250mg/dl within the entire participant
cohort (i.e., regardless of group assignment) would be associated
with improvement in brain and cognitive metrics. Nighttime glu-
cose sensor measurements were emphasized in these analyses as
this is the period when glucose concentrations are most likely to
improve while using a hybrid closed-loop system.

Results
Recruitment and participant flow
Participant enrollment and follow-up took place from March 2018
through June 2020. A total of 46 participants were enrolled. Two
enrolled participants did not meet inclusion/exclusion criteria and
were screen failures before randomization. Two additional partici-
pants withdrew after randomization but before completing all
required baseline assessments or procedures. The remaining 42 par-
ticipants completed the study andwere included in all data analyses in
line with the intention-to-treat principle. There were no additional
participant losses. The study was ended once all 42 participants
completed their 6-month assessment.

Demographic/glycemic variables
Key glycemic data at baseline and 6 months are shown in Table 1.
Between-group changes in HbA1c% (and annualized HbA1c AUC%
over 6 months) were not statistically significant. However, partici-
pants in the CL group showed greater overall improvement in gly-
cemia over the 6-month period on both full-day and nighttime
sensor values, as well as less glucose variation than the SC group.
The percentage time in hypoglycemia (glucose <70mg/dl) was very
low for both groups.
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Though improvement in glucose sensor measures was most
apparent when considered on a group-wise basis, some participants in
the closed-loop group showed minimal change, likely related to par-
ticipants not using the device appropriately or consistently. One par-
ticipant in the CL group who showed minimal improvement in sensor
glucose values also had an episode of diabetic ketoacidosis during the
study; this was related to non-compliance with the use of the device.
There were no other episodes of ketoacidosis during the study. In
contrast, some participants in the SC group demonstrated improve-
ment in glucose sensor indices without using a closed-loop device.
Given our intent-to-treat analysis, all participants’ data were included
in their study group regardless of compliance.

Structural imaging—primary outcomes
Structural neuroanatomical trajectories are readily observable in
typically developing adolescents as reduced cortical gray matter
volume (total and regional), cortical surface area and thickness, and
increased white-matter volume19–23. As such, these were our primary
outcome variables. In this context, between-group analyses of
whole brain data derived from the FreeSurfer® software pipeline24

indicated that total cortical surface area trajectories were sig-
nificantly different with the CL group showing greater reduction
over time (d = 0.74, P = 0.018; Table 3 and Fig. 1). Between-group
difference in average cortical thickness over time also suggested a
greater reduction in the CL group (d = 0.58, moderate effect size).
The predicted between-group difference in total gray matter
reduction over time was also observed (CL > SC) though did not
reach significance despite a moderate effect size (d = 0.42, see
Table 3). Two subcortical regions were chosen for exploratory
analysis; the hippocampus because of its known sensitivity to
deleterious effects of dysglycemia25,26, and the caudate nucleus
because of its extensive connectivity with the frontal lobe27,28, a
cortical area where between-group anatomical differences were
consistently observed (see below). Only total caudate volume
showed significant between-group differences over time (d = 0.75,
P = 0.018); the CL group showed a reduction in caudate volume over
time, a trend typically observed in non-diabetic adolescents20,21,
whereas the SC group did not.

Follow-up vertex-based analyses in FreeSurfer were used to
ascertain the regions that were most associated with overall differ-
ences in cortical morphology change over time. Results indicated that
the CL group had significantly greater localized reductions in volume,
surface area and thickness over time relative to the SC group within
subregions of the frontal lobe (Fig. 2). Specifically, volume differences
were localized to the right dorsomedial prefrontal cortex (d = 1.23, 95%
CI: 68.47, 209.24, P <0.001), right ventromedial prefrontal cortex
(d = 1.21, 95% CI: 53.23, 167.06, P =0.003), left superior temporal and
insular cortex (d = 1.27, 95% CI: 61.34, 180.28, P = 0.002), left ven-
tromedial prefrontal cortex (d = 1.05, 95%CI: 62.40, 248.55, P = 0.002),
and the left dorsolateral prefrontal cortex (d = 1.37, 95% CI: 159.92,
426.08, P <0.001). Surface area differences were localized in the left
inferior frontal gyrus (d = 1.32, 95% CI: 5.81, 16.28, P = 0.001), and right
frontopolar cortex (d = 1.24, 95% CI: 15.43, 46.85, P =0.002). Thickness
differences were localized to the left dorsolateral and ventrolateral
prefrontal cortex (d = 1.59, 95% CI: 0.05, 0.11, P <0.001), and the right
dorsomedial prefrontal cortex (d = 1.43, 95% CI: 0.05, 0.12, P <0.001).

Regional, between-group differences in gray matter trajectories
were also interrogated with whole-brain, voxel-based morphometry
using SPM12 software (Wellcome Department of Imaging Neu-
roscience, University College London, London, UK, http://www.fil.ion.
ucl.ac.uk/spm). After accounting for overall gray matter volume and
age, these analyses showed significantly greater, age-appropriate
reductions in gray matter in the CL group over time, in a cluster that
encompassed the left frontal lobe and left superior temporal cortex
(d = 0.77, 95% CI: −0.019, −0.003, P =0.007; Fig. 3).Ta
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Diffusion-weighted imaging—primary outcome
Studies of typically developing adolescents consistently report
increasing white-matter fractional anisotropy over time (e.g., ref. 19).
Accordingly, we used the Traculamodule29 of FreeSurfer to determine
changes in whole-brainmicrostructural values of fractional anisotropy
(FA; primary outcome) over the 6-month duration of this study. Axial
diffusivity (AD), radial diffusivity (RD), andmean diffusivity (MD) were
also measured on an exploratory basis. After accounting for overall
brain volume and age, the resulting analyses showed that the CL group
had larger increases in average brain FA during the study period
compared to the SC group (d =0.68, P =0.030). Given the frontal lobe
focus of structural imaging findings, we examined FA changes in pro-
minent frontal white-matter tracts, including the anterior thalamic
radiation and superior longitudinal fasciculus (parietal branch). These
post hoc analyses utilized automated procedures available in Tracula
software for tract segmentation and age as covariates. Significant
between-group differences in average FA over time were observed for
both frontal tracts with the CL group demonstrating significantly lar-
ger increases over time (P’s < 0.025). Supplementary Table S1 shows
changes over time in all Tracula-defined white-matter tracts.

Functional magnetic resonance imaging (fMRI)—secondary
outcome
Analyses of brain activation with FSL (FMRIB Software Library, version
5.0.8) during a response inhibition (Go/No-Go) task revealed a sig-
nificant group by time interaction (average group difference over
6 months = 302.77 with 95% confidence interval of 193.63 to 411.91,
d = 1.76, P <0.001). This result appeared to be most influenced by a
greater reduction in activation in the CL group relative to the SC group
in regions subserving attention, inhibition, and executive function
(e.g., the dorsal anterior cingulate, inferior frontal gyrus and parietal
cortex; P < 0.05, TFCE FWE-corrected; Fig. 4). No significant differ-
ences in task performance were observed between the groups over
time, in either accuracy of responses (as indexed by the signal detec-
tion measure, d-prime: d = 0.64, 95% CI = −0.15, 0.98, P =0.054) or
reaction time to correct Go trials (d =0.08, 95% CI = −37.96,
30.37, P =0.815).

Cognitive function—secondary outcome
The CL group showed greater improvement over time in the WASI-II
Perceptual Reasoning Index (PRI) score compared to the SC group
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Fig. 1 | Group differences in brain structure over time. Trajectories for (a) average cortical thickness (mm), (b) total surface area (cm2), and (c) caudate volume (mm3)
are shown for Closed Loop (CL) and Standard Care (SC) groups.

Fig. 2 | Longitudinal differences in cortical gray matter between groups. Cor-
rected significance map showing cortical areas that exhibited a significant inter-
action of group by time in vertex-wise repeated measures ANOVAs that controlled
for age and total brain volume in analyses of volume (a) and surface area (b), and
that controlled for age in analyses of the thickness (c). Significance maps were

thresholded using a two-tailed alpha level of 0.05, corrected for multiple com-
parisons. Cool colors indicate greater reductions over time in the Closed Loop (CL)
group relative to the Standard Care (SC) group. The two left columns show the
lateral and medial surfaces of the left hemisphere, respectively. The two right
columns show the lateral andmedial surfaces of the right hemisphere, respectively.
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(Cohen’s d =0.82, P =0.009). Significant between-group differences
were not observed for change in the Verbal Comprehension Index
(VCI) or Full-Scale IQ (FSIQ) scores (Table 2).

As an exploratory/secondary analysis, demographic and baseline
glucose variables were examined as potentialmoderators of treatment
effect on cognitive trajectories. Using a median split, %baseline

glucose > 250mg/dl was observed to be a significant moderator of
treatment effects on VCI (P =0.008) and FSIQ (P =0.005) for this
interaction (Fig. 5). That is, participants in the CL group who started
with lower values, indicating better glucose control (≤25% of sensor
glucose >250mg/dl), showed greater change in scores over time
compared to the SC group (VCI: d = 0.69, P =0.026; FSIQ: d =0.97,
P =0.002), whereas those who started with higher %glucose >250mg/
dl (>25%) did not (Fig. 5b/c) (VCI: d = −0.47, P =0.134; FSIQ: d = −0.27,
P =0.384). Similarly, median split of baseline %TIR Nighttime was also
found to be a significant moderator of treatment effects on VCI
(P = 0.029). That is, participants in the CL group with higher %TIR at
nighttime (>37%) at baseline benefitedmore from the CL intervention,
whereas those who started with lower values (≤37%) did not (VCI:
d = −0.30, P =0.331). Treatment effects for VCI and FSIQ were not
detectable in the overall intent-to-treat analyses with the total sample
when the two heterogeneous effects are averaged (Fig. 5a). No sig-
nificant glycemic moderators were identified for PRI.

Association of change in glucose with change in cognitive
function and imaging metrics
Post hoc, exploratory analyses (without correction for multiple com-
parisons) were performed using the entire T1D sample (combining
both the CL and SC groups) to generate hypotheses for future studies.
Bivariate correlations were employed to determine if significant
associations existed between changes in glucose sensor values and
changes in cognitive or imaging metrics. These exploratory analyses
assessed the potential association between prespecified glycemic
variables of interest in this study (i.e., TIR, % glucose >250mg/dl), with
cognitive or brain variables showing significant between-group dif-
ferences in the topline analyses (i.e., PRI, SA). Increase in PRI over time
was significantly correlated with higher nighttime %TIR (r =0.42,
P =0.005; Fig. 6a) aswell as full day%TIR (r =0.35,P =0.020). Similarly,
gains in PRI were negatively correlated with change in % glucose
>250mg/dl nighttime (r = −0.40, P = 0.008) and full day
(r = −0.32, P = 0.040).

With respect to associations between glycemia and measures of
brain structure and function, change in % glucose >250mg/dl and

Fig. 3 | Longitudinal differences in whole-brain gray matter between groups.
Brainmaps resulting from voxel-basedmorphometry analysis showing the location
of significant between-group differences in regional gray matter trajectories.
Regional differences in brain volume between participants in the closed-loop (CL)
and standard care (SC) groups were analyzed using voxel-wise repeated measures
general linear model, covarying for average total gray matter (or white matter)

volume and age. Significancemaps were thresholded using a two-tailed alpha level
of 0.05, corrected for multiple comparisons. a 3D surface rendering of the cluster
(light gray) that exhibits between-group differences, corrected for multiple com-
parisons. b Voxel-wise P value map of gray matter growth differences within the
significant cluster. Cool colors indicate greater reductions over time in the Closed
Loop (CL) group relative to the Standard Care (SC) group.

Fig. 4 | Longitudinal differences in brain activation between groups. Results
from fMRI analyses showing a greater reduction in activation over time in the
Closed Loop (CL) relative to the Standard Care (SC) group. a Line chart showing
changes in regional activity over time by group based on mixed-effects modeling
conditional on age (Y axis is in arbitrary units or “AU”). The right panel (b, c) shows
brain areas that exhibited a significant interaction of group by time in voxel-wise
linearmixedeffects controlling for age. Significancemapswere thresholdedusing a
two-tailed alpha of 0.05, corrected for multiple comparisons. Cool colors indicate
reduced activation over time in the CL relative to the SC group. Group by time
differences were predominantly located in subregions of the executive function
network, including the right inferior frontal gyrus and right parietal cortex aswell as
the dorsal anterior cingulate cortex. Panel b displays a sagittal view of the brain;
panel c displays a coronal view.
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change in cortical surface area (SA) were significantly correlated such
that lower sensor values over time (i.e., better control) during both
nighttime (r =0.32, P =0.039) and full day (r = 0.31, P =0.048) were
associated with reduced SA (Fig. 6b). With regard to glucose variation,
reduced caudate volume over time was significantly correlated with
reduced nighttime glucose CV (r =0.36, P = 0.031). The correlation
between full-day glucose CV and reduced caudate volume showed a
similar effectbut didnot reach significance (r = 0.32,P =0.056). Similar
associations were observed between reduced SA and reduced glucose
CVover time (nighttime r = 0.30, P =0.073; full day r =0.34, P =0.039).

Vertex-based, whole brain Freesurfer analyses using the same
glucose sensor variables showed significant associations between
regional (primarily frontal) change in SA andboth%TIR (full day) and%
glucose >250mg/dl (full day and nighttime; see Supplemen-
tary Fig. S1).

Discussion
Research results fromtheDirecNet consortiumandother investigators
indicate that hyperglycemia has measurable, deleterious effects on
MRImetrics of brain development and standardized scores on tests of
cognitive and neuropsychological function in children and adoles-
cents with T1D5,6,18. At the same time, it is well-established that typical
puberty and adolescence is characterized by dynamic changes in brain
structure and function highlighted by demonstrable remodeling of
cortical and subcortical anatomy. Using multimodal brain imaging
techniques, these changes are observable in typically developing
adolescents as reduced cortical graymatter volume, subcortical tissue
volume, cortical surface area and thickness, and increasing white-
matter volume and fractional anisotropy19–23. Developmental altera-
tions to frontal–striatal networks during adolescence are particularly
pronounced and are thought to underlie cognitive changes during this
period30–32.

In this preliminary, proof-of-concept study of adolescents with
T1D, we found that participants who were randomized to wearing a
hybrid, closed-loop device over 6 months showed significant reduc-
tions in hyperglycemia and measures of glucose variation, relative to
adolescents randomized to standard diabetes care. These between-
group differences were accompanied by gains in standardized IQ
scores and multiple metrics of brain development and function
strongly indicating a tendency towards “normalization” in the CL
group relative to the SC group.

The observed increase in the Perceptual Reasoning Index (PRI)
over 6 months in the CL group (~6 points) is noteworthy. The WASI-II
PRI score reflects nonverbal abilities and visuomotor skills and, as
such, is a measure of a person’s ability to reason and think flexibly.
Cognitive test scores of this type are typically stable during childhood
and adolescence33,34 and thus a 6-point increment (Table 2) is likely
meaningful and outside the expected variation associated with mea-
surement error35. The VCI score, a measure of crystallized abilities
(stored knowledge and past experiences) and FSIQ did not change
differently between groups when analyzed with an intention-to-treat
approach. However, both significantly improved over time in a CL
subgroup defined by better glycemic control at baseline relative to a
SC subgroup who also demonstrated better baseline control (Fig. 1).
This finding suggests that adolescents with T1D who have better long-
term glycemic control may have a greater capacity to improve stan-
dardized IQ scores in response to interventions such as hybrid closed-
loop devices. This finding also emphasizes the potential importance of
rigorous glycemic control throughout a child’s lifetime.

Similar to higher standardized IQ scores, more robust decreases
in cortical and subcortical metrics (cortical SA, frontal and caudate
volumes) accompanied by increased white-matter FA in the CL group
are all indicators of brain development more congruent with non-
diabetic adolescent populations19–23. We also note that the
frontal–superior temporal cortical cluster identified in the VBMTa
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analysis here is spatially overlapping with a similar cluster observed in
a previous analysis of much younger children with T1D versus healthy
controls15. In this previous study, the frontal–superior temporal cluster
wasobserved to be significantly larger in the T1D group.Here, we show
that a frontal–superior temporal cluster shows a steeper reduction in
gray matter volume in the CL group in an older T1D cohort over a
6-month period, suggesting an anatomical trend towards that of non-
diabetic adolescents.

The reduction in activation that we observed in the closed-loop
group likely reflects a normalization of function in areas of the brain
subserving attention and response inhibition. In a previous sample of
93 childrenwith T1D and 57 controls scanned using theGo/No-Go task,
we found anomalous increases in activation in executive control
regions in the T1D group, despite equivalent accuracy and response
times11. This suggests compensatory increases in activation of execu-
tive control networks may counteract T1D-associated abnormalities in
the brain, to facilitate normative behavioral performance. The reduc-
tions in executive network function that we observed in the closed-
loop group, therefore, are striking in that they indicate tighter glucose
control is associated with a reduction in compensatory
hyperactivation.

Though the glycemic effects of the hybrid closed-loop device
used in this study were robust, they were not universal, and depended
largely on the%useof the device in automode (closed-loop). Similarly,
some participants in the SC group showed glycemic improvement,
even without closed-loop technology, that was better than their
group’s average sensor values. Thus, bymerging the two groups into a

single cohort wewere able to boost overall group size and attain larger
variation in glycemic variables for post hoc, exploratory analyses.
When considered across the entire cohort, reductions in hyperglyce-
mia were significantly correlated with higher standardized IQ scores
and decreased cortical SA over the 6-month time span of this study
regardless of group assignment. Improvement in glucose variability
across the entire cohort was also associated with brain changes,
including increased overall FA and reduced caudate volume as well as
regional reductions in SA, all congruent with expected brain devel-
opment in non-diabetic adolescents.

The results presented here underscore the importance of asses-
sing frontal cortical brain development in adolescents with T1D. While
overall indices of brain development such as SA and FA showed sig-
nificant between-group differences, analyses assessing regional chan-
ges over time (i.e., VBM, Tracula, FreeSurfer), as well as fMRI,
converged on the frontal lobe as a critical area for adverse effects of
chronicdysglycemia. Supporting the importance of the frontal cortical
results were findings that expected reductions in caudate nucleus
volumes were more prominent in the CL group and were correlated
with decreases in glucose variability across the entire cohort. The
caudate nucleus is a major component of the corpus striatum, and
frontal–striatal networks underlie the development of critical cogni-
tive functions that undergomaturation during adolescence and young
adulthood30–32. Given prior work from our group showing slower
growth of the hippocampus over 18 months is associated with
increased exposure to hyperglycemia and with greater glycemic
variability36 it is unclear why significant effects were not observed in
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this area. One possibility is that changes in this region are gradual.
Future studies that track children over a longer period of time would
be helpful in testing this hypothesis.

Limitations of this study include small group size, proof-of-
concept design, and lack of a non-diabetic healthy control group to
which changes with improved glucose control can be indexed in
adolescents with T1D.With respect to sample size, analyses focused on
two of our global endpoints (total gray matter volume and cortical
thickness) did not reach significancedespitemoderate between-group
effect size for both variables (Table 3).We also allowed different CGMs
to be used in the study, includingDexcom®G5 andG6users, and those
that did not have one were provided the iPro2 which used an Enlite®
sensor provided in kind by Medtronic. Although the mean average
relative difference in sensor readings was higher for the Enlite sensor
(13.6%) vs either Dexcom G5 or G6 (9%), the findings reported here we
believe are robust as each patient was tested pre and post 6 months
follow-up using the same system—so therewas no switching of sensors
through the study. One participant in the CL group who showed
minimal improvement in sensor glucose values had an episode of
diabetic ketoacidosis during the study. Sensitivity analyses performed
after excluding this participant resulted in identical findings with
respect to significant between-group differences with the exception
that an additional regional DTI FA change measure (superior long-
itudinal fasciculus-temporal branch) changed from non-significant
(d = 0.61, P = 0.05) to significant (d =0.70, P =0.016) for CL > SC.

Though 6 months of improved glycemic control might be regar-
ded as relatively short, there are many examples of human brain
imaging parameters changing within a 6-month period (or less) in
other clinical groups receiving a targeted intervention (e.g., refs.
37–40). Further, our study results do not shed light on mechanisms
underlying changes inMRImetrics of brain development and function
or standardized IQ scores in our CL group. In addition to improvement
in glycemic control, it is possible that effects on inflammation41 or
microvascular integrity42 could also contribute to these changes.” The
strengths of our study include the use of multimodal brain imaging
outcomes, the length of intervention (6 months), and the integration
of advanced technologies to improve diabetes control as a critical
methodological factor affecting brain development and function in
children.

In summary, in this pilot study, we observed that the use of a
hybrid closed-loop device resulted in improved glycemic control in
adolescents with long-standing T1D compared to standard care (MDI
and open-loop pumps). We also observed that improvement in %
glucose time in range and glucose variability in adolescents is asso-
ciated with quantifiable changes in PRI and SA, regardless of whether
conventional or hybrid closed-loop devices were utilized during the
six-month study period. The fact that significant changes can be
observed over a period of six months offers hope that insults to the
developing adolescent brain might be preventable or even reversible
with rigorous glucose control. Further research in this critical area is
needed to determine if further improvements can be attained as
closed-loop systems continue to evolve, andwhether interventionwith
these systems at an even younger age mitigates or even reverses the
deleterious effects of dysglycemia on young brains.

Methods
Study design and ethical approval
This was a pilot, multi-center, randomized, parallel-group study to
examine whether brain and cognitive indices in adolescents with T1D
could be improved with better diabetes control using a hybrid closed-
loop insulin delivery system (ClinicalTrials.gov identifier:
NCT03569631).

The study protocol, participant information, and consent form,
available safety information, participant recruitment procedures,
information about payments and compensation available to

participants, and documentation evidencing the investigators’ quali-
fications were submitted to the institutional review board at the Jaeb
Center for Health Research with reciprocity at the IRB of each of the
five participating clinical centers (Nemours Jacksonville, Stanford,
Iowa, Washington University St Louis and Yale). The study was per-
formed in accordance with ethical principles according to the
Declaration of Helsinki (Fortaleza, October 2013), seventh revision,
64th World Medical Association General Assembly Meeting and are
consistent with the International Conference on Harmonization/good
clinical practice, applicable regulatory requirements, and the sponsor
or its delegate’s policy on bioethics.

Participants
Enrollment took place from March 2018 through November 2018 at
the five study sites. Forty-six adolescents ranging in age from 14 to 17
years diagnosed with T1D prior to age 8 years were recruited after
obtaining informed written consent from the parents/guardians and
child’s assent. Participants had to be on stable insulin therapy (either
multiple daily injections (MDI) or open-loop pumps) and be willing to
stay on the same regimen throughout the 6 months of the study. All
participants had to be in puberty (at least Tanner stage 2 breasts in
girls, genitals in boys). Exclusionary criteria included the history of
prematurity (≤34 weeks gestation), birth weight below 2 kg, known
neurologic or psychiatric illness, and diagnosed cognitive/develop-
mental delay. Individuals with known attention deficit hyperactivity
disorder on stable medication who had participated in our previous
longitudinal research18 were allowed to join the study. Those with
concomitant hypothyroidismwere also permitted to participate if they
were on stable thyroid replacement and had normal thyroid function.
All participants had a full physical and pubertal exam at study entry
and at 3 and 6months subsequently. A hemoglobin A1c was measured
at the study site using a DCA 2000 instrument.

Randomization
The randomization step was performed after pre-qualification,
enrollment, and collection of medical background information to
ensure the participantmet inclusion criteria. All study participants had
their CGMcognitive andMRI data collectedprior to their baseline visit.
Of 46 recruited participants, 44 whomet all our eligibility criteria were
randomized. A randomization table was prepared using the Microsoft
Excel RAND function and entered into REDCap, a secure web appli-
cation for building and managing online surveys and databases43,44.
Following successful participant recruitment, selected staff at each site
opened an electronic case report form, clicked a “Randomize” button,
and then read the result. After the randomize button had been clicked,
no further changes were possible and the participant assigned to the
arm chosen by the randomize procedure. The only exception was
when a new participant was recruited to replace a post-randomized
dropout. In this case, the newparticipantwas assigned to the same arm
previously occupied by the dropout at a specific site. We used
straightforward randomization with the 50:50 assignment ratio with-
out using any stratification (e.g., by gender or age) because of the
limited sample size at each site (6–13 participants) and for the study
overall. Two participants withdrew shortly after randomization; 42
participants completed the study.

Closed-loop hybrid device and glucose sensing
A minimum 6-day run-in phase was conducted to collect baseline
sensor data. Afterward, participants were randomized to receive either
a closed-loop hybrid device with 24-h sensor-augmented therapy (CL
group; Medtronics 670G® insulin pump) or standard care (SC group;
either MDI or open-loop pump). Participants not previously wearing a
continuous glucose monitor (CGM) wore a blinded Medtronic iPro®2
Professional CGMdevice at baseline, 3 and6months for at least 6 days;
participants already using sensors continued to use their home
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unblinded CGM (Dexcom G5 or G6) over a 6-month period. Detailed
patient instructions on device use were provided by expert team
personnel at each center. Glucose and device use data were down-
loaded at 0, 3, and 6 months in both groups and analyzed at the Jaeb
Center for Health Research.

Cognitive assessment
Prior to cognitive testing blood glucosewas required to bebetween 70
and<200mg/dl andeither bolus insulinor oral glucoseadministered if
necessary to reach this target. Glucose levels measured before cogni-
tive testing were comparable between the two groups at both time
points (unpaired t test P’s > 0.15). All participants were administered
the Wechsler Abbreviated Scale of Intelligence second edition (WASI-
II35). The WASI-II is composed of four subtests: Block Design, Voca-
bulary, Matrix Reasoning, and Similarities. In addition to a full-scale IQ
(FSIQ) score, the four-subtest version of the WASI-II used in this study
produces a Verbal Comprehension Index (VCI) score resulting from
the Vocabulary and Similarities subtests and a Perceptual Reasoning
Index (PRI) score from the Block Design and Matrix Reasoning subt-
ests. The FSIQ, VCI, and PRI represent standardized scores with amean
of 100 and a standard deviation of 15.

Brain image acquisition, processing, and analyses
Unsedated brain MRIs were performed using previously described
desensitization protocols45. Prior to study testing blood glucose was
required to be between 70 and <200mg/dl and titrated as described
above. Glucose levels measured before imaging were comparable
between the two groups at both timepoints (unpaired t test P’s >0.50).
MRIs were performed on Siemens 3 T Tim Trio, or for one site, Prisma,
whole-body scanners using a standard 12-channel head coil and iden-
tical imaging protocols at each site. Multi-site reproducibility of ima-
ging data for this study is described in previous publications15,46 except
for the one site (WashingtonUniversity) that transitioned to the Prisma
platform for the current protocol. Pulse sequences selected for the
Prisma scannerwere designed and tested to bebackwardly compatible
to the Tim Trio. Sagittal T1 brain images were acquired using a
magnetization-prepared rapid gradient-echo (MP-RAGE) pulse
sequence: TR = 2300ms, TE = 2.98ms, TI = 900ms, flip angle = 9°,
slice thickness = 1mm, FOV = 25.6 cm× 25.6 cm, 160 slices, matrix =
256 × 256, voxel size = 1 × 1 × 1mm, duration = 4:54min. Axial
diffusion-weighted images were acquired using an echo planar ima-
ging (EPI) pulse sequence: 30 diffusion gradient directions (29 with
b = 1000 s/mm2, 1 with b = 0 s/mm2), TR= 8800ms, TE = 99ms, flip
angle = 90°, slice thickness = 2mm, FOV = 22 cm× 22 cm, 64 slices,
matrix = 110 × 110, voxel size 2 × 2 × 2mm, duration = 4:59min.
Axial–oblique functional images were acquired during a response
inhibition (Go/No-Go task) on the axis of the anterior and posterior
commissures using an EPI pulse sequence: TR = 2000ms, TE = 27ms,
flip angle = 80°, slice thickness = 4mm, gap=0.4mm, FOV = 22 cm×
22 cm, 33 slices, matrix = 74 × 74, voxel size 2.97 × 2.97 × 4.4mm,
nframes = 250.

The Go/No-Go task requires that participants respond as
quickly and accurately as possible, using a button press, to a high
number of “go” stimuli (e.g., when they see any letter except “X”),
and to suppress a prepotent response on a smaller subset of “no-go”
stimuli (e.g., when they see the letter “X”). Each letter trial was
presented for 250ms and was separated from the subsequent trial
with a jittered intertrial interval that ranged from 750ms to
8750ms, during which participants passively viewed a fixation
cross. Because the task was weighted towards go stimuli (N = 300
trials), a prepotent tendency to respond is created and increases the
inhibitory effort necessary to successfully withhold responding to
no-go stimuli (N = 75 trials). The task was divided into two separate
runs, each lasting 8.3 minutes. Accuracy of responses and response
times were recorded.Ta
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Anatomical imaging data were visually inspected for headmotion
artifacts and then manually aligned onto the axis of the anterior and
posterior commissures47. Voxel-based morphometry (VBM) was per-
formed based on established methods using Statistical Parametric
Mapping software (SPM12) in MATLAB48. Briefly, data were corrected
for magnetic field inhomogeneity and were subsequently segmented
into gray matter (GM), white matter (WM), and cerebrospinal fluid
volumes49. High-dimensional registration was then performed by
generating a cohort-specific template using the Diffeomorphic Ana-
tomical Registration Through Exponentiated Lie Algebra (DARTEL)
toolbox48. Finally, images were warped and modulated into Montreal
Neurological Institute (MNI) space, downsampled to 1.5 × 1.5 × 1.5mm
voxels, and spatially smoothed using a three-dimensional 6mm full-
width-at-half-maximum (FWHM) Gaussian smoothing kernel. Differ-
ence images representing brain growth over the 6-month study
interval were calculated for use in statistical analyses. Regional dif-
ferences in brain volume between participants in the closed-loop (CL)
and standard care (SC) groups were analyzed using voxel-wise two-
sample t tests based on a general linear model, covarying for average
total gray matter (or white matter) volume and average age. Using a
voxel-wise height threshold of P < 0.05 (uncorrected), we report sig-
nificant regional results at P < 0.05, corrected for family-wise-
error (FWE).

Cortical surface reconstruction and volumetric segmentation of
subcortical regions was performed using the recon-all pipeline in the
FreeSurfer image analysis suite, version 6.0 (http://surfer.nmr.mgh.
harvard.edu/). Visual inspection of segmentations and of the gray-
white and pial surfaces were conducted by a trained analyst who was
blinded to the participant group. Longitudinal processing of surface-
based cortical metrics was performed using an unbiased within-
participant template space and image50 that was created using robust,
inverse consistent registration51. A Gaussian smoothing kernel of
15mm was applied. Vertex-based statistical analyses of change in
cortical surface area, thickness and volume were conducted using
symmetrized percent change (defined as the rate with respect to the
average thickness) as the dependent variable. Group (CL, SC) was
entered as a factor. Age and total brain volume averaged across time
points were used as covariates of non-interest in analyses of volume
and surface area, and averaged age was used as a covariate of non-
interest in analyses of thickness. The interaction of group by time on
the cortical surface area, thickness and volume was identified in cor-
rected significance maps, thresholded using a two-tailed alpha level of
0.05. Correction for multiple comparisons was conducted using
Monte Carlo Null-Z simulation52.

Diffusion-weighted imaging data quality was assessed via DTIPrep
software53 to ensure a minimum of 27 usable diffusion gradient
directions per volume. Global probabilistic tractography was then
performed using TRActs Constrained by UnderLying Anatomy
(TRACULA)29 within the FreeSurfer 6.0 image analysis suite. Briefly,
diffusion volumes were corrected for eddy-current distortions and
were aligned to the T1-weighted structural images thatwerepreviously
segmented.White-matter fiber tract locations were then computed for
18 tracts by a maximum likelihood estimate using the ball-and-stick
model at each voxel54 combined with a priori knowledge of tract
locations based on prior distributions on the neighboring anatomical
structures. Standard diffusion measures, including fractional aniso-
tropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean dif-
fusivity (MD), were calculated based on the average value of voxels
with >20% of the maximum probability within the highest probability
1-D path for each tract. Summarymeasures for eight interhemispheric
tracts were calculated as volume-weighted combinations of left and
right tracts. Global measures were similarly calculated as a volume-
weighted combination of all tracts, excluding forceps major
and minor.

Preprocessing of functionalMRI (fMRI) data was conducted in FSL
(FMRIB Software Library), version 5.0.8, with FEAT (FMRI Expert Ana-
lysis Tool), using methods previously described11. Timepoint-specific
activation summarymaps for the no-go correctminus go correct (“no-
go >go”) contrast were computed separately for each participant and
carried to higher-level voxel-based analyses. The interaction of group
by time, controlling for average age was examined using the Sandwich
Estimator55. Corrected significancemaps of the interaction of group by
time on activation were computed using FSL’s randomize permutation
tool56; this approach uses a threshold-free cluster enhancement (TFCE)
procedure, and a correction for family-wise error (P <0.05) with
10,000 iterations.

Blinding
All research staff scoring the cognitive assessments as well as those
processing imaging data (before statistical analysis) were blinded to
group status until completion of the study. Because of differences in
appearance and instructional requirements of the closed-loop device
versus standard care, participants and their families were not blinded
to group status.

Outcomes
Our main hypothesis was that larger reduction of hyperglycemia in
the CL group, relative to the SC group, would result in greater
normalization towards typical adolescent development over time in
key brain metrics assessed at baseline and end of study (6 months).
These primary endpoints consisted of total cortical gray and white-
matter volumes, total cortical surface area, average cortical thick-
ness, average fractional anisotropy (FA, a measure of white-matter
microstructure) and regional gray matter metrics derived from
voxel-based (i.e., VBM) and vertex-based (FreeSurfer) analyses. The
secondary hypothesis was that relative to the SC group, the CL
group would show higher standardized IQ scores and functional
brain activity (measured with functional MRI) more indicative of
neurotypical development when measured at baseline and end of
study (6 months). Finally, we conducted post hoc analyses to
determine if improvements in key indices of hyperglycemia, spe-
cifically, time in range (glucose between 70 and 180mg/dl) and
percent glucose >250mg/dl within the entire participant cohort
(i.e., regardless of group assignment) would be associated with
improvement in brain and cognitive metrics. Nighttime glucose
sensor measurements were emphasized in these analyses as this is
the period when glucose concentrations are most likely to improve
while using a hybrid closed-loop system.

Statistical methods
The primary interest of this pilot study was to estimate the intention-
to-treat effect (CL vs. SC) on the change (slope) in outcomes from
baseline to 6 months. We employed longitudinal mixed-effects mod-
eling of repeatedly measured outcomes as our primary analysis strat-
egy. All participants who completed required baseline procedures and
data acquisition were randomized either to the SC or the CL condition
and included in the analyses following the intention-to-treat principle.
We assumed a linear trend for outcomes with two repeated measures
(baseline and 6months).We allowed a nonlinear trend using piecewise
modeling for outcomes with three repeatedmeasures (baseline, 3, and
6 months). For all outcomes, we used random intercept modeling,
allowing for individual variation at baseline. We used maximum like-
lihood estimation implemented in Mplus version 8.457. In line with the
intention-to-treat principle, we utilized all available cases as long as
they had at least one outcome measure under the assumption that
data aremissing at randomconditional onobserved information58. The
results of mixed-effects modeling of key outcomes are provided in
Tables 1, 2, and 3.
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Initial planned sample size (n = 50, 25 per group) was based on an
estimated effect size of d = 0.5 at post-treatment (6 months) as the
lower bound of a clinically meaningful outcome. Under this scenario,
using the proposed mixed-effects modeling and piecewise growth
parametrization, the estimated power to detect treatment effect
(intention to treat) is 0.83 (two-tailed, α =0.05) with anticipated 15%
participant attrition. Given the preliminary nature of the proposed
study, we did not adjust the significance level for multiple testing in
our power estimation. Due to funding and time limitations, we were
able to recruit only 46 participants, 44 of whomwere randomized and
42 of whom completed the study (two randomized participants failed
to complete all baseline requirements and thereforewere not included
in the analyses).

Analysis of sensor glucose was performed using SAS software,
including mean sensor glucose concentrations, CV, % time-in-range
(TIR) daytime and nighttime (10 PM–6 AM), % glucose >250mg/dl and
<70mg/dl.

For neurocognitive outcomes (PRI, VCI, FSIQ scores) andglycemic
controlmeasures (% TIR, % glucose >250mg/dl), we conductedmixed-
effects modeling without conditioning on any covariates. For total
gray and white-matter volumes based on Freesurfer, brain activation
measures based on fMRI, and DTI measures, the analyses were con-
ducted conditional on average age (averageof 3 and6months). For the
rest of Freesurfer measures (average cortical thickness, total surface
area, total caudate volume, total hippocampal volume), we conducted
mixed-effects modeling conditional on average age and total brain
volume.

We examined demographic and baseline glucose variables as
potential moderators of treatment effect on gains in standardized IQ
scores. For this investigation, we employed the MacArthur framework
for moderator analysis59,60 embedded in mixed-effects modeling, fol-
lowing the eligibility and analytical criteria for determining mod-
erators. For easier interpretation of moderator effects, we
dichotomized continuous moderators using median splits.

Variables included in the post hoc, exploratory correlation ana-
lyses were selected a priori and restricted to those that most dis-
tinguished the CL group from the SC group. This included two glucose
sensormeasures as predictors (%TIR, glucose > 250%, glucoseCV), PRI,
and specific measures of brain structure and white-matter micro-
anatomy with significant overall or regional between-group differ-
ences (thickness, surface area, FA, VBM cluster and caudate volumes,
and fMRI beta values). Bivariate correlations used delta values derived
from subtracting the baseline value from the 6-month value for mea-
sures performed at only two time points (e.g., 6-month PRI minus BL
PRI). Improvement in glucose sensor values for participants in the CL
principally occurred within the first 3 months of the study (see Sup-
plementary Fig. S2). This improvement remained consistent for the
remaining 3 months of the study for most CL participants. In contrast,
average sensor values for most participants in the SC group changed
minimally during the study period. To accommodate those few parti-
cipants in either group who diverged from this pattern (i.e., variation
between 3 and 6-month sensor values), delta values for sensor data
were calculated as the mean of the 3- and 6-month values minus
baseline in order to capture a participant-specific estimate of the
“average” change from baseline. When sensor measurements were
missing for either the 3- or 6-month values (one to two participants in
each group depending on themeasure), the remaining value was used
in calculating the delta. Finally, we utilized the built-in, vertex-based,
longitudinal statistical functions available in FreeSurfer to test if the key
sensor values noted abovemapped onto regional volume, thickness or
surface area.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The studyprotocol andde-identifiedparticipant rawor processeddata
that support the findings of this study are available for additional
analyses upon reasonable request from researchers based at academic
or scientific organizations to the corresponding author (A.L.R.) or
senior author (N.M.) for 2 years after the publication of this manu-
script. These data are not publicly available due to them containing
information that could compromise research participant privacy (e.g.,
MRI scans).
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