
California State University, San Bernardino California State University, San Bernardino

CSUSB ScholarWorks CSUSB ScholarWorks

Theses Digitization Project John M. Pfau Library

2013

The complexity of linear algebra The complexity of linear algebra

LeAnn Kay Christensen

Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project

 Part of the Algebra Commons

Recommended Citation Recommended Citation
Christensen, LeAnn Kay, "The complexity of linear algebra" (2013). Theses Digitization Project. 4214.
https://scholarworks.lib.csusb.edu/etd-project/4214

This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has
been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks.
For more information, please contact scholarworks@csusb.edu.

https://scholarworks.lib.csusb.edu/
https://scholarworks.lib.csusb.edu/etd-project
https://scholarworks.lib.csusb.edu/library
https://scholarworks.lib.csusb.edu/etd-project?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4214&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.lib.csusb.edu/etd-project/4214?utm_source=scholarworks.lib.csusb.edu%2Fetd-project%2F4214&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@csusb.edu

The Complexity of Linear Algebra

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

In Partial Fulfillment

of the Requirements for the Degree

Master of Arts

in

Mathematics

by

LeeAnn Kay Christensen

June 2013

The Complexity of Linear Algebra

A Thesis

Presented to the

Faculty of

California State University,

San Bernardino

by

LeeAnn Kay Christensen

June 2013

Approved by:

Chris Freiling, Committee Chair Date

Committee Member

g, Comnii e Member

Peter Williams, Chair,
Department of Mathematics Graduate Coordinator,

Department of Mathematics

iii

Abstract

This paper examines the complexity of linear algebra. Complexity means how
much work, or the number of calculations or time it takes, to perform a task. The
hypothesis is that tasks performed using linear algebra are not more complicated than a
factor of the work of matrix multiplication. If the amount of work could be reduced to
multiply matrices, than other tasks could also become more efficient.

The paper first looks at reducing the amount of work it takes to perform matrix
multiplication by studying Strassen’s and Laderman’s algorithms. Strassen’s algorithm
reduces the amount of work it takes to multiply 2x2 matrices. This idea is expanded
to include multiplying any square matrices that have rows/columns as a power of two.
Included are examples. Then we show how much work it takes to use Strassen’s idea in a
recursive formula. We also look at Laderman’s algorithm and the work he did to reduce
the amount of work it takes to multiply 3x3 matrices. We demonstrate his algorithm
with an example. Finally, we compare the work of multiplying matrices by traditional
methods and by Strassen’s and Laderman’s algorithms using examples and a table.

Next we study the amount of work it takes to perform basic linear algebra
tasks that include inverses, solving a system of equations, and determinants. The paper
researches sources proposing that these operations are no more complex than matrix
multiplication.

We then focus on specific operations used in linear algebra-finding an inverse,
solving a system of equations, and finding determinants. We look at each of these and
how the work is not more than a factor of the work involved in multiplying matrices of
the same size. We look at finding the inverse of a triangular matrix. And develop a
formula that shows that the work of finding the inverse of an n x n matrix is less than a
constant factor of multiplying two n x n matrices.

Further, we demonstrate how to take a square matrix and turn it into the
product of a lower triangular, upper triangular, and permutation matrix. This is called
LUP decomposition. Now any square, invertible matrix may be turned into the product of
lower triangular, upper triangular and permutation matrices, and we can find the inverse.
We show the LUP decomposition algorithm, using an explanation and an example. We
look at the work needed to find the LUP decomposition of a square n x n matrix.
The work is shown to be less than a constant factor of the work to multiply two n x n
matrices. This is important because the work of solving a system of equations and finding

iv

a determinant is based on using LUP decomposition.
Finally, we look at solving systems of equations using LUP decomposition. By

example we show that this method involves matrix multiplication and that the work
of solving them with it is not greater than a factor of the work needed to multiply
matrices. We also show that finding a determinant can be done by performing the LUP
decomposition. Therefore, the amount of work for finding a determinant is roughly the
same as for finding an LUP decomposition.

This study shows that the linear operations of finding an inverse, solving a
system of equations and finding a determinant are not more complex than a constant
factor of multiplying two matrices of the original size. It shows ways to reduce the
amount of work that it takes to multiply matrices. An even faster method, proposed by
Coppersmith, not examined in this paper, merits a study similar to this one. Studying
the reduction of the work involved in matrix multiplication continues.

Acknowledgements

I would like to thank Dr. Chris Freiling for all his help, support, patience and
encouragement during the development of this paper. I would also like to thank Dr. Gary
Griffing and Dr. Laura Wallace for their helpful comments and friendly assistance. It has
been a privilege to work with people dedicated to furthering education in mathematics.

I would like to thank William for his help with the diagrams. And I would also
like to thank Pennie and Ryan for their assistance. I am grateful to my family for their
encouragement and support.

vi

Table of Contents

Abstract 111

Acknowledgements v

1 Introduction 1

2 Strassen’s Algorithm 3
2.1 Presentation of Strassen’s Algorithm... 3
2.2 Verification of Strassen’s Algorithm.. 6
2.3 Expanding Strassen’s Algorithm ... 8
2.4 Work Needed to Complete Strassen’s Algorithm.. 13

3 Laderman’s Algorithm 16
3.1 Presentation of Laderman’s Algorithm,.. 16
3.2 Verification of Laderman’s Algorithm ... 18
3.3 Comparing Algorithms...................... 22

3.3.1 Traditional Method ... 22
3.3.2 Strassen’s Algorithm... 23
3.3.3 Laderman’s Algorithm.. 26

3.4 Work Needed to Complete Laderman’s Algorithm..................................... 29
3.5 So Which Algorithm Is Better?.. 30

4 Inversion of Matrices 32
4.1 Finding an Inverse by Matrix Multiplication.. 32
4.2 Another Representation of Finding an Inverse by Matrix Multiplication . 42
4.3 An Example of Finding an Inverse.. 43
4.4 Work Needed to Find an Inverse... 45

5 LUP Decomposition 50
5.1 Presentation of Algorithm for LUP Decomposition.................................. 50
5.2 An Example of LUP Decomposition... 56
5.3 Work Needed to Complete LUP Decomposition.. 70

vii

6 Solving Equations 74
6.1 Using LUP to Solve ... 74
6.2 An Example of Using LUP to Solve an Equation..................................... 75

7 Determinants 78

8 Conclusion 80

Bibliography 82

1

Chapter 1

Introduction

In our ever changing world, technology has become a major factor in our daily
lives. It seems that there is a constant search to have electronic devices perform faster
and more conveniently. The idea of making things operate faster has been pursued in
the study of linear algebra as well. If the mathematics of linear algebra could be more
efficient, then computers could run faster when performing linear algebra calculations.

As linear algebra is used more and more in different fields, it becomes useful to
study ways of reducing the amount of work required to complete basic procedures. This
paper looks at the complexity of procedures in linear algebra. Here, “complexity” suggests
the amount of work needed to complete a task. The term “work” refers to the number
of calculations that are needed to perform the procedure. If the number of calculations
can be reduced, then the amount of work and time required to perform the procedure
is also reduced. The procedures of linear algebra studied here include finding inverses,
solving systems of equations, and finding determinants. It has been proposed that these
procedures can be performed through matrix multiplication and that the procedures are
no more complex than matrix multiplication. Therefore, reducing the amount of work
necessary to perform matrix multiplication would reduce the work needed to perform
these basic procedures.

The reduction of work needed for matrix multiplication is presented. If opera
tions are to be performed using matrix multiplication and the amount of work needed to
perform that multiplication is reduced, then the amount of work needed to perform lin
ear algebra procedures is also reduced. In 1969, Volker Strassen was the first to present

2

an algorithm that reduced the amount of work necessary to multiply matrices [Wei99].
Strassen proposed an algorithm that reduces the number of calculations needed to per
form the multiplication of two 2x2 matrices. Similarly, in 1975, Julian D. Laderman
found an algorithm that reduces the number of calculations needed to multiply two 3 x
3 matrices [Lad79]. Their algorithms are presented with examples. Also, the procedure
of finding inverses through matrix multiplication is presented.

To study other procedures of linear algebra requires working with matrices in a
specific form. It is possible to rewrite a matrix as the product of simpler matrices, namely
lower triangular (L), upper triangular (U), and permutation (P) matrices. This process of
factoring is called LUP decomposition. Any nonsingular, square matrix may be factored
by following the LUP decomposition algorithm. Then the matrix may be expressed in
terms of three matrices that will be easier to work with separately. The procedure for
finding an LUP decomposition is presented along with examples. An examination of this
procedure is necessary before we can study the use of matrix multiplication for solving
a system of linear equations and finding determinants. Finally, solving systems of linear
equations and finding determinants by matrix multiplication are shown.

3

Chapter 2

Strassen’s Algorithm

2.1 Presentation of Strassen’s Algorithm

Remark 1. Many of the equations typed will contain matrices with emphasis on the row
and column number for the entry. For notation, we will use a subscript with the first
digit designating the row number and the second digit representing the column number.
For example <223 would represent the entry of the matrix in row 2, column 3. While this
may not be the ideal notation for many cases where there is discussion of matrix entries,
there should not be confusion here because all matrices that may have a row or column
number larger than a single digit are represented by a single-letter variable. There are
several lengthy equations where this notation allows brevity in typing and ease in reading.

To study Strassen’s Algorithm, consider the traditional methods of matrix multi
plication. Matrix multiplication is not commutative. Not all matrices may be multiplied.
The ability to multiply matrices depends on their size. The number of columns in the
first matrix must be the same as the number of rows in the second matrix. Each entry
in the product is found by aligning the elements of the row in the first matrix with the
entries of the column in the second matrix. These terms are multiplied and then the
entry in the product matrix is found by adding those products. The resulting matrix will
have the same number of rows as the first matrix and the same number of colums as the
second matrix. Therefore, the difficulty in finding the product’s entries is based on the
number of columns in the first matrix. If the first matrix has many columns, there will
be many multiplication steps for each entry in the product matrix.

4

For example, consider the product of an m x n matrix times an n x p matrix

an \O-ln
£>11 • • - b\j ... blp \

an

\ Ll •■• bnj ••• bnp j

y aml

Cll C1J Clp

Cjl cv cip

/

y Qml /• • • C-mp

The entry in the ith row and jth column of the product matrix is

Cij — anbij + ... ± Qikbkj 4- • • • ± atnbnj.

There are n number of multiplications to find each entry of the product matrix. There
are n — 1 number of additions to find each entry. There are mp number of entries in the
product matrix, each requiring n, multiplications and n — 1 additions. Thus, to find the
product matrix requires mpn multiplications and mp(n — 1) addition steps.

Strassen considered the possiblility of reducing the amount of work necessary to
multiply matrices. Strassen’s Algorithm is presented in the article, “Geometry and the
Complexity of Matrix Multiplication” by J. M. Landsberg [Lan08]. It is also presented
in the book “The Design and Analysis of Computer Algorithms” by Aho, Hopcroft, and
Ullman [AHU74]. There are differences in the way the two algorithms are shown and not
all equations are written the same. Here Landsberg’s equations are used for discussion of
Strassen’s Algorithm.

To study Strassen’s Algorithm, consider traditional matrix multiplication meth
ods for mutliplying two 2x2 matrices. That is,

«21 «22
£>h £>12
£>21 £>22

ail&ll + ^12621 G11&12 + &12&22
&21 £>11 + &22&21 <^21 £>12 + ^22^22

5

The above product matrix contains 8 multiplication steps and 4 addition steps. Strassen’s
goal was to find a method that would reduce the number of multiplication steps when
multiplying matrices. His algorithm for multiplying two 2x2 matrices uses only seven
multiplications. While this reduction may not seem significant for a small matrix, the
amount of work would be greatly reduced for much larger matrices.

The following is a presentation of Strassen’s Algorithm [Lan08].

Algorithm 1. Suppose,

The following muliplications are made using the entries of the two matrices being
multiplied.

I = (an + a22) ■ (bn + b22)

II = (a2i + ^22) • &11
III = an (bi2 — b22)

IV = a22 (—bn + b2i)

V = (an 4- ai2) b22

VI = (—an 4- a2i) (bn + bi2)

VII = (ai2 - a22) (b2i + b22)

The entries of matrix C can now be found by using the above multiplications in
the following equations:

Cll = I + IV-V + VII,

C12 = III4-V,

C21 = II + IV,

c22 = I + III-11 +VI.

Consider each entry in the two matrices to have real number values, then the
alogrithm uses 7 multiplication and 18 addition steps.

6

An example of using Strassen’s Algorithm follows.

Using Strassen’s method gives the following information:

I =
II =

(2 + 4) (—1 + 1)
(3 + 4) - 1

0,
-7,

III = 2 (-2- 1) = -6,
IV = 4(-(-l) + 3) — 16,
V = (2+ -1)1 = 1,

VI = (- (2) + 3) (-1 + -2) = -3,
VII = (-1-4) (3+1) = -20,
cn = 0 +16 -1 + (-20) = -5,
C21 = -7 + 16 = 9,
C12 = -6 + 1 = -5,
C22 = 0 + (—6) — (-7) + (—3) -2.

The algorithm yields

2.2 Verification of Strassen’s Algorithm

The following is a verification of Strassen’s Algorithm by comparing the output
of traditional matrix multiplication with the output from the algorithm. Let

As mentioned earlier, traditional methods yield

7

aii&n + ai2&2i
O21&11 + O22&21

G11&12 + 012^22
^21^12 + G22&22

Now, evaluate each entry in the product. In the simplification for the following equations,
underbraces show which terms cancel. The matching numbers underneath the braces
indicate that those two terms add to zero and are no longer necessary to the equation.
For the first entry, we know cn = an&n + 012621- The algorithm produces

= (an + ^22) (611 + 622) + «22 (“»&11 + &21) ” (all + O12) &22 + (012 “ 022) (^21 + 622)
cu = I + IV-V + VII

The next two entries are not as lengthy to verify. From traditional multiplication
methods, C12 = 011612 + 012622 and c2i = 021611 + 022621-

C12 = III + V

C12 = an (512 ~ ^22) + (ail + 012) &22

C12 = 011512 — 011522 + 011522 + 012522

C12 = 011512 + 012622

Similarily

C21 = II + IV
C21 = (021 + 022) 5n + 022 (“5n + 621)

C21 = O2i5ii + 022611 — 022611 + 022621

C21 = 021611 + 022621.

Finally, the last entry in the matrix simplifies as

8

C22 = I + III-II + VI

C22

C22

(an + 022) (&11 + 622) + (&12 — 622) — (<121 + a22) 2>ir + (—an + «2i) (&11 + 612)
Ql1611 + 011622, + 0-22^11^ +Q22^22 + O11&1I2 ~ O11&22 ~~ 021611 “

1 2 3 4 2 5
— 022611 ~ 011611 — 011612 + O2ibii +a2i 612

3 14 5
021512 + 022622-

Therefore, using Strassen’s Algorithm finds the entries of the product matrix to
be the same as if they were found by traditional matrix multiplication methods.

2.3 Expanding Strassen’s Algorithm

The intent of the algorithm is to reduce the amount of work necessary to multiply
matrices. Consider in more detail the amount of work it takes to multiply two 2x2
matrices using Strassen’s Algorithm compared to the traditional method of multiplying
matrices. In Strassen’s Algorithm, it takes 7 multiplications and 18 additions for a total
of 25 arithmetic operations. Using traditional methods, we have 8 multiplications and 4
additions for a total of 12 arithmetic operations.

Now, consider if the matrices being multiplied were larger. Expand Strassen’s
method to a product of two 4x4 matrices. Each 4x4 matrix is divided into four 2 x
2 matrices. The expectation is that the amount of work will be significantly reduced by
using Strassen’s Algorithm more than once. Consider

dll di2 013 a14 611 512 613 614
021 »22 023 «24 621 622 623 624
031 032 033 O34 631 632 633 634

\ 041 (I42 043 044 y 641 642 643 644 y

Let

(121 a22 023 <124

9

The multiplication becomes

Strassen’s method reduces the operation to the following seven 2x2 multipli
cations:

I = (An + A22) • (#11 + B22) ,
II = (A21 4- A22) • #11,

III = An (#i2 - #22),

IV = A22 (—#11 + #21),

V = (An 4- Ai2) #22,

VI = (—Au 4- A2i) (#n 4- #12),
VII = (Ai2 — A22) (#21 4- #22) •

Each 2x2 multiplication takes seven multiplications and 18 additions. Therefore a 4 x
4 matrix multiplication is reduced to 49 multiplications and 198 additions instead of 64
multiplications and 48 additions as with traditional methods. This may not seem like a
reduction of work because the overall number of operations went from 12 to 25. However,
the number of multiplications was reduced. Think of multiplication of whole numbers as
just an advanced form of addition and addition as just an advanced form of counting.
Say you want to add 56 4- 82. An electronic device counts to 56 and then counts 82 more.
But if you want to multiply (56) (82), then the device must count 56 a total of 82 times.
The counting cycle is increased from two cycles to 82 cycles. Therefore, the amount of
work involved for multiplication can be much more significant as the numbers increase.

10

The following is an example of multiplication with two 4x4 matrices having
entries from the set of real numbers. Consider

/ 1 2 0 1

-1 3 1 4
2 2 0 1
3 2 1 1 /

/ 3 2 1 1 \
1 0 -2 -1
2 1 2 0

\ 3 2 2 3 /
Then

Now Strassen’s Algorithm is applied to multiply the two 2x2 matrices. Using
lower case Roman numerals for Strassen’s Algorithm, the following values are found.

i = 40, ii — 20, iii = —1, iv = —8, v = 12, vi = —7, vii = —6.

Thus

The other matrices are found for II, III, TV, V, VI, and VII:

i = 15, ii = 21, iii = 4, iv = —6, v = 0, vi = 10, vii = 0;

11

III

III

2 0

2 3

vi = 0, vii = 8;

12

i = 27, ii = 12, iii = 0, iv = 3, v = 0, vi = 0, vii = —30;

vn= f 0 '0)

y 15 15 J
After calculating the necessary multiplcations, the following additions are needed to finish
the algorithm:

Cn I + IV-V + VII
/u

12
8 9 \ 0 0

14 21 / I 15 15+ L

13

Cai
2
1

C2.2 I + III-II + VI

The resulting product is found by placing each 2x2 matrix in the appropriate
location of the product matrix.

/ 1 2 0 1
-1 3 1 4

2 2 0 1
\ 3 2 1 1

3 2 1 1 (8 4 -1 2 \

1 0 -2 -1 14 7 3 8
2 1 2 0 11 6 0 3

\ 3 2 2 3 J 16 9 3 4 /

The product is complete for this example of multiplying two 4x4 matrices.

2.4 Work Needed to Complete Strassen’s Algorithm

Now look at the amount of work for finding the product of two n x n matrices
such that n = 2k using Strassen’s Algorithm compared to traditional methods. As the
matrices get larger, there should be a greater reduction in work by using the algorithm.

14

Let T(n) represent the number of operations needed to complete the multiplication of
two n x n matrices.

Consider the following square matrix where n represents the number of rows
and columns and n = 2k with k a natural number:

ail ain

y ani ... ann j

Partitioning the matrix into four § x submatrices, we get

nil •• Olf ain

a«i2 1
a,nn

2 2 “1(2+1) •• ajn
. . (If n r 1 \ n

k 2 2 a(?+i)(3+i) ' • a(t+l)n

ani n2 an(B+l) ann

Now consider multiplying this matrix by a similar n x n matrix that has been
partitioned in the same manner. Looking at each submatrix as an entry, there are two 2
x 2 matrices being multiplied. To accomplish this requires seven multiplication steps and
18 addition steps. Each multiplication will require the amount of work needed to multiply
two § x J matrices. This work can be represented as 7T (J). An addition step involves
adding two § x matrices meaning entry additions. Since there are 18 addition
steps when applying the algorithm, there are a total of 18 (J)2 individual addition steps.
Note that some of the work represented by 7T includes addition steps also. The
total number of operations for multiplying the two n x n matrices is represented by the
following formula

T(n)=7Tg+i8g2.

Looking at the traditional method of multiplying matrices, the amount of work
needed would be n multiplications and (n — 1) additions for each entry. There would be
n2 entries. The total amount of work, T(n), for multiplying two n x n matrices is

T(n) = n3 + n2 (n — 1).

15

Table 2.1: Comparative Work for Multiplying Matrices
Traditional Method Strassen’s Algorithm

k 2kx2k mult add mult add steps
1 2x2 8 4 7 18
2 4x4 64 48 49 198
3 8x8 512 448 343 1674
4 16x16 4096 3840 2401 12,870

k 2^x2^ 23fc _ gfc 23fc_ 2^fc 7k 7T (2fc 1) + 18 (22fe~2) — 7^

Table 2.1 compares the amount of work for matrix multiplication using tradi
tional methods with the amount of work using Strassen’s Algorithm.

Looking at the chart and the number of calculations needed for the two methods,
it shows that while the number of multiplication steps decreases, the number of addition
steps greatly increases. This may not seem like a reduction in work. However, when
using large amounts of data in linear systems of higher dimensions, the reduction of
multiplication steps may be of significant benefit over the increase of addition steps.

Strassen’s Algorithm can be used to multiply 2fc x 2k matrices using 7fc multi
plications. Since not all matrices are of order 2k x 2fc, additional rows and/or columns
of zeros may be inserted such that dimensions are n x n where n = 2fc. This means
k = log2 n. Therefore, any two nxn matrices may be multiplied using 7^log2 multipli
cations. Through principles of logarithms, we see that 7log2n = nlog27 and log27 « 2.81.
Thus, nlog27 < n3.

16

Chapter 3

Laderman’s Algorithm

3.1 Presentation of Laderman’s Algorithm

Laderman looked at finding an algorithm for multiplying 3x3 matrices that
would be more efficient than traditional methods. Using the findings from Section 2.4,
multiplying two 3x3 matrices would require at most 7log23 « 21.8 multiplications. To
improve on Strassen’s algorithm, he would need to find one that required 21 or fewer
multiplications. Gastinel found an algorithm requiring 25 multiplications and Hopcraft
and Kerr found one requiring 24 multiplications. However, Laderman was able to find
one using 23 multiplications. His algorithm is presented as follows [Lad76].

Algorithm 2. Consider the product

an a12 ai3 \ (bn 612 613 \ Cn 012 C13

021 022 a23 621 622 623 = C21 C22 C23
a3i 032 &33 / 631 632 633 / \ C31 C32 033 7

Let mn denote the different multiplication steps specified by the following equa
tions

7711 = (an + a 12 + 013 “ a21 — «22 “ a32 — «33) , '^22

W = (an — a2i) • (-612 + 622),

+3 = a22 (“611 + 612 + 621 — 622 — 623 “ 631 + 633) ,

17

= (-an + o2i + 022) • (611 — &12 + ^22) 5

015 = (°2i + <222) ■ (—&11 + 612) j

me = anbn,
7717 = (-an + 031 + a32) • (bn — bi3 + 623),

Ttts = (“«U + 031) • (&13 - ^23) ,

Olg = (031 + 032) • (—&11 + &13) j

Olio = (on + 012 + 013 — O22 - O23 “ O31 — 032) * b2$,

mu = 032 (~6n + 613 + 62i - b22 — b23 - 631 + 632),
0112 = (—an + <232 + 033) • (b22 + 631 — 632),

0113 = (013 — 033) • (b22 - 632),
77114 = 013631,
OI15 = (a32 + 033) • (—631 + 632) ,

oiie = (—ai3 + 022 + 023) • (b23 + 631 — 633),

77117 = (ai3 — 023) ’ (623 — 633) ,

oiis = (a22 + 023) • (-631 + 633),

7019 = ai2b2i,

0120 — O23632,
0121 = 021613,

0122 = 031612, and

0123 = 033633.

After the above calculations, the entries of the desired matrix can be found with
the following additions:

Cll =016 + 7014+7019,

012 = 701 + 704 + 705 + 706 + 0112 + 0114 + 7015,

013 = 016 + OI7 + mg + 7010 + 0114 + 0116 + 0118,

021 = 012 + 013 + 704 + 706 + OI14 + 0116 + 011 7,

18

c22 ~ W + m4 + ms + m6 4- m2o?

C23 = 77214 + W6 + m17 + W8 + 77l2i,

C31 = W6 + W 4- w + 77111 + 77712 4- 77213 + 77114,

C32 = 77112 4- 77113 + 77714 + 77715 + 7772 2 5 and

C33 = 7726 4- 7777 4- 7T7S 4“ TTlg 4- 77723 •

This algorithm contains 23 multiplication steps and 98 addition steps and is
specific to multiplying two 3x3 matrices.

3.2 Verification of Laderman’s Algorithm

Laderman’s Algorithm is shown to be correct by comparing the results of tra
ditional matrix multiplication with those of Ladermans. Let

/ oil

«21
\ U31

012
022
O32

013
O23
033 /

/ £>n £>i2 bi3

£>21 £>22 t>23
\ £>31 £>32 £>33 /

Cll

C21
\ C3i

C12 C13 1
C22 C23
C32 C33 /

Each entry of the matrix is shown using Laderman’s Algorithm. After simplifi
cation, with underbraces designating terms that canel, we see that each entry is the same
as using traditional multiplication methods.

Cll = 7726 + 77714 + 77219

= anbii 4- U13&31 + oi2i>2i;

C12 = 7721 4- 7724 4- 7775 4- 7726 4- 77112 4- 77214 + 77215
“ (oil 4" Oi2 4" O13 — 021 — O22 — 032 — O33) £>22 +

(—On + 021 + O22) (£>11 — £>12 + £>22) +

(021 4- O22) (“i’ll + £>12) + O11&H 4-

(—013 + a32 + 033) (b22 + £>31 — 632) 4"

O13&31 + (032 + O33) (-£>31 + b32)

19

= 011622, +012622 + O13622 ~ 021622 “ O22622 — O32622 — O33622 —
1 2 3 4 5 6

— 011611+011612 — o 11+22, + 021511 — 021612 + 021622+ 022611 —
7 1 8 9 3 10

— 022612 + 022622 — 021611 + 021612 — 022611 + 022612 + 011+11 ~
11 4 8 9 10 11 7

— O13622 “ 013531, +O13632 + 032622 + 032631 — 032632 + O33622 +
2 12 5 13 14 6

+ 033631, ~~ 033632, + O13631 — 032631^ + O32632 — 033631 +O33632
15 16 12 13 14 15 16

= O12622 + O11&12 + O13632,

^13 = me + m7 4- m9 + mio + mi4 + mie + mis
= oii^ii 4- (—on + 031 + 032) (5ii — 613 + 623) +
+ (031 + 032) (—611 4- 613) +

+ (on 4* 012 + 013 ~ 022 — 023 — O31 — (132) 623 4- 013631 +

+ (—013 + 022 + 023) (623 + 631 — 633) + (022 + 023) (—631 4- 633)

= 011611-01161^+011513 — 031623 + 03161^— 031513 + 03162^ +
1 1 2 3 4 5

+ 032611, — 032613^ + 032623, — 031511 + 031513 — 032611, + O32613 +
6 7 8 3 4 6 7

+ OI1623 +O12623 + 013623,_ O22623 — O23623 — 031^23, — O32623, +
2 9 10 11 5 8

+ o 13631,~ 013623, — 013631,+013633 + 022623, + 022631, — 022633 4-
12 9 12 10 13 14

+ 023623^ + 023631 ” O23633 — 022531 + O22633 — 023631 + 023633
11 15 16 13 14 15 16

= 011513 + O12&23 + O13633,

C21 = m2 + m3 + m4 + me + mX4 + mie + mu

= (oil — 021) (“612 + 622) + O22 (—611 + 512 + 621 — 622 — 623---631 + 633) +

+ (—on + 021 + 022) (5ii — 612 + 622) + oii5ii + 013631 +

+ (—013 + 022 + 023) (623 + 631 — 633) + (013 — 023) (623 — 633)

20

= ~Qu6i2 + 011622,+021612 — 021622 — a226n + 022612 +022621 —
1 2 3 4 5 6

— 022622 ~ 022623 — 022631 + 022633, — Q11611 +011612,-011622 +
7 8 9 10 11 1 2

+ a2i6ii — 021612 + 021622 + 022611 — 022612 + 022622 + 011611 +
3 4 5 6 7 11

+ 013^31, ~ O13£>2% ~ 013631 + 013^33 + a22623 + 022^31, — 022633 +
12 13 12 14 8 9 10

+ 023623 +a23 631 — 023633 + 013623, — O13633 — 023623 + 023 633
15 16 13 14 15 16

= 022621 + 021611 + 023631,
c22 = m2 + 7714 + 7775 + 77i6 + m2o

= (an — a2i) (”£>12 + £>22) + (—an + 021 + a22) (£>11 — £>12 + 622) +

+ (a2i + a22) (—£>11 + &12) + an&ii + 023632

= — 011612 + 011622 +021612 — 021622 — ^11611, + 011612 — 011622 +
1 2 3 4 1 2

021611,+
5

2 3 4 1
+ 021611 ~ 021612 + 021622 + a226n — 022612 +022622 —

5 6 3 7 8
+ 021612 — 022611 + 022612 + 011611 +023632

6 7 8 4
= 021612 + a22622 + 023632,

C23 = 77114 + 77716 + ^17 + m18 + 77121

= 013631 + (—013 + a22 + 023) (623 + 631 — 633) + (013 — 023) (623 — 633) +

+ (a22 + 023) (-631 + 633) + 021613

= 013631 — 013623 — 013631 + 013633^ +022623 + 022631 — 022633, +
12 13 4 5

+ 023623, + 023631 — 023633 + O13&23, “ 013633 — 023623 +O23633 “
6 7 8 2 3 6

— 022631, + a22633 “ 023631 + 023633 +o2i613
4 5 7 8

= 022623 + O23633 + O2i 613,

21

C3i = me + 017 4- m$ 4- mu + mi2 4- mi3 4- mi4
= 011611 4- (—on 4- O3i 4- 032) (611 — 613 4- 623) + (-an 4- 031) (613 — 623) 4-
4- 032 (—611 4- 613 4- 621 — 622 ~ 623 — 631 4- 632) 4- (—013 4- 032 4- 033) •

• (622 4- 631 - 632) 4- (013 - 033) (&22 — £>32) 4- 013631

= ~ +^1*̂3 — 21^3,4-031611 — 031613,4* 031623,4-
1 1 2 3 4 5

4- 03261^ “ 032613 4- 032623^ — 011613 4- 011623,4- 031613 — 031623^ —
6 7 8 2 3 4 5

— 032611,4* 032613 4-032621 — 032622 — 032623, — 032631 4- Q32632 “
6 7 9 8 10 11

— 013622, — 0136314- 013632 + 032622 4- 032631, ~ 032632 4- O33622 4"
12 13 14 9 10 11 15

4-033631 — 033632 4-013622 — O13632 ~ 033^22 4~ O33632 4~ ©13^31
16 12 14 15 16 13

= 031611 4- 032621 4- 033631,

C32 = mi2 4- mi3 4- mi4 4- mis 4- m22
= (—013 4- 032 4- O33) (i>22 4- 631 — 632) 4- (©13 “ O33) (£>22 ~ £>32) 4"

4- 013631 4- (032 4- 033) (—&3i 4- £>32) 4- 031612

— —©13622, — 013631 4- 013632 4-032622 + 032631, — 032632 4- 033^22, +
1 2 3 4 5 6

4- 033631, — 033632 4- 013622 — 013632^ — 033622 4- 033632,4* o 13631 —
7 8 1 3 6 8 2

— O32631 4- O32£>32 ~ 033^31 4-033632 4" O31612
4 5 7

= 032622 4- 033632 4- 031612,

and finally

C33 = mg 4- m7 4- mg 4- mg 4- m23
= 011611 4- (—an 4- 031 4* ©32) (611 — 613 4- 623) 4- (—on 4* 031) (613 — ^23) 4-

4- (—on 4- 031) (613 — 623) 4- (031 4- 032) (—611 4- 613) 4- 033633

22

= 011611 — 011611 + — 011623 + 031511, “ 031613, + 031623 +
1 1 2 3 4 5 6

+ 032611 — 032613+032623 ~ 011613+aid>23^+031613 — O31623 —
7 8 2 3 6

~ O31611 + 031613 ~ 032611, + 032613 +033633
4 5 7 8

= O32623 + O31&13 + 033633.

Laderman’s Algorithm produces the same result as traditional matrix multipli
cation.

3.3 Comparing Algorithms

3.3.1 Traditional Method

The following is an example of multiplying two 3x3 matrices showing the
traditional method, Strassen’s Algorithm and Laderman’s Algorithm. Consider

r -2 0 1) f 3 -1 -1) ' cn 012 C13 '
3 -1 -3 -2 0 2 = C21 C22 023

\ 1 2 -1 J I 1 1 0 J \ C31 C32 033 7

Traditional methods yield the following results:

Oil = (-2)(3) + (0)(-2) + (1)(1) = “5,
012 = (-2)(-l) + (Q)(o) + (1)(1) = 3,
013 = (—2)(—1) + (D)(2) + (l)(0) = 2,
C21 = (3)(3) + (-l)(-2) + (-3)(1) = 8,
C22 = (3)(-l) + (-l)(0) + (-3)(1) = “6,
023 = (3)(-l) + + (-3)(0) = “5,
C31 = (1)(3) + (2)(—2) + (-1X1) = -2,
C32 = (1)(-1) + (2)(0) + (-1X1) = "2,
033 ~ + (2) (2) + (-i)(o) = 3.

Replacing each entry with its value gives

f —2 0 1 > 3 -1 -1 -5 3 2 >
3 -1 -3 -2 0 2 = 8 -6 -5

\ 1 2 -1 J I 1 1 0 J
-2 -5 3/

23

Using this method requires 27 multiplication steps and 18 multiplication steps for a total
of 45 operations.

3.3.2 Strassen’s Algorithm

To use Strassen’s Algorithm, the matrices need to be expanded to 4 x 4 matrices
by adding a row of zeros and a column of zeros to each matrix:

24

25

Now substitute the above matrices into the equations for On, Ci2, C21, and
c22.

Now using the above values, the product results in the following 4x4 matrix.

/ -5 3 2 0 >

8-6-5 0
-2-2 3 0

0 0 0 0;

Removing the superfluous row and column of zeros, the product of the original multipli
cation problem is found.

-2 0 1 \
3 -1 -3
1 2 -1 /

3 -1 -1 \
-2 0 2

\ 1 1 07

-5 3
8 -6

-2 —2

2)
-5

3 /

26

Strassen’s Algorithm has 49 multiplication steps and 198 addition steps for a
total of 247 operations. It would seem as if we could reduce the number of steps needed
because of the extra zero row and column. The example above does contain a zero
submatrix and some steps appear unnecessary. However, this would not always be the
case. Our example just happens to have a zero in the third row, third column of one
of the original factors, causing this to happen. While we could predict some steps that
would involve either adding zero or mutliplying by zero, we would still need to keep the
submatrices of correct dimensions in order to perform the operations and those steps
would be included.

3.3.3 Laderman’s Algorithm

Then

Now Laderman’s Algorithm is presented. Again consider

--2 0 1 > 3 -1 -1 \ Cll C12 C13 \

3 -1 -3 ■2 0 2 = C21 C22 C23
1 2 —1 J I 1 1 0)

C31 C32 ^33 /

7711 = (an + an + ai3 — a2i — a22 — a-32 — a33) • 622

= [-2 + 0 + 1 -3 - (-l)-2-(-1)] •0 = 0

m2 = (an — a2i) • (—Fl2 + 622)
= (-2 -3) -(1 + 0) = -5,

m3 = (Z22 (—&11 + 612 + &21 — &22 ~ ^23 “ 631 + 633)
= (-1). [-3 +(-1) +(-2)-0-2-1 + 0 = 9,

7714 = (—an + a2i + a22) • (611 — &12 + 622)
= (2 + 3-1)-(3 +1 + 0) = 16,

ms = (a2i + a22) • (—611 + 612)

= [3 + (-!)] 4-3 + (-!)] = —8,

W = aiibn
= (-2)43) = -6,

7717 = (-an + 031 + a32) • (&u — ^13 + 623)
= (2 + 1 + 2) [3 - (-1) + 2] 30,

‘I- (T-)-(T) =
sigien = ZZuL

‘£- = (T-)' (8) =

EI^ISd = XZui

‘£- = (T)-(S-) =
Z£q£Zv = osm

‘0 = (z—) • (o) =

IZqZlv = 6Tui

— (0 + I-) • [(8-) + T-] =
(££q -|_ T£q—) . (£So + Z&D) = 8lm

‘8 = (0 - Z) • [(8-) - T] =
(ssq — Oq). (ezn — STt>) = iim

‘SI- = (O-T + Z) •[(£-) = (!-) + !-] =
(££q — X£q £Zq) • (ESd 33© Sip—) = 9Tm

‘0 = (t + t—)• Kt-)+z] =
(3£q + T£q—) . (£Ed + 5£d) = sim

‘l = (t)-(t) =
IEqEId = J'lm

‘2- = (t — o) ■ Kt-) - r] =
(Z£q - ZZq) . (££© _ fill?) = STW

‘0 = (I - T + 0) • [(T—) + 2 + T-] =
(Z£q — X£q ZZq) . (££d -|- SE© + £1©—) — sim

‘91- = [l + T - Z - 0 - fe-) + (T-) + 8-1 • Z =
(Z£q -f- lEq — £Zq — ZZq — XZq £Xq 4_ ITq —) 3£© — urn

‘0 = (z) • [Z - I - (s-) - (T-) - T + 0 + z-] =
£3q . (Z&d — l£© — £3i? — 33o — El© + SI© -|_ 11©) — oim

‘2T“ = Kt-) + (8-)]1 (z + t) =
(£Tq + Hq-). (seo _|_ ie») = 6m

‘6- = fe - (T-)] • (T + Z) =

(£3q - Elq) . (T£d + n©_) = 8m

Z2

28

m23 033&33
("1) ’ (0)

Calculating the individual entry values has the following result:

Cll == me + mX4 + mig
= -6 + 1 + 0 = -5,

C12 z= mi + m4 + m5 + me + W + mi4 + mi5
- 0 + 16 + (—8) + (—6) + 0 + 1 + 0 = 3,

C13 == me + m7 + m9 + mio + mi4 + mi6 + mis
= (-6)+ 30 +(-12)+ 0 + 1 +(-15)+ 4 = 2,

C21 == m2 + m3 + m4 + me + mi4 + mie + m^
= (-5) + 9 + 16 + (-6) + 1 + (-15) + 8 =8,

C22 == m2 + m4 + ms + m6 + m2o
= (-5) +16 + (-8) + (-6) + (-3) = —6,

C23 == mi4 + mie + mi7 + mis + Wi
= 1 +(-15)+ 8 + 4 +(-3) = -5,

C31 == me + m7 + mg + mu + mi2 + mi3 + mi4
= (—6) + 30 + (—9) + (—16) + 0 + (—2) + 1 = —2,

C32 == mi2 + mi3 + mu + m15 + m22
= 0 + (—2) + 1 + 0 +(—1) = —2,

C33 == me + m7 + mg + mg + m23
= (-6) + 30 +(-9) +(-12)+ 0 = 3.

Finally, the result is the same as using traditional methods or Strassen’s Algo-

29

rithm:
0

-1
2

1 \
-3

-1 /

/ 3 -1 -1 \
-2 0 2

\ 1 1 o>

-5
8

-2

3
-6
-2

2 >
-5

3 /

(-2
3

\ 1

/

Laderman’s method uses 23 multiplication steps along with 98 addition steps for a total
of 121 mathematical operations. Table 3.1 shows each method and the amount of work
involved.

Table 3.1: Operations for Traditional, Strassen, and Laderman
Traditional Method Strassen’s Algorithm Laderman’s Algorithm
mult add total mult add total mult add total

27 18 45 49 198 247 23 98 121

3.4 Work Needed to Complete Laderman’s Algorithm

We now consider the recursive formula for the amount of work needed to use
Laderman’s Algorithm. Consider multiplying two n x n matrices, where n = 3f:. Similar
to partitioning matrices for Strassen’s Algorithm, we partition each matrix into 9 matrices
each with dimensions x . To apply Laderman’s Algorithm, we will need to multiply
two f x matrices 23 times. We will also have 98 addition steps where two f x matrices
are being added. Each of the 98 addition step will have steps. The formula for the
amount of work needed to multiply two nxn matrices using Laderman’s algorithm would
be

T(n) = 23TQ)+98G)2.

From previous discussion, we are most interested in knowing the number of
multiplication steps necessary in multiplying matrices. Laderman’s Algorithm can be
used to multiply x 3& matrices using 23fc multiplications. Similar to using Strassen’s
Algorithm, we see that using Laderman’s Algorithm to multiply two nxn matrices, where
n = 3fc, the number of multilplication steps is represented by 23^log3 nl. Through principles
of logarithms, we see that 23log3n = nlog323 and log3 23 « 2.85. Thus, nlog323 < n3.

30

3.5 So Which Algorithm Is Better?

In the previously mentioned example, Laderman’s Algorithm does a better job
of reducing the amount of work needed compared to Strassen’s Algorithm for multiplying
two 3x3 matrices. This may seem unfair to Strassen’s Algorithm because we are only
considering an example of multiplying 3x3 matrices. However, that is exactly what
Laderman was trying to simplify. Consider multiplying two 9x9 matrices. To use
Strassen’s Algorithm, the matrices would need to be expanded to the next power of 2
which would be 16 x 16. Using the formula from Section 2.4, this would amount to
2401 multiplication steps. However, if Laderman’s Algorithm is used the matrices are
already a power of three and would only need to be divided into nine submatrices before
applying the algorithm. This would amount to 529 multiplication steps. It appears that
Laderman’s Algorithm would be beneficial when working with 3k x 3k matrices.

Table 3.2: Comparison of Methods
Size of Matrix Traditional Strassen Laderman

m x m n n3 n 7|log2n| n 239053 nl
2x2 2 8 2 7 - -
3x3 3 27 4 49 3 21
4x4 4 64 4 49 9 529
5x5 5 125 8 343 9 529
6x6 6 216 8 343 9 529
7x7 7 343 8 343 9 529
8x8 8 512 8 343 9 529
9x9 9 729 16 2401 9 529

10 x 10 10 1000 16 2401 27 12,167
11 x 11 11 1331 16 2401 27 12,167
12 x 12 12 1728 16 2401 27 12,167
13 x 13 13 2197 16 2401 27 12,167
14 x 14 14 2744 16 2401 27 12,167
15 x 15 15 3375 16 2401 27 12,167
16 x 16 16 4096 16 2401 27 12,167
27x27 27 19,683 32 16,807 27 12,167
32x32 32 32,768 32 16,807 81 279,841
64x64 64 262,144 64 117,649 81 279,841
81 x81 81 531,441 128 823,543 81 279,841

We now compare the three methods discussed and the amount of work involved.
Of main importance will be the number of multiplications used as matrices get larger.

31

Table 3.2 shows the number of multiplication steps needed to multiply two m x m matrices
using each of the three methods. Note that n represents the number of rows for the
expanded matrix if one is needed to create either a 2fc x 2fe or 3k x 3fc matrix. According
to Table 3.2, Laderman’s Algorithm saves a significant number of multiplication steps
over both the traditional method and Strassen’s Algorithm when the matrices are 3fc
x 3fc. As n increases, eventually Strassen’s Algorithm reduces multiplication steps over
traditional methods and Laderman’s Algorithm.

32

Chapter 4

Inversion of Matrices

4.1 Finding an Inverse by Matrix Multiplication

For the beginning algebra student, finding the inverse of a matrix can often be
a grueling process. Here we see that the work of finding an inverse is not worse than the
work needed to multiply matrices. While this may not be a comfort to the beginning
algebra student, we can see that it may be beneficial to use matrix multiplication when
turning the work over to a computer.

Since much of the work in this section will involve inverses of matrices, inverses
will be denoted by A-1 while entries of matrices will still be denoted by Ay, where i
represents the row of the element and j represents the column of the entry.

In the book, The Design and Analysis of Computer Algorithms [AHU74], the
authors show how to find the inverse of a matrix through matrix multiplication. The
method that will be shown applies to all triangular matrices that are nonsingular and
invertible. To study this concept, some terms need definition.

Definition 1. An m x n matrix A is upper triangular if Ay = 0 whenever 1 < j < i < m.
An mxn matrix A is lower triangular if Ay = 0 whenever 1 < i < j < n. [AHU74]

In other words, for a matrix to be upper triangular means all entries below the
main diagonal are zero. Likewise, for a matrix to be lower triangular means all entries
above the main diagonal are zero.

The following are examples of triangular matrices.

33

©11 O12
©21 ©22

01m Oin

\ ©ml ©m2

' ©11 ©12
O21 ©22

0mi 0m2

02m 02n

©mm

©lm
©2m

©mm

• • • Omn ,
Lower Triangular Matrices

©In
©2n

• * • ©mn
Upper Triangular Matrices

and

and

©11 012 • • 01m

©21 ©22 02m

©ml ©m2 • • • ©mm

ail ©12 • ■■ • ©lm
O21 ©22 ©2m

0ml 0m2 • ■ ©mm

J

/

//

/

Definition 2. If A is a square upper or lower triangular matrix, then A is nonsingular
if and only if no entry on the main diagonal is zero. [AHU74]

The following lemma, is presented in The Design and Analysis of Computer
Algorithms [AHU74].

Lemma 3. : Let A be partitioned as

An A12
A21 A22

Suppose Afi1 exists. Define A = A22 — A2] A^1 A12 and assume A-1 exists.
Then

A111 4- A,-,1 A12 A 1A2iA111 — A111Ai2A 1
- A"1A2iA^11 A”1

To use this method of finding the inverse of a matrix, the matrix must be
triangular and invertible. Now, consider how this lemma is developed. We first rewrite
A as follows

An 0

0 A

I a£a12 \

0 1 J

34

To see why A can be represented this way, we use the fact that matrix multipli
cation is associative. Multiplying the last two matrices produces

Multiplying these matrices, yields the original representation of matrix A,.

I An A12
y A21 a22

Therefore,

I 0 W An 0 W I A£Aw
AaiAn1 I) (0 A J (0 I

Why should we write matrix A as the product of three matrices? Where do the
matrices come from?

Suppose we want to write A as the product of a lower triangular matrix and an
upper triangular matrix where each entry on the diagonal of the lower triangular matrix
is the identity. Let B.C,D. and E represent entries such that

An A12
A2i A22

Through matrix multiplication, the following statements can be made.

1.
C = An

2.
D = A12

3.

BC = A2i

B = A21C-1

B = j42ij4n

35

4.

BD + B = A22

E = A22 — BD

E — A22 — A2iA[ixAi2

E = A

Therefore,

Now suppose we want An A12 1 to be the product of a matrix that is
0 a y

both upper and lower triangular and a matrix that is upper triangular and the diagonal
entries are the identity. Let

An A12
0 A

Again through matrix multiplication and matching entries, the following equa
tions hold.

1.
B = An

2.

BD = A12

D = B-xA12

D = A^An

3.
C = A

36

This yields the following equation,

This brings us to the equation we were looking for that is a product of three
triangular matrices.

I 0 \ / An 0 \ I I A7M12
Wu1 I) \ ° A/\° 1

Now A is represented with a unit lower triangular matrix, meaning the entries
on the main diagonal are identities, and a unit upper triangular matrix. These matrices
will be easier to work with.

To develop a representation of A"1 we start with the representation of A shown
above. A is written as the product of three matrices that are either lower triangular, upper
triangular, or both. The two matrices that are individually lower triangular and upper
triangular both have diagonals with elements consisting of the identity. By breaking up
the original matrix into the product of these simpler matrices we will see the benefit of
finding the inverse by finding the inverses of the simpler matrices.

Consider finding the inverse of a matrix that is represented by the product of
three matrices. Let A = BCD where B, C, D are matrices. Then,

A-1 = (BCD)-1.

Since matrix multiplication is associative,

A-1 = [B (CD)]-1.

We know (FG)-1 = G-1F-1. Applying this fact to find A-1 we get

A-1 = [B(CD)]-1

= (CD)-1B-1

= DrlC~1B~1.

37

Since A can be represented as the product of three matrices and we have the
representation of the inverse of the product of three matrices, we can apply this knowledge
to find the inverse of A.

We now look to find A"1. Since

then

A“x
I

A21AR1

-i -1
A^ A12

I

I
A21AR1

\
0 \

Looking at the first inverted matrix, let

and

DD~l = (

we must find matrix D-1 such that

38

Using matrix multiplication, the following four equations are obtained:

Dn + A111Ai2D2i = I

D12 + AJ"11Ai2Z)22 = 0

D2i = 0

D22 = I.

Now analyze equations 1 and 2.

Dn + A^l1Ai2Z?2i = I

Dn + A^1 Ai2 -0 = I

Dn = I

Di2 + Aj/A^Z)^ = 0

Di2 + A-^A^ • Z = 0

Di2 + Aj^Aja = 0

D12 = -ABxAi2

Thus,

We now know the first inverse in the representation of A x. Now we will show
how the second inverse is derived.

Let

and

An 0
0 A

-1
Cn C12
C21 C22

39

Then

This implies the following four equations:

1.

AnCn = I

On — AR1

2.

■A11C12 = 0

Ci2 = 0

3.

AC,! = 0

C2i = 0

4.

AC22 = I

C22 = A"1.

Therefore,

Finally, let

and

40

-1
= B_1 =

Bn B12
B2i B22

Then,

This gives the next four equations.

1.

2.
Bi2 = 0

3.

A2iA111Bii 4- B2i =

Af/ + B2i =

B2i —

0

0

—A2iA['11

4.

^21^7^12 + B22 = I

&22 = f

Now we have obtained the inverse of the last matrix

By finding the inverse for each of the matrices and substituting, we can obtain
the equation for the inverse of A. We can then simplify the equation into one matrix. So

41

—A111A12

I
A-1

(;

(An -A7/A12A-1 W I 0 \
\ 0 a-1 y (-ajmh1 i)

(Ap + A,, A21AP ~A11A12A.-1 \
(-A-UzMJl1 A-1 } '

This lemma for finding an inverse does not apply to all nonsingular matrices.
For example, the matrix

/ 0 0 0 1 \

0 0 10
0 10 0

^ 1 0 0 0 /

has det (A) 7^ 0. However, partitioning the matrix into four submatrices gives An =

, meaning A^1 does not exist. The lemma does apply to all nonsingular

triangular (either upper triangular or lower triangular) matrices.
What if the matrix you are trying to invert does not have the number of rows

and columns equal to a power of 2? Can you still use Lemma 1? Suppose A is an n x
n, nonsingular, invertible, triangular matrix but n is not a power of 2. Then A can be
placed in a matrix of the form

f A 0

\ 0 Im

where Im represents an m x m identity matrix such that m + n < 2n and
m + n = 2fc. This keeps the matrix triangular, invertible and nonsingular. Therefore,
Lemma 3 still applies.

42

4.2 Another Representation of Finding an Inverse by Ma
trix Multiplication

When looking at the multiplication steps involved in finding an inverse, it will
be helpful to use a more practical version of Lemma 1. In the article “A Strassen-Newton
Algorithm for High-Speed Parallelizable Matrix Inversion” by David H. Baily and Hela-
man R. P. Ferguson [BF88], Lemma 1 is presented in a different form. By substitution, we
can see that it is in fact the same method of finding an inverse as Lemma 1. However, by
isolating individual multiplication steps, we can avoid repeating the same multiplications.
Their method showing the six multiplication steps at P?,. P3, P4, C12, C21, and Cn is
presented below.

Lemma 4. Let

f Au A12 \ _ (Cn C12 \

y A21 A22 J y C21 C22 J

Then,

Pi = ah1,

Pi = A2iPi,

#3 = P1A12,

P4 = A21P3,

P5 — P4 - A22,

Ps = Pf,

C12 ~ P^Pq,

C21 = PGP2,

C11 = P1-P3C21,

and

43

C22 = — Pg-

This method also involves two inverse steps at Pi and Pty subtraction steps at
Pg and Ch and a negation step at C22-

4.3 An Example of Finding an Inverse

The following example demonstrates the use of the above steps. Let

(1 0 0 1
1 5 -3

-13 0
0 2 0)

Then
1

44

45

C22 -P6

C22
_1

2

-1

5
2

4

Hence,

-2
5
2

j4-1 =

3 1 1 -4
9 3 5 15
2 2 2 2
3 1 1 5
2 2 2 2

-2 -1 -1 4 7
The inverse is found using six matrix multiplication steps. The reduction of

work to multiply matrices would therefore be beneficial, especially when working with
matrices of larger dimensions.

4.4 Work Needed to Find an Inverse

We now consider how much work is involved in finding an inverse. Suppose A is
an nxn matrix, where n is a power of 2. Then A can be split into four § x submatrices
representing An, A12, A21, and A22. That is,

A _ (^12
y ^.21 A22

We refer to Lemma 3. So

Ajj1 + A111Ai2A_1A2iA111 — A111Ai2A_1
-A-^iAL1 A”1

46

Since A is triangular, suppose it to be upper triangular. Then A21 = 0. This
means the upper left entry equals A^1 and the lower left entry equals an § x zero
matrix. Since A = A22 — A2iA^"11Ai2 and A21 = 0, then A = A22- We now have

^11 ~A1iAi2A22

0 J^221

Therefore, we need to find the inverses of two x matrices, namely An and
A22- If T(n) represents the amount of work needed to find the inverse of an n x n matrix,
then 2T (§) represents the amount of work needed to find the two inverses. We also still
need to perform two matrix multiplications and negate the term to obtain the upper right
entry of the inverse.

Let M(n) be the amount of worked required to multiply two n x n matrices.
Then the work for finding our two matrix multiplications would be 2M (y). To negate

2
this expression would take at most multiplications since that would be how many
terms are in the resulting j x j matrix. The work needed to find the upper right term,
after finding A^1 and A^1, would be 2M (§) + Now, suppose we multiply two § x
§ matrices where one of the matrices is an identity matrix. This would be the simplest

2
nonzero multiplication that could happen and it would take at least multiplications
because there are at least that many entries in the product. Therefore, the amount of
work needed to multiply two § x | must be greater than or equal to the amount of work
needed if one of the matrices is an identity matrix. We say < M (§). Therefore,
2M(2) + ^<3M (f).

Hence, the total amount of work needed to find an inverse, T(n), would satisfy

T(n) < 2T (£) + 3M Q) , for n > 2,

where T(l) = 1.
We now try to get our statement in terms of the amount of work needed to

multiply two matrices, M(n).
Looking at the inequality for T(n), we replace n with Then

I

47

T(n) < 2T g) + 3M g)

<2[2T^)+3m(=)]+3m(2)
= 3[M(^+2M(^]+4TQ)

<3[m^)+2m(2)]+4[2tQ)+3m(|)]

Continuing this idea until we have T(l) gives

Suppose you want to multiply two 2m x 2m matrices and you partition each
matrix into four mxm submatrices. If you used traditional methods of multiplication,
as stated in section 2, the amount of work would be

T(2m) = [2 (M(m))]3 -

< 8M(m).

If one of the two matrices were an identity matrix, then the least amount of
work would be to muliply each mxm submatrix by the mxm identity matrix, meaning
4M(m). We now make a reasonable assumption that

48

4M(m) <

Combining these two statements, we see

4M(m) < M(2m) <

Applying to our situation letting m = gives

4M (£) < M(n) < 8M

Now let m = J and get

Since 4M (^) < (^) and M (|) < |M(n), then

mG) * HM(n)
mG)

By the same process, now let m = J and we see that

«mG)S<)S8mG)

Now we can see that

49

We substitute the inequality statements into our statement of work for an infinite
number of terms getting

+ n

I

because the geometric series | + | + | + + = l — Therefore, since ^M(ri) > n

T(n) = ^M(n) - ~M(n) + n

< ^Mln)

Now we can state the following theorem.

Theorem 5. Let M(n) be the amount of work required to multiply two n x n matrices
over a ring. If for all n, 4M(n) < M(2ri) < 8M(n), then there exists a constant c
such that the inverse of any n x n nonsingular upper (lower) triangular matrix A can be
computed in cM(n) amount of work [AHU74].

The work of finding an inverse is not more complex than the amount of work
needed to multiply matrices .

50

Chapter 5

LUP Decomposition

5.1 Presentation of Algorithm for LUP Decomposition

LUP decomposition uses some of the concepts that were used in the section
4.1. If a matrix can be separated into a product of lower triangular and upper triangular
matrices, they will be easier to work with. Since some matrices may contain columns
with all entries equal to zero, columns in the original matrix may need to be rearranged.
This will require a permutation matrix. Hence, in the term LUP decomposition L stands
for a lower triangular matrix, U stands for an upper triangular matrix and P stands for
a permutation matrix. The LUP form of a matrix can be found through a process called
FACTOR, resulting in the LUP decomposition of the matrix.

Doctors Aho, Hopcroft, and Ullman describe the LUP decomposition method
in their book, The Design and Analysis of Computer Algorithms. To study this method
several definitions are necessary. The following definition is given:

Definition 3. The LU decomposition of an m x n matrix A, m < n, is a pair of matrices
L and U such that

A = LU

where L is mx m unit lower triangular and U is m x n upper triangular.

If the determinant of A is not equal to zero, then A is nonsingular. Not every
matrix A will decompose. However, if A is nonsingular, then A can be mulitplied by a
permutation matrix such that AP_1 has an LU decomposition. Therefore, AP-1 = LU.
Multiplying by P on both sides gives A = LUP.

51

Now for any nonsingular matrix A, we can use the algorithm to find L,U, and
P such that

A = LUP

This is called the LUP decomposition of A. This equation is represented in the
following diagram.

The following algorithm, called FACTOR, finds the LUP decomposition for any
nonsingular matirx A. It is written FACTOR(A, m,p) where A represents the matrix be
ing written in LUP, m represents the number of rows in A with m a power of 2, and p
represents the number of columns in A.

Algorithm 6. For a nonsingular n x n matrix M, where n is a power of 2, we call the
procedure FACTOR (shown below) to get L, U, P such that M = LUP and L is unit
lower triangular, U is upper triangular and P is a permutation matrix.

FACTOR: FACTOR(A,m,p)
1. If m = 1 then set L = (1). If m01 then go to step 5.
2. If the first column does not have all elements zero, then P is the pxp identity

matrix. If the first column has all elements of zero, then find, if possible, a column of
A, call it c, that does not have all elements zero. Let P equal the pxp identity matrix
where the first column and column c are interchanged.

For example if

when m <p and c < pA =

On

O21

012 •

O22

Cic

■ C2c

Olp

• 02p

0mi 0m2 • omp /

and where the c-column does not have all elements equal to zero. Then

52

On 012 • • lie - • O1P k

O21 122 • • 02c • • 02p

lei 0c2 • • Occ . Ocp

k A?1 0p2 . 0pC • ip? /

Note: P = P 1 ,
3. Let U = AP.
4. Multiply both sides of the equation in step 3 by P-1. This gives A = UP~L

or A = UP. Since L = (1), the equation can be written as A = LUP.
5. If 1 then partition A into two, m/2 x p matrices B and C.

2___ ____P
A m/2 B

m/2 C

6. FACTOR(B, m/2,p) to produce Li, C7i, Pi. Return to step 1.

B = IM

7. From the diagram in step 6 above, looking at the bottom half, we need

C = IDPr

C = DPi

CPp = D.

53

Find D = CPf1.

8. Let E be the first m/2 columns of Ui and F be the first m/2 columns of D.

p m/2 p-m/2

m/2 Rest of U.

D m/2 p 1 Rest of D

To get the matrix to be upper triangular, the box F must be a zero matrix.
This is achieved by changing the lower left box of the first matrix to FE"1. That is, we
will find G so that the following diagram holds.

m/2 m/2
m/2

m/2

m
m/2
m/2

m/2

m/2

P___

a
 Rest of U

Rest of 0

We see that the first m/2 columns are correct since, FE 1£? + 0 = F. The other
columns will also be correct if we make the right choice for G.

m/2 m/2

The top half is identical because of the zeros in the upper right corner of the first
matrix. Looking at the bottom half of the boxes, FE~rUi fG = DorG = D- FE^Ui
(See step 9). Therefore,

P
m/2

m/2

m/2 m/2

m/2

m/2

P

• p p,A

9. Find G = D — FE 1U±. Note: The first m/2 columns of G are all zero.

54

At this point, D and F were found in steps 7 and 8, respectively. E~l may be
found by the methods from Chapter 4 on finding inverses. Thus, G may be found by the
above equation and the given matrices.

10. Let Gf be the rightmost p—m/2 columns of G. G' = Rest of D from diagram
in step 8. Gr is a matrix with m/2 rows and p — m/2 columns.

m/2

m/2

11. FACTOR (G!, m/2,p — m/2) to produce L2, U2, P2.

12. Let P3 be the p x p matrix with a m/2 x m/2 identity matrix in the upper
left and P2 in the lower right.

P______ m/2 p-m/2

m/2 -'J-—-
p p,

p-m/2 Ii p■J n< !*__
13. Find H = UiPf1.

We will show the following to be true.

P
m/2
m/2 .'/[G

m/2 m/2
m/2 p-m/2

■ j
X

The following statements verify the above.

55

m/2 m/2 m/2

p-m/2

m/2 p-m/2

(
x

p3

Now substitute

P
m/2

m/2] l2u2

m/2 p-m/2

m/2 p-m/2

m/2
P m/2 .L —\ H

m/2 T\ p-m/2 R

into

P m/2 m/2

m A
m/2

m/2

P
P

m/2
• p p,

m/2 Tg

to get

j

14. Let L be the first two matrices multiplied together which results in a matrix
with Li, 0^2) F#”1 and L2 such that

56

m/2 m/2
m/2

m/2

m/2 m/2 m/2 m/2
m/2

m/2

15. Let U be an m x p matrix with II in the upper half and Om/2 and U% in the
lower half.

P

16. Let P be a p x p matrix from the product of the last two matrices, P3P1.

PPP

p ' p!
• p p, = p p,p,

17. LUP decomposition complete[AHU74j.

P
P

m A m/2

m/2
P,-P.

P

5.2 An Example of LUP Decomposition

The following is an example of finding the LUP decomposition of a matrix.
Each step is given followed by the application to the particular matrix.

57

We begin with FACTORfA, m, p). Let

71-13 2 \
—2 0 1-1

A =
0 111

y 1 2 0 1 J

To find the LUP decomposition, we will FACTOR(A, 4, 4).

1. If m = 1, then set L = (1). If then go to step 5. Since m = 4, we will go
to step 5.

5. If 1, then partition A into two m/2 x p matrices B and C.

Partition A

(1 -1 3 2 \

0 1-1
1 1 1
2 0 1)

Therefore,

B =

C =
0 1 1
1 2 0

6. FACTOR(B, m/2,p) to produce Li, Ui, Pi We need to FACTOR(B, 2, 4). To do
this, return to step 1. Let m' = m/2 = 2.

6.1 If m = 1, then set L — (1). If m01 then go to step 5. This time, m = 2 re
quiring step 5.

6.5 If m^ 1 then partition A into two m'/2 x p matrices B and C.

58

Partition B.

Now, B' = (1 -1 3 2) and C = (-2 0 1 -1)•

6.6 FACTOR(B,m!/2,p) to produce Li, Ui, P\. This means we need to FACTOR(B', 1,
4). To do this, return to step 1.

6.6.1 If m = 1, then set L = (1). If m/1, then go to step 5. This time, m = m'/2 = 1 so
we follow to step 2.

6.6.2 If the first column does not have all elements zero, then P is the p x p identity
matrix. If the first column has all elements of zero, then find, if possible, a column of A,
call it c, that does not have all elements zero and interchange the first column with c.
Let P equal the p x p identity matrix where the same two columns are interchanged.

Since the first column of Bl does not have elements that are zero and p = 4, P
is the 4x4 identity matrix.

6.6.3 Let U = AP. At this point, A = Bf and P is an identity matrix, so U = Bf.

6.6.4 This gives A = LUP. The result is

Fl

1 0 0 0
. / X Z X / \ 0 1 0 0

B = (1 -1 3 2) = (1) • (1 —132)-\ / A 0 0 1 0Ll th 0 0 0 1)

59

6.6 We have now completed FACTOR/B, m/2, p) to produce Li, Ui, Pi. FACTO R(B', 1,4)
gives

Li = (1) (71 = (1 -1 3 2)

1 0 0 0 >

0 1 0 0
Fi =

0 0 1 0

1° 0 0 1 /

6.7 Find D = GPX1. At this point in the algorithm, D = C'. since P1 1 is an identity
matrix and C — C'.

D = (-2 0 1 -1)

6.8 Let E be the first m'/2 columns of Ui and F be the first m'/2 columns of D.
Therefore, E = (1) and F = (—2).

6.9 Find G = D — FE~rUi. Note: The first mr/2 columns of G are all 0.
Here, B_1 = (1), so

G = (-2 0 1 -1) - (~2)(1) (1 -1 3 2) = (0 -2 7 3).

6.10 Let Gf be the rightmost p — m!/2 columns of G. Because p = 4 and m! = 2,
Gf will be the right three columns of G.

G' = (-2 7 3)

6.11 FACTOR (G,,m'/2,p — m'/2) to produce Lz, Uz-, Pi- At this point, the call is to
FACTOR(GZ, 1,3). Return to step 1.

6.11.1 If m = 1, then set L = (1). If mfl, then go to step 5. Since m = 1, we set L = (1).

60

6.11.2 If the first column does not have all elements zero, then P is the p x p iden
tity matrix. If the first column has all elements of zero, then find, if possible, a column
of A, call it c, that does not have all elements zero and interchange the first column with
c. Let P equal the p x p identity matrix where the same two columns are interchanged.

Since the first column of G' does not have elements that are zero and p = 3, P
is the 3x3 identity matrix.

6.11.3 Let U = AP. At this point, A = G' and P is an identity matrix, so U = Gr.

6.11.4 This gives A = LUP.

3
/ 1 0 0 \

0 1 0
(001/

p

Returning to step 11.

6.11 FACTOR (G1 ,m/2,p — m/2) to produce L2, U2, Pz-

#2 = (1) U2 = (-2 7 3)
< 1 0

Pz = 0 1
(00

0 >
0
1 /

6.12 Let P3 be the p x p matrix with a m/2 x m/21 identity matrix in the upper left
and P2 in the lower right.

p m/2 p-m/2

p p,

m/2

p-m/2

'J-.--.

i

61

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

6.13 Find H = BiF3_1.
Because P3_1 = P3 = I, the result is Hi = Ui.

M1 -1 3 2)

Substituting Q into R, produces the following

0 0 \

0 0
1 0

0 1 /

B

62

-13 2
-2 7 3

1 0 0 0
0 1 0 0
0 0 1 0

0 0 1 /
Q

H o o o

0 10 0
0 0 10

\ o o o i /

Now, reassociate the matrices to find £, U, and P for B.

/ 1 -1 3 2 \
y 0 —2 7 3 I

'--------------------------------- V---------------------------—'

u

1 0 0 0 f 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 /

p

After multiplication, the LUP decomposition for B is

0
0
0

1 /

Remember the LUP decomposition of B results in Li, U\ and Pi for FACTOR(A, 4, 4).
Now we return to step 6 with the following result

63

1 0 0 0
/ 1 -1 3 2 \ 0 1 0 0

P1 =
^ 0 -2 7 3 / 0 0 1 0I 0 0 0 1 /

7. Find D = CPZ x. Since Px 1 is an identity matrix, D = C.

1
2

P___ m ____P
A _m/2 Mi® m/2 u

m/2 m/2 D
P,

P

8. Let E be the first m/2 columns of U\ and F be the first m/2 columns of D.

9. Find G = D — FE 1U±. Note: The first m/2 columns of G are all 0.

64

G =

G =

G =

G =

f 0 1

1 2
7° !

\ 1 2

f 0 0

\ 0 0

According to the diagram

P m/2 m/2

m A
1

1II
Fr;/\

P
P

m/2 U,
• P P,

m/2 G

U -1 3 2 \

0-273
0 0 f f\0 0 f J

1 -1 3 2 \
-2 0 1 -1A =

0 1 1 1
1 2 0 1 /
1 0 0 0 k

-2 1 0 0
0 1

2 1 0

I 1 3
2 0 1J

1 0 0 0 k

0 1 0 0

0 0 1 0

0 0 0
J

10. Let Gf be the rightmost p — m/2 columns of G. Because p = 4 and m = 4, G'
will be the right two columns of G.

65

11. FACTOR (Gl,m/2,p - m/2) to produce L2, U2i P2- This calls for FACTOR(C?',
2, 2). Return to step 1.

11.1 If m — 1 then set L = (1). If m/1 then go to step 5. This time, m = 2 re
quiring step 5.

11.5 If m/ 1 then partition A into two (m/2 x p) matrices B and C.

P___ ____P
m A m/2 B

m/2 C

Partition G' giving

fi3=(i 1) C3=(¥ I)

11.6 FACTOR(B, m/2,p) to produce Li,Ui, Pi Return to step 1. Here, FACTOR(B, 1,2).
Return to step 1.

11.6.1 If m = 1 then set L = (1). If m / 1 then go to step 5. Since m= 1, we set L = (1).

11.6.2 If the first column does not have all elements zero, then P is the p x p iden
tity matrix. If the first column has all elements of zero, then find, if possible, a column
of A, call it c, that does not have all elements zero and interchange the first column with
c. Let P equal the p x p identity matrix where the same two columns are interchanged.

P will be the 2x2 identity matrix.

66

11.6.3 Let U = AP. U = (| f).

11.6.4 This gives A = LUP. Obtaining L, U, andP we go back to step 6.

11.6 We now have

£: = (!) = f)

11.7 Find D = CPy x. Since Px 1 is an identity matrix, D = C.

According to the diagram,

P
p___ m ___ P
A _m/2 m/2 u,
n

m/2 m/2 D
P,

1 I \ /ioW|fWio\ ¥ J-h Jv J

11.8 Let E be the first m/2 columns of U± and F be the first m/2 columns of D.

11.9 Find G = D — FE^Ui.

67

G = (f I)-(¥) (i) (f i)
G = !)-(!)•(! 1)
G = (o -i)

The LUP decomposition of Gf is as follows

11.10 Let Gr be the right most p — m/2 columns of G.

11.11 FACTOR (G',m/2,p - m/2) to produce L2, U2, P2. Meaning FACTOR(G', 1,1).

L2 = (1) G2 = (-2) P2 = (1)

11.12 Let P3 be thepxp matrix with a m/2 x m/2 identity matrix in the upper left and
P2 in the lower right.

Remember, we are factoring G' =

tity matrix.

9
2
15
2

Therefore, P3 is the 2x2 iden-

11.13 Find IT = CTiPa"1.

Because P3-1 = P3 = I, the result is H = U^. Therefore,

H = U1 = (| |)

68

P
m/2 p-m/2

m/2 m/2
m/2

m/2

1

Finally through substitution we get

11. FACTOR (Gf,m/2,p — m/2) to produce U2, Pz- Return to step
figured

11 having

#2 = #2 =

12. Let P$ be the p x p matrix with a m/2 x m/2 identity matrix in the upper left
and P2 in the lower right.

69

P m/2 p-m/2

m/2
1--------------------------

1 •

p p,
p-m/2 1 p !

Using the diagrams, we see that P3 is the 4x4 identity matrix.

13. Find H = UiPf1.

Because P3 1 = P3 — I, the result is H = Ui. Therefore,

P m/2 m/2

H = Ui =
-13 2
-2 7 3

P
m/2 p-m/2

m/2 U---
p-m/2 i «j

1 0 0 0 1 -1 3 2 1 0 0 o\

0 1 0 0 0 -2 7 3 0 1 0 0
0 0 1 0 0 0 9

2
5
2 0 0 1 0

0 0 5
3 1 /

^0 0 0 -i / 0 0 0 1 /
Q

Finally, substituting yields the LUP decomposition for the original matrix.

70

A =

1 0 0 0 1 0 0 0
-2 1 0 0 0 1 0 0•Q-

0 1
2 1 0 0 0 1 0

1 3
2 0 1 J 0 0 0 1 /

■v* ------------------ --
L UP

(1 0 0 0
(1 -1 3 2 (1 0 0

-2 1 0 0 0 -2 7 3 0 1 0A =
0 1

2
1 0 0 0 9

2
5
2 0 0 1

I 1 3
2

5
3 1 J I 0 0 0 2

3 J 0 0 0
✓ s.

0)

0
0
1 /

FACTOR is complete and we have found the LUP decomposition of A.

5.3 Work Needed to Complete LUP Decomposition

We now look at the amount of work involved in finding an LUP decomposition
a nonsingular n x n matrix with n = 2\ Let A be an m, x p, with m = 2fc, matrix and
FACTOR(A, m, p). We know from experience now that the amount of work needed will
be based on the number of rows in the matrix we call to FACTOR. Let T(m) represent
the amount of work needed to call FACTOR(A, m, p). If m = 1, then only the first
four steps of the algorithm are necessary to produce L, U, and P. Step 2 might require
an interchange of columns. Step 3 would require AP meaning at most n operations.
Therefore, to accomplish steps 1-4, when m — 1, would be some constant b times n.

T(l) = bn

Now we look at FACTOR when n > 2. This will involve going through the
complete algorithm where FACTOR is called at steps 6 and 11. Each of those steps
will require T (y) amount of work. Steps 7 and 13 will require finding the inverse of a
permutation matrix, which will be a function of n, meaning O(n).

For step 9, we need to find E“x. Using theorem 1, mentioned in section. 4.1,
and the fact that B is an y x y matrix, the work needed will be some constant c times
M (y). We also need to compute FE~\ which will also take M (-y)'- Then we need
to multiply FE"1 by Ui. Ui can be at the most y x n. We know n is divisible by

71

because in the first call of FACTOR n — m, both n and m are powers of 2, and m <n.
Think of U± as y x y blocks set next to each other. If you divide n by y, you would have
at most 2-F number of blocks. Therefore the amount of work would be (%}. We
consider 2 as part of the constant c giving the amount of work for step 9 to be •

The rest of the steps will have at most some constant, d times mn. This gives
the following recursive formula for finding the amount of work needed to complete LUP
decomposition.

2T (f) + (f) + dmn, m > 1

bn, m = 1

for constants b, c, and d.
We now look to find a limit to the work in terms of M(m), the work of multi

plying two matrices.

rWS2r(f) + SM(?)+^

Consider the constant terms and dmn combined to be We continue in a
T7l 171

manner similar to what was done for the work of an inverse.

- 2 [-(?)+>(?)]
en , , /m\ 4en , , /m\ rm\

erwr/m\ 4en„,fm\ , /m\ 4en,,/m\l

The recursive process continues until m = 1. This occurs when logm = /clog2 for some
constant k. We use logm as the number of times the formula is applied. Therefore,

, _/m\ 4logmenM - +... +---------\ 8 / m
m/ \ en „, /m\ 4en _ _ fm\ 16enT(m) < —M — H------M — +------v } ~ m \2/ m \4/ m

+mT(l)
= [w (y) + 16M (+ 64M (nj + ... + 410gmJW(l)j + m(6n)

en
4m

"logm

+ bmn
. 1=1

72

Consider the condition that for some e > 0 then M(2m) > 22+eM(m). To see
the flow of statements, we rewrite in terms of less than.

22+eM(m) < M(2m)

Replacing m with (y), we get

22+£M < M(m).

If we divide (y) by 2, we get

22+£22+eM (V < M(m).

As we continue to divide m by 2, we see

22* • 2£iM

< M(m)

< M(m)

<

Therefore,

Because the terms are all positive, we can say

We can see

since we are adding more positive terms on the right hand side, the total would be larger.
We can take M(m) out of the summation since it is not dependent on i.

This brings us to the following statement.

^(m) < (V + bmn

73

Since the summation is a geometric series with r < 1, we know it will equal some constant,

4m
Combining the constants into k, we get

fan
T(m) < —+ bmnm

The LUP decomposition algorithm is for an n x n matrix, the algorithm starts
with m = n. Thus, the amount of work needed to complete the LUP decomposition for
an n x n matrix is represented by

T(n) < kM(n).

We see that the amount of work needed is based on the work to multiply n x n matrices.

Theorem 7. Suppose the amount of work needed to multiply two n x n matrices is
represented by M(n), and for all m and some e > 0, the following is true: M(2m) >
22+€M(m). Then the amount of work needed to perform the L UP decomposition shown
in Algorithm 3, T(n), is less than some constant k times M(n) for any nonsingular matrix.
Meaning, T(n) < kM(n) [AHU74].

74

Chapter 6

Solving Equations

6.1 Using LUP to Solve

By writing a matix in LUP decomposition, a system of linear equations can be
solved without using inverses or row reduction methods. The system may be solved by
using matrix multiplication and back substitution.

Consider A to be an n x n matrix. Let

Ax = b

where both x and b are n x 1 column vectors. Assume A can be factored into LUP,
meaning A = LUP. Then

LUPx = b.

Now let
UPx = y

and

Ly = b.

By isolating L and because L is a lower triangular matrix, one variable is solved
and the rest of the system can be solved by using back substitution. Therefore, the
equation Ly = b can be solved for y. Then use

UPx = y

75

and similar methods to solve for x. First, multiply UP. Then solve for x using the values
that were already found for y [AHU74].

6.2 An Example of Using LUP to Solve an Equation

Looking at an example will give a visual explanation of what occurs with this
process. Consider the following system of equations.

%3 + 2x4 = 7
3x3 = 9

£1 — X2 + X4 = 3
2xi - X3 + 3X4 = 10

First, write the systems of equations as a matrix equation.

0 0 1 2 \ Xi 7 >

0 0 3 0 r2 9
1-1 0 1 %3 3

^2 0—13/ \) I 10 /

Here
1 2
3 0
0 1

/ 0 0

\ 2 0—13/

It may seem simple to just find A 1 with the method discussed in section 3.
Then solve the equation by multiplying both sides by the inverse. However, here Au —

, Aii d°es exist and the matrix is not invertible. This suggests finding

the LUP decomposition for A and using the method described above.
After using the LUP decomposition algorithm, the LUP decomposition is found

for A.

76

2 0 0 \

-6 0 0
0 1 -1
0 0 2 j

(o
0
1

\0

0 1
0 0
0 0
1 0

0 >

1
0
0 7

2
-6

0
0

0
1
0

0 0 > f 0 0 1 0 P1 \
0 0 0 0 1

-1 10 0 0 X3

2 J ^oioo;

/ 7\

9
3

\ 10 7
Now, using UPx = y and assuming

(m \
3/ =

then Ly = b becomes the following

yz
3/3

< M)

1 0 0 0 3/1 (
3 10 0 3/2 9
0-|10 3/3 3

-i -i 2 1 J \) 10 J
Using matrix mutliplication, yi = 7. By using back substitution into the other

equations obtained, the following statement can be made

3/1 7 >

3/2 -12

3/3 1
< 2/4) 5 7

77

Now looking at the equation UPx = y

< 0

0

1

/ 1 2 0 0 0 0 1 0 p,.) (7 >

0-6 0 0 0 0 0 1 X2 -12
0 0 1-1 10 0 0 X3 1
0 0 0 2) ^0100; \ *4 J I 5 /

Multiplying UP
0 1 2
0 0-6

-10 0
2 0 0

p, \
Z2

/ \ *4 /

/ 7 \

-12
1

\ 5 J

Now X‘2 and X4 can be solved easily giving xy = | and a?4 = 2. Through
substitution, the following solution is obtained

' Xi 1 l\
5

= 2

%3 3
\x^ 2 /

We see that the amount of work needed to use this method of solving a system
of equations is based on the amount of work needed to find the LUP decomposition for
A, as shown in Section 5.3 and another M(n), where A is an n x n matrix. There would
also be some work involved in the back substitution. However, this would be a relatively
small amount of work and was not explored in this paper.

78

Chapter 7

Determinants

One basic operation of working with matrices is finding determinants. For begin
ning algebra students finding the determinant of a 2 x 2 matrix is relatively easy. Finding
the determinant of a 3 x 3 matrix is very doable. However, finding determinants by hand
for any matrix larger than 3x3 can be overwhelming. In The Design and Analysis of
Computer Algorithms, the authors state the following lemma.

Lemma 8. If A is a square upper triangular or lower triangular matrix then the deter
minant of A is equal to the product of elements on the main dmt/onaZ [AHU74].

Proof. Suppose A represents an upper triangular matrix

r an G12 ai3 .. • Oin '

0 «22 «23 ■ • • a2n

A = 0 0 «33 • ■ ■ a3n

I 0
0 0 . ann /

Using 1st column

r a22 «23 • • a2n ’

dll
0 «33 ■

±0±0±---±0s_____ '
n-i timesI 0

0 . • ann /

79

033 O3n

Oil * «22

Onn j

±0±0± — ±0 "--------v'
n-2 times

O44 04n

0

\

Oil * 022 * 033

Onn0 /

±0 ± 0 ± • • • ± 0 '-------- V-------- '
n-3 times

O(n-l)(n-l) a(n-l)n j -f-Q Q

0 onn J

Oil * 022 * O33 • • ■ O(n-2)(n-2) (o(n-l)(n-l) ’ ann ~ 0)

On • O22 • O33 • • • °(n—2)(n—2) * fl(n-l)(n-l) ' ann

On ' 022 ' O33 • ■ • ann
I

□

The determinant of an upper triangular matrix is the product of the elements
on the main diagonal. As is the case with an upper triangular matrix, the determinant of
a lower triangular matrix is found by multiplying the elements along the main diagonal.
The proof is similar to the above proof. Therefore LUP can make it easy to find the
determinants of any matrix.

By rewriting a square matrix in terms of LU we can find the determinant by
multiplication. For each lower (L) and upper (U) matrix the determinant is the product
of elements on the main diagonal. Therefore, the amount of work needed to find a
determinant of an n x n matrix is based on the the amount of work needed to find
the LUP decomposition of the matrix plus the amount of work needed to multiply the
elements on the main diagonal. Thus, T(n) < kM(n).

80

Chapter 8

Conclusion

When my son took algebra in high school, he came home one day and declared
that “There was no need to learn matrices. You can always use other methods to solve
systems of equations.” Clearly, he was limited in his knowledge and how the concepts
of linear algebra are used in many different fields. While we often teach the beginning
concepts of linear algebra and working with matrices in our college-level algebra courses,
many students are not exposed to the more advanced concepts of linear algebra and their
applications. In looking at the introductory paragraphs for one linear algebra text book,
it states “This course is potentially the most interesting and worthwhile undergraduate
mathematics course you will complete.” [Lay06] In the preface it mentions the book con
tains applications in the fields of engineering, computer science, mathematics, physics,
biology, economics and statistics. As we look at how the study of linear algebra applies to
many professional fields and we study the technology used to implement such concepts,
it is useful to find ways to make the current methods more efficient. The study of the
complexity of linear algebra focuses on this idea.

Strassen, Laderman and others have worked to reduce the amount of multiplica
tions steps needed when multiplying matrices. This paper shows that the work of finding
inverses, solutions to systems of equations and determinants is no more complex than a
constant factor of the work of matrix multiplication. Therefore, simplifying the process of
matrix multiplication will make the procedures more efficient. While this paper did not
present the work of Coppersmith, his method is apparently faster than others as men
tioned in the article by Bailey and Ferguson[BF88]. Further research into this method

81

would be useful. The ability to represent a matrix in LUP form allows the matrix to be
broken down into simpler matrices for ease in finding inverses, solving systems of equa
tions and finding determinants. The complexity of these linear algebra tasks is based
on the amount of work needed to multiply matrices. As computers are used to tackle
large linear algebra systems, the reduction of computational steps will decrease the time
needed to operate programs and increase the capacity to run larger systems.

When my brother, who is ten years older than me, took his first computer class
in college I remember him telliDg about his experiences using punch cards and waiting
long periods of time to have the opportunity to run his stack of cards. Things have
changed greatly over the last 40 years. Our systems will continue to change as methods
improve and the study of efficiency continues. People still look for ways to solve systems
of equations and perform other linear algebra operations with greater speed and more
efficiency. The study of the complexity of linear algebra continues.

82

Bibliography

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and Anal
ysis of Computer Algorithms. Addison-Wesley Publishing Company, Reading,
MA, 1974.

[BF88] David H. Bailey and Helaman R. P. Ferguson. A strassen-newton alogrithm for
high-speed parallelizable matrix inversion. Supercomputing, November 1988.

[Lad76] Julian D. Laderman. A noncommutative algorithm for multiplying 3x3 ma
trices using 23 multiplications. Bulletin of the American Mathematical Society,
January 1976.

[Lad79] Julian D. Laderman. Computational complexity: Algorithms with fewest opera
tions. http://onlinelibrary.wiley.com/doi/10.Ill1/j.1749-6632.1979.
tbl4107.x, 1979.

I
[Lan08] J. M. Landsberg. Geometry and the complexity of matrix multiplication. Bul

letin (new series) of the American Mathematical Society, April 2008.

[Lay06] David C. Lay. Linear Algebra and Its Applications, Third Edition Update.
Pear son-Addison-Wesley, Boston, MA, 2006.

[Wei99] Eric W. Weisstein. Strassen formulas, http://mathworld.wolfram.coni/
StrassenFormulas.html, 1999.

http://onlinelibrary.wiley.com/doi/10.Ill1/j.1749-6632.1979
http://mathworld.wolfram.coni/

	The complexity of linear algebra
	Recommended Citation

