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ABSTRACT

In recent years, inversely planned intensity modulated proton therapy (IM- 

pRT) has become the focus of research to further improve the dose distri

butions that can be obtained with proton therapy. IMpRT is best used to 

deliver a potent and precise dose of protons to the most complicated tumors 

like the ones embedded in the nooks and crannies of the head and neck or 

skull base. The starting point of each IMpRT dose calculation is a digital 

model of the patient volume of interest, e.g., the patient’s head, usually 

provided by a computed tomography (CT) scan. A head CT scan consists 

of about 200 slices of 1-2 mm thickness and each slice is organized into a 

matrix of 512 x 512 image pixels. In 3D, this creates a digital space com

prised of the order of 50 million voxels. Each voxel has material properties 

that are needed to calculate the proton dose delivered by a large number of 

proton pencil beams with different directions and intensities.

The calculation of the proton dose distribution has to take into account the 

material (tissue, bone, brain) in the treatment area of the patients body. 

Type and density of the different tissues are inferred from the x-ray attenu

ation displayed in the x-ray CT images.Some materials are easy to identify 

but something like an inner cortical bone which is very thin as well as gets 

blended with brain and soft tissue due to the limited spatial CT resolution 

is tough to identify. This thesis tries to resolve this problem using different 

image segmentation techniques to get a fast and consistent tissue assign

ment. This methodology is also useful for generation of standardize digital 

phantoms using segmentation of a high-resolution CT scan of a phantom 

with tissue-equivalent materials, but this phantom generation is not only 

costly and time-consuming. Developing advanced and fast segmentation
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techniques to generate a high-resolution digital head phantom from the CT 

scan of a commercial pediatric head phantom (Model 715, CIRS) is the final 

goal of this thesis. These methods can later be used for fast segmentation 

of real patient CT data.
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1. INTRODUCTION

The primary purpose of this thesis is to discuss the usefulness of image segmentation 

techniques in creating accurate proton dose distribution plans. The methods pre

sented in this thesis were specifically implemented on the phantoms to identify the 

materials and regions but for the patient IMpRT actual patient CT scans would be 

used to overcome the limitations towards creating proton treatment dose distribution 

plans . Although there exist current systems that successfully create these plans to 

treat patients, these new segmented phantoms would provide a basis to create auto

matically identified regions which can be later used for the actual patient CT scans to 

create accurate digital models for calculating accurate dose distribution plans. The 

tasks accomplished during this thesis were implemented under the contiguous guid

ance of Dr. Reinhard W. M. Schulte, M.D., at Loma Linda University Medical Center 

(LLUMC).

This thesis presents analysis and solutions to the issues pertinent to identification 

of materials and regions in the CT Scans. The following questions are addressed:

1. How do the proposed methods differ from past and present projects, and where 

have been the enhancements made in this project?

2. What precision can be attained from rectified images? Does this meet or surpass 

the recognized objectives of the project?

1



1.1 Background

1.1.1 Principles of Intensity Modulated Proton Radiation Therapy

Intensity modulated proton radiation therapy and radiosurgery, short IMpRT and 

IMpRS, are evolving techniques for highly conformal dose delivery to tumor or other 

targets in close proximity to sensitive and critical organs at risk. IMpRT is delivered 

in several dose fractions, while IMpRS is delivered in as a single dose or a few (up to 

5) dose fractions applying stereotactic techniques. The underlying principle of these 

techniques is to aim at the target from many different directions (either in 2D or 3D) 

with multiple narrow proton beams, or pencil beams, and to modulate the intensity 

(or fluence) of each beam, taking into account whether they pass through critical 

organs at risk or not. The most important characteristic of a proton beam is that 

it delivers a low dose in the initial part of the beam followed by a rapid increase of 

dose, leading to a dose peak (the Bragg peak) and a rapid distal dose fall-off to zero 

dose behind the Bragg peak. The Bragg peak is placed inside the target at a given 

beam aiming point. Note that several pencil beams sharing the same central axis can 

be ’’stacked” in beam direction, and this arrangement may be called a beamlet.

The starting point of each IMpRT/RS calculation is a digital model of the patient 

volume of interest ( 1.1), e.g., the patient’s head, usually provided by a computed 

tomography (CT) scan. A head CT scan consists of about 200 slices of 1-2 mm 

thickness and each slice is organized into a matrix of 512 x 512 image pixels. In 3D, 

this creates a digital space comprised of the order of 50 million voxels. Each voxel 

has material properties that are needed to calculate the proton dose delivered by the

2



Fig. 1.1: Commercial Pediatric Head Phantom in the CT Scanner of the Department of Radiation Medicine 

at Loma Linda University Medical Center

different proton pencil beams.

In practical applications, one generates a generic pencil beam dose model for a 

unit-intensity proton beam in water and scales the distance between the entry point 

of a proton beam into the object and the beam aiming point by multiplying the 

intersection length of each voxel with the so-called relative stopping power (RSP) with 

respect to water. This information is provided by converting the numbers provided 

by the CT scan (Hounsfield units) to RSP, using a HU-to-RSP calibration curve. In 

the future, the RSP of voxels will be directly reconstructed from a proton CT (pCT) 

scan. Knowing the central beam axis dose as a function of the depth in water, we can 

then assign the correct dose of the unit-intensity proton pencil beam to each voxel on 

the central beam axis. Similarly, knowing the lateral dose fall-off at each depth, one 

can calculate the correct dose for each off-axis voxel based on its orthogonal distance 

from the beam axis.

Given a distribution of the intensities of in the limit, continuously spaced proton 

pencil beams directed at the target, one can calculate the resulting dose distribution 
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in the voxels of the object using a proton dose operator 5) that mathematically 

connects the two quantities. Often times, the chosen intensities do not result in a 

satisfactory dose distribution, that is, one that meets the dose constraints dictated 

by the radiosensitivity of the tumor and the organs at risk. In general, one wants 

the target dose to exceed some minimum value and the dose in organs at risk not to 

exceed a maximum value that can lead to serious complications. Therefore, it is better 

to ’’prescribe” a dose distribution selected from a subset in a continuum of possible 

dose distributions that meet the clinical requirements and then to find a fluence 

distribution that will lead to a dose distribution that is a member of this ’’solution” 

subset. As we will see below, the solution of such an ’’inverse” treatment planning 

problem can be found mathematically by formulating a discrete mathematical model 

of IMpRT that can be solved, in principle.

1.1.2 The Discrete Model of Intensity Modulated Proton Radiation Therapy

In the absence of a closed form analytic illustration of the proton dose operator D 

that calculates the dose distribution given a the fluence of an continuum of proton 

pencil beams, and, therefore, the absence of such a presentation of its inverse operator 

D~1, one must resort to a fully discretized model of the problem. The term full in 

“fully-discretized model” refers to the fact that both the external proton radiation 

field and the patient volume are discretized, leading to a problem formulated in a 

finite-dimensional vector space. To do this we divide the beam’s cross-section into 

a finite rectangular grid of squares and the beam angles into discrete angular steps 

separated by a constant interval, which may be chosen differently for each IMpRT

4



1

Fig. 1.2: Two IMpRT Beams from Different Directions. Variable Shades of Gray Correspond to Different

Fluences (Number of Protons Per Area). Note that each Square in the Beam Cross Section can 

be Occupied by more than One Proton Pencil Beam, making up a Beamlet, each with a Different 

Bragg Peak Depth and Intensity.

treatment plan (see Figure 1.2). Further, we discretize the proton energy into steps, 

such that the proton Bragg peaks, i.e., the dose maximum of a proton pencil beam, 

are located at well-defined discrete aiming points within the patient volume. Each 

proton pencil beam is thus assigned a discrete direction and a discrete energy.

Figure 1.3(left) shows a representative two-dimensional (2D) cross-section through 

the object. In a contiguous set of cross-sections, the treatment planner defines a set of 

voxels that belong to the target. Other voxels sets may be defined that are assigned
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Fig. 1.3: Example of a CT Head Section Before (Left) and After Conversion to a Color-Coded Image that
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gives each Voxel a Tissue Assignment (Right)

to an organ at risk, e.g., the brainstem, or other normal tissue regions, such as brain 

and skull bone. In order to simplify the image segmentation process and to calculate 

the dose of unit-intensity beams, each image of the CT data set needs to be processed 

in order to assign a given tissue type to each voxel based on the CT (HU or RSP) 

value.This is shown in Figure 1.3(right).

Mathematical Formulation of the Discrete Intensity Modulated Proton Radiation

Therapy Model

The patient volume J is divided into a discrete grid of voxels the centers of which are 

the desired dose calculation points. These are represented by the family of triplets 

of 3D coordinates {(ry) ] j — 1, 2,..., J}. Further, we define a discrete number of 

proton pencil beams by their entry direction unit vectors | i = 1,2,..., /}. and 

aiming point {(rf) | i = 1,2,... ,1}.

Let cty be the dose that is delivered at the Jth grid point (rj) in the patient 

volume Q due to the zth pencil beam of unit proton fluence and define the

I-dimensional vector for j ~ 1,2,..., J. Let X{ denote the actual (yet 
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unknown) fluence of the zth pencil beam (fy,^) and define the /-dimensional vector 

x = (xi)i=i which is unknown vector of all pencil beams’ fluences that should deliver 

the required dose to the patient volume Q. Finally, let dj and dj be an upper-bound 

and a lower-bound, on the permitted or required, respectively, dose in the jth grid 

point (rj) in the patient volume Q.

With these notions we can define discrete forward and inverse problems of IMpRT 

as follows.

The discrete forward problem of IMpRT: Given a patient volume Q, whose 

physical properties are known, and a discretized (into I proton pencil beams) external 

proton radiation field {(fy,^) | i = 1,2,...,/}, along with a proton pencil beams 

intensity vector x, find the discretized proton dose distribution function D(rj) for all 

(rj) G

This discrete forward problem can be solved if all /-dimensional vectors cP = 

(aij)i=i f°r j = 1, 2,..., J, are known to us, e.g., by being calculated previously by a 

forward problem solver computer package. In that case, denoting dj = D(rj,0j) for 

all j = 1,2,..., J, we just need to calculate

i
dijXj = dj, j — 1,2...., J. (1.1)

£=1

The /-dimensional vector d = (dj)j=1, whose components are the discretized pro

ton dose distribution function D(rj) values, is called a dose vector.

The discrete inverse problem of IMpRT: Given are a patient volume Q, 

whose physical properties are known, an upper-bound dose vector d = (dj)j=1 and 

a lower-bound dose vector d — (dj)j=1) on the permitted and required, respectively, 

doses at the grid points {(r7-, /,) | j = 1,2,...,/} in the patient volume Q. Find a

7



proton pencil beams fluence vector x such that

i
dg < aijX{ < dj, forall and X{>0 forall i = 1,2,..., 7(1.2)

i=l

This formulation of the discrete inverse problem of IMpRT does not aim at a 

proton pencil beams fluence vector x that will deposit a fixed prescribed dose in 

each voxel but rather calls for a solution of that is called in optimization theory 

the solution of a linear feasibility problem. The term “feasibility” refers here to the 

fact that no exogeneous objective function is set up for optimization but rather any 

point in the feasible set {re € R1 | ^2i=i aijxi for all J = 1,2,..., J} will

be “acceptable” by the treatment planner. This feasibility approach to setting up 

the discrete inverse problem has its roots in some early papers on radiation therapy 

treatment planning where the term IMpRT was even not used, see [5, 17, 16, 15].

The J individual linear feasibility constraints of ( 1.2)can be grouped according to 

volumes of interest in the patient volume Q.

1.2 Significance

In 1990, LLUMC inaugurated Proton Treatment Center, it’s first ever hospital-based 

facility for proton therapy. Due to this treatment’s increasing popularity and effi

ciency, there has been a sudden increase in these proton treatment centers. Recently, 

more than 10 such proton treatment facilities have been launched world wide.

With the rising application of protons for the cure of patients, doctors want to 

use their unique ability to extract relevant information about the materials from the 

CT scans to create accurate treatment plans. There have been major improvements 
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in generating medical images but there still exist issues like low contrast, noise, and 

other imaging ambiguities which makes the identification difficult. Currently a physi

cian manually defines the boundaries and regions of interest in individual scans to 

create the proton treatment plans. However, how to automate this task is not yet 

been explained. In this case, it brought me the idea to investigate the possibility of 

automating the regions and material identification process by using different image 

segmentation techniques. What are the unique characteristics of each materials and 

region and how can we use them for segmenting the dicom images. Image segmen

tation’s primary goal is to locate objects and boundaries by the means of allotting a 

tag to every pixel in an image such that pixels with the same tags share some genuine 

visual attributes, which is exactly what the main purpose of this thesis is.

1.3 Purpose

For the forward dose calculation, it is essential to assign different regions in the CT 

images to different materials, in this case to different human tissues. The simplest way 

to do this is to define HU intervals and assign them to a specific tissue, as shown in 

table 1.1, which is the conversion table for a pediatric head phantom with 9 different 

tissue types. However, as can be seen in Figure, this assignment is not always perfect 

due to the existence of noise and artifacts in the CT images.

Automated image segmentation, whose main intent is to extricate the object 

boundary features automatically, plays a significant role in finding the boundaries 

between different tissue regions and assigning pixels inside these boundaries to the 

correct materials. A crucial issue is to segment regions with boundary inadequacies, 
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which means either there are lacking edges and/or absence of texture contrast amidst 

regions of interest (ROIs) and background. To concentrate on this issue, various 

segmentation methods have been recommended and implemented in this thesis, with 

many of them procuring rather acceding results.

'Tab. 1.1: Tissue Categorization according to Hounsfield Unit Value

HU Interval Tissue

[-1000, -800)

[-800,-700) 

[-700,40)

[40,90)

[90,150)

[150,200)

[200,1000)

[1000,2000)

air

sinus

soft tissue

brain

spinal disc 

trabecular bone 

cortical bone 

tooth dentin

> 2000 tooth enamel

10



2. IMAGE SEGMENTATION

2.1 Introduction

In computer vision, image segmentation is the process of partitioning a digital image 

into multiple segments (sets of pixels, also known as superpixels) [3]. Segmentation’s 

primary aim is to segregate the pixels of an image into clusters so that it can greatly 

correspond with the objects in an image and this is essentially the beginning of 

any application related to automated computer vision. With time, the analysis on 

image segmentation has received an immense rate of concentration. There are jillions 

of segmentation techniques, but none of them can be acknowledged as suitable for 

numerous images, each method works particularly well for a specific type of image. 

There is no method approved extensively for image segmentation and so it remains a 

crucial problem to pin-point a specific method for different applications.

On the basis of 2 key attributes of intensity values, image segmentation methods 

can be broadly divided into two groups:

• Detecting Discontinuity - This group divides an image by identifying the sudden 

transitions in intensity. Edge detection technique falls in this group of image 

segmentation algorithms.

• Detecting Similarity This group divides an image into sections that are identical 
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based on a set of predefined norm. Thresholding, region growing, region splitting 

and merging techniques fall in this group of image segmentation algorithms.

2.1.1 Applications of Image Segmentation

Some of the real-world applications of image segmentation [3] are:

• Medical imaging

— Locate tumors and other pathologies

— Measure tissue volumes

— Diagnosis, study of anatomical structure

• Object Detection

— Locate objects in satellite images (roads, forests, etc.)

- Pedestrian detection

— Face detection

— Brake light detection

• Recognition Tasks

— Face recognition

— Iris recognition

— Fingerprint recognition

• Traffic control systems

• Machine vision

12



• Agricultural imaging crop disease detection

• Content-based image retrieval

There are numerous algorithms and techniques, which have evolved over the years 

for image segmentation. But to use them efficiently, these methods should be inte

grated with the field’s specific knowledge so as to resolve the respective segmentation 

problems accurately.

2.2 Image Segmentation Methods

2.2.1 Edge Detection Methods

Edge detection pertains to the routine of classifying and detecting the sudden breaks 

in an image. These breaks or gaps are unexpected shifts in pixel intensity which 

differentiate the boundaries of objects in a scene. Traditional edge detection methods 

concern convolution of an image with a operator, which is designed to be susceptible 

to huge gradients in the image while restoring values of zero in uniform regions.

Below mentioned are some of the variables which are involved in determining the 

edge detection operator:

• Edge orientation: This variable is responsible for determining the native direction 

in which it is most responsive to edges. This operator can be optimized as per 

the needs of the application to search for diagonal, horizontal or vertical edges.

• Noise environment: Noise as well as edges contain high-frequency content so 

edge detection gets difficult in noisy images. If we try to reduce the noise, the 

result is an image with blurred and distorted edges. So to detect edges in noisy 
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images, the operators selected are normally larger in extent which can equate 

enough data to deduct localized noisy pixels.

• Edge structure: Edge detection relies on the step change in intensity but in 

some cases edges might not have this. Effects such as refraction or poor focus 

can return objects with boundaries determined by a successive fluctuation in 

intensity. The operator should be selected in a way that it is susceptible to a 

successive change in those cases.

Edge detection can be achieved in numerous ways. However, other techniques may 

be classified into two categories:

• Gradient: This technique detrmines the edges by searching for the largest and 

least in the first derivative of the image.

• Laplacian: To find edges, laplacian technique looks for zero crossings in the 

second derivative of the image. The shape of the edge is like a 1-D shape of a 

ramp and computing the derivative of the image can accentuate its location.

Roberts Cross Operator

The Roberts Cross operator is an efficient way to estimate, two dimensional spatial 

gradient calculation on an image. At individual points in the output, pixel values 

describe the predicted absolute magnitude of the spatial gradient of the input image 

at that point. The operator comprises of a couple of 22 convolution kernels and one 

kernel is obtained by rotating the other by 90 degrees. This is very much the same as 

the Sobel Operator. These kernels are optimized maximally for edges running at 45 
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degrees to the pixel grid with one kernel each representing for the two perpendicular 

orientations. You can apply these kernels to the input image either separately which 

would create distinct calculations of the gradient component in each orientation or ' 

in combined form which would find the absolute magnitude of the gradient at each 

point and the orientation of that gradient.

The gradient magnitude is given by:

|G| = VG(x2) + G(y2) (2.1)

but in majority cases an approximate magnitude is computed using:

|G| = |(7ie| + |(7y| (2.2)

which is much faster to compute.

Prewitt''s Operator

Prewitt operator is identical to the Sobel operator and is good for determining the 

vertical and horizontal edges in images.

Laplacian of Gaussian (LoG)

The Laplacian is a two dimensional isotropic measure of the second spatial derivative 

of an image. The primary reason for using Laplacian for edge detection is its ability 

to focus on the regions of rapid intensity change. In majority scenarios, a smoothed 

image which has been processed using a Gaussian Smoothing filter is fed to the 

Laplacian to lower its receptivity to noise. This operator usually takes one gray level 

image as input and generates new gray level image as output.
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Canny’s Edge Detection Algorithm

The Canny edge detection algorithm is known to many as the optimal edge detector. 

The number one and most evident reason for its popularity is the low error rate. The 

first criterion is that edges appearing in images are not hidden and that it generates 

a NO response to non-edges. The next criterion is that the edge points need to be 

localized properly, which means, there should be minimal space amidst the edge pixels 

obtained by the detector and the actual edge in the image. A third criterion is to have 

a single response to each individual edge. The major reason behind implementation 

of this criterion was the inability of first 2 in completely eliminating the likelihood of 

several responses to an edge. Based on these criterions, canny edge detector starts 

by smoothing the image so as to get rid of the noise. The next step is to find the 

image gradient to accentuate the regions with high spatial derivatives. Once these 

regions are highlighted, canny walks along these regions and eliminates the pixels 

which are is not at the maximum. Additionally, the gradient array is compressed 

using hysteresis. Hysteresis is a technique which traces along the leftover pixels that 

have not been removed earlier. Hysteresis utilizes 2 thresholds: low threshold which 

sets the magnitude to zero (non-edge) if its lower than this value and a high threshold 

which sets the magnitude as an edge if its above this value. Also this magnitude is 

set to zero if it is within the low and high thresholds, except if there is a path from 

this pixel to a pixel with a gradient above higher threshold.

Below mentioned are the steps to implement this algorithm: ■

1. Smooth the image with a Gaussian filter

2. Measure the gradient magnitude and orientation using finite-difference approxi-
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Fig. 2.1: Canny’s Edge. Detection Algorithm

mations for the partial derivatives

3. Assign non-maxima suppression to the gradient magnitude

4. Use the double thresholding algorithm to detect and link edges

Some of the factors which can affect the efficiency and computation time of Canny 

edge detector are:

• Size of the Gaussian filter: Selecting a smoothing filter in the initial stage of 

the algorithm is very important as it directly affects the results. A small filter 
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results in minor blurring and detection of small, sharp lines i.e. the weak edges. 

On the contrary, a large filter leads to more blurring by smudging out the given 

pixel’s value over considerable, area of the image. This kind of blurring might 

not be useful for weak or small edges but provide acceptable results in detecting 

larger, smoother edges like for the edges of a rainbow.

• Thresholds: Using 2 thresholds with hysteresis provides more extensibility to 

the single-threshold approach, but the conventional issues of the thresholding 

approaches are still applicable. If chosen a threshold that is too high, would result 

in missing important information. While setting a threshold that is too low will 

lead to false identification of irrelevant information like noise to be important. 

It is tough to identify a common threshold that would work effectively on all 

images. There doesn’t yet exist a proved and verified approach to this problem.

2.2.2 Thresholding Method

Threshold based image segmentation is considered as a plain yet adept approach, 

especially for segmenting images that have light objects on dark background. This 

method depends on imagespace regions i.e. on the attributes of image. Thresholding 

techniques selects an appropriate threshold T, which separates the image pixels into 

numerous regions and isolates the objects from background. Let’s consider a pixel (x, 

y) whose intensity if higher than or equal to threshold value i.e., a(x, y) T would be 

counted as a part of object, if not then the pixel is considered as a part of the back

ground. Depending on how we choose the thresholding value, thresholding methods 

can be classified into 2 groups: global and local thresholding. When the threshold
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Threshold Rule
* >

Segmented
Image

Fig. 2.2: Threshold Based Segmentation Algorithm

value T is consistent, the method is called global thresholding else it is considered as 

local thresholding. Primary limitation of global thresholding methods is the failure 

to give accurate results in case of uneven background illumination. This limitation 

is not visible in local thresholding due to the use of multiple thresholds. Normally, 

selection of thresholds is done interactively but development of automated threshold 

selection algorithms is also achievable. Drawback of this threshold based method is 

that, we can create only 2 classes so it cannot be used in segmenting multichannel 

images. Moreover, due to its sensitivity to noise, thresholding does not consider the 

spatial characteristics of an image, as both of these features lead to the corruption of 

the image histogram making the division more difficult.

For example, given the histogram of a 2-D medical image, for example I(x,y) , 

we can define a simple threshold rule to classify bone and soft tissue or a compound 

threshold rule to classify brain:
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If, l(x,y) > T1 => Bone 
If, l(x,y) < TO => Soft Tissue 
If, TO < l(x,y) < T1 => Brain

Fig. 2.3: Threshold Example

2.2.3 Independent Component Analysis

It is one of the most dexterous techniques used to isolate the independent sources 

blended linearly in several sensors. For example, let’s consider the recording elec

troencephalograms (EEG) on the scalp, this technique has the ability to separate the 

artifacts encapsulated in the EEG data and this is possible as these components are 

normally independent of each other. There are numerous algorithms implementing 

ICA but FastICA has proved to be one of the most apt and prominent algorithm for 

independent component analysis invented by Aapo Hyvrinen at Helsinki University 

of Technology [10]. FastICA is implemented using fixed-point iteration scheme which 

makes use of maximizing non-Gaussianity as a criterion for checking the statistical 

independence. However, it is recommended to perform some preprocessing on the 

data before applying this ICA algorithm. Next section explains in brief about this 

algorithm and the preprocessing techniques, see [4] used to make the ICA estimation 

simpler and better conditioned.

FastICA Algorithm: Preprocessing for ICA

1. Centering: The most fundamental and essential preprocessing steps is centering 

x, i.e. subtract the mean B{x} from the observed variable x = As so it has 
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zero mean. By doing so, the sources s also become zero mean because E?{x} = 

A E{s} = 0. When the mixing matrix A is available, E{s} can be estimated to 

be A_1E{x}.

Centering is performed purely to clarify the ICA algorithms: It should not be 

assumed that the mean could not be approximated. After approximating the 

mixing matrix A with centered data, the approximation can be completed by 

adding the mean vector of s to the centered approximates of s. The mean vector 

of s is calculated by A"1!!!, where m is the mean that was subtracted in the 

preprocessing.

2. Whitening:

Second step in preprocessing rule of ICA is whitening the recognized variables. 

To be more precise, before applying the ICA algorithm and after centering, this 

recognized vector x is transformed linearly to attain a new vector x that is 

white, which means that its components are independent and their variances 

equal unity. To be precise, the covariance matrix of x would be equal to identity 

matrix:

£?{xxr} = I.

The whitening transformation is consistently achievable. One of the well-known 

whitening method is the eigen-value decomposition (EVD) of the covariance 

matrix E{xxT} = EDEr, where E is the orthogonal matrix of eigenvectors of 

B{xxr} and D is the diagonal matrix of its eigenvalues, D = diag(di,.... dn). 

Note that E{xx7} can be approximated in a typical manner from the attainable
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sample x(l), ...,x(7'’). Whitening can be executed now by

x = ED“^2Erx

where the matrix D"1/2 is calculated by a straightforward component-wise op

eration as D-1/2 = diag(df^2,dn1^2)- It is simple to verify now F{xxT} = I. 

Whitening alters the mixing matrix into a new matrix, A:

x = ED-1/2ErAs = As

The whitening efficacy vests in the case that the new mixing matrix A is orthog

onal. This can be observed from

E{x!x't} = I = A'E{sst}A't = A'A't

From the above equation, it is clear that the number of attributes to be estimated 

are decreased due to the whitening process. Rather than assessing n2 parameters, 

that is, members of the original matrix A, we only have to assess the latest, or

thogonal mixing matrix A. An orthogonal matrix consists of n(n — l)/2 degrees 

of freedom. For example, in 2-D an orthogonal transformation is ascertained 

by one angle parameter. In greater dimensions, an orthogonal matrix consists 

of about halved the number of attributes of an arbitrary matrix. Thus it can 

be deduced that whitening solves the problem of ICA atleast partially. Due to 

this method’s simplicity and typical steps which axe easier than any other ICA 

algorithms, it is an excellent idea to recede the complications of the problem. 

It would also be a good idea to recede the dimension of the data when we are 
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applying whitening. Accordingly we examine the eigenvalues dj of E{xxr} and 

eliminate the ones that are very small, which is normally attained by the sta

tistical technique of principal component analysis. This also helps sometimes in 

reducing noise. Moreover, reducing dimensions also solves the issue of excessive 

learning, which can be occasionally noticed in ICA.

FastICA Algorithm

FastICA is based on a fixed-point iteration scheme for finding a maximum of the 

nongaussianity of wTx, as measured in preprocessing [4]. This nongaussianity can 

also be obtained by using an approximative Newton iteration. The derivative of 

the nonquadratic function G is designated by g; for example the derivatives of the 

functions are:

gi(u) = tanh(aiu), g<2(u) — uexp(—u2/2)

where 1 < < 2 is some acceptable constant, usually picked as al=l. The

elementary process of the FastICA algorithm is as mentioned below:

1. Select a primary (e.g. random) weight vector w.

2. Let w4’ = N{xp(wTx)} — E{g'{wTx.')}w

3. Let w = w+/||w+||

4. If not converged, go back to 2.

It should be observed here that, the original and latest values of w point in the 

similar path, in case of convergence, i.e. their dot-product is (approximately) equal 

to 1. Taking into consideration that w and —w represent the same path, it is not 

23



compulsory for the vector to converge to an unique point,. The reason for this is the 

restriction of defining the independent components only up to a multiplicative sign. 

The assumption of prewhitened data should also be registered here.

FastICA can be derived in following mentioned way. It should be observed here 

that the maxima of the approximation of the negentropy of wTx are acquired at 

definite optima of _E{G(wrx)}. As per the Kuhn-Tucker terms, the optima of 

jE{G(wtx)} under the constraint £?{(wtx)2} = ||w||2 = 1 are acquired at points 

where

£{xp(wTx)} - = 0

We will attempt to resolve this equation by Newton’s method. Designating the 

function on the left hand side by F, we attain its Jacobian matrix JrF(w) as

JR(w) = E{xxV(wTx)} - fil

To clarify the inversion of this matrix, we choose to estimate the first term. 

As the data is sphered, an acceptable estimation seems to be jE{xxt5'(wtx)} rj

xxr }£?{#'(wrx)} = 2?{(/(wTx)}I. Hence the Jacobian matrix reduces into a di

agonal, and can readily be inverted. Thus we acquire the approximative Newton 

iteration as:

w+ = w - [£{xs(wtx)} - ^w]/[B{^(wtx)} - /?]

This method can additionally be reduced by multiplying both sides by:

0 - EVW}

After algebraic simplication this gives the FastICA iteration.
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To be practical, estimates should be placed in place of expectations in FastICA. 

The natural estimates are of course the corresponding sample means. To be optimal, 

we should use all available data, but typically this is not considered as a very neat 

choice because the computations may emerge as very challenging. Smaller samples 

can be used to estimate the averages, but its size might produce a reasonable effect 

on the precision of ultimate measures. It is recommended to choose sample points 

individually at every iteration. If the convergence is not acceptable, the sample size 

can be increased.

The computational complexity required to reach a given source extraction quality 

is put forward as a natural objective measure of convergence speed for BSS/ICA 

algorithms, see [7]. This FastICA technique is acknowledged as a gradient-based 

algorithm with constant step size. Its speed relies essentially on prewhitening and 

occassionally on initialization.
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3. RESULTS

3.1 Canny's Edge Detection

The primary aim of edge detection is to considerably decrease the quantity of data 

in an image, while maintaining the structural features to be utilized for additional 

image processing [1], Canny Edge detection algorithm has proved to be an optimal 

technique to achieve this goal. As explained in previous section there are many edge 

detection operators out there but Canny’s edge detection algorithm has proved to 

be providing better performance than any of them under almost all scenarios. Even 

under noisy conditions, Canny has exhibited better results than LoG, Prewitt, Sobel 

and Robert’s Operator. Canny is computationally more exorbitant as opposed to 

these techniques but also gives excellent results in detecting the weakest edges.

The performance of the Canny algorithm relies massively on the pliable param-

Fig. 3.1: Edge Detection Techniques Comparison - Result Images
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Sobel Operator Prewitt Operator ?Laplacian of 
Gaussian1 (LoG)

•Canny Edge 
Detection

i Moro sensitive to the 
diagonal edge than 
to the 
horizontal and 
vertical edges

Computational Time: 4.9 sec

i
More sensitive to 
horizontal and 
vertical 
edges.

Determine if the 
pixels of image are 
in the dark areas or 
bright area of the 
known edge

Computational Time: 
2 sec

Not susceptible to 
noise interference 
enablesits 
ability to detect true 
weak edges

Computational Time 
4.3 sec

Fig. 3.2: Edge Detection Technique Comparison

Fig. 3.3: Canny Edge Detection Result: Slice 94, Thickness 1.25mm, Computational Time: 4.3 sec
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Fig. 3.4: FastICA Result: Slice 94, Thickness 1.25mm, Computational Time: 6 sec

eters, <r, which is the standard deviation for the Gaussian filter, and the threshold 

values, T1 and T2. a is directly proportional to the size of the Gaussian filter, as 

the value for a increases so does the Gaussian filter. Thus a user can alter the algo

rithm by tuning these parameters to comply to different environments. But the least 

computational complexity that we can achieve in Canny Edge Detection algorithm is 

O(n2).

3.2 Independent Component Analysis (ICA)

The computational complexity essential to attain a given source extraction quality 

depends on the range of convergence speed for ICA algorithms. FastICA uses fixed- 

point iteration scheme which has been proved in individual researchs’ to be 10-100 

times quicker than traditional gradient descent methods for ICA. FastICA method’s 

speed relies heavily on prewhitening and sometimes on initialization. Taking this into 

consideration, the least complexity that can be achieved using FastICA is quadratic.
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Fig. 3.5: Threshold Result: Slice 94, Thickness 1.25mm, Computational Time: 0.3 sec

3.3 Threshold based Image Segmentation

This method was implemented using pre-defined classes of thresholds which are con

stant for the respective materials like for e.g. outer cortical bone falls in the range 

of 1500-2220 HU (Hounsfield unit). With the initial thresholding, I was able to get 

clear enough image, where all regions and edges were easily separable. In these im

ages, there were some regions which had minute patches of different materials. Some 

patches were big and some were as small as one pixel. The initial task was to remove 

the single pixel/salt and pepper non-uniformities, at the end of which I was able to 

get better, cleaner picture. Below are the results for the same:

Due to the unique ability of canny edge detection method to detect weak edges and 

low computational time, it was used as a combination with Threshold based method. 

Due to the this hybrid technique, I was able to clean-up some more minute patches 

present near the nose and sinus regions. Also the inner cortical bone edges became 

more continuous and clear. Below is the result of this hybrid technique:
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Fig. 3.6: Canny 4- Threshold Result: Slice 94, Thickness 1.25mm, Computational Time: 4.6 sec
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4. FUTURE WORK

With current implemented methods, there are still some minute artifacts present in 

few regions which don’t belong to the respective materials in that area. For. example 

there are small patches of brain being displayed near the soft tissue, which is totally 

incorrect as there is no soft tissue surrounding the brain but just the inner cortical 

bone. Due to these minute patches, regions are showing some nonuniformities. In 

the final thresholded image, I was able to remove the salt and pepper noise which 

helped to clean-up the single pixel non-uniformities. The future tasks here would 

be to clean-up the bigger patches so we can establish solid regions and extend the 

incomplete edges.

One of the methods to achieve this goal would be traversing and backtracking 

algorithm. To give a brief explanation, say you want to create the brain as one 

solid region so you have no pixels inside it belonging to any different material or 

region. Start by looking at the 4 neighbors of the current location/pixel, if you find 

a pixel that belongs to the brain, jump there and make it your new position to check 

in 4-neighborhood. If you don’t find a pixel that belongs to the region, return and 

start searching again from your previous location. Thus there are 3 steps to this 

algorithm: check, jump, and return. To implement the checking part, we can follow a 

pre-specified order to verify the 4-neighborhood. Say the order is right, down, left and 
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top. First check right, if it is the material you are searching for, jump to that location, 

if not check down and so on. To return back to your previous location, you need to 

keep track of the location, wherein Backtracking comes into picture. Before you jump 

to the next location, you need to push the location of the pixel/square you are in and 

about to leave so you can return. You also need to keep track of the locations you 

have already traversed so that you don’t get stuck in a loop. For this you can create a 

map where you can create chalk marks on the locations you have already traversed to. 

For return, if you complete all four checks and there is no where to go, you read the 

last entry on the stack (pop it) and set it to the current coordinates. To implement 

backtracking, stack is the best way to go but Matlab doesn’t have one. In this case 

one of the options is to import the java library java.util.*  and create a stack object 

as stack = Stack, which has in-built push-pop functions and can be used directly.

The above mentioned method is one of the many ways to accomplish the goals 

of establishing solid regions and extending incomplete edges, but its not the only 

option. This technique is provided as a starting point, which can be extended further 

to attain solid regions in the CT Scan images.
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APPENDIX A

CODE FOR THE IMAGE SEGMENTATION TECHNIQUES
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Canny Edge Detection
A = dicomread(1 DICOM Image for Edge Detection'); 

tic;
% Canny edge detection for A
[Cl, Ctl] = edge(A,'canny',[],1.0);

% Recompute lowering both automatically computed
% thresholds by fraction k
k = 0.75;
Cl = edge (A,1 canny',k*Ctl,  1.0) ;

canny = figure (' Name1, 1 Canny ■); 
iptsetpref(* ImshowBorder1,'tight'); 
imshow(Cl, 1InitialMagnification' ,100) ; 
dicorawrite(Cl,'Name of dem file you want to create'); 
toe;
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Threshold Based Image Segmentation
function picOut » Thresholds(picture)
corticalthreshl =1500;
coreicalthreah2=2220;
incarticalthreshl » 1300;
incortlcalthresh2"1500;
trabecularthreshl =■ 1200;
trabecularthresh2c3 1300;
bralnthreshl - 1060;
brainchresh2= 1200;
softtissuethreshl =■ 1030;
sofEci33uethresh2= 1060;
sinus threshl* 3 200;
sinusthresh2= 700;

tic;

corticalLayer “ picture > corticalthreshl
& picture < corticalthresh2;

innercortical = picture > incarticalthreshl
& picture < incorticalthresh2;

trabecularLayer = picture > trabecularthreshl
£ picture < trabecularthresh2;

brainLayer = picture > brainthreshl
& picture < brainthresh2;

softtissueLayer = picture > softtissuethreshl
& picture < softtissuethresh2;

sinus a picture < sinusthresh2
& picture > sinusthreshl;

layerl =■ corticalLayer * 192;
layer2 - innercortical * 192;
layer3 = trabecularLayer * 160;
layers “ brainLayer * 12B;
layers “ softtissueLayer • 96;
layers •=■ sinus * 0;

allLayers=layer6+layer5+layer3+layer4+layer2+layerl;

figure;lmshow(uinta(allLayers));
toe;
picOut~uint8(allLayers);

35



Hybrid: Canny Edge Detection + Threshold
function picOut = Hybrid^CannyEdge_Thre3holds(picture) 
corticalthreshl “1500;
carcicalthresh2^2220;
incorticalthreshl « 1300;
incorticalthresh2=i1500 ;
trabecularthreshl “ 1200;
trabecularthresh2=’ 1300;
brainthreshl = 1060;
brainthresh2=1 1200;
softtissuethresbl “ 1030;
sof ttissuethre3h2=’ 1060;
sinusthreshl" 200;
sinusthresh2=9 700;

tic;

corclcalLayer picture > corticalthreshl
& picture < corticalthresh2;

innercortical = picture > incorticalthreshl
& picture < incorticalthresh2;

trabecularLayer = picture > trabecularthreshl
& picture < trabecularthresh2; 

brainLayer = picture > brainthreshl
& picture < brainthresh2;

softtissueLayer = picture > softtissuethreshl
& picture < softtissuethresh2;

sinus = picture < sinusthresh2
& picture > sinusthresh1;

layerl “ corticalLayer * 192;
layer2 = innercortical * 192;
layer3 = trabecularLayer * 160;
layer4 = brainLayer * 128;
layers “ softtissueLayer * 96;
layers — sinus • 0;
layer7='Edge Detected Image1;

allLayers=layer6+layer5+layer3+layer4+layer2+layerl;

figure;imshow(uint8(allLayers));
toe;
plcOut^uintS(allLayers);
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