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Abstract
In this brief paper, we survey existing correctness definitions for concurrent persistent programs.
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1 Introduction

Non-Volatile Random Access Memory (NVRAM) is a new type of memory technology that
has recently hit the market. Its key feature is that it is persistent, like SSDs, but is fast
and byte-addressable, much like DRAM. This presents a huge paradigm shift from the
way persistence could be achieved in the past; techniques that worked well for sequential
block-granularity storage cannot be efficiently used with NVRAMs. Achieving persistence
with NVRAM has the potential to speed up applications by orders of magnitude.

However, before designing persistent algorithms for NVRAM, we must first answer a
more basic question: What does it mean for an algorithm to be persistent?

Despite algorithms relying on external storage for persistence for decades, the answer
to the above question is not clear in the context of faster, byte addressible NVRAM. In
particular, it is now realistic to require that virtually no progress be lost upon a crash, and
that a program be able to continue where it left off upon recovery.

The above requirement, while appealing, is in fact not very precise. Due to registers and
caches remaining volatile, individual instructions and memory accesses are applied to volatile
memory first, and are then persisted separately. If a system crash occurs between when an
instruction is executed and when its effect is applied to NVRAM, progress will inevitably
be lost. However, it is possible to define how much progress it is okay to lose, and at what
point in the execution we expect each instruction’s effect to be persisted. For example, we
can ensure no completed operation will be lost upon a crash.

In this brief survey, we discuss definitions of persistence that exist in the literature. As
this is an actively and quickly developing field of study, there are many different notations,
terminologies, and definitions that often refer to similar notions. We put these definitions into
the same terminology, and compare them to each other. Using this point of view, we arrange
the definitions into a hierarchy, based on the set of execution histories that satisfies every
definition. Interestingly, this hierarchy changes depending on specific model assumptions
made. We outline common model assumptions and illustrate their effect on these definitions.
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We note that this survey is meant to make sense of the various persistence definitions
and to guide researchers and algorithm designers when choosing which model and definition
to adopt. However, this survey does not cover the many different algorithms, techniques,
and applications that have been developed for NVRAM programming in recent years.

2 Model Assumptions

We consider a system of n asynchronous processes p1 . . . pn. Processes may access shared
base objects with atomic read, write, and read-modify-write primitives. Each process also has
access to local variables that are not shared with any other process. Objects (both local and
shared) may be volatile or non-volatile, which affects their behavior upon a crash.

A history is a sequence of events. There are three types of events: an invocation event
obj.invi(op, v) which invokes operation op on object obj by process pi with argument v, a
response event obj.resi(op, v) in which obj responds to pi’s invocation on op with return
value v, and crash events. A crash resets all the volatile local variables of the associated
process, or all volatile objects if all processes crashed.

A response res is said to match an invocation inv in H if obj, op, and i are the same for
both, and res is the next event in H|p after inv. An operation is said to be complete in H if
both its invocation and a matching response appear in H. Otherwise, if an operation was
invoked but was not completed, the operation is said to be pending.

Given a property P and a history H, P is said to be local if given a history H in which,
for every object O, H|O satisfies P , H also satisfies P .

In the full version of this paper [4], we discuss model variants that appear in the literature
and their implications on correctness conditions and implementations.

3 Property Hierarchy

In this section, we present hierarchies relating the existing properties to each other under
various model assumptions. A complete list of all formal definitions, including those omitted
from this short paper [2, 3, 6, 7, 10], and a more profound comparison among them can be
found in the full version [4].

3.1 Same Processes are Invoked

(a) Same Processes (b) New Processes

Figure 1 Hierarchy of definitions when the same processes and new processes are allowed to be
invoked after a crash.
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In this subsection, we assume that the model allows the same processes to be invoked
after a crash. Under this model, the existing definitions can be arranged into the hierarchy
that is presented in Figure 1(a). The hierarchy is based on the sets of execution histories
that are allowed by each of the definitions; in Figure 1(a), each definition’s set of allowed
histories is represented by its labelled region.

To understand this hierarchy, it is useful to consider how each correctness condition
allows linearizing a given history. The correctness conditions differ by where they allow
each pending operation’s completion to be placed. Berryhill et al. [5] presented recoverable,
persistent, and strict linearizability in this light.

There are several points in a given history with respect to which it may make sense to
complete such a pending operation. One point of reference is the crash event that immediately
follows invop in H|p. Another is the next invocation by p in the history. Finally, we may
also consider the next invocation in H that occurs in the same object as op.

Strict linearizability [1] is the strongest (or strictest) condition, in that it allows for the
smallest set of histories. It requires every pending operation to be eliminated or completed
before the crash. In addition, it is local, meaning that every object that is built from
strictly linearizable objects is also strictly linearizable. To achieve this guarantee, one may
think of running a recovery operation directly after the crash, and before executing the
program. However, it might be too restrictive; in some scenarios, it makes sense to relax this
requirement to allow recovery (alternatively; the completion of pending operations) to occur
later in the execution.

While strict linearizability requires completions to be placed before the next crash event,
persistent atomicity [8] instead completes operations before the next invocation by the same
process. Note that, by the definition of legal histories, the next invocation by the same
process can never be placed before the current crash, and therefore persistent atomicity is
weaker than strict linearizability (i.e. the set of persistent histories contains the set of strict
histories). Due to this relaxation, it is not local. On the positive side, persistent atomicity
may be easier to implement than strict linearizability, since an operation only needs to be
recovered (if ever) when the same process invokes another operation.

Berryhill et al. [5] presented the recoverable linearizability definition, which is the most
relaxed one. It also requires pending operations to be completed (or removed) before the
crash, but practically, to “take effect” before the next invocation of the same process on the
same object. Therefore, it allows the most extensive set of histories.

3.2 New processes are invoked
In this subsection, we assume that the model does not allow the same processes to be invoked
after a crash, and new processes are spawned instead. This model was first suggested by
Izraelevitz et al. [9], as a simplification to previous models. Under this simplification, the
definitions that deal with execution continuations do not make sense. The hierarchy in this
model is presented in Figure 1(b).

When the same processes are never invoked after a crash, strict linearizability [1] still
remains the strongest condition as it requires every pending operation to be eliminated or
completed before the crash. Recall that the difference between persistent atomicity [8] and
recoverable linearizability [5] is only in recoveries by the same process, and thus these two
definitions have the same meaning as durable linearizability [9] which requires getting a
linearizable history after removing all crash events from the original history.

By disallowing the executions of the same processes, durable linearizability, persistent
atomicity and recoverable linearizability are local under this restriction. Buffered durable
linearizability [9] is similar to the others, but additionally allows operations that were
completed before the crash to be removed. It therefore is the weakest definition.
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