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Abstract
The implementation of registers from (potentially) weaker registers is a classical problem in the
theory of distributed computing. Since Lamport’s pioneering work [14], this problem has been
extensively studied in the context of asynchronous processes with crash failures. In this paper, we
investigate this problem in the context of Byzantine process failures, with and without process
signatures. In particular, we first show a strong impossibility result, namely, that there is no wait-
free linearizable implementation of a 1-writer n-reader register from atomic 1-writer (n− 1)-reader
registers. In fact, this impossibility result holds even if all the processes except the writer are given
atomic 1-writer n-reader registers, and even if we assume that the writer can only crash and at most
one reader is subject to Byzantine failures. In light of this impossibility result, we give two register
implementations. The first one implements a 1-writer n-reader register from atomic 1-writer 1-reader
registers. This implementation is linearizable (under any combination of Byzantine process failures),
but it is wait-free only under the assumption that the writer is correct or no reader is Byzantine –
thus matching the impossibility result. The second implementation assumes process signatures; it is
wait-free and linearizable under any number and combination of Byzantine process failures.
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1 Introduction

We consider the basic problem of implementing a single-writer multi-reader register from
atomic single-writer single-reader registers in a system where processes are subject to
Byzantine failures. In particular, (1) we give an implementation that works under some
failure assumptions, and (2) we prove a matching impossibility result for the case when these
assumptions do not hold. We also consider systems where processes can use unforgeable
signatures, and give an implementation that works for any number of faulty processes. We
now describe our motivation and results in detail.

1.1 Motivation
Implementing shared registers from weaker primitives is a fundamental problem that has
been thoroughly studied in distributed computing [3, 4, 5, 8, 12, 14, 16, 17, 18, 19, 20, 21, 22].
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In particular, it is well-known that in systems where processes are subject to crash failures,
it is possible to implement a wait-free linearizable m-writer n-reader register (henceforth
denoted [m, n]-register) from atomic 1-writer 1-reader registers (denoted [1, 1]-registers).

In this paper, we consider the problem of implementing multi-reader registers from single-
reader registers in systems where processes are subject to Byzantine failures. In particular,
we consider the following basic questions:

Is there a wait-free linearizable implementation of a [1, n]-register from atomic
[1, 1]-registers in systems with Byzantine processes?
If so, under which assumption(s) such an implementation exist?

The above questions are also motivated by the growing interest in shared-memory or
hybrid systems where processes are subject to Byzantine failures. For example, Cohen and
Keidar [6] give f -resilient implementations of several objects (namely, reliable broadcast,
atomic snapshot, and asset transfer objects) using atomic [1, n]-registers in systems with
Byzantine failures where at most f < n/2 processes are faulty. As another example, Aguilera
et al. use atomic [1, n]-registers to solve some agreement problems in hybrid systems with
Byzantine process failures [1]. Moreover, Mostéfaoui et al. [15] prove that, in message-passing
systems with Byzantine process failures, there is a f -resilient linearizable implementation of
a [1, n]-register if and only if at most f < n/3 processes are faulty.

1.2 Description of the results
To simplify the exposition of our results, we first state them in terms of two process groups:
correct processes that do not fail and faulty ones. We show that in a system with Byzantine
failures the following impossibility and possibility results hold. For all n ≥ 3:
(A) If the writer and some reader (even if only one of them) can be faulty, then there is no

wait-free linearizable implementation of a [1, n]-register from atomic [1, n− 1]-registers.
(B) If the writer or some readers (any number of them), but not both, can be faulty,

then there is a wait-free linearizable implementation of a [1, n]-register from atomic
[1, 1]-registers.

The case n = 2 is special: we give a wait-free linearizable implementation of a [1, 2]-register
from atomic [1, 1]-registers that works even if the writer and readers can be faulty.

This simple version of the results, however, leaves several questions open. Intuitively,
this is because the above results do not distinguish between the different types of faulty
processes (recall that, by definition, Byzantine failures encompass all the possible failure
behaviours, from simple crash to “malicious” behaviour). For example we may ask: what
happens if we can assume that some processes (say the writer) are subject to crash failures
only, while some other processes (say the readers) can fail in “malicious” ways? Is a wait-free
linearizable implementation of a [1, n]-register from atomic [1, 1]-registers now possible?

Note also that the above results consider linearizability and wait-freedom (intuitively,
“safety” and “liveness”) as an indivisible requirement of a register implementation. But it
can be useful to consider each requirement separately. For example, what happens if we
want to implement a [1, n]-register with the following properties: (1) it is always safe (i.e.,
linearizable) and (2) it may lose its liveness (i.e., it may lose its wait-freedom by “blocking”
some read or write operations) only if some specific “pattern/types” of failures occur?

To answer such questions, we now consider linearizability and wait-freedom separately,
and we partition processes into three separate groups: (1) those that do not fail, called correct
processes, (2) those that fail only by crashing, and (3) those that fail in any other way, called
malicious processes. In systems with a mix of such processes, we prove the following:
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(1) For all n ≥ 3, there is no wait-free linearizable implementation In of a [1, n]-register from
atomic [1, n− 1]-registers, even if we assume that the writer can only crash and at most
one of the readers can be malicious.

In fact, we show that this impossibility result holds even if all the processes except the
writer are given atomic [1, n]-registers that all processes can read; so the writer is the only
process that does not have an atomic [1, n]-register.

(2) For all n ≥ 3, there is an implementation In of a [1, n]-register from atomic [1, 1]-registers
such that:

In is linearizable, and
In is wait-free if the writer is correct or no reader is malicious.1

Note that this implementation guarantees linearizability, no matter which processes fail and
how they fail (even if most processes are malicious). However, it guarantees wait-freedom
only if the writer is correct or no reader is malicious.2 So if the readers are subject to crash
failures only, the implementation is wait-free even if the writer is malicious.
Note that the above impossibility and matching possibility results (1) and (2) imply
the simpler results (A) and (B) that we stated earlier for processes that are (coarsely)
characterized as either correct or faulty.

We also consider the problem of implementing a [1, n]-register from atomic [1, 1]-registers
in systems where processes are subject to Byzantine failures, but they can use unforgeable
signatures. In sharp contrast to the above results, we show that in such systems there is an
implementation of [1, n]-register from atomic [1, 1]-registers that is linearizable and wait-free
no matter how many processes fail and how they fail.

2 Result techniques

The techniques that we used to obtain our possibility and impossibility results (for the “no
signatures” case) are also a significant contribution of this paper.

To prove the impossibility result (1), one cannot use a standard partitioning argument:
all the processes except the writer are given atomic [1, n]-registers that all processes can read,
and the writer is given a [1, n− 1]-register that all the readers except one can read; thus it is
clear that the system cannot be partitioned.

So to prove this result we use an interesting reductio ad absurdum technique. Starting
from an alleged implementation of [1, n]-register from [1, n− 1]-registers, we consider a run
where the implemented register is initialized to 0, the writer completes a write of 1, and then
a reader reads 1. By leveraging the facts that: (1) in each step the writer can read or write
only [1, n− 1]-registers, (2) the writer may crash, (3) one of the readers may be malicious,
(4) and there are at least 3 readers, we are able to successively remove every read or write
step of the writer (one by one, starting from its last write operation) in a way that maintains
the property that some correct reader reads 1 and at most one process in the run is malicious.
As we successively remove the steps of the writer, the identity of the process that reads 1,
and the identity of the process that may be malicious, keep changing. By continuing this
process, we end up with a run in which the writer takes no steps, and yet a correct reader
reads 1.

1 That is, in every run of In where the writer is correct or no reader is malicious, correct processes
complete all their operations.

2 In fact it is slightly stronger than this: write operations are unconditionally “wait-free”, only read
operations may block if the condition is not met.

DISC 2022
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Note that this proof is reminiscent of the impossibility proof for the “Two generals’
Problem” in message-passing systems [7]. In that proof, one leverages the possibility of
message losses to successively remove one message at a time. The proof given here is much
more elaborate because it leverages the subtle interaction between crash and malicious
failures that may occur at different processes.

For the matching possibility result (2), we solve the problem of implementing a
[1, n]-register from [1, 1]-registers with a recursive algorithm: intuitively, we first give an al-
gorithm to implement a [1, n]-register using [1, n−1]-registers, rather than only [1, 1]-registers,
and then recurse till n = 2. We do so because the recursive step of implementing a
[1, n]-register using [1, n−1]-registers, is significantly easier than implementing a [1, n]-register
using only [1, 1]-registers. This is explained in more detail in Section 5.1.

3 Model Sketch

We consider systems with asynchronous processes that communicate via single-writer registers
and are subject to Byzantine failures. Recall that a single-writer n-reader register is denoted
as a [1, n]-register; the n readers are distinct from the writer.

3.1 Process failures
A process that is subject to Byzantine failures can behave arbitrarily. In particular, it may
deviate from the algorithm it is supposed to execute, or just stop this execution prematurely,
i.e., crash. To distinguish between these two types of failures, we partition processes as follows:

Processes that do not fail, i.e., correct processes.
Processes that fail, i.e., faulty processes. Faulty processes are divided into two groups:

processes that just crash, and
the remaining processes, which we call malicious.

3.2 Atomic and implemented registers
A register is atomic if its read and write operations are instantaneous (i.e., indivisible); each
read must return the value of the last write that precedes it, or the initial value of the
register if no such write exists. Roughly speaking, the implementation of a register from a
set of “base” registers is given by read/write procedures that each process can execute to
read/write the implemented register; these procedures can access the given base registers
(which, intuitively, may be less “powerful” than the implemented register). So each operation
on an implemented register spans an interval that starts with an invocation (a procedure
call) and completes with a corresponding response (a value returned by the procedure).

A register implementation is wait-free [2, 9, 13] if it guarantees that every operation
invoked by a correct process completes with a response in a finite number of steps.

3.3 Linearizability of register implementations
Unless we explicitly state otherwise, all the register implementations that we consider are
linearizable [10]. Intuitively, linearizability requires that every operation on an implemented
object appears as if it took effect instantaneously at some point (the “linearization point”)
in its execution interval.

As noted by [6, 15], however, the precise definition of linearizability depends on whether
processes can only crash, or they can also fail in a “Byzantine way”. We now explain this for
register implementations.
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In systems with only crash failures. It is well-known that a single-writer multi-reader
register implementation is linearizable if and only if it satisfies two simple properties. To
define these properties precisely, we first define what it means for two operations to be
concurrent or for one to precede the other.

▶ Definition 1. Let o and o′ be any two operations.
o precedes o′ if the response of o occurs before the invocation of o′.
o is concurrent with o′ if neither precedes the other.

We say that a write operation w immediately precedes a read operation r if w precedes r,
and there is no write operation w′ such that w precedes w′ and w′ precedes r.

Let v0 be the initial value of the implemented register, and vk be the value written by
the k-th write operation of the writer w (this is well-defined because we make the standard
assumption that each process applies operations sequentially).

▶ Definition 2 (Register Linearizability). In a system with crash failures, an implementation
of a [1, n]-register is linearizable if and only if it satisfies the following two properties:

Property 1 [Reading a “current” value] If a read operation r returns the value v then:
there is a write v operation that immediately precedes r or is concurrent with r, or
v = v0 and no write operation precedes r.

Property 2 [No “new-old” inversion] If two read operations r and r′ return values vk

and vk′ , respectively, and r precedes r′, then k ≤ k′.

In systems with Byzantine failures. The above definitions do not quite work for systems
with Byzantine failures. For example, it is not clear what it means for a writer w of an
implemented register to “write a value v” if w is malicious, i.e., if w deviates from the write
procedure that it is supposed to execute; similarly, if a reader r is malicious it is not clear
what it means for r to “read a value v”. The definition of linearizability for systems with
Byzantine failures avoids the above issues by restricting the linearization requirements to
processes that are not malicious. More precisely:

▶ Definition 3 (Register Linearizability). In a system with Byzantine process failures, an
implementation of a [1, n]-register is linearizable if and only if the following holds. If the
writer is not malicious, then:

Property 1 [Reading a “current” value] If a read operation r by a process that is not
malicious returns the value v then:

there is a write v operation that immediately precedes r or is concurrent with r, or
v = v0 and no write operation precedes r.

Property 2 [No “new-old” inversion] If two read operations r and r′ by processes that
are not malicious return values vk and vk′ , respectively, and r precedes r′, then k ≤ k′.

Note that if the writer is correct or only crashes, then readers that are correct or only crash
are required to read “current” values and also avoid “new-old” inversions. So in systems
where faulty processes can only crash, Definition 3 reduces to Definition 2.

Cohen and Keidar were the first to define linearizability for arbitrary objects in systems
with Byzantine failures [6], and their definition generalizes the definition of linearizability for
[1, n]-registers given by Mostéfaoui et al. in [15]. Definition 3 is consistent with both.

We now describe the results of this paper. Because of space limitations, some of the
proofs are omitted here; they can be found in [11].

DISC 2022
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4 Impossibility result

We now prove that in a system with n + 1 Byzantine processes, if the writer and one of
the n readers can be faulty, then there is no wait-free linearizable implementation of a
[1, n]-register from atomic [1, n− 1]-registers. In fact, by dividing faulty processes into those
that can only crash and those that can be malicious (as defined in Section 3), we show the
following stronger result.

▶ Theorem 4. For all n ≥ 3, there is no wait-free linearizable implementation of a
[1, n]-register from atomic [1, n− 1]-registers in a system with n + 1 processes that are
subject to Byzantine failures. This holds even if we assume that the writer of the implemented
[1, n]-register can only crash and at most one reader can be malicious.

Proof. Let n ≥ 3. Suppose, for contradiction, that there is a wait-free linearizable imple-
mentation I of a [1, n]-register R from atomic [1, n − 1]-registers, in a system where the
writer w of R can crash and one of the n readers of R can be malicious.

We now construct a sequence of executions of I that leads to a contradiction. In all these
executions, the initial value of the implemented R is 0, the writer w invokes only one operation
into R, namely a write of 1, and each reader reads R at most once (i.e., R is only a “one-shot”
binary register). Moreover, in each of these executions the writer is not malicious (it may
only crash) and there is at most one malicious reader; the other n− 1 readers are correct.
Since I is a linearizable register implementation and the writer of the register is not malicious,
these executions of I must satisfy Properties 1 and 2 of Definition 3.

Let S be the following execution of I (see Figure 1):
The writer w is correct.
All the readers take no steps.
The writer w invokes a write 1 operation on R. Let s0 denote the invocation step, and
let t0

w be the time when s0 occurs. This step is “local” to w, i.e., it does not invoke any
shared register operations.
During this write operation, w executes a sequence of steps s1, ..., sm such that each step
si is either the reading or the writing of an atomic [1, n− 1]-register. Let Ri denote the
register that w writes or reads in step si. Let ti

w be the time when si occurs.
Since I is a wait-free implementation and w is correct, w completes its write operation.
Let sm+1 denote the response step, and let tm+1

w be the time when sm+1 occurs. Like s0,
this step is also “local” to w.

▶ Definition 5. For all i, 0 ≤ i ≤ m + 1, the step si of the writer w is invisible to a reader x

if: (1) si is the invocation step s0, (2) si is the response step sm+1, (3) si is the reading of
an atomic register, or (4) si is the writing to an atomic register that is not readable by x.

Since there are n readers, and the registers that w uses are atomic [1, n − 1]-registers,
every write by w into one of these registers is invisible to one of the readers. So:

▶ Observation 6. For all 0 ≤ k ≤ m + 1, step sk is invisible to at least one of the n readers.

▶ Definition 7. For every k, 0 ≤ k ≤ m + 1, an execution of I has property Pk if the
following holds:
1. The writer w behaves exactly as in S up to and including time tk

w; then it crashes and
takes no steps after time tk

w. So, w executes steps s0, s1, . . . , sk and then crashes.
2. There is a reader x that is correct and such that:

Step sk is invisible to x.
After time tk

w, process x starts and completes a read operation on R that returns 1.
3. There is a set Z of n− 2 distinct readers that are correct and take no steps.
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Note that since n ≥ 3, the set Z is not empty. Also note that while the property Pk requires
the n− 1 readers in {x} ∪ Z to be correct, Pk does not restrict the behavior of the remaining
reader; in particular, it may be correct or malicious, and it may or may not take steps.

An execution of I with property Pk is shown in Figure 2. In this figure and all the
subsequent ones, correct readers are in black font, while the reader that may be malicious is
colored red; the steps that this process may have taken are not shown in the figure. The
“/∈ x” on top of a step si means that si is invisible to the reader x. The symbol ✖ indicates
where the crash of the writer w occurs.

▷ Claim. For every k, 0 ≤ k ≤ m + 1, there is an execution of I that has property Pk.

Proof. We prove the claim by a backward induction on k, starting from k = m + 1.

Base Case. k = m + 1. Consider the following execution denoted Am+1 (Figure 3):
The writer w behaves as in execution S up to and including time tm+1

w ; then it crashes.
A reader q is correct. After time tm+1

w , q starts a read operation on R. Since I is
a wait-free implementation, q completes its read operation. Since w is not malicious,
and the write operation by w immediately precedes the read operation by q, by the
linearizability of I, the read operation by q returns 1.
There is a set Z of n− 2 readers that are correct and take no steps, exactly as in S.
p is the remaining reader.

Since sm+1 is a response step, it is invisible to q. So it is clear that Am+1 has property
Pm+1.

Induction Step. Let k be such that 1 ≤ k ≤ m + 1. Suppose there is an execution Ak of
I that has property Pk (this is the induction hypothesis). We now show that there is an
execution Ak−1 of I that has property Pk−1. We consider two cases, namely, k > 1 and k = 1.

Case k > 1. Since execution Ak of I satisfies Pk, the following holds in Ak (see Figure 4):
The writer w behaves as in execution S up to and including time tk

w; then it crashes.
There is a reader q that is correct such that step sk is invisible to q. After time tk

w, q

starts and completes a read operation on R that returns 1.
There is a set Z of n− 2 readers that are correct and take no steps, exactly as in S.
p is the remaining reader.

Then the following execution Bk−1 of I also exists (Figure 5): Bk−1 is exactly like
Ak except that w crashes just before taking step sk (so Bk−1 is just Ak with the step sk

“removed”).
Bk−1 is possible because: (1) even though p may have “noticed” the removal of step

sk, p may be malicious (all other readers are correct in this execution), and (2) q cannot
distinguish between Ak and Bk−1 because sk is invisible to q, and p and all the readers in Z
behave as in Ak.

Since k > 1, Ak has a step sk−1 ̸= s0. There are two cases:
Case 1. sk−1 is invisible to q. Then Bk−1 is an execution of I that has the property Pk−1,

as we wanted to show.
Case 2. sk−1 is visible to q. Then sk−1 is invisible to p or to some reader in Z .
Let r be any process in Z . We construct the execution Cr

k−1 of I shown in Figure 6: Cr
k−1 is

a continuation of Bk−1 where, after the correct reader q reads 1, malicious p wipes out any
trace of the write steps that it has taken so far, and then a correct process r ∈ Z reads 1
(this is the only value that r can read, since correct q previously read 1). More precisely:
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Cr
k−1 is an extension of Bk−1.

After the correct reader q completes its read operation on R, q takes no steps.
All the readers in Z− {r} are correct and take no steps3.
After q completes its read operation, p resets all the atomic registers that it can write to
their initial values. Process p can do so because it may be malicious (all other readers are
correct in this execution). Let tr

p be the time when p completes all the register resettings.
A correct reader r starts a read operation on R after time tr

p. It takes no steps before
this read. Since I is a wait-free implementation, r completes its read operation. Since
w is not malicious and the read operation by correct q returns 1 and precedes the read
operation by r, by the linearizability of I, the read operation by r returns 1.

We can now construct the following execution Dr
k−1 of I (Figure 7). Dr

k−1 is obtained
from Cr

k−1 by removing all the steps of p. Despite this removal, q behaves the same as in
Cr

k−1 because q is now malicious. Correct r also behaves as in Cq
k−1 because it cannot see

the removal of p’s steps: in both Cr
k−1 and Dr

k−1, r does not “see” any steps of p. More
precisely in Dr

k−1:
w behaves exactly as in Cr

k−1.
p is correct and takes no steps. So all its registers retain their initial value.
All the readers in Z− {r} are correct and take no steps as in Cr

k−1.
q behaves the same as in Cr

k−1. This is possible because even though q may have “noticed”
the removal of p’s steps, q may be malicious (all other readers are correct in this execution).
After possibly malicious q “reads” 1, the correct reader r starts and completes a read
operation on R. Since r cannot see the removal of p’s steps, and q and all the readers in
Z− {r} behave the same as in Cr

k−1, r cannot distinguish between Dr
k−1 and Cr

k−1. So
the read operation by r returns 1 as in Cr

k−1.

Note that if sk−1 is invisible to process r, then the execution Dr
k−1 of I has property

Pk−1.
Recall that (1) the process r above is an arbitrary process in Z , and (2) sk−1 is invisible

to p or to some reader r′ ∈ Z. So there are two cases:
Subcase 2a. sk−1 is invisible to some reader r′ ∈ Z. In the above we proved that the

execution Dr′

k−1 of I has property Pk−1, as we wanted to show.
Subcase 2b. sk−1 is invisible to p. In this case we construct the continuation Er

k−1 of Dr
k−1

shown in Figure 8: after r reads 1, malicious process q wipes out any trace of the write
steps that it has taken so far (by reinitializing its registers), and then correct process p

applies a read operation to R. By wait freedom, this read operation by p must complete.
Since w is not malicious and correct r previously read 1, by linearizability, this read
operation by p must return 1.

Finally, we construct the execution F r
k−1 of I by removing all the steps of q from Er

k−1
(see Figure 9); so q (which was malicious in Er

k−1) is now a correct process that takes no
steps. Despite this removal, r behaves the same as in Er

k−1 because r (which was correct in
Er

k−1) may now be malicious. Moreover, correct p also behaves as in Er
k−1 because it cannot

see the removal of q’s steps: in both Er
k−1 and F r

k−1, p does not “see” any steps of q. So the
read operation by p returns 1 as in Er

k−1.
Note that, since sk−1 is invisible to p, F r

k−1 is an execution of I that has property Pk−1.

3 If n = 3, then the set Z− {r} is empty.
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Case k = 1. By the induction hypothesis, there is an execution A1 as follows (Figure 10):
The writer w behaves exactly as in S up to and including time t1

w; then it crashes.
After time t1

w, a correct reader q starts and completes a read operation on R that
returns 1. Furthermore, s1 is invisible to q.
There is a set Z of n− 2 readers that are correct and take no steps.
p is the remaining reader.

Then the following execution A0 of I also exists (Figure 11): A0 is like A1 except
that w crashes just before taking step s1 (so A0 is just A1 with the step s1 “removed”).
A0 is possible because: (1) even though p may have “noticed” the removal of step s1, p may
be malicious (all other readers are correct in this execution), and (2) q cannot distinguish
between A0 and A1 because s1 is invisible to q, and p and all the readers in Z behave as in A1.
Since s0 is an invocation step, it is invisible to q. It is now easy to see that execution A0 of I
has property P0, as we wanted to show. ◁

By the claim that we just proved, implementation I has an execution A0 with property P0.
By this property, in A0 process w crashes immediately after the invocation step s0 of its write
1 operation, and some correct reader x later reads the value 1. Since the invocation step s0 is
invisible to all the readers (because it does not involve writing any of the shared registers), there
is an execution of A′

0 of I where: (1) w does not take any step at all (so it is not malicious),
and (2) a correct reader x reads 1 exactly as in A0 (because no reader can distinguish between
A0 and A′

0). This execution A′
0 of I violates the linearizability of I. ◀

It is easy to verify that the above proof holds (without any change) even if all the readers
have atomic [1, n]-registers that they can write and all processes can read. Thus:

▶ Theorem 8. For all n ≥ 3, there is no wait-free linearizable implementation of a
[1, n]-register in a system of n + 1 processes that are subject to Byzantine failures such that:
ss

the writer w of the implemented [1, n]-register has atomic [1, n− 1]-registers, and every
reader has atomic [1, n]-registers, and
w can only crash and at most one reader can be malicious.

5 Register implementation algorithm

We now give an implemention of a [1, n]-register from atomic [1, 1]-registers in systems with
Byzantine process failures; this implementation is linearizable, and it is wait-free provided
the writer of the register or any number of the readers but not both can be faulty. More
precisely, it is a valid implementation as defined below.

▶ Definition 9. A register implementation is valid if it satisfies the following:
It is linearizable.
It is wait-free if the writer is correct or no reader is malicious.

Note that, when executed in a system where processes can only crash, a valid register
implementation is linearizable and wait-free (unconditionally).

5.1 Some difficulties to overcome
Note that in a system with Byzantine process failures, implementing a [1, n]-register from
[1, 1]-registers is non-trivial, even if the writer can only crash. To see this, we now illustrate
some of the issues that arise. First note that with [1, 1]-registers the writer cannot simul-
taneously inform all the readers about a new write. So different readers may have different



X. Hu and S. Toueg 36:11

views of whether there is a write in progress: some readers may not see it, some readers may
see it as still in progress, while other readers may see it as having completed. Thus readers
must communicate with each other to avoid “new-old” inversions in the values they read.
With non-Byzantine failures, readers can easily coordinate their reads because they can trust
the information they pass to each other. With Byzantine failures, however, readers cannot
blindly trust what other readers tell them.

For example, suppose a reader q is aware that a write v operation is in progress (say
because the writer w directly “told” q about it via the register that they share). To avoid
a “new-old” inversion, q checks whether any other reader q′ has already read v (because it
is possible that from q′’s point of view, the write of v already completed). Suppose some
q′ “warns” q that it has already read the new value v, and so q also reads v. But what if q′

is malicious and “lied” to q (and only to q) about having read v? Note that q may be the
only correct reader currently aware that the write of v is in progress (say because w is slow).
Now suppose that a reader q′′ that is not aware of the write of v also wants to read: if q′′

reads the old value of the register this creates a “new-old” inversion with the newer value
v that q previously read; but if q′′ reads v because q warns q′′ that it had read v, then q′′

may be reading a value v that was never written by the correct writer w: q itself could be
malicious and could have “lied” about reading v!

The above is only one of many possible scenarios illustrating why it is not easy to
implement a [1, n]-register from [1, 1]-registers when some readers can be malicious, even if
the writer itself is not malicious.

5.2 A recursive solution
To simplify this task, we do not directly implement a [1, n]-register using only [1, 1]-registers.
Instead, we first give an implementation In of a [1, n]-register that uses some [1, n−1]-registers
together with some [1, 1]-registers. Then, by replacing the [1, n−1]-registers with In−1 imple-
mentations, we get an implementation of the [1, n]-register that uses some [1, n− 2]-registers
and some [1, 1]-registers. By recursing down to n = 2, this gives an implementation of the
[1, n]-register that uses only [1, 1]-registers. In other words, we can implement a [1, n]-register
from [1, 1]-registers with a recursive construction that gradually reduces the number of
readers of the base registers that it uses (all the way down to 1). We now describe this
recursive implementation and prove its correctness.

5.3 Implementing a [1,n]-register from [1,n-1]-registers
Algorithm 1 gives an implementation In of a [1, n]-register that is writable by a process w

and readable by every process in {p} ∪Q, where p is an arbitrary reader and all remaining
n− 1 readers are in Q. We distinguish p from the other readers in Q because p and q ∈ Q

use different procedures for reading the implemented [1, n]-register. In uses two kinds of
registers: atomic [1, 1]-registers and implemented [1, n− 1]-registers. We will show that In is
valid under the assumption that the [1, n− 1]-register implementations that it uses are also
valid (and therefore linearizable).

Notation. Recall that if R is an atomic register, all operations applied to R are instantaneous,
whereas if R is an implemented register, each operation spans an interval of time, from an
invocation to a response. However, since we assume that the [1, n−1]-register implementations
that In uses are valid and therefore linearizable, we can think of each operation on an
implemented [1, n− 1]-register as being atomic, i.e., as if it takes effect instantaneously at
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Algorithm 1 Implementation In of a [1, n]-register writable by (an arbitrary) process w and
readable by the n processes in {p} ∪ Q, for n ≥ 2. It uses two [1, n − 1]-registers and some
[1, 1]-registers.

Atomic Registers
Rwp: [1, 1]-register; initially (commit, ⟨0, u0⟩)
For every processes q, q′ ∈ Q:

Rqq′ : [1, 1]-register; initially ⟨0, u0⟩
Implemented Registers

RwQ: [1, n−1]-register; initially (commit, ⟨0, u0⟩)
RpQ: [1, n− 1]-register; initially ⟨0, u0⟩

Local variables
c: variable of w; initially 0
last_written: variable of w; initially ⟨0, u0⟩
previous_k: variable of p; initially 0

Write(u): ▷ executed by the writer w

1: c← c + 1
2: call w(⟨c, u⟩)
3: return done

Read(): ▷ executed by any reader r in {p} ∪Q

4: call rr()
5: if this call returns some tuple ⟨k, u⟩ then
6: return u
7: else return ⊥

w(⟨k, u⟩): ▷ executed by w to do its k-th write
8: Rwp ← (prepare, last_written, ⟨k, u⟩)
9: RwQ ← (prepare, last_written, ⟨k, u⟩)

10: Rwp ← (commit, ⟨k, u⟩)
11: RwQ ← (commit, ⟨k, u⟩)
12: last_written ← ⟨k, u⟩
13: return done

rp(): ▷ executed by reader p

14: if Rwp = (commit, ⟨k, u⟩) for some ⟨k, u⟩ with k ≥ previous_k then
15: RpQ ← ⟨k, u⟩
16: previous_k ← k
17: return ⟨k, u⟩
18: elseif Rwp = (prepare, last_written,−) for some last_written then
19: return last_written
20: else return ⊥

rq(): ▷ executed by any reader q ∈ Q

21: if RwQ = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
22: return ⟨k, u⟩
23: elseif RwQ = (prepare, last_written, ⟨k, u⟩) for some last_written and some ⟨k, u⟩ then
24: cobegin

// Thread 1
25: repeat forever
26: if RwQ = (commit, ⟨k′,−⟩) for some k′ ≥ k then
27: return ⟨k, u⟩
28: if RwQ = (prepare,−, ⟨k′,−⟩) for some k′ > k then
29: return ⟨k, u⟩

// Thread 2
30: if RpQ = ⟨k′,−⟩ for some k′ ≥ k then
31: for every process q′ ∈ Q do Rqq′ ← ⟨k, u⟩
32: return ⟨k, u⟩
33: elseif Rq′q = ⟨k′,−⟩ for some q′ ∈ Q and some k′ ≥ k then
34: if RpQ = ⟨k′,−⟩ for some k′ ≥ k then
35: for every process q′ ∈ Q do Rqq′ ← ⟨k, u⟩
36: return ⟨k, u⟩
37: else return last_written
38: coend
39: else return ⊥
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some point during its execution interval [10]. Thus to read or write a register R we use the
same notation, irrespective of whether R is atomic or implemented. In particular, in our
implementation algorithm (shown in Figure 1) we use the following notation:

“R← v” denotes the operation that writes v into R.
“if R = val then . . .” means “read register R and if the value read is equal to val then . . .”

The shared registers used by the implementation are as follows:
Rrr′ is an atomic [1, 1]-register writable by process r and readable by process r′.4
RwQ is an implemented [1, n− 1]-register writable by w and readable by every q ∈ Q.
RpQ is an implemented [1, n− 1]-register writable by p and readable by every q ∈ Q.

Description. The implementation In of a [1, n]-register from [1, n− 1]-registers consists of
two procedures, namely Write() for the writer w, and Read() for each reader r in {p} ∪Q.
To write a value u, the writer w executes Write(u). If u is the k-th value written by w,
Write(u) first forms the unique tuple ⟨k, u⟩ and then it calls the lower-level write procedure
w(⟨k, u⟩) to write this tuple. Intuitively, Write() tags the values that it writes with a
counter value to make them unique and to indicate in which order they are written.

To read a value, a reader r ∈ {p} ∪Q calls Read(), and this in turn calls a lower-level
read procedure rr() that reads tuples written by w(). There are two version of the procedure
rr(): one used when r = p and one used when r ∈ Q. If rr() returns a tuple of the form
⟨j, v⟩, then Read() strips the counter j from the tuple and returns the value v as the value
read (otherwise Read() returns ⊥ to indicate a read failure).

Thus the lower-level procedures w(), rp(), and rq() for each q ∈ Q, are executed to write
and read unique tuples of the form ⟨k, u⟩. We now describe how these procedures work.

To execute w(⟨k, u⟩), process w first writes (prepare, last_written, ⟨k, u⟩) in the Rwp

register that p can read, and then in the RwQ register that every process in Q can read;
last_written is the last tuple written by w before ⟨k, u⟩ (so last_written = ⟨k− 1, u′⟩ for
some u′). Then, w writes (commit, ⟨k, u⟩) into Rwp and then into RwQ.
To execute rp(), process p reads Rwp (line 14). If p reads (commit, ⟨k, u⟩) with a k at
least as big as those it saw before, it returns ⟨k, u⟩ as the tuple read (line 17); just before
doing so, however, it writes ⟨k, u⟩ in the RpQ register that every process q ∈ Q can read
(line 15): intuitively, this is to “warn” them that p read a “new” tuple, to help avoid
“new-old” inversion in the tuples read.
If p reads (prepare, last_written, ⟨k, u⟩) (line 18), then it returns last_written as the
tuple read (without giving any “warning” about this to processes in Q).
If p reads anything else from Rwp, then it returns ⊥ (the writer is surely malicious).
To execute rq(), process q ∈ Q reads RwQ. If q reads (commit, ⟨k, u⟩) (line 21), it just
returns ⟨k, u⟩ as the tuple read in line 22 (without “warning” other processes).
If q reads (prepare, last_written, ⟨k, u⟩) (line 23), then q cannot simply return
last_written as the tuple read: this is because p could have already read (commit, ⟨k, u⟩)
from Rwp and so p could have already read the “newer” tuple ⟨k, u⟩ with rp(). So q must
determine whether to return last_written or ⟨k, u⟩. To do so, q forks two threads and
executes them in parallel (we will explain why below).5

4 If r = r′, this “shared register” is actually just a local register of process r.
5 If q does not read values of the form (prepare, last_written, ⟨k, u⟩) or (commit, ⟨k, u⟩) from RwQ, then

w is surely malicious, and q just returns ⊥ in line 39.
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In Thread 1, process q keeps reading RwQ: if it ever reads (commit, ⟨k′,−⟩) with k′ ≥ k,
or (prepare,−, ⟨k′,−⟩) with k′ > k, it simply returns ⟨k, u⟩ as the tuple read. Note that if
the writer w is correct, then q cannot spin forever in this thread without returning ⟨k, u⟩.

In Thread 2, process q first reads the register RpQ to see whether p “warned” processes
in Q that it read a tuple at least as “new” as ⟨k, u⟩.

If q sees that RpQ contains a tuple at least as “new” as ⟨k, u⟩ (line 30), then q returns
⟨k, u⟩ as the tuple read (line 32); but before doing so, q successively writes ⟨k, u⟩ in each
register Rqq′ such that q′ ∈ Q (line 31): intuitively, this is to “warn” each process in Q

that q read this “new” tuple.
Otherwise, q reads every Rq′q register to avoid a new-old inversion with any tuple read by
any process q′ ∈ Q: if q sees that some Rq′q contains a tuple at least as “new” as ⟨k, u⟩
(line 33), then q reads RpQ again (line 34) (so q does not simply “trust” q′ and return
⟨k, u⟩!). If q sees that RpQ contains a tuple at least as “new” as ⟨k, u⟩ (line 34), then q

returns ⟨k, u⟩ as the tuple read (line 36); and before doing so q successively writes ⟨k, u⟩
to every register Rqq′ such that q′ ∈ Q (line 35).
Finally, if q does not see that RpQ or Rqq′ contain a tuple at least as “new” as ⟨k, u⟩ (in
lines 30 and 33), then q returns last_written (line 37).

Why two parallel threads? In a nutshell, this is to guarantee the wait-freedom of In in runs
where the writer is correct or no reader is malicious. This is required for our implementation
to be valid. It turns out that:
(A) if only Thread 1 is executed, then a faulty writer can block correct readers even if no

reader is malicious, and
(B) if only Thread 2 is executed, then malicious readers can block correct readers from

returning any value in this thread even if the writer is correct.

But if the writer is correct or no reader is malicious, we can show that every read operation
by a correct reader is guaranteed to complete with a return value in one of the two threads.

It is easy to see why a faulty writer (even one that just crashes) may block a correct
reader in Thread 1. We now explain how malicious readers may impede correct readers in
Thread 2.

In Thread 2 readers must read RpQ at least once (in line 30). Recall that (a) RpQ is an
implemented [1, n− 1]-register, and (b) we are only assuming that this implementation is
valid. In particular, if the writer p of RpQ crashes and some readers of RpQ are malicious,
the implementation of RpQ does not guarantee the wait-freedom of its read operations. In
other words, if p crashes and some readers of RpQ are malicious, a correct reader q may
block while trying to read RpQ!

Malicious readers may also prevent a correct reader q from reading any tuple in Thread 2
as follows. When q executes rq() the following can occur: (1) in line 33, q sees that some
Rq′q contains ⟨k′,−⟩ with k′ ≥ k , but (2) in line 34 q sees that RpQ does not contain ⟨k′,−⟩
with k′ ≥ k. We can show that this can occur only if at least one of p or q′ is malicious.
Note that if (1) and (2) indeed occur, then q terminates Thread 2 without returning any
tuple (because the if of line 34 does not have a corresponding else).

The correctness of the implementation In given by Algorithm 1 is stated in Theorem 10.
The proof of this theorem is given in [11].

▶ Theorem 10. For all n ≥ 2, In is an implementation of a [1, n]-register from implemented
[1, n − 1]-registers and atomic [1, 1]-registers. In is valid if the implementations of the
[1, n− 1]-registers that it uses (namely, RwQ and RpQ) are valid.
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It’s worth noting that for the case n = 2, there is a simple implementation I2
′ that

is stronger than the I2 implementation given by Algorithm 1: in contrast to I2 , I2
′ is

unconditionally wait-free. The implementation I2
′ is given by Algorithm 3 in Appendix A.

Note that Algorithm 3 is a simple version of Algorithm 1: the set of readers Q now contains
only one process q, and so preventing new-old inversions is much easier.

▶ Theorem 11. The implementation I2
′ (given by Algorithm 3 in Appendix A) is a wait-free

linearizable implementation of a [1, 2]-register from atomic [1, 1]-registers.

5.4 Implementing a [1,n]-register from atomic [1,1]-registers

We now show our main “possibility” result: in a system with Byzantine process failures,
there is an implementation of a [1, n]-register from atomic [1, 1]-registers that is linearizable
and wait-free provided that the writer or any number of readers, but not both, can fail. In
fact we show the following stronger result:

▶ Theorem 12. For all n ≥ 2, in a system of n + 1 processes that are subject to Byzantine
failures, there is a valid implementation In of a [1, n]-register from atomic [1, 1]-registers.

Proof. We show Theorem 12 by induction on n.

Base Case. Let n = 2. Consider the implementation I2 of Theorem 10. Since n = 2, the set
Q now contains only one process. So each register RwQ and RpQ in I2 can be implemented
directly by an atomic [1, 1]-register. Since these are valid implementations of RwQ and
RpQ, there is a valid implementation I2 of a [1, 2]-register from atomic [1, 1]-registers.6

Induction Step. Let n > 2. Suppose there is a valid implementation In−1 of a
[1, n− 1]-register that uses only atomic [1, 1]-registers. We must show there is a valid
implementation In of a [1, n]-register that uses only atomic [1, 1]-registers.

By Theorem 10, there is an implementation In of a [1, n]-register that uses:

1. two implemented [1, n− 1]-registers (namely, of registers RwQ and RpQ), and

2. some atomic [1, 1]-registers
such that In is valid if the implementations of the [1, n− 1]-registers RwQ and RpQ are valid.
Implement RwQ and RpQ in In using the valid implementation In−1 (In−1 exists by our in-
duction hypothesis). This gives an implementation In of a [1, n]-register that uses only atomic
[1, 1]-registers (because In−1 uses only atomic [1, 1]-registers). Since the implementations of
RwQ and RpQ are valid, In is valid. ◀

Since In is valid, it is linearizable (no matter which processes fail and how); and it is wait-
free provided the writer is correct or no reader is malicious. This matches the impossibility
result given by Theorem 4 in Section 4.

6 To show that I2 exists, we could also use the wait-free and linearizable implementation I2
′ mentioned

in Theorem 11.
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Algorithm 2 Implementation Is of a [1, n]-register writable by process w and readable by a set
P of n processes in a system with unforgeable signatures. Is uses atomic [1, 1]-registers.

Atomic Registers
For every processes i and j:

Rij : atomic [1, 1]-register; initially ⟨0, u0⟩w.

Local variables

c: variable of w; initially 0
tuples: variable of each p ∈ P ; initially ∅.

Write(u): ▷ executed by the writer w

1: c← c + 1
2: call w(⟨c, u⟩w)
3: return done

Read(): ▷ executed by any reader p in P

4: call r()
5: if this call returns some tuple ⟨k, u⟩w then
6: return u
7: else return ⊥

w(⟨k, u⟩w): ▷ executed by w to do its k-th write
8: for every process i ∈ P do
9: Rwi ← ⟨k, u⟩w ▷ ⟨k, u⟩ signed by w

10: return done

r(): ▷ executed by any reader p ∈ P

11: tuples ← ∅
12: for every process i ∈ {w} ∪ P do
13: if Rip = ⟨ℓ, val⟩w for some ⟨ℓ, val⟩ validly signed by w then
14: tuples ← tuples ∪ {⟨ℓ, val⟩w}
15: ⟨k, u⟩w ← tuple ⟨ℓ, val⟩w with maximum sequence number ℓ in tuples
16: for every process i ∈ P do
17: Rpi ← ⟨k, u⟩w
18: return ⟨k, u⟩w

6 Implementation for systems with digital signatures

Algorithm 2 gives a linearizable and wait-free implementation Is of a [1, n]-register that is
writable by process w and readable by a set P of n processes. Is uses unforgeable signatures
of processes (actually only w does) and atomic [1, 1]-registers between each pair of processes.

As in Algorithm 1, to write a value u the writer w first adds a counter k to form a
tuple ⟨k, u⟩. It then signs ⟨k, u⟩, and the signed tuple is denoted ⟨k, u⟩w. As before, the
actual write and read operations are done by lower-level procedures w() and r(), which work
as follows:

To execute w(⟨k, u⟩w), the writer w simply writes ⟨k, u⟩w in Rwi for every process i.
To execute r(), the process p first reads the [1, 1]-register Rip of every process i to collect
a set tuples of the tuples with valid signature of w. Then p selects the tuple ⟨k, u⟩w with
maximum sequence number k in tuples, and return this tuple; but before doing so p writes
⟨k, u⟩w into every [1, 1]-register Rpi to notify every process i that it read this tuple.

The correctness of the implementation Is given by Algorithm 2 is stated in Theorem 13.
The proof of this theorem is given in [11].

▶ Theorem 13. Consider a system where processes are subject to Byzantine failures and can
use unforgeable signatures. For every n ≥ 2, Is is a wait-free linearizable implementation of
a [1, n]-register from atomic [1, 1]-registers that tolerates any number of faulty processes.
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7 Concluding remarks

The implementation of registers from weaker registers is a basic problem in distributed
computing that has been extensively studied in the context of processes with crash failures.
In this paper, we investigated this problem in the context of Byzantine processes failures,
with and without process signatures. We first proved that there is no wait-free linearizable
implementation of a [1, n]-register from atomic [1, n− 1]-registers. In fact, we showed that
this impossibility holds even if every process except the writer can use atomic [1, n]-registers,
and even under the assumption that the writer can only crash and at most one reader can
be malicious. This is in sharp contrast to the situation in systems with crash failures only,
where there is a wait-free linearizable implementation of a [1, n]-register even from safe
[1, 1]-registers [14].

In light of this strong impossibility result, we gave an implementation of a [1, n]-register
from atomic [1, 1]-registers that is linearizable (intuitively, “safe”) under any combination of
Byzantine process failures, but is wait-free (intuitively, “live”) only under the assumption
that the writer is correct or no reader is malicious; this matches the impossibility result. We
also gave an implementation that uses process signatures, and is wait-free and linearizable
under any number and combination of Byzantine process failures.

Perhaps surprisingly, none of the above results refers to a ratio of faulty vs. correct
processes, such as n/3 or n/2, that we typically encounter in results that involve Byzantine
processes. For example, Mostéfaoui et al. [15] prove that one can implement an f -resilient
[1, n]-register in message-passing systems with Byzantine process failures if and only if
f < n/3. As an other example, Cohen and Keidar [6] show that if f < n/2, one can
use atomic [1, n]-registers to get f -resilient implementations of reliable broadcast, atomic
snapshot, and asset transfer objects in systems with Byzantine process failures.

It is worth noting that, since atomic [1, 1]-registers can simulate message-passing chan-
nels, one can use the f -resilient implementation of a [1, n]-register for message-passing
systems given in [15], to obtain an f -resilient implementation of a [1, n]-register using atomic
[1, 1]-registers. But f -resilient implementations (such as the ones given in [6, 15]) require
every correct process to help the execution of every operation, even the operations of other
processes. In contrast, with wait-free object implementations in shared-memory systems,
processes that do not have ongoing operations take no steps.
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Since the code of Algorithm 3 does not contain any loop or wait statement, it is clear
that every call to the Write() and Read() procedures by any correct process terminates
with a return value in a bounded number of steps; i.e., the implementation I2

′ is wait-free.
The proof that it is a linearizable implementation is given in [11]. So we have:

▶ Theorem 11. The implementation I2
′ (given by Algorithm 3 in Appendix A) is a wait-free

linearizable implementation of a [1, 2]-register from atomic [1, 1]-registers.

Algorithm 3 Implementation I2
′ of a [1, 2]-register writable by w and readable by p and q. I2

′ uses
some [1, 1]-registers.

Atomic Registers
Rwp: [1, 1]-register; initially (commit, ⟨0, u0⟩)
Rwq: [1, 1]-register; initially (commit, ⟨0, u0⟩)
Rpq: [1, 1]-register; initially ⟨0, u0⟩

Local variables
c: variable of w; initially 0
last_written: variable of w; initially ⟨0, u0⟩
last_read: variable of q initially ⟨0, u0⟩

Write(u): ▷ executed by the writer w

1: c← c + 1 s
2: call w(⟨c, u⟩)
3: return done

Read(): ▷ executed by any reader r ∈ {p, q}
4: call rr()
5: if this call returns some tuple ⟨k, u⟩ then
6: return u
7: else return ⊥

w(⟨k, u⟩): ▷ executed by w to do its k-th write
8: Rwp ← (prepare, last_written, ⟨k, u⟩)
9: Rwq ← (prepare, last_written, ⟨k, u⟩)

10: Rwp ← (commit, ⟨k, u⟩)
11: Rwq ← (commit, ⟨k, u⟩)
12: last_written ← ⟨k, u⟩
13: return done

rp(): ▷ executed by reader p

14: if Rwp = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
15: Rpq ← ⟨k, u⟩
16: return ⟨k, u⟩
17: elseif Rwp = (prepare, last_written,−) for some last_written then
18: return last_written
19: else return ⊥

rq(): ▷ executed by reader q

20: if Rwq = (commit, ⟨k, u⟩) for some ⟨k, u⟩ then
21: return ⟨k, u⟩
22: elseif Rwq = (prepare, last_written, ⟨k, u⟩) for some last_written and some ⟨k, u⟩ then
23: if Rpq = ⟨k′,−⟩ for some k′ ≥ k then
24: last_read ← ⟨k, u⟩
25: return ⟨k, u⟩
26: elseif last_read = ⟨k′,−⟩ and some k′ ≥ k then
27: return ⟨k, u⟩
28: else
29: return last_written
30: else return ⊥
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