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Abstract
A fundamental task in the asynchronous shared memory model is obtaining a consistent view of
a collection of shared objects while they are being modified concurrently by other processes. A
scannable object addresses this problem. A scannable object is a sequence of readable objects called
components, each of which can be accessed independently. It also supports the Scan operation,
which simultaneously reads all of the components of the object. In this paper, we consider the
space complexity of an n-process, k-component scannable object implementation from objects with
bounded domain sizes. If the value of each component can change only a finite number of times,
then there is a simple lock-free implementation from k objects. However, more objects are needed if
each component is fully reusable, i.e. for every pair of values v, v′, there is a sequence of operations
that changes the value of the component from v to v′.

We considered the special case of scannable binary objects, where each component has domain
{0, 1}, in PODC 2021. Here, we present upper and lower bounds on the space complexity of any
n-process implementation of a scannable object O with k fully reusable components from an arbitrary
set of objects with bounded domain sizes. We construct a lock-free implementation from k objects of
the same types as the components of O along with ⌈n

b
⌉ objects with domain size 2b. By weakening

the progress condition to obstruction-freedom, we construct an implementation from k objects of
the same types as the components of O along with ⌈ n

b−1⌉ objects with domain size b.
When the domain size of each component and each object used to implement O is equal to b

and n ≤ bk − bk + k, we prove that 1
2 · (k + n−1

b
− logb n) objects are required. This asymptotically

matches our obstruction-free upper bound. When n > bk−bk +k, we prove that 1
2 · (b

k−1− (b−1)k+1
b

)
objects are required. We also present a lower bound on the number of objects needed when the
domain sizes of the components and the objects used by the implementation are arbitrary and finite.
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1 Introduction

A scannable object O consists of a sequence of objects O[1], . . . , O[k] called components,
each of which stores a value from some domain and supports Read along with some other
operations. The Apply(i, op) operation applies the operation op to O[i], where op is an
operation supported by O[i]. A scannable object also supports the Scan operation, which
returns a consistent view of O[1], . . . , O[k] at a point during the operation’s execution interval.

© Sean Ovens;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).
Editor: Christian Scheideler; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.30
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


30:2 The Space Complexity of Scannable Objects with Bounded Components

A snapshot object [1, 2, 4] is a scannable object whose components support the Read and
Write operations. Snapshot objects were formalized independently by Afek, Attiya, Dolev,
Gafni, Merritt, and Shavit [1], Anderson [2], and Aspnes and Herlihy [4]. They have been
used to simplify the description of obstruction-free consensus algorithms [10], approximate
agreement algorithms [8], and implementations of large classes of objects [4, 16].

It is known that a k-component snapshot object implemented from read/write registers
requires at least k registers [13]. There are many known implementations that match this
lower bound, but all of them either use objects that are large enough to store the result
of a Scan [1, 2, 17, 19, 20] or use unbounded sequence numbers [1, 9, 14, 15]. There
are also implementations that use significantly more than k base objects [3, 18, 7, 25].
Other implementations use unbounded version lists [24]. Prior to our work, it was not well
understood how the number of base objects required to implement a scannable object is
related to the domain sizes of the base objects and the components. In this paper, we
investigate the space complexity of scannable objects with bounded components that are
implemented from objects with bounded domains.

Last year, we considered the space complexity of scannable binary objects (i.e. scannable
objects whose components have domain {0, 1}) implemented from objects with domain
{0, 1}. In some circumstances, it is possible to implement a scannable binary object from
only k objects. For example, consider a scannable binary object O whose components are
test-and-set (TAS) objects. A TAS object supports Read and TAS, which changes the value
of the object to 1 and returns its previous value. There is a simple wait-free implementation
of O from k TAS objects T1, . . . , Tk. The object Ti stores the value of component O[i], an
Apply(i, Read) operation reads Ti, and an Apply(i, TAS) operation applies TAS to Ti. A
Scan repeatedly collects the values in T1, . . . , Tk (i.e. reads them one at a time) until it
observes the same sequence of values twice in a row. When this happens, the Scan returns
this sequence of values. Since the value of each component can change at most once, a Scan
operation will terminate after performing at most k + 2 collects. The implementation is
correct because the value of a component cannot change from v to a different value v′ and
then back to v. Hence, the sequence of values returned by the Scan must be the actual value
of the scannable object at some point during the execution interval of the Scan.

More generally, we gave a lock-free, n-process implementation of any k-component
scannable binary object from k objects with the same types as the components of the object
along with n binary registers. If the components of the scannable binary object are non-
monotonic (i.e. their value can be changed from 0 to 1 and from 1 to 0), we show that more
than k objects are required. Specifically, any obstruction-free, n-process implementation of a
scannable binary object with k non-monotonic components requires at least n + k − r − 2
objects with domain {0, 1}, where k ≥ 2 and 2k − 2k−r < n − 2 ≤ 2k − 2k−r−1. This lower
bound applies to single-updater implementations, where only a single process (called the
updater) is allowed to change the value of any component. Since the lower bound applies
to obstruction-free and single-updater implementations, it applies to lock-free and wait-free
implementations that support multiple updaters as well.

In this paper, we generalize our previous results significantly to obtain new upper and
lower bounds on the space complexity of scannable object implementations from objects with
arbitrary bounded domain sizes. As discussed with scannable binary objects, a k-component
scannable object has a wait-free implementation from k objects with the same domain sizes
as the components if each component’s value can change only a finite number of times. For
example, consider a k-component scannable object O consisting of b-bounded counters. A
b-bounded counter supports Read and Incb, which increases the value of the counter by 1



S. Ovens 30:3

if its current value is less than b − 1 and does nothing otherwise. The scannable object O

can be implemented from k b-bounded counters, each of which stores the value of one of the
components. A Scan repeatedly collects the values of the objects until it obtains the same
sequence of values twice in a row. Since the value of each component can increase at most
b − 1 times, a Scan will terminate after performing at most k(b − 1) + 2 collects.

We show how our lock-free, n-process implementation of any k-component scannable
binary object from n + k objects can be generalized to obtain a lock-free, n-process imple-
mentation of a k-component scannable object from k objects with the same domain sizes as
the components of the scannable object along with ⌈ n

b ⌉ objects that have domain size 2b, for
any b ≥ 1. We also construct an obstruction-free implementation from k objects with the
same domain sizes as the components of the scannable object along with ⌈ n

b−1 ⌉ read/write
registers that have domain size b. We generalize the notion of non-monotonic binary objects
to objects with larger domain sizes: An object is fully reusable if, for every pair of values
v, v′ in its domain, there is a sequence of operations that changes its value from v to v′. This
is a natural condition that includes many common objects like registers, compare-and-swap
objects, and modulo-b counters. A b-bounded counter is not fully reusable, since there is no
sequence of operations that changes its value from 1 to 0, for example.

We show that any obstruction-free, n-process implementation of a scannable object with
k fully reusable components that have domain size b requires at least 1

2 · (k + n−1
b − logb n)

objects with domain size b when n ≤ bk − bk + k. When n > bk − bk + k, we show that
1
2 ·

(
bk−1 − (b−1)k+1

b

)
objects with domain size b are required. We also prove a lower bound

on the number of objects required by any obstruction-free, n-process implementation of a
scannable object with k fully reusable components when the domain sizes of the components
and the objects used by the implementation are arbitrary, finite values. Just like our lower
bound for scannable binary objects, our lower bound in this paper applies to obstruction-free,
single-updater implementations, so it applies to lock-free and wait-free implementations that
support multiple updaters as well.

Our original lower bound proof for scannable binary objects involves inductively con-
structing an unordered set of k-component binary vectors {V1, . . . , Vℓ} and a configuration
Cℓ, for all ℓ ≤ min(n−2, 2k−1), that satisfy the following property: For any execution α from
Cℓ that does not involve the last ℓ scanners, if the scannable binary object does not contain
any of the vectors V1, . . . , Vℓ during α, then there is a set of ℓ objects that do not change
during α. We show how to obtain an (n − ℓ)-process implementation of a (k − 1)-component
scannable binary object by discarding these ℓ objects. This can be applied repeatedly until
we have a 2-process implementation of a scannable binary object with k′ < k components,
which we show requires at least k′ + 1 objects.

Our technique in this paper builds on these ideas. However, having objects with domain
sizes larger than 2 presents several challenges. First, it is not possible to show that some
objects stop changing entirely in certain executions from Cℓ. Instead, we show that there is
a set of forbidden values for each object in certain executions from Cℓ. Second, since it is
not possible to obtain a set of objects that stop changing, a new implementation cannot be
obtained by discarding objects. Finally, in this paper we need to construct a sequence of
vectors ⟨V1, . . . , Vℓ⟩ rather than a set of vectors. We will explain how our technique differs
from our scannable binary object lower bound in more detail in Section 5.

In Section 2, we briefly survey some other related work. We define our model of
computation in Section 3. In Section 4, we present our implementations of scannable objects
from objects with bounded domain sizes. We prove our space complexity lower bound in
Section 5. Finally, we discuss some possible future research directions in Section 6.
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2 Related work

Scannable objects, like snapshot objects, have been used to simplify the description of many
distributed algorithms and implementations. Aspnes, Attiya, Censor-Hillel, and Ellen [3]
described an implementation of a 2-component max array, which is a scannable object that
consists of 2 max registers. A max register supports MaxWrite(x), which changes the value of
the object to x if and only if the current value of the max register is less than x, and MaxRead,
which returns the current value of the max register. The authors used a 2-component max
array to implement a limited-use snapshot object whose Scan and Update operations both
have polylogarithmic step complexity. Ellen, Gelashvili, Shavit, and Zhu [14] classified some
objects by the number of instances required to solve obstruction-free consensus. In certain
cases, they showed that it is possible to solve obstruction-free consensus using a scannable
object. For example, obstruction-free consensus can be solved among n processes using a
scannable object with n − 1 components that each support Read and Swap(v), which changes
the value of the component to v and returns its previous value.

Consider a k-component scannable object O whose components have domains D1, . . . , Dk.
Then O has a wait-free, single-updater implementation from one single-writer register with
domain D1 × . . . × Dk. A Scan simply reads the register. The updater locally stores the
current value of O in a variable V . When the updater performs an Apply(i, op) operation,
it locally applies op to V and then writes the resulting vector to the register. There is a
known wait-free implementation of a single-writer register with any finite domain size d from
d single-writer binary registers [23]. Hence, O has a wait-free, single-updater implementation
from

∏k
i=1 |Di| single-writer binary registers. Chen and Wei [12] gave an implementation of

an s-bit single-writer register from Θ( ns
t ) instances of t-bit single-writer registers.

Jayanti [20] defined a generalization of a scannable object called an f -array, where f is a
function. Like a scannable object, an f -array consists of a sequence of components, each of
which has its own domain. The domain of an f -array is the cross product of the domains of
its components. The function f maps the domain of the f -array to some arbitrary set of
values. An f -array supports a generalization of Scan, which we call f -Scan, that returns the
result of applying f to the value of the object. When f is the identity function, f-Scan is
the same as Scan. Jayanti gives a wait-free implementation of a k-component f -array from k

objects of the same types as the components of the f -array along with a single LL/SC object
large enough to store the result of an f -Scan.

Wei, Ben-David, Blelloch, Fatourou, Ruppert, and Sun [24] described an approach for
implementing a scannable object whose components are compare-and-swap objects. Their
approach uses a versioned compare-and-swap object to store the value of a component.
A versioned compare-and-swap object also stores an unbounded version list, which has a
complete history of all the successful CAS operations applied to the object. Each element of
the version list also stores a timestamp. To Scan the scannable object, a process first obtains
a new timestamp ts and then traverses the version list of each component to find the value
with the latest timestamp that does not exceed ts.

Ellen, Fatourou, and Ruppert [13] proved that, for all n > k, an n-process, k-component
snapshot implementation requires at least k registers. Jayanti, Tan, and Toueg [21] proved
that n − 1 registers are required to implement a snapshot object with n components, where
each component can be modified by only a single process. Both of these lower bound proofs
used covering arguments, which were originally introduced by Burns and Lynch [11].

Covering arguments are a standard technique for proving space complexity lower bounds
for implementations that use historyless objects. A historyless object can support two kinds of
operations: trivial operations never change the value of the object, and historyless operations
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set the object to some fixed value that does not depend on the old value of the object. A set
of processes P covers a set of historyless objects B if |P| = |B| and, for every B ∈ B, there is
a process in P that is poised to apply a nontrivial, historyless operation to B in its next step.
If each of the processes in P takes its next step, then the information in B is overwritten. In
order to prove a lower bound of m on the space complexity of an implementation, it suffices
to construct a configuration of the implementation in which a set of processes P covers a set
of objects B with |B| = m. Therefore, the best space lower bound that can be obtained by a
covering argument is n, the number of processes. Hence, to obtain our lower bound, we need
to use different techniques. Furthermore, our lower bound applies to implementations that
use non-historyless objects.

3 Model

We use a standard asynchronous shared memory model in which n processes communicate
using shared objects. An object has a domain of possible values, a set of invocations that
can be applied to it, and a set of possible responses to each invocation. The sequential
specification of an object O defines, for each value v and each invocation Inv of O, the
resulting value of O and the response to Inv when Inv is applied to O.

An object O is fully reusable if, for all distinct values v, v′ of O, there is a sequence of
invocations on O that changes its value from v to v′. An example of a fully reusable object
with domain {0, . . . , b − 1} supports a single invocation that returns its current value x and
then changes its value to x + 1 mod b. An example of an object with the same domain that
is not fully reusable supports a single invocation that returns its current value x and then
changes its value to min(b − 1, x + 1). For example, there is no sequence of invocations that
would change this object’s value from 1 to 0.

In this paper, we implement new objects from a set of base objects, which are provided by
the system. An implementation of an object defines a set of base objects and an algorithm
for each process to follow for every invocation of the object. For the sake of clarity, we call
the invocations of base objects primitives, and we call the invocations of implemented objects
operations.

A configuration of an implementation consists of a value for every base object and a state
for every process. We use value(B, C) to denote the value of base object B in configuration
C. A step by a process consists of a primitive applied to some base object and a response
to that primitive, followed by a finite amount of local computation by that process, which
may then change its state. In an initial configuration of an implementation, no processes
have taken steps. An execution is an alternating sequence of configurations and steps that
begins with a configuration. If an execution is finite, then it ends with a configuration. If
C is a configuration and α is a finite execution starting with C, then Cα denotes the final
configuration of α. If an execution α only contains steps by processes in some set P , then we
say α is P -only. If P contains exactly one process pj , then we say α is pj-only.

Executions are produced by a scheduler that decides the order in which processes take
steps and the operations on the implemented object that they perform. In every initial
configuration of an implementation, every process is idle. When an idle process pi is chosen
to take a step by the scheduler, the scheduler specifies an instance of an operation to pi, and
then the process takes the first step of its algorithm for that operation. When pi’s algorithm
terminates, it returns a response to this operation instance, which is now complete, and then
pi becomes idle again. An instance of an operation by pi is ongoing in any configuration
that occurs after it is given the operation instance and before pi returns its response. When
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the scheduler chooses a process that is not idle, the process only performs the next step of
its algorithm. Thus, a process can have at most one ongoing operation in any configuration.
When a process takes a step, the response to the primitive that it applies is determined
by the value of the base object to which the primitive is applied along with the sequential
specification of that base object. A configuration C is called P -idle, where P is a set of
processes, if all of the processes in P are idle in C. If P = {pi}, then we say C is pi-idle.

Two configurations C1, C2 are indistinguishable to a set of processes P if every process in
P has the same state in C1 and C2. We use C1

P∼ C2 to denote this. Suppose that α1, α2
are executions beginning with C1, C2, respectively. Then α1 and α2 are indistinguishable
to a set of processes P if C1

P∼ C2 and every process in P performs the same sequence of
steps (and receives the same responses to each of the primitives applied) in α1 and α2. We
use α1

P∼ α2 to denote this. If γ1 is a P -only execution from C1, the base objects accessed
by P during γ1 have the same values in C1 and C2, and C1

P∼ C2, then there is a P -only
execution γ2 from C2 such that γ1

P∼ γ2 [6].
An object is readable if it supports the Read invocation, which returns the value of the

object. A scannable object O is a sequence of readable objects called components. We use
O[i] to denote the i-th component of the scannable object O. The value of a k-component
scannable object O is a vector in D1 × . . . × Dk, where Di is the domain of component O[i].
The object O supports the invocation Apply(i, op), which applies the invocation op to O[i].
The object O also supports Scan, which reads every component of the object simultaneously.

A single-updater implementation of a scannable object allows only one process, called
the updater, to perform Apply invocations. The other processes, called scanners, can only
perform Scan invocations. Note that this is different from a single-writer implementation
[1, 2, 5], in which process pi can only perform Apply invocations on component i.

An execution α from an initial configuration of an implementation of an object O is
linearizable if there exists a sequence Π of operation instances and responses that satisfies
the following three properties.

(i.) Π contains every complete operation instance in α immediately followed by its response.
It also contains some subset of the remaining operation instances in α, each of which
is immediately followed by some response.

(ii.) If the response to an operation instance op1 appears before an operation instance op2
in α and op2 is in Π, then op1 appears before op2 in Π.

(iii.) Π satisfies the sequential specification of O.
The sequence Π is a linearization of α. An implementation is linearizable if every execution
from every initial configuration of the implementation is linearizable.

If an execution α is linearizable, then every complete operation instance in α can be
assigned a linearization point at which it appears to take effect. Each linearization point
must occur at or after the step containing the operation instance and at or before the step
containing its response. Operation instances that are not complete in α may also be assigned
linearization points, which must occur at or after the step containing the operation instance.
An operation instance that has been assigned a linearization point is said to be linearized. If
there is a sequence of operation instances and responses in which the linearized operation
instances are arranged according to their linearization points, each complete operation
instance in α is immediately followed by its response, each operation instance that is not
complete in α is immediately followed by some response, and Π satisfies the sequential
specification of O, then Π is a linearization of α.

An implementation is called wait-free if every operation instance by every process com-
pletes within a finite number of steps by that process. An implementation is called lock-free
if every infinite execution of the implementation contains an infinite number of complete
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operation instances. An implementation is called obstruction-free if every operation instance
by every process completes within a finite number of consecutive steps by that process. Note
that every wait-free implementation is also lock-free, and every lock-free implementation is
also obstruction-free.

4 Upper bound

In this section, we discuss two scannable object implementations from base objects with
bounded domain sizes. Throughout this section, let O be a scannable object with k com-
ponents. Let {p0, . . . , pn−1} be the set of processes. First, we argue that our lock-free
implementation of a scannable binary object from [22] can be generalized to use fewer base
objects with larger domain sizes. We obtain a lock-free implementation of O from k objects
with the same types as O[1], . . . , O[k] along with

⌈
n
b

⌉
base objects with domain equal to

the set of all binary strings of length b, each of which supports Read and Set-bit(i, v). The
Set-bit(i, v) invocation changes the i-th bit of the object’s value to v ∈ {0, 1}. Second, by
weakening our progress requirement to obstruction-freedom, we show how to obtain an
implementation from base objects with smaller domains. We construct an obstruction-free
implementation of O from k objects with the same types as O[1], . . . , O[k] along with ⌈ n

b−1 ⌉
multi-reader, multi-writer registers with domain size b.

4.1 Lock-free implementation
We presented a lock-free, n-process implementation of a k-component scannable binary object
S from k objects B1, . . . , Bk with the same types as S[1], . . . , S[k] along with n binary registers
R1, . . . , Rn [22]. The base objects B1, . . . , Bk are used to store the values of S[1], . . . , S[k],
and the registers R1, . . . , Rn are used by scanning processes to detect concurrent Apply
operations.

To perform an Apply(ℓ, op) operation, a process writes 0 to all of the registers R1, . . . , Rn

and then applies op to Bℓ. To Scan, process pi first collects the values in B1, . . . , Bk and
then writes 1 to Ri. Then pi repeatedly collects the values in B1, . . . , Bk, Ri. When it sees
the same sequence of values in B1, . . . , Bk and reads the value 1 from Ri n times in a row,
process pi returns the sequence of values it read from B1, . . . , Bk. If the value of some base
object Bℓ changed since pi’s last collect or Ri = 0, then pi writes 1 to Ri and restarts its
sequence of collects.

More generally, there is a lock-free, n-process implementation of O from k objects
B1, . . . , Bk with the same types as O[1], . . . , O[k] along with ⌈ n

b ⌉ base objects R1, . . . , R⌈n/b⌉
with domain equal to the set of all binary strings of length b, each of which supports Read
and Set-bit(i, v). To perform an Apply(ℓ, op) operation, a process sets all of the bits of
R1, . . . , R⌈n/b⌉ to 0. Then, the process applies op to Bℓ. To Scan, process pi first collects the
values in B1, . . . , Bk and then applies Set-bit(i mod b, 1) to R⌈(i+1)/b⌉. The remainder of
the implementation is similar to our implementation of a scannable binary object, except
that pi uses the (i mod b)-th bit of R⌈(i+1)/b⌉ to detect concurrent Apply operations.

4.2 Obstruction-free implementation
Implementation 1 is a linearizable, obstruction-free implementation of O. It uses k objects
B1, . . . , Bk with the same types as the components of O, along with ⌈ n

b−1 ⌉ multi-reader, multi-
writer registers R1, . . . , R⌈n/(b−1)⌉ with domain {0, . . . , b − 1}. The base objects B1, . . . , Bk

are used to store the values of the components. The registers R1, . . . , R⌈n/(b−1)⌉ are used by
scanning processes to determine whether other processes are concurrently taking steps.
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Each process pi stores a pair of constants j = ⌈(i+1)/(b−1)⌉ and v =
(
i mod (b−1)

)
+1.

The constant j denotes the index of the register that pi accesses during its Scan operations,
and v is the value that pi writes to that register. Notice that v > 0 and process pi is the
only process that can write the value v to the register Rj . Hence, if pi writes the value v to
Rj and then pi later reads the value v from Rj , then pi knows no other process has modified
Rj since pi last wrote to it.

Process pi begins a Scan operation by collecting the values in B1, . . . , Bk on line 7 and
then writing the value v to Rj on line 9. Then process pi begins repeatedly collecting the
values in the base objects B1, . . . , Bk, Rj on lines 11-12. Once pi sees the same sequence of
values in B1, . . . , Bk and it sees the value v in Rj n times in a row, pi returns the sequence
of values it saw in B1, . . . , Bk. If pi sees that the value of some base object Bℓ has changed
since pi’s last collect, or the register Rj contains a value other than v, then pi enters the
block on line 13, writes the value v to Rj , and restarts its sequence of collects. Notice that,
unlike in the lock-free implementation, it is possible for a pair of scanning processes who
share the same register Rj to repeatedly interrupt each other and prevent progress. Hence,
this implementation is not lock-free.

An Apply(ℓ, op) operation simply writes 0 to all of the registers R1, . . . , R⌈n/(b−1)⌉ and
then applies the operation op to Bℓ.

Implementation 1 A linearizable, obstruction-free implementation of a k-component
scannable object from k + ⌈ n

b−1⌉ base objects.

shared:
B1, . . . , Bk, each initially 0, where Bℓ is the

same type as O[ℓ]
registers R1, . . . , R⌈n/(b−1)⌉ with domain
{0, . . . , b− 1}, each initially 0

local constants for process pi:
j := ⌈(i + 1)/(b− 1)⌉
v :=

(
i mod (b− 1)

)
+ 1

1 Apply(ℓ, op) by process pi:
2 for r ∈

{
1, . . . , ⌈n/(b− 1)⌉

}
do

3 Write(Rr, 0)
4 end
5 return op(Bℓ)

6 Scan by process pi:
7 S ← collect(B1, . . . , Bk)
8 c← 0
9 Write(Rj , v)

10 while c < n do
11 S′ ← collect(B1, . . . , Bk)
12 v′ ← Read(Rj)
13 if S ̸= S′ or v ̸= v′ then
14 S ← S′

15 c← 0
16 Write(Rj , v)
17 else
18 c← c + 1
19 end
20 end
21 return S

A process pi performing a Scan operation aims to perform a collect during which none of
the objects B1, . . . , Bk are modified. This way, pi can safely return the sequence of values it
returned by this collect. If an Update operation writes 0 to Rj before pi has read Rj for the
last time on line 12, then pi will restart its sequence of collects after it next reads Rj . It
is possible that an Apply operation finishes setting all of the registers R1, . . . , R⌈n/(b−1)⌉ to
0 just before a scanning process pi sets Rj to v. In this case, the Apply might change one
of the base objects B1, . . . , Bk during a collect by pi. However, in Lemma 1, we will argue
that, for every complete instance of a Scan operation sc, at least one of the last n collects
performed by sc does not overlap with any application of a primitive to B1, . . . , Bk on line 5.

▶ Lemma 1. Let α be an execution from the initial configuration of Implementation 1. For
any complete instance sc of a Scan operation in α, there is at least one collect among the
last n collects performed by sc during which no Apply operation applies a primitive to any
base object B1, . . . , Bk.
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Proof. Suppose that sc is performed by process pi. Let cl1 be the first of the final n collects
of B1, . . . , Bk performed by pi during sc, and let cln be the last. Process pi does not enter
the block on line 14 between cl1 and cln, as this would cause pi to perform at least n more
collects before returning from sc. Hence, pi does not write v to Rj after cl1 begins during
sc. Furthermore, immediately after each of the last n collects performed by pi during sc,
process pi reads the value v from Rj . Since pi is the only process that can write v to Rj , this
implies that no process writes to Rj after cl1 begins and before cln ends (i.e. after pi reads
R1 during cl1 and before pi reads R⌈n/(b−1)⌉ during cln). Every Apply operation writes 0 to
Rj on line 3 before applying a primitive to one of the base objects B1, . . . , Bk. Therefore,
every Apply operation that applies a primitive to a base object B1, . . . , Bk during one of the
final n collects performed by pi during sc must have written 0 to Rj before cl1 began. Hence,
at most n − 1 Apply operations apply a primitive to a base object B1, . . . , Bk during one of
the final n collects of sc. ◀

▶ Theorem 2. Implementation 1 is an obstruction-free, linearizable implementation of O.

Proof. Consider some execution α of Implementation 1. By Lemma 1, there is at least one
collect among the final n collects performed by any complete Scan operation sc during which
no Apply operation applies a primitive to any base object B1, . . . , Bk. We can linearize sc at
the beginning of this collect. All Apply operations in sc can be linearized when they apply
the primitive on line 5.

By inspection of the code, every complete Apply operation applies exactly ⌈n/(b − 1)⌉ + 1
primitives. A process performing a Scan operation by itself will execute at most n iterations
of the loop on line 10 before terminating. Hence, Implementation 1 is obstruction-free. ◀

5 Lower bound

In this section, we present a lower bound on the number of objects with bounded domain
sizes that are required to implement a scannable object. First, we explain the proof technique
that we used to obtain a space complexity lower bound for scannable binary objects, since our
proof in this section builds on this technique. A key concept in our technique is the notion of a
W-absent execution. Let I be an obstruction-free, single-updater, n-process implementation
of a scannable object O, where process p0 is the updater and processes p1, . . . , pn−1 are the
scanners. Let W be some set of values of O. Since I is a single-updater implementation
of O, we note that in any p0-idle configuration of I, the value of the scannable object O is
well-defined. Let α be an execution from some p0-idle configuration C of I. If p0 is idle in
Cα, then α is W-absent if, for every p0-idle configuration C ′ in α, the value of O in C ′ is not
in the set W . If p0 is not idle in Cα, then α is W-absent if αα′ is W-absent, where α′ is the
p0-only execution from Cα in which p0 finishes its ongoing operation in Cα. An execution β

from Cα is called a W-absent extension of α if αβ is W-absent. The following observation is
from [22].

▶ Observation 3. Let α be a W-absent execution from some p0-idle configuration C of I.
(a) If sc is an instance of a Scan operation in α whose response is also in α, then the

response of sc is not equal to any vector in W.
(b) Any execution from Cα in which only the scanners p1, . . . pn−1 take steps is a W-absent

extension of α.

We originally considered the case in which O is a scannable binary object and I only uses
binary base objects. We inductively construct, for all ℓ ≤ min(n − 2, 2k−1), a configuration
Cℓ and a set of ℓ binary k-component vectors {V1, . . . , Vℓ}, such that, for every {V1, . . . , Vℓ}-
absent execution α from Cℓ in which the last ℓ scanners take no steps, there is a set of ℓ
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base objects that do not change during α. All of the vectors V1, . . . , Vℓ have a 1 in their k-th
component. We show that the ℓ base objects that stop changing can be discarded to obtain
an implementation of an (n − ℓ)-process, (k − 1)-component scannable binary object. This
idea is applied repeatedly until we have a 2-process implementation of a scannable binary
object with k′ < k components, which we show requires at least k′ + 1 base objects.

When the base objects have larger domain sizes, it is not possible to show that a set of
base objects stop changing after certain executions from Cℓ. Hence, we cannot obtain a new
implementation by discarding base objects. Instead, we will show how to construct a set of
forbidden values for each base object. More precisely, consider an obstruction-free, n-process,
single-updater implementation of a scannable object with k components that have domain
sizes c1, . . . , ck. We show that, for all ℓ ≤ min(n − 1,

∏k
y=1 cy −

∑k
y=1 cy + k − 1), there is

a sequence of distinct k-component vectors ⟨V1, . . . , Vℓ⟩, a configuration Cℓ, and a function
Xℓ that maps each base object to a set of forbidden values such that the following property
is satisfied: For any {V1, . . . , Vℓ}-absent execution α from Cℓ in which the last ℓ scanners
take no steps, no base object Bx contains any of its forbidden values Xℓ(Bx) at any point
during α. However, the updater is still able to change the object O to any vector other than
V1, . . . , Vℓ without using any forbidden value for any base object. This allows us to obtain a
lower bound on the number of base objects that are needed by the implementation.

In our construction for the scannable binary object lower bound, the order of the vectors
V1, . . . , Vℓ does not matter. However, for our construction, the order of the vectors is crucial.
In particular, for all i ∈ {1, . . . , ℓ}, it is important that every possible value of the scannable
object V ′ ̸∈ {V1, . . . , Vi} can be reached without changing its value to any of the vectors
V1, . . . , Vi. For example, consider a 2-component scannable object that consists of modulo-3
counters. Consider the sequence of vectors

〈
(0, 1), (1, 0)

〉
. Notice that it is impossible to

change the value of this scannable object from (0, 0) to (2, 2) without first changing its
value to either (0, 1) or (1, 0). Hence, our construction would not work with this particular
sequence of vectors.

Throughout the remainder of this section, we consider an obstruction-free, single-updater,
n-process implementation I of a scannable object O with k fully reusable components that
have bounded domain sizes. Let p0, . . . , pn−1 be the processes using I, where p0 is the
updater and p1, . . . , pn−1 are the scanners.

Let B be the set of base objects used by the implementation I. Let B1, . . . , B|B| be the
base objects in B, and, for all x ∈ {1, . . . , |B|}, let bx be the domain size of Bx. Without loss
of generality, we assume that the domain of Bx is {0, . . . , bx −1}. Let b′ = 1

|B|
∑|B|

x=1 bx be the
average domain size of the base objects in B. We assume that bx ≥ 2 for all x ∈ {1, . . . , |B|}.
Thus, b′ ≥ 2.

For all y ∈ {1, . . . , k}, let cy be the domain size of the y-th component O[y] of the
implemented object O. We assume that cy ≥ 2 for all y ∈ {1, . . . , k}. Let h = min

(
n −

1,
∏k

y=1 cy −
∑k

y=1 cy +k−1
)
. We will prove that |B| ≥ 1

2 ·
(∑k

y=1 logb′ cy + h
b′ − logb′(h+1)

)
.

In particular, consider the case in which b1, . . . , b|B|, c1, . . . , ck are all equal to b. Our lower
bound implies that,
1. if n ≤ bk − bk + k, then |B| ≥ 1

2 ·
(
k + n−1

b − logb n
)
, and

2. if n > bk − bk + k, then |B| ≥ 1
2 ·

(
bk−1 − (b−1)k+1

b

)
.

We will now show how to obtain the sequence of vectors discussed previously. Without
loss of generality, we assume that, for all y ∈ {1, . . . , k}, the domain of component O[y] is
{0, . . . , cy − 1}.
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For all y ∈ {1, . . . , k} and all u ∈ {0, . . . , cy −1}, define Ly(u) as the length of the shortest
sequence of operations that changes the value of O[y] from 0 to u. Since O[y] is fully reusable,
Ly(u) is well defined. Define a total order ≺y as follows: For all u, v ∈ {0, . . . , cy − 1},
u ≺y v if and only if either (a) Ly(u) < Ly(v), or (b) Ly(u) = Ly(v) and u < v. Consider
any shortest sequence of operations σ that changes the value of O[y] from 0 to u, for some
u ∈ {0, . . . , cy − 1}. By definition of ≺y, the sequence of values that O[y] takes during σ

does not contain any value v ∈ {0, . . . , cy − 1} with u ≺y v.
For all y ∈ {1, . . . , k} and all u ∈ {1, . . . , cy −1}, define L′

y(u) as the length of the shortest
sequence of operations that changes the value of O[y] from u to 0. Since O[y] is fully reusable,
L′

y(u) is well defined. Define a total order ≺′
y as follows: For all u, v ∈ {1, . . . , cy − 1},

u ≺′
y v if and only if either (a) L′

y(u) < L′
y(v), or (b) L′

y(u) = L′
y(v) and u < v. Consider

any shortest sequence of operations σ that changes the value of O[y] from u to 0, for some
u ∈ {1, . . . , cy − 1}. By definition of ≺′

y, the sequence of values that O[y] takes during σ

does not contain any value v ∈ {1, . . . , cy − 1} with u ≺′
y v.

Let U = {0, . . . , c1 − 1} × . . . × {0, . . . , ck − 1} be the set of values of the scannable object
O. Let V ⊊ U be the set of all vectors in U that have at least two components with nonzero
values. Note that |V| =

∏k
y=1 cy −

∑k
y=1 cy + k − 1. For all j ∈ {1, . . . , k − 1}, define Sj ⊆ V

as the set of all vectors in V whose first j − 1 components contain the value 0 and whose j-th
components contain a nonzero value. Notice that S1, . . . , Sk−1 is a partition of the set V.

For all j ∈ {1, . . . , k − 1}, let Γj be the sequence of all vectors in Sj ordered first by
decreasing lexicographical order of the final k − j components with respect to ≺y, and
then in decreasing order by the value in the j-th component with respect to ≺′

j . For
example, if O consists of k = 3 modulo-3 counters, then 2 ≺′

y 1 and 0 ≺y 1 ≺y 2 for
all y. In this case, Γ1 =

〈
[1, 2, 2], [2, 2, 2], [1, 2, 1], . . . , [2, 1, 0], [1, 0, 1], [2, 0, 1]

〉
and Γ2 =〈

[0, 1, 2], [0, 2, 2], [0, 1, 1], [0, 2, 1]
〉
. For all i ∈ {1, . . . , |V|}, define Vi as the i-th vector in the

concatenation of Γ1, . . . , Γk−1. We use [0, . . . , 0] to denote the k-component all 0 vector.

▶ Lemma 4. For any i ∈ {1, . . . , |V|}, any U ∈ U−{V1, . . . , Vi}, and any p0-idle configuration
C in which the scannable object O contains [0, . . . , 0], there is a p0-only, {V1, . . . , Vi}-absent
execution λ from C such that Cλ is p0-idle and the object O contains U in Cλ.

Proof. First suppose that U ∈ U − V. If U = [0, . . . , 0], then let λ be the empty execution.
Otherwise, let the j-th component of U be a nonzero value. Let λ be some p0-only execution
from C in which p0 changes the value of O[j] from 0 to U [j]. In every p0-idle configuration
of λ, the value of O is a vector in U − V. Hence, λ is {V1, . . . , Vi}-absent.

Otherwise, U = Vi′ , where i < i′ ≤ |V|. Suppose that Vi′ ∈ Sj , for some j ∈ {1, . . . , k −1}.
Let λj be the p0-only execution from C in which p0 performs a shortest sequence of operations
that changes the value of O[j] from 0 to Vi′ [j]. For all y ∈ {j +1, . . . , k}, let λy be the p0-only
execution from Cλj . . . λy−1 in which p0 performs a shortest sequence of operations that
changes the value of O[y] from 0 to Vi′ [y]. Note that the sequence of values of O[y] during
λy are in increasing order with respect to ≺y. Since Vi′ ∈ Sj , the first j − 1 components of
Vi′ contain the value 0. Hence, in Cλj . . . λk, the value of O is the vector Vi′ .

During the execution λj , the updater p0 changes the value of O[j] from 0 to Vi′ [j]. All
of the other components of O contain 0 throughout λj . Hence, the object O only contains
vectors in U − V during λj . Thus, λj is {V1, . . . , Vi}-absent.

In the configuration Cλj , component O[j] contains the value Vi′ [j], and component O[j]
is not changed during λj+1 . . . λk. Furthermore, the first j − 1 components of O contain the
value 0 throughout λj . . . λk. Hence, the value of the object O in every p0-idle configuration
that appears after Cλj in the execution λj+1 . . . λk is a vector in Sj . For all y ∈ {j +1, . . . , k},
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every operation that p0 applies to O[y] increases the value of O[y] with respect to the order
≺y. Hence, the sequence of all values of O are in increasing lexicographical order with
respect to ≺y and the final vector in this sequence is Vi′ . Every vector V that appears before
Vi′ in Γj with V [j] = Vi′ [j] is lexicographically larger than Vi′ with respect to ≺y. Hence,
λ = λj . . . λk is {V1, . . . , Vi}-absent. ◀

▶ Lemma 5. For any i ∈ {1, . . . , |V|}, any U ∈ U−{V1, . . . , Vi}, and any p0-idle configuration
C in which the scannable object O contains the value U , there is a p0-only, {V1, . . . , Vi}-absent
execution τ from C such that Cτ is p0-idle and the object O contains [0, . . . , 0] in Cτ .

Proof. First suppose that U ∈ U − V. If U = [0, . . . , 0], then let τ be the empty execution.
Otherwise, let the j-th component of U be a nonzero value. Let τ be a p0-only execution
from C in which p0 changes the value of O[j] from U [j] to 0. In every p0-idle configuration
of τ , the value of O is a vector in U − V. Hence, τ is {V1, . . . , Vi}-absent.

Otherwise, U = Vi′ , where i < i′ ≤ |V|. Suppose that Vi′ ∈ Sj , for some j ∈ {1, . . . , k −1}.
Let τj be the p0-only execution from C in which p0 performs a shortest sequence of operations
that changes the value of O[j] from Vi′ [j] to 0. For all y ∈ {j + 1, . . . , k}, let τy be the
p0-only execution from Cτj . . . τy−1 in which p0 performs a shortest sequence of operations
that changes the value of O[y] from Vi′ [j] to 0. Since Vi′ ∈ Sj , the first j − 1 components of
Vi′ contain the value 0. Hence, in Cτj . . . τk, the value of O is [0, . . . , 0].

During the execution τj , the updater p0 changes the value of O[j] from Vi′ [j] to 0. None
of the other components are modified during τj . Recall that Sj is ordered first in decreasing
lexicographical order by the last k − j components with respect to ≺y, and then in decreasing
order by the j-th component with respect to ≺′

j . Every operation by p0 in τj decreases the
value of O[j] with respect to ≺′

j . In configuration Cτj , the value of O is a vector Y that
contains 0 in its first j + 1 components. Hence, either Y ∈ Sj+1 ∪ . . . ∪ Sk−1 or Y ∈ U − V.
Thus, τj is {V1, . . . , Vi}-absent.

Notice that p0 does not modify any of the first j+1 components of O after the configuration
Cτj in τj+1 . . . τk. That is, in every configuration of τj+1 . . . τk after Cτj , the value of the
object is a vector that contains 0 in its first j + 1 components. Thus, τ = τj . . . τk is
{V1, . . . , Vi}-absent. ◀

We will now prove our main technical lemma, which constructs a set of forbidden values
for each of the base objects in B. Let C0 be an initial configuration of I in which O contains
the value [0, . . . , 0]. In the following lemma, we use induction to show that, for all 0 ≤ ℓ ≤ h,
there is an execution αℓ from C0 and a function Xℓ that maps each base object Bx to a proper
subset of {0, . . . , bx − 1}, where Xℓ(Bx) represents the set of forbidden values for the base
object Bx. The first n − ℓ processes are idle and O contains [0, . . . , 0] in the configuration

C0

ρs
pn−ℓ−1∼ δs

αℓ ρs

{p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ+1}-absent

λ
p0-only

δs

pn−ℓ−1-only

Figure 1 The executions δs and ρs in the proof of Lemma 6. Notice that δs starts from C0αℓλ

and ρs starts from C0αℓ.
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C0αℓ. Furthermore, the number of forbidden values summed over all the base objects is
exactly ℓ. For any {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution from C0αℓ, none of
the forbidden values are used during that execution. To complete the inductive step, we
show how to obtain one more forbidden value by stalling the scanner pn−ℓ−1.

▶ Lemma 6. For all ℓ such that 0 ≤ ℓ ≤ h, there is an execution αℓ from C0 and a function
Xℓ that maps each base object Bx ∈ B to a proper subset of {0, . . . , bx − 1} such that
(a) C0αℓ is {p0, . . . , pn−ℓ−1}-idle,
(b) the object O contains the value [0, . . . , 0] in C0αℓ,
(c)

∑|B|
x=1 |Xℓ(Bx)| = ℓ,

(d) for every {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution γ from C0αℓ and every
Bx ∈ B, we have value(Bx, C0αℓγ) ̸∈ Xℓ(Bx).

Proof. We use induction on ℓ. Let α0 be the empty execution and let X0(Bx) = ∅ for all
Bx ∈ B. Since no processes have taken any steps in C0α0 = C0, part (a) holds. Since all of
the components contain the value 0 in the configuration C0α0 = C0, this gives us part (b).
Since X0(Bx) = ∅ for all Bx ∈ B, we know that

∑|B|
x=1 X0(Bx) = 0, which gives us part (c)

and part (d). This concludes the proof of the base case.
Now let 0 ≤ ℓ < h and suppose the lemma holds for ℓ. Then there exists an execution

αℓ from C0 that satisfies parts (a)–(d) of the lemma statement. By Lemma 4 (with i = ℓ,
U = Vℓ+1, and C = C0αℓ), there is a p0-only, {V1, . . . , Vℓ}-absent execution λ from C0αℓ

such that p0 is idle in C0αℓλ and the object O contains the value Vℓ+1 in C0αℓλ.
Process pn−ℓ−1 is idle in C0αℓ by property (a). Since pn−ℓ−1 takes no steps in λ, it is

idle in C0αℓλ as well. Let δ be the pn−ℓ−1-only execution from C0αℓλ in which pn−ℓ−1 does
a complete Scan. Since the value of O is Vℓ+1 in C0αℓλ, the Scan operation by pn−ℓ−1 in δ

returns the vector Vℓ+1. Furthermore, the execution δ is a {V1, . . . , Vℓ}-absent extension of
λ by Observation 3 (b). Let r be the number of steps by pn−ℓ−1 in δ. Define δs as the prefix
of δ consisting of the first s steps by pn−ℓ−1. (In particular, δ0 is empty and δr = δ.)

Let ρ0 be the empty execution from C0αℓ. Since pn−ℓ−1 takes no steps in λ, we know that
C0αℓ

pn−ℓ−1∼ C0αℓλ. Furthermore, since pn−ℓ−1 takes no steps in either ρ0 or δ0, we know
that ρ0

pn−ℓ−1∼ δ0. Since O contains the value [0, . . . , 0] in C0αℓρ0 = C0αℓ by property (b),
the execution ρ0 is {V1, . . . , Vℓ+1}-absent.

Let ρr be any {p0, . . . , pn−ℓ−1}-only execution from C0αℓ such that ρr
pn−ℓ−1∼ δr. Then

pn−ℓ−1’s Scan operation in ρr returns the vector Vℓ+1. Hence, by the contrapositive of
Observation 3 (a), the execution ρr is not {V1, . . . , Vℓ+1}-absent.

Let s ∈ {0, . . . , r − 1} be the maximum value such that there is a {p0, . . . , pn−ℓ−1}-only,
{V1, . . . , Vℓ+1}-absent execution ρs from C0αℓ such that ρs

pn−ℓ−1∼ δs. Then there is no
{p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ+1}-absent extension ρ′ of ρs such that ρsρ′ pn−ℓ−1∼ δs+1.
Suppose that pn−ℓ−1 is poised to access the base object Bw in C0αℓλδs and C0αℓρs. Let d

be the last step of δs+1. If there is a {p0, . . . , pn−ℓ−2}-only, {V1, . . . , Vℓ+1}-absent extension
ρ′ of ρs such that value(Bw, C0αℓρsρ′) = value(Bw, C0αℓδs), then ρsρ′d

pn−ℓ−1∼ δsd = δs+1.
By Observation 3 (b), the execution ρsρ′d is {V1, . . . , Vℓ+1}-absent. This contradicts the
definition of s. Hence,

value(Bw, C0αℓρsρ′) ̸= value(Bw, C0αℓλδs) for every {p0, . . . , pn−ℓ−2}-only,
{V1, . . . , Vℓ+1}-absent extension ρ′ of ρs. (1)

Let σℓ be the {p0, . . . , pn−ℓ−2}-only execution from C0αiρs in which the processes
p0, . . . , pn−ℓ−2 complete their pending operations in increasing order of their identifiers.
Suppose that σℓ = σ′

ℓσ
′′
ℓ , where σ′

ℓ is the prefix of σℓ that contains all of p0’s steps in σℓ.
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Since p0 does not begin any new Apply operations during σ′
ℓ, it is a {V1, . . . , Vℓ+1}-absent

extension of ρs. Furthermore, since σ′′
ℓ only contains steps by the scanners p1, . . . , pn−1,

Observation 3 (b) implies that σ′′
ℓ is a {V1, . . . , Vℓ+1}-absent extension of ρsσ′

ℓ. Thus, σℓ is a
{V1, . . . , Vℓ+1}-absent extension of ρs.

Let Y be the value of the object O in configuration C0αℓρsσℓ. Since ρsσℓ is {V1, . . . , Vℓ+1}-
absent, we know that Y ∈ U − {V1, . . . , Vℓ+1}. By Lemma 5 (with i = ℓ + 1, U = Y , and
C = C0αℓρsσℓ), there exists a p0-only, {V1, . . . , Vℓ+1}-absent execution τℓ from C0αℓρsσℓ

such that p0 is idle in C0αℓρsσℓτℓ and the object O contains [0, . . . , 0] in C0αℓρsσℓτℓ.
Let αℓ+1 = αℓρsσℓτℓ. In configuration C0αℓρsσℓτℓ = C0αℓ+1, the object O contains the

value [0, . . . , 0]. This gives us property (b) for ℓ + 1.
By definition of σℓ, the configuration C0αℓρsσℓ is {p0, . . . , pn−ℓ−2}-idle. Since pro-

cesses p1, . . . , pn−ℓ−2 take no steps during τℓ, configuration C0αℓρsσℓτℓ = C0αℓ+1 is
{p1, . . . , pn−ℓ−2}-idle. Furthermore, this configuration is p0-idle by definition of τℓ. This
gives us property (a) for ℓ + 1.

For all Bx ∈ B, define

Xℓ+1(Bx) =
{

Xℓ(Bx) ∪ {value(Bx, C0αℓλδs)} if Bx = Bw

Xℓ(Bx) otherwise.

Recall that λδs is {V1, . . . , Vℓ}-absent. Hence, value(Bw, C0αℓλδs) ̸∈ Xℓ(Bw) by property (d)
for ℓ with γ = λδs. Thus, we have |Xℓ+1(Bw)| = |Xℓ(Bw)| + 1. Since

∑|B|
x=1 |Xℓ(Bx)| = ℓ by

property (c) for ℓ, we have
∑|B|

x=1 |Xℓ+1(Bx)| = ℓ + 1. This gives us property (c) for ℓ + 1.
Let γ′ be a {p0, . . . , pn−ℓ−2}-only, {V1, . . . , Vℓ+1}-absent execution from C0αℓ+1. Then

ρsσℓτℓγ
′ is a {p0, . . . , pn−ℓ−1}-only, {V1, . . . , Vℓ}-absent execution from C0αℓ. By property (d)

for ℓ with γ = ρsσℓτℓγ
′, for every Bx ∈ B, we have value(Bx, C0αℓρsσℓτℓγ

′) ̸∈ Xℓ(Bx). By (1)
with ρ′ = σℓτℓγ

′, we have value(Bw, C0αℓρsσℓτℓγ
′) ̸= value(Bw, C0αℓλδs). This completes the

proof of property (d) for ℓ+1. Hence, by induction, the lemma holds for all ℓ ∈ {0, . . . , h}. ◀

We apply Lemma 6 with ℓ = h to obtain an execution αh and h forbidden values for the
base objects. We apply Lemma 4 to obtain p0-only, {V1, . . . , Vh}-absent executions from
C0αh in which p0 changes the value of O to the vectors in U − {V1, . . . , Vh}. None of the
forbidden values of any base objects can be used in these executions. This allows us to obtain
a lower bound on the number of base objects in B. We provide a sketch of the proof in the
following theorem, and complete the proof in Appendix A.

▶ Theorem 7. |B| ≥ 1
2 ·

(∑k
y=1 logb′ cy + h

b′ − logb′(h + 1)
)
.

Proof sketch. Apply Lemma 6 with ℓ = h to obtain an execution αh and a function Xh that
satisfy (a)–(d). By property (c), we have

∑|B|
x=1 |Xh(Bx)| = h. Since |Xh(Bx)| ≤ bx − 1 for all

Bx ∈ B, we have
∑|B|

x=1(bx − 1) ≥ h. Hence, 1
|B| ·

∑|B|
x=1(bx − 1) ≥ h

|B| . Therefore, |B| ≥ h
b′−1 .

Let V ′ be the set of all values of O except for V1, . . . , Vh. Then |V ′| =
∏k

y=1 cy − h. By
Lemma 6 (b), the object O contains the value [0, . . . , 0] in C0αh. For all V ′ ∈ V ′, there exists
a p0-only, {V1, . . . , Vh}-absent execution γV ′ from C0αh such that p0 is idle in C0αhγV ′ and
O contains V ′ in C0αhγV ′ by Lemma 4 (with i = h, U = V ′, and C = C0αh).

Let V ′
1 , V ′

2 be two distinct vectors in V ′. Consider the p1-only executions from C0αhγV ′
1

and C0αhγV ′
2

in which p1 finishes its ongoing Scan operation (if it has one) and then
performs a complete Scan. The complete Scan operation in p1’s solo execution from C0αhγV ′

1

returns the vector V ′
1 and the complete Scan operation in p1’s solo execution from C0αhγV ′

2

returns the vector V ′
2 ̸= V ′

1 . Since p1 takes no steps in γV ′
1

or γV ′
2
, it must be true that

C0αhγV ′
1

p1∼ C0αhγV ′
2
. Therefore, at least one base object must have different values in

C0αhγV ′
1

and C0αhγV ′
2
.
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Lemma 6 (d) implies that, for every p0-only, {V1, . . . , Vh}-absent execution γ from C0 and
every Bx ∈ B, we have value(Bx, C0αhγ) ̸∈ Xh(Bx). Thus, there are at most bx − |Xh(Bx)|
possible values for any base object Bx in C0αhγ. This means that the shared objects can
hold

∏|B|
x=1(bx − |Xh(Bx)|) distinct sequences of values after p0-only, {V1, . . . , Vh}-absent

executions from C0αh. Since γV ′ is a p0-only, {V1, . . . , Vh}-absent execution for all V ′ ∈ V ′,
we have

|B|∏
x=1

(
bx − |Xh(Bx)|

)
≥ |V ′| =

k∏
y=1

cy − h.

In Appendix A, we show how this implies that |B| ≥ 1
2 ·

(∑k
y=1 logb′ cy + h

b′ −logb′(h+1)
)

. ◀

A specific case that motivated our work in [22] is when c1 = . . . = ck = b1 = . . . = b|B| = b.
By applying Theorem 7 with b′ = c1 = . . . = ck = b, we obtain

|B| ≥ 1
2 · (

k∑
y=1

logb b + h

b
− logb(h + 1)).

Since
∑k

y=1 logb b = k, we have |B| ≥ 1
2 · (k + h

b − logb(h + 1)). When n ≤ bk − kb + k,
taking h = n − 1 gives us Corollary 8 (a). When n > bk − kb + k, taking h = bk − kb + k − 1
gives us |B| ≥ 1

2 ·
(
bk−1 + k−1

b − logb(bk − bk + k)
)
. Since logb(bk − bk + k) ≤ logb bk = k,

this gives us Corollary 8 (b).

▶ Corollary 8. If the domain sizes of every component O[1], . . . , O[k] and the domain sizes
of the base objects B1, . . . , B|B| are all equal to b, then
(a) |B| ≥ 1

2 · (k + n−1
b − logb n) when n ≤ bk − bk + k, and

(b) |B| ≥ 1
2 ·

(
bk−1 − (b−1)k+1

b

)
when n > bk − bk + k.

6 Conclusion

When the domain sizes of the components and base objects used by the implementation
are all equal to b and n ≤ bk − bk + k, our obstruction-free, single-updater lower bound of
1
2 · (k + n−1

b − logb
n−1

2 ) asymptotically matches our obstruction-free, multi-updater upper
bound of k + ⌈ n

b−1 ⌉. For all values of n, we conjecture that k + ⌈ n
b ⌉ base objects with

domain size b are required by any obstruction-free, multi-updater, n-process implementation
of a scannable object with k fully reusable components that have domain size b. When
n > bk −bk+k, we gave an obstruction-free, single-updater lower bound of 1

2 ·(bk−1− (b−1)k+1
b )

base objects. If b is a constant, then this asymptotically matches the wait-free, single-updater
implementation from bk binary registers in Section 1. This means that, in order to prove a
space lower bound better than bk for larger values of n, we need to consider more complex
executions that contain concurrent Apply operations. We may also be able to improve our
lower bound by considering stronger progress requirements like lock-freedom or wait-freedom.
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A Finishing the proof of Theorem 7

Proof. In the proof sketch of Theorem 7 in Section 5, we showed that

|B|∏
x=1

(
bx − |Xh(Bx)|

)
≥ |V ′| =

k∏
y=1

cy − h. (2)

Taking the base b′ logarithm of both sides of this inequality gives us the following.

|B|∑
x=1

logb′

(
bx − |Xh(Bx)|

)
≥ logb′

( k∏
y=1

cy − h
)

(3)

Let c =
∏k

y=1 cy. We will now show that logb′(c − h) ≥ logb′ c − logb′(h + 1). Notice that
logb′(c−h)−(logb′ c−logb′(h+1)) = logb′

(h+1)·(c−h)
c . In order to show that logb′

(h+1)·(c−h)
c ≥

0, it suffices to show that (h + 1) · (c − h) − c ≥ 0. Notice that (h + 1) · (c − h) − c =
hc − h2 − h = h(c − h − 1). Since h ≤

∏k
y=1 cy −

∑k
y=1 cy + k − 1, we have c ≥ h + 1. We

also have h ≥ 0. Thus, h(c − h − 1) ≥ 0, which implies that logb′
(h+1)·(c−h)

c ≥ 0. Therefore,
logb′(c − h) ≥ logb′ c − logb′(h + 1). By definition of c, this implies that logb′

(∏k
y=1 cy − h

)
≥

logb′

(∏k
y=1 cy

)
− logb′(h + 1). Substituting this into (3), we obtain the following.

|B|∑
x=1

logb′

(
bx − |Xh(Bx)|

)
≥ logb′

( k∏
y=1

cy

)
− logb′(h + 1)

=
k∑

y=1
logb′ cy − logb′(h + 1).

Dividing by |B| on both sides of this inequality, we obtain

|B|∑
x=1

1
|B|

· logb′

(
bx − |Xh(Bx)|

)
≥ 1

|B|
·
( k∑

y=1
logb′ cy − logb′(h + 1)

)
. (4)
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Since log is concave, Jensen’s inequality implies that
|B|∑

x=1

1
|B|

· logb′

(
bx − |Xh(Bx)|

)
≤ logb′

( |B|∑
x=1

1
|B|

·
(
bx − |Xh(Bx)|

))

= logb′

(
b′ − 1

|B|
·

|B|∑
x=1

|Xh(Bx)|
)

= logb′

(
b′ − h

|B|

)
.

Substituting this into (4), we have

logb′

(
b′ − h

|B|

)
≥ 1

|B|
·
( k∑

y=1
logb′ cy − logb′(h + 1)

)
.

Multiplying by |B| on both sides of the inequality, we obtain

|B| · logb′

(
b′ − h

|B|

)
≥

k∑
y=1

logb′ cy − logb′(h + 1). (5)

Let x = −
(

h
|B|

)
. So logb′

(
b′ − h

|B|
)

= logb′(b′ + x). Since |B| ≥ h
b′−1 , we have 1 − b′ ≤ x < 0.

The Maclaurin series expansion of logb′(b′ + x) is the following.

1 + x

b′ · ln(b′) − x2

2(b′)2 · ln(b′) + x3

3(b′)3 · ln(b′) − x4

4(b′)4 · ln(b′) . . .

The series converges provided |x| < |b′|. Since x < 0, every term of − x2

2(b′)2·ln(b′) + x3

3(b′)3·ln(b′) −
x4

4(b′)4·ln(b) . . . is negative. Hence, we have

1 + x

b′ · ln(b′) ≥ logb′(b′ + x). (6)

Notice that x
b′·ln(b′) − x

b′ = x·(1−ln(b′))
b′·ln(b′) ≤ 1, since |x| ≤ b′ − 1 and b′ ≥ 2. Hence, we have

1 + x
b′ ≥ x

b′·ln(b′) . Combined with (6) and the definition of x, this gives us

1 +
(

1 − h

|B| · b′

)
≥ 1 − h

|B| · b′ · ln(b′) ≥ logb′

(
b′ − h

|B|

)
.

Combined with (5), this gives us

|B| ·
(

2 − h

|B| · b′

)
≥ |B| · logb′

(
b′ − h

|B|

)
≥

k∑
y=1

logb′ cy − logb′(h + 1).

Thus, we have

2 · |B| − h

b′ ≥
k∑

y=1
logb′ cy − logb′(h + 1).

Add h
b′ to both sides and then divide by 2 to obtain

|B| ≥ 1
2 ·

( k∑
y=1

logb′ cy + h

b′ − logb′(h + 1)
)

.

This concludes the proof of the theorem. ◀
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