Contention Resolution Without Collision Detection:
Constant Throughput And Logarithmic Energy

Gianluca De Marco &

Department of Computer Science, University of Salerno, Italy

Dariusz R. Kowalski &
School of Computer and Cyber Sciences, Augusta University, GA, USA

Grzegorz Stachowiak =
Institute of Computer Science, University of Wroctaw, Poland

——— Abstract

A shared channel, also called a multiple access channel, is among the most popular and widely studied
models of communication in distributed computing. An unknown number of stations (potentially
unbounded) is connected to the channel and can communicate by transmitting and listening. A
message is successfully transmitted on the channel if and only if there is a unique transmitter at
that time; otherwise the message collides with some other transmission and nothing is sensed by the
participating stations. We consider the general framework without collision detection and in which
any participating station can join the channel at any moment. The contention resolution task is to
let each of the contending stations to broadcast successfully its message on the channel.

In this setting we present the first algorithm which exhibits asymptotically optimal ©(1) through-
put and only an O(log k) energy cost, understood as the maximum number of transmissions performed
by a single station (where k is the number of participating stations, initially unknown). We also
show that such efficiency cannot be reproduced by non-adaptive algorithms, i.e., whose behavior
does not depend on the channel history (for example, classic backoff protocols). Namely, we show

that non-adaptive algorithms cannot simultaneously achieve throughput 2 and energy

log? k
0 ((logig k)2>'

2012 ACM Subject Classification Theory of computation — Distributed algorithms

1
polylog(k)

Keywords and phrases Shared channel, Contention resolution, Throughput, Energy consumption,
Randomized algorithms, Lower bound

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.17

Funding Dariusz R. Kowalski: partially supported by the National Science Foundation grant No.
2131538 and the Polish National Science Center (NCN) grant UMO-2017/25/B/ST6/02553.

1 Introduction

A shared channel, or a multiple access channel, is one of the fundamental communication
models: it allows many autonomous computing entities to communicate over a shared medium
and the main challenge is how to efficiently resolve collisions occurring when more than one
entity attempts to access the channel at the same time (c.f., the surveys by Gallager [18]
and Chlebus [7]).

© Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak;
37 licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).

Editor: Christian Scheideler; Article No. 17; pp. 17:1-17:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:gidemarco@unisa.it
mailto:dkowalski@augusta.edu
mailto:gst@cs.uni.wroc.pl
https://doi.org/10.4230/LIPIcs.DISC.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2

Contention Resolution Without Collision Detection

In this paper we consider a classical setting, formally described as follows (c.f., [6]).!

A potentially unbounded number of stations is attached to a shared channel, each of them
possessing a packet that can be transmitted in a single time slot. The stations are anonymous
in that they do not have any identification label (ID).? The computation is decentralized:
every station acts independently by means of its own distributed protocol.

The communication proceeds in synchronous rounds. In each round a station can either
transmit a message or listen. A transmission is successful in a given round if and only if
exactly one station is transmitting in this round. In this case, the message is delivered
to all stations currently active on the channel. If more than one station transmits in the
same round we say that a collision occurs: the transmitted messages interfere each other
and retransmission is necessary. Messages could be either original packets or constant-size
control messages.?

Contention resolution problem. Each station wakes up at arbitrary time with a single
packet, and in each computation prefix the number of awaken stations is finite; we will often
denote it by parameter k. A station may terminate and leave the system (switches off) after
its packet has been successfully transmitted. When a station switches off, it disconnects
permanently from the channel. A station already awaken but not switched off yet, will be
called active.

A contention resolution algorithm is a distributed algorithm that schedules the trans-
missions for each participating station, guaranteeing that every active station eventually
transmits successfully. In other words, for each station the algorithm has to guarantee that
there exists a round at which that station transmits individually, 7.e., without interfering
with other stations.

No collision detection. Our setting is without collision detection. This means that in case
of collision the stations do not perceive any special signal, so it will be impossible for them
to distinguish between the case when more stations transmit simultaneously and the case of
a silent round where no station transmits. The only feedback an active station can sense is
when some station itself transmits successfully, in which case all active stations receive the
transmitted message. This assumption, also called a (system) acknowledgement, is quite
common in the literature (see e.g. [1, 3, 2]), and well motivated by technological applications

such as CSMA/CA [4].

Dynamic scenario. The literature on the contention resolution problem started in the 70’s
and mostly considered the (simplified) static situation in which the stations are all activated
at the same time, and thus start simultaneously their protocols, or that the activation times
are based on statistical or adversarial-queueing models.

Continuing on a more recent line of research (¢f [28, 17, 2, 3, 37, 36, 36, 35, 12, 11, 34]),
in this paper we consider a general and realistic dynamic scenario, in which the stations get
awake at arbitrary times and the sequence of activation times is totally determined by a
worst-case adaptive adversary. Since a station can start its local execution of the protocol
only after it has been woken up, there is no synchronization among the protocols. This
makes the problem of designing a distributed algorithm considerably more challenging with
respect to its simplified static counterpart.

L This setting was also used for modelling and analysis of CSMA/CA technology, c.f., [4].

2 'We assign names to the stations only for the purpose of distinguishing them in the analysis of correctness
and performance.

3 CSMA/CA and many other wireless technologies assume small-size control messages.

G. De Marco, D. R. Kowalski, and G. Stachowiak

Local clock. Although the communication proceeds in synchronous rounds with the clocks
of all the stations ticking at the same rate, our model does not allow any global clock. Each
station can measure time only on the basis of its own local clock, which starts in the round
at which the station wakes up and therefore, in the dynamic scenario considered in this
paper, is not synchronized with the other clocks. We conventionally assume that a station is
activated at round 0 of its local clock and can start transmitting since round 1.

Algorithmic solutions. Since the stations are anonymous, they are identical from a determin-
istic perspective; consequently, the only feasible solutions must be randomized. We consider
randomized distributed algorithms for the contention resolution problem: every woken-up
station has to transmit successfully its packet, regardless of its (adversarial) activation time.

All our asymptotic bounds are to be understood as high probability bounds, that is,
they hold with high probability (in short: whp). We say that an event for an algorithm
holds whp(k), when for a predefined parameter n > 0, the parameters of the algorithm
can be chosen, so that for any k the event holds with probability at least 1 — 1/k". In the
intermediate steps of analysis, we will sometimes need to use the notion of whp not only
with respect to the pre-assumed parameter 7; in such case we will say more specifically that
an event occurs “whp 1 — 1/k*”, for some A > 0. Parameter \ will typically be slightly
higher than 7, so that at the end we could get the final result with the sought probability
at least 1 — 1/k".

Complexity measures. In this paper we measure the efficiency of the algorithms both in
terms of throughput and energy consumption. The throughput is defined as follows. Given
any time t > 0, if n[t] denotes the number of stations activated up to ¢ and r[t] the number
of active rounds, that is the rounds at which at least one station is still in the system (i.e.,
not yet switched-off as a result of successful transmission), then the throughput is defined as
the ratio n[t]/r[t]. Again, the goal of an algorithm will be to maximize the throughput. The
ultimate goal is to achieve a constant throughput, i.e., to show that for any time round ¢, the
number of rounds with at least a station still active is at most a constant factor higher than
the number of stations activated until time t.

Finally, concerning the energy consumption, we evaluate the algorithm’s efficiency in
terms of the maximum, over all activated stations, number of transmissions performed by a
single station.

1.1 Previous work and our contribution

Contention resolution on a shared channel is a classical problem in distributed computing
that is getting a lot of attention recently. The first theoretical papers date back to the 70’s
and considered mainly deterministic solutions for the static scenario. Below we summarize
the results most relevant to ours.

Deterministic algorithms. Capetanakis [6], Hayes [22], and Tsybakov and Mikhailov [40]
independently presented a deterministic tree algorithm for conflict resolution in the model
with collision detection accomplishing the task in O(k + klog(n/k)) rounds, for every k and
n. Surprisingly, if k£ (or a linear upper bound on it) is given a priori to the stations, then
the same O(k + klog(n/k)) bound can be achieved even non-adaptively, without collision
detection, in simple channels with acknowledgments [25]. The proof is non-constructive; later
Kowalski [26] showed a more constructive solution, based on selectors (cf., [14, 23]), reaching
the same asymptotic bound. Clementi, Monti, and Silvestri [16] showed a matching lower

17:3

DISC 2022

17:4

Contention Resolution Without Collision Detection

bound of Q(klog(n/k)), which also holds for adaptive algorithms. If collision detection is
available, there is an almost matching Q(klogn/log k) lower bound (also valid for adaptive
algorithms) demonstrated by Greenberg and Winograd [21]. All of the above results hold
for the static scenario. In the dynamic scenario, De Marco and Kowalski [17] showed that
O(klognloglogn) time rounds are sufficient to each station to transmit successfully with a
nonadaptive deterministic algorithm. Interestingly, this almost matches the Q(klogn/logk)
lower bound in [21], although the latter holds in a much stronger setting: for adaptive
algorithms, in the static scenario and with collision detection.

Randomized algorithms. As for randomized solutions, Greenberg, Flajolet and Ladner [19]
and Greenberg and Ladner [20] presented an algorithm with collision detection working
in 2.14k + O(log k) rounds with high probability without any a priori knowledge of the
number & of contenders. More recently, Fernandez Anta, Mosteiro and Ramon Muiioz [1]
obtained the same asymptotic (optimal) bound in the model without collision detection with
a non-adaptive algorithm that also ignores any knowledge about contention size k. This
shows that in the static model, i.e., when all the packets arrive at the same time, there is
no asymptotic difference in the time complexity between adaptiveness and non-adaptiveness,
even in the absence of any knowledge about channel contention.

In the dynamic scenario considered in this paper, Bender et al. [2] designed an adaptive
algorithm with collision detection that, without any given bound on parameter k, exhibits
constant throughput, linear latency and O(loglog® k) expected transmissions per station.
Later, De Marco and Stachowiak [28] proved that constant throughput and linear latency
can also be achieved, with high probability, even in the more severe setting without collision
detection, although at the expenses of a higher energy cost. In a recent breakthrough, Bender
et al. [3] improved the energy cost to O(log? k), while preserving both constant throughput
and linear latency. They considered a more restricted setting where each station is obliged
to leave the system once it broadcasts its message.

Related work. The contention resolution problem has been also studied in the more general
framework of multi-hop radio networks, particularly in the context of problems such as
(multi-)broadcast, gossip and others in the so-called blindfold model, 7.e. in total absence of
knowledge about topology and network parameters [9, 14, 29].

Developments where similar issues on selecting stations (included broadcasting in multi-
hop radio networks) under many assumptions, mainly regarding knowledge and synchrony,
can be found in [13, 12, 8, 10, 15, 17, 34, 33, 38, 37, 31, 32, 30].

Our contribution. In Section 2, we design a randomized adaptive algorithm which exhibits
constant throughput and only a logarithmic (in the number of participating stations k,
initially unknown to participants) energy cost. Our result holds with high probability in
the number of participants and this number is unknown and potentially unbounded. The
analysis is made against an adaptive adversary, c.f., Theorem 7. Exploiting the adaptivity
of the algorithm, we allow the stations to stay in the system even after their successful
transmission. Hence, our result improves on the polylogarithmic energy cost showed in [3] if
stations are not obliged to switch off once they successfully transmit their packet, but can
stay in the system communicating coordination information to the other stations.

Note that even if stations are allowed to stay in the system after their successful trans-
missions, they contribute to the throughput and energy cost; thus, in order to optimize these
measures, we have to limit such stay and additional communication to absolute minimum,
which is asymptotically negligible.

G. De Marco, D. R. Kowalski, and G. Stachowiak

In Section 3 we show that any non-adaptive algorithm in the model with anonymous sta-

(loglog k)2
even with a constant probability, c.f., Theorem 8. Thus, they need an energy cost that

tions cannot achieve simultaneously throughput €2 (m) whp and energy O (ﬁ)

is worse than that of our algorithm by an) ((logk) factor for every algorithm with

log log k)2

polylog(k)
distribution of transmission rounds by itself without taking into account feedback from the

channel. Such protocols do not assume randomly independent choices in rounds, therefore
they include a wide class of algorithms such as backoff.

throughput Q2 (*) Non-adaptive protocols are such that each station chooses a

Our algorithmic approach. When designing a contention resolution algorithm for the
dynamic scenario, one has to deal with the problem caused by new arrivals of stations
that, being out of sync with stations activated earlier, can interfere with their transmissions
producing collisions. This interaction between new and old stations plays a major role in
any contention resolution algorithm and represents the most challenging obstacle. This is
made even more difficult if one has to save the number of transmissions per station, so to
keep the energy cost low.

In [3] this issue is overcome in an elegant way by allowing the older players to jam the new
players, so avoiding interference from the newcomers. This is done by a clever interaction
between the probabilities of real transmissions and the probabilities of jamming.

Our algorithm avoids the interference between old and new stations by keeping them
in two separated groups that are coordinated by means of a leader that periodically sends
information about the status of the system. There are many challenges that have been
tackled by our solution.

One is to assure that a leader sends information periodically, while keeping the energy
cost under a logarithmic threshold.

Another one comes from the fact that the adversary can partition the execution of the
algorithm in several disjoint activity intervals, each of them characterized by its own set of
contending stations. Estimating the total throughput of the whole execution required the
development of a new technical tool (see the notion of random variable condensed into a
vector in Section 2.2.2) for extending the analysis of throughput for a single activity interval
(with results holding with high probability with respect to the contention of the single interval,
i.e. the number of stations involved only in that interval) to the throughput for the union of
all disjoint activity intervals (with results holding with high probability with respect to the
total contention, i.e. the total number of participating stations during the whole execution).

Additionally, our approach involves several techniques for leader election, size approxima-
tion of the participating stations, testing efficiently whether a contention resolution has been
accomplished. This also highlights interesting relationships between contention resolution
and other classical problems in distributed computing.

Our lower bound approach. We construct and analyze different random wake-up patterns
to prove that any correct non-adaptive contention resolution algorithm that wants to be
efficient in terms of throughput has an energy cost Q(log? k/(loglog k)?).

We start from a first weaker lower bound Q(log k/ log log k), which is guaranteed even
for simple wake-up times uniformly distributed, and then we square this bound by building
some more complex random wake-up instances.

More precisely, we first show that if the sum of transmission probabilities is above a
logarithmic threshold in all rounds of an interval, then there are small chances of having
a successful transmission in that interval. Then we show how to define random wake-up

17:5

DISC 2022

17:6

Contention Resolution Without Collision Detection

patterns such that if the algorithm wants to keep a throughput Q(—%—), then it has to

log® k
transmit as much as to keep the sum of transmission probabilities above the logarithmic
threshold in the first + rounds. Therefore for some wake-up instances, k — ——£———
polylog(k) polylog(k)
nodes already incur an energy cost Q(%).

Then, we could recursively “pump-up” the energy cost by recursively repeating the

construction for the remaining nodes.

__k
polylog(k)

1.2 Conventions and notation

By convention, we assume that a station is activated at round 0 of its local clock and can
start transmitting from its local round number 1. At each round a station can decide the
probability of transmission by means of a randomized algorithm. Since we are dealing with
adaptive algorithms, these probabilities may depend on the history of the channel feedback
and do not have to be independent over rounds.

Although there is no global time accessible to the stations, in the analysis we will need a
reference clock (not visible to the stations) that allows us to argue about the behaviour of all
the stations involved in the computation at a given moment.

For any time ¢ of a given reference clock, we denote by A[t] the set of stations activated
until time ¢. The transmission probability assigned by the protocol to a station v € fl[t] at
time ¢ will be denoted by g,[t]. Some already activated stations, however, may not be active
during the protocol execution in time ¢, because of switching off earlier; therefore, we use
A[t] C AJt] to denote the set of stations that are still active at time t.

We define the sum of transmission probabilities at time ¢ as follows: o[t] = 3°, ¢ oy qult]-

Analogously, we will also need to consider the above sum over all activated stations until
time ¢ (i.e. not considering switches-off): 6[t] =, ¢ 41y qult]-

Surely, if ¢’ is the time of the first successful transmission, then §[t] = o[t] for every t < t'.

In our analysis we will also need to deal with the sum of probabilities used by a station
up to some time of its local clock. We define the sum of transmission probabilities of an
arbitrary station up to local time i as: s(i) = 23:1 p(j), where p(j) denotes the transmission
probability of the station at round j of its local clock. We do not need to specify the station
which this probabilities refers to, as it will be clear from the context.

2 An adaptive algorithm for unknown contention

We now describe our protocol AdaptiveCTLE, which resolves the contention with constant
throughput and logarithmic energy, without any knowledge on the number of contenders. The
number of contenders could be arbitrary and they could be activated during an arbitrarily
long time interval. Besides the data packet itself, each station can send a one-bit control
message. For the sake of presentation we will refer to these control messages as <D mode>
(encoded with bit 0) and <any D-station left?> (encoded with bit 1).

High-level description. The reader can refer to Figure 1 for a graphical representation of
algorithm’s behaviour. The algorithm alternates between two modes: a leader election mode
(L mode) and a dissemination mode (D mode). The first mode aims at getting a synchronized
subset of stations and electing a leader, which has the task of coordinating the computation
in the next dissemination mode (it will also help in Protocol Estimate&Increase, which
is a sub-routine executed in D mode). This is actually the contention resolution among
the synchronized subset of stations defined in the preceding execution of the leader election

G. De Marco, D. R. Kowalski, and G. Stachowiak

Z3
}77777
I I 24

| | —--
| Z1 |

| | -———-

| =y |
u , leader , |
T A I
v ! '_leader |
w, : .
! [v
I I
I I

L mode 1 D mode 1 L mode

time

Figure 1 Horizontal segments represent the activity periods of stations, black circles indicate first
successful transmissions for each station. Stations u, v and w start in L mode. Then, u is elected a
leader: the stations are now synchronized and the D mode starts. Thicker segments show the change
of leadership among stations every O(log k) rounds. Stations z1 and z2 wake up while u, v and w are
in D mode: they remain pending until the current D mode is active (see the middle interval on the
picture). Once u, v and w have switched off, z1 and 22 start a new L mode. Other stations (z3 and
z4) can possibly join in arbitrary times. Once a leader has been elected a new D-mode starts and so
forth. This process is iterated until a D mode ends and no station wakes up during its execution.

mode. The leader does not remain the same for the whole execution of the algorithm, but
the stations take turns in this role, in order to keep the maximum number of transmissions
below a logarithmic threshold (this will be assured by Protocol SlowIncrease).

All the stations running the D mode use a synchronized clock ticking rounds modulo 4.

0Odd rounds are used to execute the actual contention resolution protocol, while even rounds
will be used together with the leader to learn and send additional information to the
participating stations.

At any time, the system is either in L mode or in D mode. A station involved in the
L mode (resp., D mode) will be called an L-station (resp., a D-station). A newly awaken
station learns the mode of the system during the first 4 rounds. Then it remains with
an empty status until it keeps receiving, once every 4 rounds, a message <D mode> from
the current leader. This message informs the newcomers that the system is busy with the
dissemination mode. We call these stations with an empty status pending stations. This
status of “pending” will last as long as the stations that are currently in D mode have not
switched-off. It is the leader that will inform when this happens by ceasing to send the <D
mode> message and switching off. When this happens, all the pending stations start a new
L mode, and so forth. This process is iterated until no new station is injected in the system;
more precisely, when, after the switching-off of all the current D-stations, no pending station
is waiting to start a new L mode.

A formal description of the algorithm can be found in the following pseudocodes.

2.1 Pseudocodes

The main protocols of the algorithm are AdaptiveCTLE (Protocol 1), which is the first
protocol executed by a station when it is activated, and AdaptiveLeader (Protocol 2), which
is executed by the leader.

Protocol 1 and 2 (AdaptiveCTLE and AdaptiveLeader). A newly awaken station u starts
with the execution of Protocol AdaptiveCTLE. It takes the status of pending station and
keeps it while in the loop in line 2 of this protocol, i.e., while it keeps receiving the <D

17:7

DISC 2022

17:8 Contention Resolution Without Collision Detection

Algorithm 1 AdaptiveCTLE (executed by any station u).

STATUS < 0
while sTATUS ¢ {L, D} do // a woken up station keeps waiting (pending station)
listen to the channel
if u does not receive message <D mode> in 4 consecutive rounds then
STATUS <— L // u becomes an L-station

while v is active do
if sTATUS = L then
execute DecreaseSlowly // the first successful station becomes the leader
if u has been elected the leader then
execute AdaptiveLeader // see Protocol 2

STATUS <— D // once a leader is elected, station switches to dissemination mode

time_counter <~ 0 /* now all awaken stations are synchronized and
time counter will denote the current round number
started at the time the leader has been elected */

if STATUS = D then
if time counter is odd then
execute round |(time_ counter + 1)/2] of Estimate&Increase(c) (switch-off
at the first successful transmission)
else if time_ counter = 27, for some integer x > 2, then
transmit message <any D-station left?>

Algorithm 2 AdaptiveLeader (ezecuted by the leader).

while v is the leader do
if time_counter is odd then
participate as leader in Estimate&Increase(c)
else if time_counter = 2%, for some x > 2, then
transmit message <any D-station left?>
if the message is received then // if D mode has terminated
switch off
else transmit <D mode> // leader without acknowledgment => D mode continues

Algorithm 3 DecreaseSlowly (executed by a station u) [24].

: q < some constant > 0

1 <0

while u is active do
transmit the message with probability ¢ -
if transmission is successful then

1
2q+1

become a leader
11+ 1

Algorithm 4 Estimate&Increase(c) (ezecuted by a station u).

1: while Test is true do
Execute Estimate to obtain an estimate value k

N

3: Execute SlowIncrease(k,c)

G. De Marco, D. R. Kowalski, and G. Stachowiak

mode> message once every 4 rounds. If within 4 consecutive rounds of waiting, station u

does not get the <D mode> message, then the system is not in D mode and three cases may

have occurred:

(a) there was no active station when u has been woken up;

(b) the system was in L mode when u has been woken up;

(c) a D mode was running when u has been woken up, but all D-stations delivered their
messages and switched off.

In all three cases, the station exits the loop in line 2 as an L-station and starts the
subsequent loop. Being an L-station, it starts executing protocol DecreaseSlowly (cf. the
pseudocode of Protocol 3). This is a wake-up protocol introduced in [24] whose goal is to get
just one successful transmission among an asynchronized set of stations.

Once a successful transmission appears in some round ¢, the station which transmitted in
t becomes the leader. At this point the leader and all other stations that were alive at round
t, are synchronized. They set up a new variable time_counter to 0 and a D mode starts:
the leader starts the execution of Protocol AdaptiveLeader, while the other synchronized
stations continue with the execution of AdaptiveCTLE.

Let us denote by C such a synchronized subset of stations (not including the leader). We
can assume that a global clock (represented by variable time_counter initiated by the leader)
starts for all the stations in C at the round in which the leader was elected. This allows us
to use a contention resolution protocol for a synchronized set of stations. We accomplish this
task with Protocol 4, Estimate&Increase, which guarantees that all synchronized stations
in C transmit successfully within O(]C|) rounds after the synchronization round whp in |C/.
During an execution of Estimate&Increase, all stations from set C' switch off directly after
a successful transmission. In order for such a protocol to work properly, it is necessary to
avoid that stations that have woken up during its execution (newcomers) could interfere
disturbing the transmissions.

In order to make it possible that the newcomers understand what is happening in the
system, the algorithm Estimate&Increase is executed in odd rounds only, while even rounds
are devoted to performing the following kind of coordination. In rounds t = 2%, for some
integer x > 2, the D-stations and the leader send message <any D-station left?>, as
stated in lines 17 and 5 of their respective Protocols 1 and 2 (note that this requires a number
of transmissions that is only logarithmic in the length of protocol Estimate&Increase, that
is O(log |C|)).

This message will be successfully heard by the leader (and delivered to the pending
stations busy in the loop of line 2) if and only if the leader is the only transmitter, that
is, when all the D-stations in set C' have switched off. If the transmission is successful,
the leader switches off immediately. If, on the other hand, this message is not successfully
acknowledged, then it means that there is still some D-station active in the system. In
this case, in all subsequent even rounds that are not reserved to message <any D-station
left?>, the leader sends message <D mode> informing the pending stations that the D
mode has not terminated, and so they have to keep waiting (i.e., listening) in the loop.

We can now see how the above strategy guarantees that any station activated during
the execution of protocol Estimate&Increase, remains pending in the loop of line 2 silently
waiting for its termination and then it exits the loop as an L-station. Indeed, while
Estimate&Increase is running, the leader transmits a <D mode> message once every at
most 4 rounds (all even rounds with the exception of rounds 2%, for x > 2). This keeps the
station waiting in the loop. Once, the D-mode has terminated, the pending station hears
no <D mode> message during 4 consecutive rounds and therefore it exits the loop as an
L-station, starting a new L-mode. This process is iterated until it happens that no pending
station is waiting in the loop of line 2, i.e. when no other station is injected in the system.

17:9

DISC 2022

17:10

Contention Resolution Without Collision Detection

Protocol 3 (DecreaseSlowly). This protocol is used to elect a leader among the set of
asynchronized stations running in L mode. For this task we use a wakeup protocol introduced
in [24]. This protocol let just one station to successfully transmit. This station takes the
role of a leader.

Protocol 4 (Estimate&Increase). The purpose of this protocol is to solve the contention
among the synchronized set of stations running in D mode. The leader will also participate
to the computation (as stated on line 3 of Protocol AdaptiveLeader). The purpose is
accomplished by means of a sequence of two protocols: first, Estimate, which computes a
2-approximation of the number of synchronized contenders, and subsequently, SlowIncrease,
which uses the previously computed estimate to let the stations to successfully transmit their
messages and switch off. The two protocols Estimate and SlowIncrease will be executed
repeatedly until all the stations have switched off. This condition is checked by a function
Test. Let us now describe in more details the behavior of each of these three ingredients.

Protocol Estimate. In order to compute our 2-approximation of the number of contenders,
we adapt Algorithm (1 + €)-approximation for the beeping model [5] to our shared channel
without collision detection. Because in our model beeps are not explicitly recognized by the
channel, we emulate each round r of Algorithm (1 + €)-approximation by the following two
echo rounds (see [27]) in our model:
round 2r of Protocol Estimate: if a participating station is scheduled to transmit in
the corresponding round r of (1 + €)-approximation, it also transmits in round 2r of
Estimate;
round 27 4+ 1 of Protocol Estimate: if a participating station is scheduled to transmit in
the corresponding round r of (1 + €)-approximation, it also transmits in round 2r + 1
and the leader transmits as well.

If nothing is heard in the first echo round and the leader is heard in the second echo
round, then it means there is no beep in round r of (1 + ¢)-approximation; otherwise there
is a beep.

Protocol SlowIncrease(k,c). Once we have obtained an approximate estimate of the
number of participating stations, we can use an algorithm for contention resolution which
exploits such an information. For this task we can use protocol NonAdaptiveWithK (k, c) [28],
which uses an upper bound of the number & of contenders and a sufficiently large constant
¢ (which determines the probability of success). Each successfully transmitting station
automatically swaps the leadership role with the current leader, which switches off.

In order to assure logarithmic energy of the leader, if there is no swap in consecutive log k&
rounds of the original protocol NonAdaptiveWithK (k,c) [28], the leader runs a tournament
that elects another leader in O(log k') rounds, where &’ is the actual number of participants.
The binary search with echo protocol from [27] is used, coordinated by the leader, in the
beginning of which stations choose random ids from interval [1, O(k)]. It is possible that
more than one station selects the same id, in which case the leader discovers an echo for that
value, and runs the tournament again but this time only for the colliding stations. If the
time of the tournament exceeds 2log k, its actual length divided by 2 is set as the power of 2
in the new estimate of k& — the number of participating stations. Note that the time, and
thus also the energy, of the tournament is amortized by the value of log k of the estimate,
and so the following number of rounds in which the original protocol NonAdaptiveWithK
(k, ¢) is executed.

G. De Marco, D. R. Kowalski, and G. Stachowiak

Function Test. Similarly as in the protocol Estimate, the same echo procedure (a single
2-round execution of it) is used with respect to the remaining participants of the superior
protocol and the current leader. If there is a beep, the test is true, otherwise it returns false.

2.2 Analysis of throughput and energy

Correctness and time complexity of our algorithm AdaptiveCTLE will be finally proved in
Theorem 7. We will go through the following steps.

First, we analyze algorithm AdaptiveCTLE in an activity interval, i.e. a maximal size
interval of consecutive active rounds. In doing so, we start from the analysis of the basic
sub-routine protocols (Section 2.2.1), and then put them together into the analysis of the
whole activity interval (Section 2.2.2).

Next, we put the disjoint activity intervals together, using their independence and
partitioning the activity of the adversary into classes of sub-adversaries, one for each activity
interval (Section 2.2.3).

2.2.1 Analysis of protocols

Consider an activity interval with k& contenders. The first step is to analyze the performance
of procedure DecreaseSlowly. In [24], an algorithm Decrease Slowly has been presented for
the first time, and it was proven to solve the wake-up problem (i.e., allow just one successful
transmission) in O(klog k) rounds whp(k). In [28] it was improved to O(k) rounds whp(k).
Both analysis assumed non-adaptive adversary, 7.e., an adversary scheduling the wake-up
times in advance. In the following lemma, we show more detailed properties of this algorithm,
under a stronger adaptive adversary (as considered in this paper). The proof is deferred to
the appendix.

» Lemma 1. Algorithm DecreaseSlowly finishes wake-up in O(k) rounds and with O(log k)
energy whp(k), where k is the number of activated stations during the activity interval of
this execution. Moreover, for any k' > k, algorithm DecreaseSlowly finishes wake-up in

O(klog(k'/k)) rounds and with O(logk’) energy whp(k').
The two ingredient protocols of algorithm Estimate&Increase satisfy the following:

» Lemma 2 ([5]). Protocol Estimate outputs a 2-approzimation of the number k of stations
in D-mode in O(log k) rounds and O(log k) energy whp(k), and for any k' > k, it outputs a 2-
approzimation of the number k of stations in D-mode in O(log k') rounds and energy whp(k').

» Lemma 3 ([28]). Protocol SlowIncrease(k,c) solves the contention resolution problem
for at most k stations in D-mode in O(k) rounds and with O(logk) energy whp(k).

» Lemma 4. Algorithm Estimate&Increase(c) solves the contention resolution problem
within an activity interval in O(k) rounds and with O(logk) energy whp(k), where k is the
number of D-stations in the beginning of this execution. Moreover, for any k' > k, algorithm
Estimate&Increase(c) solves the contention resolution problem within an activity interval
in O(klog(k'/k)) rounds and with O(log k') energy whp(k').

Proof. The first part follows from putting together Lemmas 2 and 3. The second part follows
from repeating the above independently O(log(k’/k)) times, until the Test becomes false
and the algorithm stops. The standard probabilistic argument applies here because of two
reasons: these repeating parts are synchronized by the Test run in the beginning of the loop,
and stations participate in only a single iteration of the loop.

17:11

DISC 2022

17:12

Contention Resolution Without Collision Detection

In the Protocol Estimate&Increase and the associated confirmation rounds, there is a
constant number of transmissions per one successful transmission, on average, thus O(log k)
whp(k) and O(log k') whp(k’) in an execution of length O(klog(k’/k)). <

2.2.2 Analysis of a single activity interval

In order to show that the performance guarantees of our algorithm hold with high probability
with respect to the total number of stations awaken during any execution, independently of
how the execution is partitioned into disjoint activity intervals, we introduce the notion of
condensed random variables. Next, in Lemma 5, whose proof is in the appendix, we use such
a tool to show that the sum of the lengths of the activity intervals is bounded with high
probability with respect to the total number of stations awaken.

Let ¢ > 0 be a sufficiently large constant, depending on the exponent 7 in the formula
for whp(). We say that positive integer random variables ¢;, for 1 < i < x, are condensed
into a vector k = (wx,...,wy), for some positive integer y such that wy < ... < w, = z,
if for every 1 < j <y, set L; = {i : E[¢;] = O(27) & ¢; < c¢- 27 holds whp(27) & ¢; <
c-2/log(k/27) holds whp(k)} is of size w;, where & = ¢~ 32¥_; 2/w;.

The following technical fact holds (see the appendix for the proof).

» Lemma 5. Let ¢;, for 1 < i <z, be random variables condensed into k = (w1, ...,wy),
for some positive integer y. Then, > ;_, £; = O(K) whp(&).

We now show the performance guarantees of our algorithm within each activity interval.

» Lemma 6. Algorithm AdaptiveCTLE solves the contention resolution problem within an
activity interval in O(k) rounds and with O(log k) energy whp(k), where k is the total number
of stations activated during this execution. Moreover, for any k' > k, algorithm AdaptiveCTLE
solves the contention resolution problem within an activity interval in O(klogk') rounds and

with O(log k') energy whp(k').

Proof. Let I be the interval of rounds involved in this execution of AdaptiveCTLE. The
system starts in L mode (apart from an initial waiting period of at most 4 rounds spent in
the first while loop of Protocol AdaptiveCTLE, during which the newly activated stations,
as pending stations, realize that the system was inactive) and then it enters the D mode.

The execution of the algorithm is composed of a sequence of L mode/D mode executions,
in such a way that the ith L mode is followed by the ith D mode. Each D mode execution
involves the same set of stations that participated to the previous L mode, and the ith L
mode execution, for 7 > 1, involves the stations that were pending in the previous D mode.
This will continue until the end of interval I which occurs when all the D-stations of the last
execution of Estimate&Increase switch off and there is no station pending at the end of it.

Let = be the number of such L mode/D mode executions. For 1 <i < z, let KiL be the
length of the ith L mode and ¢P be the length of the following D mode. By Lemma 1 we
have that /X = O(m;) whp(m;), where m; is the number of stations that participated in the
ith L mode. This is also the number of stations involved in the next D mode. By Lemma 4,
it follows that (1) P = O(m;) whp(m;), (2) E[¢(P] = O(m;) and (3) £ = O(m;log(k/p;)).
Hence, considering the lengths (X0 = ¢ + ¢P of each L mode/D mode execution, we also
have (1) ¢£P = O(m;) whp(m;), (2) E[¢tP] = O(m;) and (3) ¢EP = O(m;log(k/p:)).

Let w; be the number of executions ¢ such that m; < c- 27. Tt follows that the random
variables (£ for 1 < i < z, are condensed into (wy,wa, ..., w,). By Lemma 5 we have that

0=351 077 = O(3Z5_ my) = O(k) whp(k).

G. De Marco, D. R. Kowalski, and G. Stachowiak

Lemmas 1 and 4 guarantee O(log k) energy whp(k) for the stations except the activity
of the leader in Protocol 1. It is easy to see that the transmissions of the leader could

continue for a large period of time, which could go over the desired O(log k) upper bound.

This is due to the total execution time of Protocol Estimate&Increase called on line 15,
during which the leader keeps sending messages (along with the other synchronized stations)
until it gets an acknowledgement. However, the algorithm resolves this issue by requesting
the stations participating to Estimate&Increase swapping the role of leader in such a way
that none of them transmits for more than O(logk) rounds, see description of Protocol
SlowIncrease(k,c). The second part of the lemma follows directly by applying second parts
of the results for the ingredient protocols (for any &’ > k), in Lemmas 1 and 4, and estimating
each log(k’/p;) from above by log k’. <

2.2.3 Putting activity intervals together

Finally, we are ready for the main theorem of this section. We will be using Lemma 5 again,
where the ¢;’s correspond now to the lengths of subsequent activity intervals and is an
upper linear estimate of the activated stations in the whole considered execution.

» Theorem 7. Algorithm AdaptiveCTLE has constant throughput and O(logk') energy,
whp(k"), where k' is the total number of awaken station in a considered prefix of the execution
of Algorithm AdaptiveCTLE.

Proof. Fix an arbitrary execution of the algorithm. For any time round ¢, let Q[t] be the set
of rounds r < t at which there is at least a station still active and n[t] be the total number
of stations activated until time ¢t. We need to show that the size of Q[t] is at most a constant
factor higher than n[t].

Depending on the distance between consecutive activation times (that are controlled by
the adversary and can be arbitrarily large) the execution of the algorithm can be split into
several independent executions involving disjoint subsets of stations. At the end of each
execution, all the stations awaken during it will be switched-off. The time rounds between
two consecutive executions do not belong to Q[t].

Therefore, there exists an integer 1 < z < k such that Q[t] can be partitioned into disjoint
time intervals I, ..., I;, each of them corresponding to an independent execution of the
algorithm on a set S; of stations, where all these subsets form a partition of the set of all
the stations activated until time ¢, formally |J, <, ., Si = A[t] and S; N S; = 0 for i # j. We
apply Lemma 5 to these intervals in exactly the same way as we applied it to the independent
executions of L mode and Estimate&Increase inside activity interval in the first part of
the proof of Lemma 6. Now, the base properties of the lengths of activity intervals are
guaranteed by Lemma 6, where k' stands for the total number of awaken stations in the
considered prefix of execution, and Lemma 5 implies the theorem for &’ being upper bounded
by k with respect to a constant factor.

Finally, note that due to the independence of the activity intervals, each awaken station
participates in only one of them, therefore each station’s energy is O(logk’) whp(k’), by
Lemma 6 and the union bound over the participating k' stations. |

3 A trade-off between throughput and energy of non-adaptive
algorithms

An arbitrary sequence of k activation times for k stations will be called an instance of at
most k stations and denoted by I(k). For any instance I(k), we will use a reference clock
starting when the first station is activated. All the following rounds ¢ refer to this clock.

17:13

DISC 2022

17:14

Contention Resolution Without Collision Detection

Given an algorithm A, we let T4(I(k)) be the maximum time needed for A to assure a
successful transmission of any station in instance I(k) whp. Analogously, we let E4(I(k)) be
the expected number of transmissions per station spent by algorithm 4 on instance (k).

» Theorem 8. Let 7(x) = Q(1/(log® z)) for any constant a > 0. There exists an instance
I(k) such that any non-adaptive algorithm not knowing k and achieving throughput (k) whp,
requires Q(log? k/(loglog k)?) expected transmissions per station.

Proof of Theorem 8. In order to prove the theorem, from now on we fix an arbitrary
non-adaptive algorithm A achieving throughput 7(k) = Q(1/(log”)) whp. All the following
results are meant to hold for such an algorithm A. Also, to simplify the description, all
bounds involving throughput are meant to hold with high probability even when not explicitly
stated. Moreover, we denote by T'(k) (resp. E(k)) the maximum T4 (I(k)) (resp. EA(I(k)))
taken over all instances I(k) activating k stations.

» Fact 9. T'(k) < k/7(k).
Proof. Suppose on the contrary that T'(k) > k/7(k). Then for ¢ = T'(k), the ratio between
the number of activated stations and the number of active rounds will be

nlt] k k-71(k)

m§m< A = 7(k),

which contradicts the assumption on the throughput of algorithm A. |

We start with the following lemma showing a first lower bound on the average number of
transmissions. We will improve such a bound later on.

» Lemma 10. E(k) = Q(logk/loglogk).

Proof. Let us build a random instance of k stations as follows. By the hypothesis on
throughput and Fact 9, we can assume that T'(k) < k/7(k) whp. Let v be a station activated
at time 1 of the instance. By definition of T'(k), v has to transmits successfully within 7'(k)
rounds whp. The number of rounds at which v transmits in the time period [1,T(k)] is a
random variable X such that

1€[1,T (k)]
By Markov’s inequality we have
Pr(X <2E(X)) >1/2. (1)

We now let the activation times of the other £ — 1 stations be distributed uniformly at
random among the T'(k) rounds. Each station transmits with probability p(1) at the first
round it switches on. Since the algorithm does not know k, the probability p(1) does not
depend on k. Therefore, we have that at any round of [1,7(k)] in which v transmits, the
probability that this transmission is not successful is the probability that any of the other
k — 1 stations transmits at the same time, that is (k — 1) - p(1) - (1/T(k)) = Q(7(k)), where
the asymptotic bound is due to the inequality T'(k) < k/7(k). Thus, the probability of no
successful transmission for station v during the whole interval [1,7'(k)] is at least (7(k)*).

Hence, this probability is at most 1/k" for any predetermined constant 7 > 0, only when
the number of transmissions of v is X = Q(logk/log(1/7(k))) = Q(logk/loglogk). By
Equation (1), it follows that E(X) = Q(log k/loglog k) and the lemma follows. <

G. De Marco, D. R. Kowalski, and G. Stachowiak

Now we show that if the algorithm transmits as much to keep the sum of transmission
probabilities above a logarithmic threshold, then the probability of having a successful
transmission becomes very low. Notice that before the first successful transmission occurs,

we have A[t] = A[t]. For this reason, in the following calculations we consider bounds on &]t]
instead of o[t], as they are equivalent until the first successful transmission appears.

» Lemma 11. Let T < k2. There exists a constant v > 0 such that if 6[t] > vylogk for
every t € [1,T], then the probability of having at least one successful transmission in the time
interval [1,T] is smaller than 1/k.

Proof. The probability of having at least one successful transmission in the time interval
[1,T7, is equivalent to the probability of having the first transmission in any round ¢ of this
interval. For a fixed round ¢, this probability is at most

Sopt—t) [I (Q-plt—t) <slfelit

veA[t] weA[t],w#v

which can be made smaller than 1/k3, for a sufficiently large 7. By taking the union bound
over all the T' < k? rounds of the interval, we get that this probability is at most 1/k. <

The following lemma shows that the hypothesis on throughput implies that the sum of
transmission probabilities will be maintained above the logarithmic threshold determined
in the previous lemma. In other words, if the algorithm wants to be efficient in terms of
throughput, then it has to lose in terms of energy.

» Lemma 12. Let v be the constant determined in Lemma 11. There exists a constant
¢ > 0 and an instance I (k) such that, for k sufficiently large, 6[t] > ~vlogk in all rounds
t e [1,T(k/(clog' T k))].

Proof. By the hypothesis on throughput and Fact 9 we know that T'(k) < O(klog® k). Hence,
T(k/log' ™ k) < O(k/logk). Consequently, for any constant ¢/ > 0 there exists a constant
¢ > 0 such that T(k/(clog"™* k)) < k/(c' logk), for k sufficiently large.

Construction of instance I, (k). Letting ¢ =~/p(1), we can construct an instance I (k)
for k contending stations as follows. In each round t € [1,T(k/(clog'™® k))] we switch on
c’ log k stations. Note that for this task, it is sufficient to activate at most k stations, indeed:

k k
"logk - T | ———— | < logk - —— =k
coe (clog1+ak> =8 c logk

Each station transmits with probability p(1) in the round it is switched on. Therefore, in
every t € [1,T(k/(clog" k)], 6[t] > ¢'logk - p(1) = vlog k. <

Now we can show that we can build an instance of k stations such that the transmissions
are mainly distributed at the end of the considered interval of T'(k) rounds.

» Lemma 13. For some constant ¢, E(k) — E (%) = Q(log k)

clogite loglog k

Proof. In order to prove the lemma, we build a corresponding instance I5(k) and analyze its
properties. We start as follows. Let v be the constant determined by Lemma 11 and take
an instance I7(k/2) of k/2 stations as guaranteed by Lemma 12. This lemma implies that

6(t] > vlog(k/2) in all rounds ¢ € [1, T (ﬁ%)}, for some constant ¢’. There exists

17:15

DISC 2022

17:16

Contention Resolution Without Collision Detection

a constant ¢ such that T' (%) >T (%) Therefore, by Lemma 11, there is

c’log™te clogtte

no successful transmission in all rounds 1,2,...,7T k) whp. Hence, we can conclude

k
clogite
that whp a station v starting the protocol at round 1 is not able to transmit successfully in

the interval [1, T (W)]

Now we continue the construction of an instance (k) by distributing uniformly at
random the remaining k /2 stations in the interval [T'(k/(clog'™® k), T'(k)]. The non-adaptive
algorithm A assigns a fixed sequence of transmissions to v in this interval. Recalling Fact 9,
each of these transmissions is not successful with probability larger than (k/2)-p(1)-(1/T(k)) =
Q(7(k)) =Q(1/1log” k).

Thus, in order to have a successful transmission with high probability, station v
needs to transmit Q(logk/loglogk) times in the interval [T'(k/(clog'™®k)),T(k)], as
(1/ loga k)Q(logk/ loglogk) _ 1/poly(k).

Thus, analogously as in the proof of Lemma 10, in order to have a successful transmission
with high probability, station v needs to transmit Q(log k/loglog k) times between round
T(k/(clog'™®k)) and T(k). Therefore, E(k) — E(k/(clog'™k)) = Q(logk/loglogk). =

Finally, the next lemma concludes the proof of Theorem 8.
» Lemma 14. E(k) = Q(log? k/(loglog k)?).
Proof. We can write down a telescoping sum, where c is the constant determined in Lemma 13:
E(k) = (BE(k)— E(k/(clog"™k))) + (E(k/(clog""* k)) — E(k/(clog'** k)?)) +
+ (E(k/(clog't* k)?) — E(k/(clog't* k)*)) + ...

The thesis follows by noting that this sum has Q(log k/loglog k) terms, and the first half
of these terms are Q(logk/loglog k) by Lemma 13. <

4 Open problems

The most interesting open direction is to study tradeoff between energy consumption and
other measures. In particular, is logarithmic energy necessary for anonymous shared channel
against adaptive adversary in order to achieve constant throughput? If so, could we lower
the energy requirement by allowing slightly smaller throughput, and if so, how much
smaller? How the performance changes if we start restricting protocols, for instance, by
limiting randomness or/and number of listening rounds, not allowing any control bits or
requesting successful stations to disconnect immediately. Considering occasional failures
and/or accounting rounds when stations actively listen to the energy measure are examples
of other challenging directions.

—— References

1 A. Ferndndez Anta, M. A. Mosteiro, and J. Ramon Mu noz. Unbounded contention resolution
in multiple-access channels. Algorithmica, 67:295-314, 2013.

2 M. A. Bender, T. Kopelowitz, S. Pettie, and M. Young. Contention resolution with log-logstar
channel accesses. In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing (STOC), pages 499-508, Cambridge, MA, USA, 2016. ACM.

3 Michael A. Bender, Tsvi Kopelowitz, William Kuszmaul, and Seth Pettie. Contention resolution
without collision detection. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 105-118, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384305.

https://doi.org/10.1145/3357713.3384305

G. De Marco, D. R. Kowalski, and G. Stachowiak

10

11

12

13

14

15

16

17

18

19

20

21

Giuseppe Bianchi. Performance analysis of the ieee 802.11 distributed coordination function.
Selected Areas in Communications, IEEE Journal on, 18:535-547, April 2000. doi:10.1109/
49.840210.

Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pajak, and Roger Wattenhofer.
Fast size approximation of a radio network in beeping model. Theoretical Computer Science,
810:15-25, 2020. Special issue on Structural Information and Communication Complexity.
doi:10.1016/j.tcs.2017.05.022.

J. Capetanakis. Tree algorithms for packet broadcast channels. IEEE Transactions on
Information Theory, 25:505-515, 1979.

B. S. Chlebus. Randomized communication in radio networks. In P. M. Pardalos, S. Ra-
jasekaran, J. H. Reif, and J. D. P. Rolim, editors, Handbook on Randomized Computing, pages
401-456. Springer, New York, NY, USA, 2001.

Bogdan S. Chlebus, Leszek Gasieniec, Dariusz R. Kowalski, and Tomasz Radzik. On the
wake-up problem in radio networks. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro,
Catuscia Palamidessi, and Moti Yung, editors, Automata, Languages and Programming, pages
347-359, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Bogdan S. Chlebus, Leszek Gasieniec, Alan Gibbons, Andrzej Pelc, and Wojciech Rytter.
Deterministic broadcasting in unknown radio networks. In Proceedings of the Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 00, pages 861-870, USA, 2000. Society
for Industrial and Applied Mathematics.

Bogdan S. Chlebus and Dariusz R. Kowalski. A better wake-up in radio networks. In Proceedings
of the Twenty-Third Annual ACM Symposium on Principles of Distributed Computing, PODC
’04, pages 266-274, New York, NY, USA, 2004. Association for Computing Machinery. doi:
10.1145/1011767.1011806.

Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of
multi-channel single-hop radio networks. CoRR, abs/1411.4498, 2014. arXiv:1411.4498.
Bogdan S. Chlebus, Gianluca De Marco, and Dariusz R. Kowalski. Scalable wake-up of
multi-channel single-hop radio networks. Theor. Comput. Sci., 615:23-44, 2016. doi:10.1016/
j.tcs.2015.11.046.

Bogdan S. Chlebus, Gianluca De Marco, and Muhammed Talo. Naming a channel with beeps.
Fundam. Informaticae, 153(3):199-219, 2017. doi:10.3233/FI-2017-1537.

M. Chrobak, L. Gasieniec, and W. Rytter. Fast broadcasting and gossiping in radio networks.
Journal of Algorithms, 43:177-189, 2002.

Marek Chrobak, Leszek Gasieniec, and Dariusz Kowalski. The wake-up problem in multi-
hop radio networks. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pages 992-1000, USA, 2004. Society for Industrial and Applied
Mathematics.

A. E. F. Clementi, A. Monti, and R. Silvestri. Distributed broadcast in radio networks of
unknown topology. Theoretical Computer Science, 302:337-364, 2003.

G. De Marco and D. Kowalski. Fast nonadaptive deterministic algorithm for conflict resolution
in a dynamic multiple-access channel. SIAM J. Comput, 44(3):868-888, 2015.

Robert G. Gallager. A perspective on multiaccess channels. IEEE Trans. Information Theory,
31(2):124-142, 1985.

A. G. Greenberg, P. Flajolet, and R. E. Ladner. Estimating the multiplicities of conflicts to
speed their resolution in multiple access channels. Journal of the ACM, 34(2):289-325, 1987.
A. G. Greenberg and R. E. Ladner. Estimating the multiplicities of conflicts in multiple access.
In IEEE, editor, Proc. of the 24th Annual Symp. on Foundations of Computer Science (FOCS)
(Tucson, AZ.)., pages 383-392, Tucson, AZ, USA, 1983. IEEE.

A. G. Greenberg and A S. Winograd. lower bound on the time needed in the worst case to
resolve conflicts deterministically in multiple access channels. Journal of ACM, 32:589-596,
1985.

17:17

DISC 2022

https://doi.org/10.1109/49.840210
https://doi.org/10.1109/49.840210
https://doi.org/10.1016/j.tcs.2017.05.022
https://doi.org/10.1145/1011767.1011806
https://doi.org/10.1145/1011767.1011806
http://arxiv.org/abs/1411.4498
https://doi.org/10.1016/j.tcs.2015.11.046
https://doi.org/10.1016/j.tcs.2015.11.046
https://doi.org/10.3233/FI-2017-1537

17:18

Contention Resolution Without Collision Detection

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

J. F. Hayes. An adaptive technique for local distribution. IEEE Transactions on Communica-
tions, 26:1178-1186, 1978.

P. Indyk. Explicit constructions of selectors and related combinatorial structures. In Proceedings,
13th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 697-704, San Francisco,
CA, USA, 2002. ACM-SIAM.

T. Jurdzinski and G. Stachowiak. Probabilistic algorithms for the wakeup problem in single-hop
radio networks. Theory Comput. Syst, 38(3):347-367, 2005.

J. Komlds and A. G. Greenberg. An asymptotically optimal nonadaptive algorithm for conflict
resolution in multiple-access channels. IEEE Trans. on Information Theory, 31:302-306, 1985.
D. Kowalski. On selection problem in radio networks. In Proceedings, 24th ACM Symposium
on Principles of Distributed Computing (PODC), pages 158-166, Las Vegas, NV, USA, 2005.
ACM.

Dariusz R. Kowalski and Andrzej Pelc. Time of deterministic broadcasting in radio networks
with local knowledge. SIAM Journal on Computing, 33(4):870-891, 2004. doi:10.1137/
S0097539702419339.

G. De Marco and G. Stachowiak. Asynchronous shared channel. In Elad Michael Schiller and
Alexander A. Schwarzmann, editors, Proceedings of the ACM Symposium on Principles of
Distributed Computing, PODC 2017, Washington, DC, USA, July 25-27, 2017, pages 391-400,
Washington, DC, USA, 2017. ACM. doi:10.1145/3087801.3087831.

Gianluca De Marco. Distributed broadcast in unknown radio networks. SIAM J. Comput.,
39(6):2162-2175, 2010. doi:10.1137/080733826.

Gianluca De Marco, Tomasz Jurdzinski, and Dariusz R. Kowalski. Optimal channel utilization
with limited feedback. In Leszek Antoni Gasieniec, Jesper Jansson, and Christos Levcopoulos,
editors, Fundamentals of Computation Theory - 22nd International Symposium, FCT 2019,
Copenhagen, Denmark, August 12-14, 2019, Proceedings, volume 11651 of Lecture Notes in
Computer Science, pages 140-152. Springer, 2019. doi:10.1007/978-3-030-25027-0_10.
Gianluca De Marco, Tomasz Jurdzinski, Dariusz R. Kowalski, Michal Rézanski, and Grzegorz
Stachowiak. Subquadratic non-adaptive threshold group testing. J. Comput. Syst. Sci.,
111:42-56, 2020. doi:10.1016/j.jcss.2020.02.002.

Gianluca De Marco, Tomasz Jurdzinski, Michal Rézanski, and Grzegorz Stachowiak. Sub-
quadratic non-adaptive threshold group testing. In Ralf Klasing and Marc Zeitoun, editors,
Fundamentals of Computation Theory - 21st International Symposium, FCT 2017, Bordeauz,
France, September 11-13, 2017, Proceedings, volume 10472 of Lecture Notes in Computer
Science, pages 177-189. Springer, 2017. doi:10.1007/978-3-662-55751-8_15.

Gianluca De Marco and Dariusz R. Kowalski. Towards power-sensitive communication on a
multiple-access channel. In 2010 International Conference on Distributed Computing Systems,
ICDCS 2010, Genova, Italy, June 21-25, 2010, pages 728-735. IEEE Computer Society, 2010.
doi:10.1109/ICDCS.2010.50.

Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. In 27th IEEE International Symposium on Parallel and Distributed
Processing, IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages 525-533. IEEE
Computer Society, 2013. doi:10.1109/IPDPS.2013.68.

Gianluca De Marco and Dariusz R. Kowalski. Contention resolution in a non-synchronized
multiple access channel. Theor. Comput. Sci., 689:1-13, 2017. doi:10.1016/j.tcs.2017.05.
014.

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Brief announcement:
Deterministic contention resolution on a shared channel. In Ulrich Schmid and Josef Widder,
editors, 32nd International Symposium on Distributed Computing, DISC 2018, New Orleans,
LA, USA, October 15-19, 2018, volume 121 of LIPIcs, pages 44:1-44:3. Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, 2018. doi:10.4230/LIPIcs.DISC.2018.44.

Gianluca De Marco, Dariusz R. Kowalski, and Grzegorz Stachowiak. Deterministic contention
resolution without collision detection: Throughput vs energy. In 41st IEEE International
Conference on Distributed Computing Systems, ICDCS 2021, Washington DC, USA, July 7-10,
2021, pages 1009-1019. IEEE, 2021. doi:10.1109/ICDCS51616.2021.00100.

https://doi.org/10.1137/S0097539702419339
https://doi.org/10.1137/S0097539702419339
https://doi.org/10.1145/3087801.3087831
https://doi.org/10.1137/080733826
https://doi.org/10.1007/978-3-030-25027-0_10
https://doi.org/10.1016/j.jcss.2020.02.002
https://doi.org/10.1007/978-3-662-55751-8_15
https://doi.org/10.1109/ICDCS.2010.50
https://doi.org/10.1109/IPDPS.2013.68
https://doi.org/10.1016/j.tcs.2017.05.014
https://doi.org/10.1016/j.tcs.2017.05.014
https://doi.org/10.4230/LIPIcs.DISC.2018.44
https://doi.org/10.1109/ICDCS51616.2021.00100

G. De Marco, D. R. Kowalski, and G. Stachowiak

38 Gianluca De Marco, Marco Pellegrini, and Giovanni Sburlati. Faster deterministic wakeup in

multiple access channels. Discret. Appl. Math., 155(8):898-903, 2007. doi:10.1016/j.dam.

2006.08.009.

39 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995. doi:10.1017/CB09780511814075.

40 B. S. Tsybakov and V. A. Mikhailov. Free synchronous packet access in a broadcast channel
with feedback. Prob. Inf. Transmission, 14:259-280, 1977.

A Appendix

A.l Lemmal

Proof of Lemma 1. Let us consider the first 32¢k rounds, for some constant ¢ > 0, following
the round at which the first station wakes up and starts the computation. We will prove
that by the end of this interval the wake up has been accomplished whp(k).

Following the algorithm, each awake station, starting from the round at which it wakes
1 1

2¢+10 97 3g20
denote by p; the transmission probability of an arbitrary awake station u at the ith round of

up, transmits using the following sequence of probabilities: ¢ - i, q- . If we
its computation, we have that the sum of transmission probabilities of u over the first 32qk
rounds, after waking up, is

32qk 32qk 1
s(32qk) = Zpi <q (Z Z) < q(1+In(32¢k)) , (2)

i=1

where in the last step we have used the right-hand inequality of the following known bounds
for the hth partial sum Hj, of the harmonic series:

1
i

h
In(l1+h) <H,=>» —<1+nh. (3)
=1

For any fixed round t, let us consider now the sum of transmission probabilities of all awake
stations at time ¢, denoted as in the previous section by o(t). Since at most k stations can
be awake in each round, the average sum o(t) for ¢ ranging over our interval of 32¢k rounds
will be
1 s(32qk) -k _ q(1+1n(32qk)) -k _ In(32¢k)
== o)< < <
32qk 32qk 32qk 16

t=0

Of course, in at least half of the interval, o(t) must be not larger than twice the average;
therefore there is a set T' of at least 16¢k rounds such that

In(32¢k)

o(t) <

(4)
for every t € T. Let us consider only rounds in 7. We say that a round ¢ is heavy when
o(t) > 1/2 and light otherwise. We distinguish two cases.
Case 1: there are at least 8¢k heavy rounds. Recalling also (4), in at least 8¢k rounds ¢, it
holds that
In(32¢k)

1
5 <o)< =2 (5)

17:19

DISC 2022

https://doi.org/10.1016/j.dam.2006.08.009
https://doi.org/10.1016/j.dam.2006.08.009
https://doi.org/10.1017/CBO9780511814075

17:20

Contention Resolution Without Collision Detection

In [24] (cf. Corollary 5.3.1) it is showed that if (5) holds, than the success probability at
round t is at least

In(32qk)
8

1

(i = B2k
Therefore, the probability that the wake-up does not appear in 8¢k heavy rounds is at
most (1 — 1/1/32¢k)%%* = O(1/k®) for an arbitrary constant a depending on gq.

Case 2: there are less than 8¢k heavy rounds. So, there are at least 6 = 8¢k light rounds
in T. Let t1,t,...,ts be the sequence of consecutive light rounds. In [24] (cf. Claim 1
in the proof of Theorem 10.3) it is showed by induction on ¢ that o(¢;) > ¢/(2q + i), for
1 < <§. Consequently,

q/(2q+1) <o(t;)) <1/2, for 1 <i < 4.

By Corollary 5.3.3 in [24], this implies that the probability of successfully waking up in
the ith light round is at least ¢/2(2q + ¢). Hence, the probability that the wakeup is not
successful is at most

s

[Ta-o@)< f[<1 _ Q(Q;H)) < ((13)2 pern) < (i)%@fl YD

i=1
1\ 8(H5H20) (1) §0n040)n(d) tg "1y
= (E) = (E) 1 + 8qk - (ﬂ) ’

where the second last inequality follows by (3) and choosing g > €/2).

If in the above arguments the contention k is kept but the number of considered rounds is
extended by a factor log(k’/k), the probability of failure in the formulas is raised to log(k'/k),
which results in success whp(k’).

We can observe that Protocol 3 gives a maximum number of transmissions per station
of O(log k) whp. This follows from the fact that in expectation the sum of ¢/(2q + i) over
i up to O(k) is O(logk). The Chernoff bound and then the union bound over the stations
give the desired O(log k) bound whp(k). The same argument gives energy O(log k') bound
whp(k’) when the length of the execution is O(klog(k’/k)). <

A.2 Lemmab)h

In order to prove Lemma 5 we need to show concentration bounds on the lengths of the
activity intervals. To this aim, we will use, similarly as in [2], the Azuma-Hoeffding inequality
on martingales.

» Definition 15. A sequence of random wvariables Xo, X1, ... is said to be a martingale
sequence if for all i > 0, E[X;| Xo,...,X;—1] = X;—1.

The following theorem holds (see e.g. [39, p. 92]).

» Theorem 16 (Azuma-Hoeffding inequality). Let Xy, X1, ... be a martingale sequence such
that for each 1,

|X: — Xio] <,

where ¢; may depend on i. Then, for allt > 0 and any X > 0,

)\2
Pr(|X; — Xo| = A) < 2exp (22—1‘%2) :

G. De Marco, D. R. Kowalski, and G. Stachowiak

Proof of Lemma 5. Fix a sufficiently large positive integer a. Pick any integer j, where
1 < j <y, and consider three cases covering all possible events (i.e., for each j, at least one
of the three cases holds):

Case (a): 27 is at least #'/. In such a case, 2/ is a polynomial in &. Therefore, each ¢;
for i € L; is, by the definition of L;, upper bounded by c - 27 Whp(kl/"‘). Since « is a
constant, we can set a suitable parameter 1 > 0 in the definition of whp such that the
upper bound #; < c- 27 also holds whp(#). There are at most & of such events, by the
definition of k. By applying the union bound to these events, and still choosing a suitable
parameter 17 > 0 in the definition of whp, we get that), L

Case (b): case (a) does not hold and w; is at least #%/®. Let P be the conditional probability
space restricted to all situations where the following event £ holds: for all i € Lj,
l; < c-2log(k/27). Let i1,12,...,%y,; be any order of the indices of L;. We can
define a sequence of random variables X; , X;,,...,X;, such that for 1 < v < wjy,
X, =L, + -+ 4;, —vc- 27 log(k/27).

Tw

We can now observe that in the conditional probability space P the above sequence of
random variables is a martingale. Indeed, we have E[X;| Xo,...,X;—1] = X;—1 + E[X;] =
Xi1+ E[ly,]+ -+ E[t;,] —ve- 27 log(k/27) = X;_1. We have also that | X; — X;_1| =
[0, — c-271og(k/27)| = O(K'/*log(k)), where the last step follows because in P we have
that ¢; < c-27log(%/27) holds for all i € L; and we are assuming that case (a) does not hold,
50 27 < B/, Thus the assumptions of Theorem 16 are satisfied and we can estimate the
probability that ¢;, +---+¢; . is larger than E[ZieLj
Specifically, the Azuma-Hoeffding inequality in our case implies that this probability, within
the conditional probability space P, is at most

iwj

w? w?
o (‘22;":1 om) _he (‘2wj0<n1/a 1og<m/2j>>> |

Since wj is at least 73/ the complementary event holds whp(k) in the conditional probability
space P.

Recall that &, defining the conditional probability space P, is the event that for all
i € Lj, {; <c-271og(k/27). By the definition of L;, ¢; < c-27log(%/27) whp (%). Hence, the
probability that event £ does not hold (i.e., the case is outside P) is, by the union bound, at
most O(1/k) for o > 3. This implies that > ¢; < O(27w;) holds whp(%) in the whole
sample space.

i€L;

Case (c): cases (a) and (b) do not hold, i.e., 2/ < &/ and w; < &%/®, which implies 27w,

is smaller than 74/.

Putting all cases together, the total contribution of j satisfying Cases (a), (b) and (c)
is linear in O(}_; 2Jw;) = O(k) and holds whp(&), by the union bound taken over at most
x <k values j and using upper bound O(2/w;) that holds whp(%) each. <

¢; is O(27w;) holds whp(&).

éz] +’LUj = O(2Jw3) + wj; = O(QJU]])

17:21

DISC 2022

	1 Introduction
	1.1 Previous work and our contribution
	1.2 Conventions and notation

	2 An adaptive algorithm for unknown contention
	2.1 Pseudocodes
	2.2 Analysis of throughput and energy
	2.2.1 Analysis of protocols
	2.2.2 Analysis of a single activity interval
	2.2.3 Putting activity intervals together

	3 A trade-off between throughput and energy of non-adaptive algorithms
	4 Open problems
	A Appendix
	A.1 Lemma 1
	A.2 Lemma 5

