Oracular Byzantine Reliable Broadcast
Martina Camaioni
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Rachid Guerraoui
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Matteo Monti
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Manuel Vidigueira
Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

—— Abstract

Byzantine Reliable Broadcast (BRB) is a fundamental distributed computing primitive, with
applications ranging from notifications to asynchronous payment systems. Motivated by practical
consideration, we study Client-Server Byzantine Reliable Broadcast (CSB), a multi-shot variant of
BRB whose interface is split between broadcasting clients and delivering servers. We present Draft,
an optimally resilient implementation of CSB. Like most implementations of BRB, Draft guarantees
both liveness and safety in an asynchronous environment. Under good conditions, however, Draft
achieves unparalleled efficiency. In a moment of synchrony, free from Byzantine misbehaviour, and
at the limit of infinitely many broadcasting clients, a Draft server delivers a b-bits payload at an
asymptotic amortized cost of 0 signature verifications, and (logz(c) + b) bits exchanged, where ¢
is the number of clients in the system. This is the information-theoretical minimum number of
bits required to convey the payload (b bits, assuming it is compressed), along with an identifier for
its sender (log, (¢) bits, necessary to enumerate any set of ¢ elements, and optimal if broadcasting
frequencies are uniform or unknown). These two achievements have profound practical implications.
Real-world BRB implementations are often bottlenecked either by expensive signature verifications,
or by communication overhead. For Draft, instead, the network is the limit: a server can deliver
payloads as quickly as it would receive them from an infallible oracle.

2012 ACM Subject Classification Theory of computation — Distributed algorithms

Keywords and phrases Byzantine reliable broadcast, Good-case complexity, Amortized complexity,
Batching

Digital Object Identifier 10.4230/LIPIcs.DISC.2022.13

Related Version The full version of this paper, which includes all detailed proofs and pseudocode, is
available online.
Full Version: https://arxiv.org/abs/ [17]

1 Introduction

Byzantine reliable broadcast (BRB) is one of the most fundamental and versatile building
blocks in distributed computing, powering a variety of Byzantine fault-tolerant (BFT)
systems [14, 28]. The BRB abstraction has recently been shown to be strong enough to
process payments, enabling cryptocurrency deployments in an asynchronous environment [29].
Originally introduced by Bracha [9] to allow a set of processes to agree on a single message
from a designated sender, BRB naturally generalizes to the multi-shot case, enabling higher-
level abstractions such as Byzantine FIFO [44, 12] and causal [7, 4] broadcast. We study a
practical, multi-shot variant of BRB whose interface is split between broadcasting clients and
delivering servers. We call this abstraction Client-Server Byzantine Reliable Broadcast (CSB).

© Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira;
37 licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Distributed Computing (DISC 2022).

Editor: Christian Scheideler; Article No. 13; pp. 13:1-13:19

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.DISC.2022.13
https://arxiv.org/abs/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2

Oracular Byzantine Reliable Broadcast

CSB in brief. Clients broadcast, and servers deliver, payloads composed by a contexrt and a
message. This interface allows, for example, Alice to announce her wedding as well as will
her fortune by respectively broadcasting

"My wife is", "Carla" "All my riches go to", "Bob"
—_—— —— SN——

message Mgy message M,

context ¢y context ¢,

CSB guarantees that: (Consistency) no two correct servers deliver different messages for
the same client and context; (Totality) either all correct servers deliver a message for a
given client and context, or no correct server does; (Integrity) if a correct server delivers a
payload from a correct client, then the client has broadcast that payload; and (Validity) a
payload broadcast by a correct client is delivered by at least one correct server. Following
from the above example, Carla being Alice’s wife does not conflict with Bob being her sole
heir (indeed, ¢,, # ¢,), but Alice would not be able to convince two correct servers that she
married Carla and Diana, respectively. Higher-level broadcast abstractions can be easily
built on top of CSB. For example, using integer sequence numbers as contexts and adding
a reordering layer yields Client-Server Byzantine FIFO Broadcast. For the sake of CSB,
however, it is not important for contexts to be integers, or satisfy any property other than
comparability. Throughout the remainder of this paper, the reader can picture contexts as
opaque binary blobs. Lastly, while the set of servers is known, CSB as presented does not
assume any client to be known a priori. The set of clients can be permissionless, with servers
discovering new clients throughout the execution.

A utopian model. Real-world BRB implementations are often bottlenecked either by
expensive signature verifications [21] or by communication overhead [10, 34, 35]. With the
goal of broadening those bottlenecks, simplified, more trustful models are useful to establish
a (sometimes grossly unreachable) bound on the efficiency that an algorithm can attain in
the Byzantine setting. For example, in a utopian model where any agreed-upon process can
be trusted to never fail (let us call it an oracle), CSB can easily be implemented with great
efficiency. Upon initialization, the oracle organizes all clients in a list, which it disseminates to
all servers. For simplicity, let us call id a client’s position in the list. To broadcast a payload
p, a client with id 7 simply sends p to the oracle: the oracle checks p for equivocation (thus
ensuring consistency), then forwards (¢, p) to all servers (thus ensuring validity and totality).
Upon receiving (i, p), a server blindly trusts the oracle to uphold all CSB properties, and
delivers (i, p). Oracle-CSB is clearly very efficient. On the one hand, because the oracle can
be trusted not to attribute spurious payloads to correct clients, integrity can be guaranteed
without any server-side signature verification. On the other, in order to deliver (7, p), a server
needs to receive just ([log, (¢)] + |p|) bits, where ¢ denotes the total number of clients, and
|p| measures p’s length in bits. This is optimal assuming the rate at which clients broadcast

1

is unknown! or uniform? [20].

Matching the oracle. Due to its reliance on a single infallible process, Oracle-CSB is not a

fault-tolerant distributed algorithm: shifting back to the Byzantine setting, a single failure
would be sufficient to compromise all CSB properties. Common sense suggests that Byzantine

! Lacking an assumption on broadcasting rates, an adversarial scheduler could have all messages broadcast
by the client with the longest id, which we cannot guarantee to be shorter than [log, (c)] bits.

2 Should some clients be expected to broadcast more frequently than others, we could further optimize
Oracle-CSB by assigning smaller ids to more active clients, possibly at the cost of having less active
clients have ids whose length exceeds [log, (¢)]. Doing so, however, is beyond the scope of this paper.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira

resilience will necessarily come at some cost: protocol messages must be exchanged to preserve
consistency and totality, signatures must be produced and verified to uphold integrity and,
lacking the totally-ordering power that only consensus can provide, ids cannot be assigned
in an optimally dense way. However, this paper proves the counter-intuitive result that
an asynchronous, optimally-resilient, Byzantine implementation of CSB can asymptotically
match the efficiency of Oracle-CSB. This is not just up to a constant, but identically. In a
synchronous execution, free from Byzantine misbehaviour, and as the number of concurrently
broadcasting clients goes to infinity (we call these conditions the batching limit®), our CSB
implementation Draft delivers a payload p at an asymptotic*, amortized cost of 0 signature
verifications® and ([log, (¢)] + |p|) bits exchanged per server, the same as in Oracle-CSB (we
say that Draft achieves oracular efficiency). At the batching limit a Draft server is dispensed
from nearly all signature verifications, as well as nearly all traffic that would be normally
required to convey protocol messages, signatures, or client public keys. Network is the limit:
payloads are delivered as quickly as they can be received.

CSB’s common bottlenecks. To achieve oracular efficiency, we focus on three types of

server overhead that commonly affect a real-world implementation of CSB:
Protocol overhead. Safekeeping consistency and totality typically requires some form of
communication among servers. This communication can be direct (as in Bracha’s original,
all-to-all BRB implementation) or happen through an intermediary (as in Bracha’s signed,
one-to-all-to-one BRB variant), usually employing signatures to establish authenticated,
intra-server communication channels through a (potentially Byzantine) relay.
Signature overhead. Upholding integrity usually requires clients to authenticate their mes-
sages using signatures. For servers, this entails both a computation and a communication
overhead. On the one hand, even using well-optimized schemes, signature verification
is often CPU-heavy enough to dominate a server’s computational budget, dwarfing in
particular the CPU footprint of much lighter, symmetric cryptographic primitives such
as hashes and ciphers. On the other hand, transmitting signatures results in a fixed
communication overhead per payload delivered. While the size of a signature usually
ranges from a few tens to a few hundreds of bytes, this overhead is non-negligible in a
context where many clients broadcast small messages. This is especially true in the case
of payments, where a message reduces to the identifier of a target account and an integer
to denote the amount of money to transfer.
Identifier overhead. CSB’s multi-shot nature calls for a sender identifier to be attached
to each broadcast payload. Classically, the client’s public key is used as identifier. This is
convenient for two reasons. First, knowing a client’s identifier is sufficient to authenticate
its payloads. Second, asymmetric keypairs have very low probability of collision. As such,
clients can create identities in the system without any need for coordination: locally
generating a keypair is sufficient to begin broadcasting messages. By cryptographic design,
however, public keys are sparse, and their size does not change with the number of clients.
This translates to tens to hundreds of bytes being invested to identify a client from a set
that can realistically be enumerated by a few tens of bits. Again, this communication
overhead is heavier on systems where broadcasts are frequent and brief.

3 The batching limit includes other easily achievable, more technical conditions that we omit in this section
for the sake of brevity. For the full definition, please refer to the extended version of this paper [17].

4 The asymptotic costs are reached quite fast, at rates comparable to C~! or log(C) - C1.

5 This does not mean that batches are processed in constant time: hashes and signature aggregations, for
example, still scale linearly in the size of a batch. The real-world computational cost of such simple
operations, however, is several orders of magnitude lower than that of signature verification.

13:3

DISC 2022

13:4

Oracular Byzantine Reliable Broadcast

On the way to matching Oracle-CSB’s performance, we develop techniques to negate all
three types of overhead: at the batching limit, a Draft server delivers a payload wasting 0
bits to protocol overhead, performing 0 signature verifications, and exchanging [log, (¢)]
bits of identifier, the minimum required to enumerate the set of clients. We outline our
contributions below, organized in three (plus one) take-home messages (T-HMs).

T-HM1: The effectiveness of batching goes beyond total order. In the totally ordered
setting, batching is famously effective at amortizing protocol overhead [45, 3]. Instead of
disseminating its message to all servers, a client hands it over to (one or more)% batching
processes. Upon collecting a large enough set of messages, a batching process organizes all
messages in a batch, which it then disseminates to the servers. Having done so, the batching
process submits the batch’s hash to the system’s totally-ordering primitive. Because hashes
are constant in length, the cost of totally ordering a batch does not depend on its size. Once
batches are totally ordered, so too are messages (messages within a batch can be ordered by
any deterministic function), and equivocations can be handled at the application layer (for
example, in the context of a cryptocurrency, the second request to transfer the same asset
can be ignored by all correct servers, with no need for additional coordination). At the limit
of infinitely large batches, the relative overhead of the ordering protocol becomes vanishingly
small, and a server can allocate virtually all of its bandwidth to receiving batches. This
strategy, however, does not naturally generalize to CSB, where batches lack total order. As
payloads from multiple clients are bundled in the same batch, a correct server might detect
equivocation for only a subset of the payloads in the batch. Entirely accepting or entirely
rejecting a partially equivocated batch is not an option. In the first case, consistency could
be violated. In the second case, a single Byzantine client could single-handedly “poison’
the batches assembled by every correct batching process with equivocated payloads, thus
violating validity. In Draft, a server can partially reject a batch, acknowledging all but
some of its payloads. Along with its partial acknowledgement, a server provides a proof of
equivocation to justify each exception. Having collected a quorum of appropriately justified
partial acknowledgements, a batching process has servers deliver only those payloads that
were not excepted by any server. Because proofs of equivocations cannot be forged for
correct clients, a correct client handing over its payload to a correct batching process is
guaranteed to have that payload delivered. In the common case where batches have little to

)

no equivocations, servers exchange either empty or small lists of exceptions, whose size does
not scale with that of the batch. This extends the protocol-amortizing power of batching to
CSB and, we conjecture, other non-totally ordered abstractions.

T-HM2: Interactive multi-signing can slash signature overhead. Traditionally, batching
protocols are non-interactive on the side of clients. Having offloaded its message to a correct
batching process, a correct client does not need to interact further for its message to be
delivered: the batching process collects an arbitrary set of independently signed messages and
turns to the servers to get each signature verified, and the batch delivered. This approach is
versatile (messages are not tied to the batch they belong to) and reliable (a client crashing
does not affect a batch’s progress) but expensive (the cost of verifying each signature is high
and independent of the batch’s size). In Draft, batching processes engage in an interactive
protocol with clients to replace, in the good case, all individual signatures in a batch with

6 In most real-world implementations, a client optimistically entrusts its payload to a single process,
extending its request to larger portions of the system upon expiration of a suitable timeout.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira

a single, batch-wide multi-signature. In brief, multi-signature schemes extend traditional
signatures with a mechanism to aggregate signatures and public keys: an arbitrarily large set
of signatures for the same message’ can be aggregated into a single, constant-sized signature;
similarly, a set of public keys can be aggregated into a single, constant-sized public key. The
aggregation of a set of signatures can be verified in constant time against the aggregation
of all corresponding public keys. Unlike verification, aggregation is a cheap operation,
reducing in some schemes to a single multiplication on a suitable field. Multi-signature
schemes open a possibility to turn expensive signature verification into a once-per-batch
operation. Intuitively, if each client contributing to a batch could multi-sign the entire batch
instead of its individual payload, all multi-signatures could be aggregated, allowing servers
to authenticate all payloads at once. However, as clients cannot predict how their payloads
will be batched, this must be achieved by means of an interactive protocol. Having collected
a set of individually-signed payloads in a batch, a Draft batching process shows to each
contributing client that its payload was included in the batch. In response, clients produce
their multi-signatures for the batch’s hash, which the batching process aggregates. Clients
that fail to engage in this interactive protocol (e.g., because they are faulty or slow) do not
lose liveness, as their original signature can still be attached to the batch to authenticate
their individual payload. In the good case, all clients reply in a timely fashion, and each
server has to verify a single multi-signature per batch. At the limit of infinitely large batches,
this results in each payload being delivered at an amortized cost of 0 signature verifications.
The usefulness of this interactive protocol naturally extends beyond CSB to all multi-shot
broadcast abstractions whose properties include integrity.

T-HM3: Dense id assignment can be achieved without consensus. In order to efficiently
convey payload senders, Oracle-CSB’s oracle organizes all clients in a list, attaching to each
client a successive integral identifier. Once the list is disseminated to all servers, the oracle can
identify each client by its identifier, sparing servers the cost of receiving larger, more sparse,
client-generated public keys. Id-assignment strategies similar to that of Oracle-CSB can be
developed, in the distributed setting, building on top of classical algorithms that identify
clients by their full public keys (we call such algorithms id-free, as opposed to algorithms
such as Draft, which are id-optimized). In a setting where consensus can be achieved, the
identifier density of Oracle-CSB is easily matched. Upon initialization, each client submits its
public key to an id-free implementation of Total-Order Broadcast (TOB). Upon delivery of a
public key, every correct process agrees on its position within the common, totally-ordered
log. As in Oracle-CSB, each client can then use its position in the list as identifier within
some faster, id-optimized broadcast implementation. In a consensus-less setting, achieving a
totally-ordered list of public keys is famously impossible [26]. This paper, however, proves
the counter-intuitive result that, when batching is used, the density of ids assigned by a
consensus-less abstraction can asymptotically match that of those produced by Oracle-CSB
or consensus. In Dibs, our consensus-less id-assigning algorithm, a client requests an id from
every server. Each server uses an id-free implementation of FIFO Broadcast to order the
client’s public key within its own log. Having observed its public key appear in at least one
log, the client publicly elects the server in charge of that log to be its assigner. Having done
so, the client obtains an id composed of the assigner’s public key and the client’s position

7 Some multi-signature schemes also allow the aggregation of signatures on heterogeneous messages. In
that case, however, aggregation is usually as expensive as signature verification. Given our goal to
reduce CPU complexity for servers, this paper entirely disregards heterogeneous aggregation schemes.

13:5

DISC 2022

13:6

Oracular Byzantine Reliable Broadcast

within the assigner’s log. We call the two components of an id domain and index, respectively.
Because the set of servers is known to (and can be enumerated by) all processes, an id’s
domain can be represented in [log, (n)] bits, where n denotes the total number of servers.
Because at most ¢ distinct clients can appear in the FIFO log of any server, indices are at
most [log, (¢)] bits long. In summary, Dibs assigns ids to clients without consensus, at an
additional cost of [log, (n)] bits per id. Interestingly, even this additional complexity can
be amortized by batching. Having assembled a batch, a Draft batching process represents
senders not as a list of ids, but as a map, associating to each of the n domains the indices
of all ids in the batch under that domain. At the limit of infinitely large batches (C' > N),
the bits required to represent the map’s keys are entirely amortized by those required to
represent its values. This means that, while ([log, (n)] + [log, (¢)]) bits are required to
identify a client in isolation, [log, (c)] bits are sufficient if the client is batched: even without
consensus, Draft asymptotically matches the id efficiency of Oracle-CSB.

Bonus T-HM: Untrusted processes can carry the system. In THM1, we outlined how
batching can be generalized to the consensus-less case, and discussed its role in removing
protocol overhead. In THM2, we sketched how an interactive protocol between clients and
batching processes can eliminate signature overhead. In employing these techniques, we
shifted most of the communication and computation complexity of our algorithms from servers
to batching processes. Batching processes verify all client signatures, create batches, verify
and aggregate all client multi-signatures, then communicate with servers in an expensive
one-to-all pattern, engaging server resources (at the batching limit) as little as an oracle
would. Our last contribution is to observe that a batching process plays no role in upholding
CSB’s safety. As we discuss in detail throughout the remainder of this paper, a malicious
batching process cannot compromise consistency (it would need to collect two conflicting
quorums of acknowledgements), totality (any server delivering a batch has enough information
to convince all others to do the same) or integrity (batches are still signed, and forged or
improperly aggregated multi-signatures are guaranteed to be detected). Intuitively, the only
damage a batching process can do to the system is to refuse to process client payloads®. This
means that a batching process does not need to satisfy the same security properties as a
server. CSB’s properties cannot be upheld if a third of the servers are faulty. Conversely,
Draft has both liveness and safety as long as a single batching process is correct. This
observation has profound practical implications. In the real world, scaling the resources of
a permissioned, security-critical set of servers can be hard. On the one hand, reputable,
dependable institutions partaking in the system might not have the resources to keep up with
its demands. On the other, more trusted hardware translates to a larger security cross-section.
Trustless processes, however, are plentiful to the point that permissionless cryptocurrencies
traditionally waste their resources, making them compete against each other in expensive
proofs of Sybil-resistance [39]. In this paper, we extend the classical client-server model
with brokers, a permissionless, scalable set of processes whose only purpose is to alleviate
server complexity. Unlike servers, more than two-thirds of which we assume to be correct,
all brokers but one can be faulty. In Draft, brokers act as an intermediary between clients
and servers, taking upon themselves the batching of payloads, verification and aggregation of
signatures, the dissemination of batches, and the transmission of protocol messages.

8 Or cause servers to waste resources, e. g., by transmitting improperly signed batches. Simple account-
ability measures, we conjecture, would be sufficient to mitigate these attacks in Draft. A full discussion
of Denial of Service, however, is beyond the scope of this paper.

M. Camaioni, R. Guerraoui, M. Monti, and M. Vidigueira

Roadmap. We discuss related work in Section 2. We state our model and recall useful
cryptographic background in Section 3. In Section 4, we introduce our CSB implementation
Draft: we overview Draft’s protocol in Section 4.1, and provide high-level arguments for Draft’s
efficiency in Section 4.2. We draw our conclusions and propose future work in Section 5.
The full formal analysis of our algorithms as well as their pseudocode can be found in the
extended version of this paper [17].

2 Related Work

Byzantine Reliable Broadcast (BRB) is a classical primitive of distributed computing, with
widespread practical applications such as in State Machine Replication (SMR) [38, 15, 11],
Byzantine agreement [40, 18, 32, 31, 47|, blockchains [3, 22, 23], and online payments [29, 19,
33]. In classical BRB, a system of n processes agree on a single message from a single source
(one of the n processes), while tolerating up to f Byzantine failures (f of the n processes
can behave arbitrarily). A well known solution to asynchronous BRB with provably optimal
resilience (f < n/3) was first proposed by Bracha [8, 9] who introduced the problem. Bracha’s
broadcast reaches O(n?) message complexity, and O(n?L) communication complexity (total
number of transmitted bits between correct processes [48]), where L is the length of the
message. Since O(n?) message complexity is provably optimal [27], the main focus of BRB-
related research has been on reducing its communication complexity. The best lower bound
for communication complexity is Q(nL + n?), although it is unknown whether it is tight.
The nL term comes from all processes having to receive the message (length L), while the n?
term comes from each of the n processes having to receive {2(n) protocol messages to ensure
agreement in the presence of f = ©(n) failures [27]. One line of research focuses on worst-case
complexity, predominantly using error correcting codes [43, 6] or erasure codes [41, 30, 16, 2],
and has produced various BRB protocols with improved complexity [2, 16, 13, 24, 40],
many of them quite recently. The work of Das, Xiang and Ren [24] achieves O(nL + kn?)
communication complexity (specifically, 7nL + 2kn?), where k is the security parameter (e.g.,
the length of a hash, typically 256 bits). As the authors note, the value of hidden constants
(and k, which is sometimes considered as a constant in literature) is particularly important
when considering practical implementations of these protocols. Another line of research
focuses on optimizing the good case performance of BRB, i.e., when the network behaves
synchronously and no process misbehaves [13, 18, 32, 42, 1]. As the good case is usually
the common case, in practice, the real-world communication complexity of these optimistic
protocols matches that of the good case. A simple and widely-used hash-based BRB protocol
is given by Cachin et al. [13]. It replaces the echo and ready phase messages in Bracha’s
protocol with hashes, achieving O(nL + kn?) in the good case (specifically, nL + 2kn?),
and O(n?L) in the worst-case. Considering practical throughput, some protocols also focus
on the amortized complexity per source message [18, 42, 36]. Combining techniques such
as batching [18] and threshold signatures [46], at the limit (of batch size), BRB protocols
reach O(nL) amortized communication complexity in the good case [42]. At this point, the
remaining problem lies in the hidden constants. In the authenticated setting, batching-based
protocols rely on digital signatures to validate (source) messages before agreeing to deliver
them [42]. In reality, each source message in a batch includes its content, an identifier of
the source (e.g., a k-sized public key), a sequence id (identifying the message), and a k-sized
signature. When considering systems where L is small (e.g., online payments), these can
take up a large fraction of the communication. To be precise, the good-case amortized
communication complexity would be O(nL + kn). In fact, message signatures (the kn factor)

13:7

DISC 2022

13:8

Oracular Byzantine Reliable Broadcast

are by far the main bottleneck in practical applications of BRB today [23, 47], both in terms
of communication and computation (signature verification), leading to various attempts at
reducing or amortizing their cost [22, 36]. For example, Crain et al. [22] propose verification
sharding, in which only f + 1 processes have to receive and verify all message signatures
in the good case, which is a 3-fold improvement over previous systems (on the kn factor)
where all n processes verify all signatures. However, by itself, this does not improve on the
amortized cost of O(nL 4 kn) per message. When contrasting theoretical research with
practical systems, it is interesting to note the gap that can surge between the theoretical
model and reality. The recent work of Abraham et al. [1], focused on the good-case latency
of Byzantine broadcast, expands on some of these mismatches and argues about the practical
limitations of focusing on the worst-case. Another apparent mismatch lies in the classical
model of Byzantine broadcast. In many of the applications of BRB mentioned previously
(e.g., SMR, permissioned blockchains, online payments), there is usually a set of servers (n,
up to f of which are faulty), and a set of external clients (X) which are the true sources of
messages. The usual transformation from BRB’s classical model into these practical settings
maps the set of n servers as the n processes and simply excludes clients as system entities,
e.g., assuming their messages are relayed through one of the servers. Since the number of
clients can be very large (] X| > n), clients are untrusted (which can limit their usefulness),
and the focus is on the communication complexity of the servers, this transformation seems
reasonable and simplifies the problem. However, it can also limit the search for more practical
solutions. In this paper, in contrast with the classical model of BRB, we explicitly include the
set of clients X in our system while focusing on the communication complexity surrounding
the servers (i.e., the bottleneck). Furthermore, we introduce brokers, an untrusted set B
of processes, only one of which is assumed to be correct, whose goal is to assist servers in
their operation. By doing this, we can leverage brokers to achieve a good-case, amortized
communication complexity (for servers, information received or sent) of nL + o(nL).

3 Model & background

3.1 Model

System and adversary. We assume an asynchronous message-passing system where the set
IT of processes is the distinct union of three sets: servers (X), brokers (B), and clients (X).
We use n = |X|, k = |B| and ¢ = | X|. Any two processes can communicate via reliable, FIFO,
point-to-point links (messages are delivered in the order they are sent). Faulty processes
are Byzantine, i.e., they may fail arbitrarily. Byzantine processes know each other, and may
collude and coordinate their actions. At most f servers are Byzantine, with n = 3f + 1. At
least one broker is correct. All clients may be faulty. We use Il¢ and I1g to respectively
identify the set of correct and faulty processes. The adversary cannot subvert cryptographic
primitives (e.g., forge signatures). Servers and brokers? are permissioned (every process
knows ¥ and B), clients are permissionless (no correct process knows X a priori). We call
certificate a statement signed by either a plurality (f + 1) or a quorum (2f + 1) of servers.
Since every process knows X, any process can verify a certificate.

9 The assumption that brokers are permissioned is made for simplicity, and can be easily relaxed to the
requirement that every correc