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Abstract
Byzantine Reliable Broadcast (BRB) is a fundamental distributed computing primitive, with
applications ranging from notifications to asynchronous payment systems. Motivated by practical
consideration, we study Client-Server Byzantine Reliable Broadcast (CSB), a multi-shot variant of
BRB whose interface is split between broadcasting clients and delivering servers. We present Draft,
an optimally resilient implementation of CSB. Like most implementations of BRB, Draft guarantees
both liveness and safety in an asynchronous environment. Under good conditions, however, Draft
achieves unparalleled efficiency. In a moment of synchrony, free from Byzantine misbehaviour, and
at the limit of infinitely many broadcasting clients, a Draft server delivers a b-bits payload at an
asymptotic amortized cost of 0 signature verifications, and (log2(c) + b) bits exchanged, where c

is the number of clients in the system. This is the information-theoretical minimum number of
bits required to convey the payload (b bits, assuming it is compressed), along with an identifier for
its sender (log2 (c) bits, necessary to enumerate any set of c elements, and optimal if broadcasting
frequencies are uniform or unknown). These two achievements have profound practical implications.
Real-world BRB implementations are often bottlenecked either by expensive signature verifications,
or by communication overhead. For Draft, instead, the network is the limit: a server can deliver
payloads as quickly as it would receive them from an infallible oracle.
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1 Introduction

Byzantine reliable broadcast (BRB) is one of the most fundamental and versatile building
blocks in distributed computing, powering a variety of Byzantine fault-tolerant (BFT)
systems [14, 28]. The BRB abstraction has recently been shown to be strong enough to
process payments, enabling cryptocurrency deployments in an asynchronous environment [29].
Originally introduced by Bracha [9] to allow a set of processes to agree on a single message
from a designated sender, BRB naturally generalizes to the multi-shot case, enabling higher-
level abstractions such as Byzantine FIFO [44, 12] and causal [7, 4] broadcast. We study a
practical, multi-shot variant of BRB whose interface is split between broadcasting clients and
delivering servers. We call this abstraction Client-Server Byzantine Reliable Broadcast (CSB).
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13:2 Oracular Byzantine Reliable Broadcast

CSB in brief. Clients broadcast, and servers deliver, payloads composed by a context and a
message. This interface allows, for example, Alice to announce her wedding as well as will
her fortune by respectively broadcasting"My wife is"︸ ︷︷ ︸

context cw

, "Carla"︸ ︷︷ ︸
message mw

 "All my riches go to"︸ ︷︷ ︸
context cr

, "Bob"︸ ︷︷ ︸
message mr


CSB guarantees that: (Consistency) no two correct servers deliver different messages for
the same client and context; (Totality) either all correct servers deliver a message for a
given client and context, or no correct server does; (Integrity) if a correct server delivers a
payload from a correct client, then the client has broadcast that payload; and (Validity) a
payload broadcast by a correct client is delivered by at least one correct server. Following
from the above example, Carla being Alice’s wife does not conflict with Bob being her sole
heir (indeed, cw ̸= cr), but Alice would not be able to convince two correct servers that she
married Carla and Diana, respectively. Higher-level broadcast abstractions can be easily
built on top of CSB. For example, using integer sequence numbers as contexts and adding
a reordering layer yields Client-Server Byzantine FIFO Broadcast. For the sake of CSB,
however, it is not important for contexts to be integers, or satisfy any property other than
comparability. Throughout the remainder of this paper, the reader can picture contexts as
opaque binary blobs. Lastly, while the set of servers is known, CSB as presented does not
assume any client to be known a priori. The set of clients can be permissionless, with servers
discovering new clients throughout the execution.

A utopian model. Real-world BRB implementations are often bottlenecked either by
expensive signature verifications [21] or by communication overhead [10, 34, 35]. With the
goal of broadening those bottlenecks, simplified, more trustful models are useful to establish
a (sometimes grossly unreachable) bound on the efficiency that an algorithm can attain in
the Byzantine setting. For example, in a utopian model where any agreed-upon process can
be trusted to never fail (let us call it an oracle), CSB can easily be implemented with great
efficiency. Upon initialization, the oracle organizes all clients in a list, which it disseminates to
all servers. For simplicity, let us call id a client’s position in the list. To broadcast a payload
p, a client with id i simply sends p to the oracle: the oracle checks p for equivocation (thus
ensuring consistency), then forwards (i, p) to all servers (thus ensuring validity and totality).
Upon receiving (i, p), a server blindly trusts the oracle to uphold all CSB properties, and
delivers (i, p). Oracle-CSB is clearly very efficient. On the one hand, because the oracle can
be trusted not to attribute spurious payloads to correct clients, integrity can be guaranteed
without any server-side signature verification. On the other, in order to deliver (i, p), a server
needs to receive just (⌈log2 (c)⌉ + |p|) bits, where c denotes the total number of clients, and
|p| measures p’s length in bits. This is optimal assuming the rate at which clients broadcast
is unknown1 or uniform2 [20].

Matching the oracle. Due to its reliance on a single infallible process, Oracle-CSB is not a
fault-tolerant distributed algorithm: shifting back to the Byzantine setting, a single failure
would be sufficient to compromise all CSB properties. Common sense suggests that Byzantine

1 Lacking an assumption on broadcasting rates, an adversarial scheduler could have all messages broadcast
by the client with the longest id, which we cannot guarantee to be shorter than ⌈log2 (c)⌉ bits.

2 Should some clients be expected to broadcast more frequently than others, we could further optimize
Oracle-CSB by assigning smaller ids to more active clients, possibly at the cost of having less active
clients have ids whose length exceeds ⌈log2 (c)⌉. Doing so, however, is beyond the scope of this paper.
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resilience will necessarily come at some cost: protocol messages must be exchanged to preserve
consistency and totality, signatures must be produced and verified to uphold integrity and,
lacking the totally-ordering power that only consensus can provide, ids cannot be assigned
in an optimally dense way. However, this paper proves the counter-intuitive result that
an asynchronous, optimally-resilient, Byzantine implementation of CSB can asymptotically
match the efficiency of Oracle-CSB. This is not just up to a constant, but identically. In a
synchronous execution, free from Byzantine misbehaviour, and as the number of concurrently
broadcasting clients goes to infinity (we call these conditions the batching limit3 ), our CSB
implementation Draft delivers a payload p at an asymptotic4, amortized cost of 0 signature
verifications5 and (⌈log2 (c)⌉ + |p|) bits exchanged per server, the same as in Oracle-CSB (we
say that Draft achieves oracular efficiency). At the batching limit a Draft server is dispensed
from nearly all signature verifications, as well as nearly all traffic that would be normally
required to convey protocol messages, signatures, or client public keys. Network is the limit:
payloads are delivered as quickly as they can be received.

CSB’s common bottlenecks. To achieve oracular efficiency, we focus on three types of
server overhead that commonly affect a real-world implementation of CSB:

Protocol overhead. Safekeeping consistency and totality typically requires some form of
communication among servers. This communication can be direct (as in Bracha’s original,
all-to-all BRB implementation) or happen through an intermediary (as in Bracha’s signed,
one-to-all-to-one BRB variant), usually employing signatures to establish authenticated,
intra-server communication channels through a (potentially Byzantine) relay.
Signature overhead. Upholding integrity usually requires clients to authenticate their mes-
sages using signatures. For servers, this entails both a computation and a communication
overhead. On the one hand, even using well-optimized schemes, signature verification
is often CPU-heavy enough to dominate a server’s computational budget, dwarfing in
particular the CPU footprint of much lighter, symmetric cryptographic primitives such
as hashes and ciphers. On the other hand, transmitting signatures results in a fixed
communication overhead per payload delivered. While the size of a signature usually
ranges from a few tens to a few hundreds of bytes, this overhead is non-negligible in a
context where many clients broadcast small messages. This is especially true in the case
of payments, where a message reduces to the identifier of a target account and an integer
to denote the amount of money to transfer.
Identifier overhead. CSB’s multi-shot nature calls for a sender identifier to be attached
to each broadcast payload. Classically, the client’s public key is used as identifier. This is
convenient for two reasons. First, knowing a client’s identifier is sufficient to authenticate
its payloads. Second, asymmetric keypairs have very low probability of collision. As such,
clients can create identities in the system without any need for coordination: locally
generating a keypair is sufficient to begin broadcasting messages. By cryptographic design,
however, public keys are sparse, and their size does not change with the number of clients.
This translates to tens to hundreds of bytes being invested to identify a client from a set
that can realistically be enumerated by a few tens of bits. Again, this communication
overhead is heavier on systems where broadcasts are frequent and brief.

3 The batching limit includes other easily achievable, more technical conditions that we omit in this section
for the sake of brevity. For the full definition, please refer to the extended version of this paper [17].

4 The asymptotic costs are reached quite fast, at rates comparable to C−1 or log(C) · C−1.
5 This does not mean that batches are processed in constant time: hashes and signature aggregations, for

example, still scale linearly in the size of a batch. The real-world computational cost of such simple
operations, however, is several orders of magnitude lower than that of signature verification.
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On the way to matching Oracle-CSB’s performance, we develop techniques to negate all
three types of overhead: at the batching limit, a Draft server delivers a payload wasting 0
bits to protocol overhead, performing 0 signature verifications, and exchanging ⌈log2 (c)⌉
bits of identifier, the minimum required to enumerate the set of clients. We outline our
contributions below, organized in three (plus one) take-home messages (T-HMs).

T-HM1: The effectiveness of batching goes beyond total order. In the totally ordered
setting, batching is famously effective at amortizing protocol overhead [45, 3]. Instead of
disseminating its message to all servers, a client hands it over to (one or more)6 batching
processes. Upon collecting a large enough set of messages, a batching process organizes all
messages in a batch, which it then disseminates to the servers. Having done so, the batching
process submits the batch’s hash to the system’s totally-ordering primitive. Because hashes
are constant in length, the cost of totally ordering a batch does not depend on its size. Once
batches are totally ordered, so too are messages (messages within a batch can be ordered by
any deterministic function), and equivocations can be handled at the application layer (for
example, in the context of a cryptocurrency, the second request to transfer the same asset
can be ignored by all correct servers, with no need for additional coordination). At the limit
of infinitely large batches, the relative overhead of the ordering protocol becomes vanishingly
small, and a server can allocate virtually all of its bandwidth to receiving batches. This
strategy, however, does not naturally generalize to CSB, where batches lack total order. As
payloads from multiple clients are bundled in the same batch, a correct server might detect
equivocation for only a subset of the payloads in the batch. Entirely accepting or entirely
rejecting a partially equivocated batch is not an option. In the first case, consistency could
be violated. In the second case, a single Byzantine client could single-handedly “poison”
the batches assembled by every correct batching process with equivocated payloads, thus
violating validity. In Draft, a server can partially reject a batch, acknowledging all but
some of its payloads. Along with its partial acknowledgement, a server provides a proof of
equivocation to justify each exception. Having collected a quorum of appropriately justified
partial acknowledgements, a batching process has servers deliver only those payloads that
were not excepted by any server. Because proofs of equivocations cannot be forged for
correct clients, a correct client handing over its payload to a correct batching process is
guaranteed to have that payload delivered. In the common case where batches have little to
no equivocations, servers exchange either empty or small lists of exceptions, whose size does
not scale with that of the batch. This extends the protocol-amortizing power of batching to
CSB and, we conjecture, other non-totally ordered abstractions.

T-HM2: Interactive multi-signing can slash signature overhead. Traditionally, batching
protocols are non-interactive on the side of clients. Having offloaded its message to a correct
batching process, a correct client does not need to interact further for its message to be
delivered: the batching process collects an arbitrary set of independently signed messages and
turns to the servers to get each signature verified, and the batch delivered. This approach is
versatile (messages are not tied to the batch they belong to) and reliable (a client crashing
does not affect a batch’s progress) but expensive (the cost of verifying each signature is high
and independent of the batch’s size). In Draft, batching processes engage in an interactive
protocol with clients to replace, in the good case, all individual signatures in a batch with

6 In most real-world implementations, a client optimistically entrusts its payload to a single process,
extending its request to larger portions of the system upon expiration of a suitable timeout.
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a single, batch-wide multi-signature. In brief, multi-signature schemes extend traditional
signatures with a mechanism to aggregate signatures and public keys: an arbitrarily large set
of signatures for the same message7 can be aggregated into a single, constant-sized signature;
similarly, a set of public keys can be aggregated into a single, constant-sized public key. The
aggregation of a set of signatures can be verified in constant time against the aggregation
of all corresponding public keys. Unlike verification, aggregation is a cheap operation,
reducing in some schemes to a single multiplication on a suitable field. Multi-signature
schemes open a possibility to turn expensive signature verification into a once-per-batch
operation. Intuitively, if each client contributing to a batch could multi-sign the entire batch
instead of its individual payload, all multi-signatures could be aggregated, allowing servers
to authenticate all payloads at once. However, as clients cannot predict how their payloads
will be batched, this must be achieved by means of an interactive protocol. Having collected
a set of individually-signed payloads in a batch, a Draft batching process shows to each
contributing client that its payload was included in the batch. In response, clients produce
their multi-signatures for the batch’s hash, which the batching process aggregates. Clients
that fail to engage in this interactive protocol (e.g., because they are faulty or slow) do not
lose liveness, as their original signature can still be attached to the batch to authenticate
their individual payload. In the good case, all clients reply in a timely fashion, and each
server has to verify a single multi-signature per batch. At the limit of infinitely large batches,
this results in each payload being delivered at an amortized cost of 0 signature verifications.
The usefulness of this interactive protocol naturally extends beyond CSB to all multi-shot
broadcast abstractions whose properties include integrity.

T-HM3: Dense id assignment can be achieved without consensus. In order to efficiently
convey payload senders, Oracle-CSB’s oracle organizes all clients in a list, attaching to each
client a successive integral identifier. Once the list is disseminated to all servers, the oracle can
identify each client by its identifier, sparing servers the cost of receiving larger, more sparse,
client-generated public keys. Id-assignment strategies similar to that of Oracle-CSB can be
developed, in the distributed setting, building on top of classical algorithms that identify
clients by their full public keys (we call such algorithms id-free, as opposed to algorithms
such as Draft, which are id-optimized). In a setting where consensus can be achieved, the
identifier density of Oracle-CSB is easily matched. Upon initialization, each client submits its
public key to an id-free implementation of Total-Order Broadcast (TOB). Upon delivery of a
public key, every correct process agrees on its position within the common, totally-ordered
log. As in Oracle-CSB, each client can then use its position in the list as identifier within
some faster, id-optimized broadcast implementation. In a consensus-less setting, achieving a
totally-ordered list of public keys is famously impossible [26]. This paper, however, proves
the counter-intuitive result that, when batching is used, the density of ids assigned by a
consensus-less abstraction can asymptotically match that of those produced by Oracle-CSB
or consensus. In Dibs, our consensus-less id-assigning algorithm, a client requests an id from
every server. Each server uses an id-free implementation of FIFO Broadcast to order the
client’s public key within its own log. Having observed its public key appear in at least one
log, the client publicly elects the server in charge of that log to be its assigner. Having done
so, the client obtains an id composed of the assigner’s public key and the client’s position

7 Some multi-signature schemes also allow the aggregation of signatures on heterogeneous messages. In
that case, however, aggregation is usually as expensive as signature verification. Given our goal to
reduce CPU complexity for servers, this paper entirely disregards heterogeneous aggregation schemes.
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within the assigner’s log. We call the two components of an id domain and index, respectively.
Because the set of servers is known to (and can be enumerated by) all processes, an id’s
domain can be represented in ⌈log2 (n)⌉ bits, where n denotes the total number of servers.
Because at most c distinct clients can appear in the FIFO log of any server, indices are at
most ⌈log2 (c)⌉ bits long. In summary, Dibs assigns ids to clients without consensus, at an
additional cost of ⌈log2 (n)⌉ bits per id. Interestingly, even this additional complexity can
be amortized by batching. Having assembled a batch, a Draft batching process represents
senders not as a list of ids, but as a map, associating to each of the n domains the indices
of all ids in the batch under that domain. At the limit of infinitely large batches (C ≫ N),
the bits required to represent the map’s keys are entirely amortized by those required to
represent its values. This means that, while (⌈log2 (n)⌉ + ⌈log2 (c)⌉) bits are required to
identify a client in isolation, ⌈log2 (c)⌉ bits are sufficient if the client is batched: even without
consensus, Draft asymptotically matches the id efficiency of Oracle-CSB.

Bonus T-HM: Untrusted processes can carry the system. In THM1, we outlined how
batching can be generalized to the consensus-less case, and discussed its role in removing
protocol overhead. In THM2, we sketched how an interactive protocol between clients and
batching processes can eliminate signature overhead. In employing these techniques, we
shifted most of the communication and computation complexity of our algorithms from servers
to batching processes. Batching processes verify all client signatures, create batches, verify
and aggregate all client multi-signatures, then communicate with servers in an expensive
one-to-all pattern, engaging server resources (at the batching limit) as little as an oracle
would. Our last contribution is to observe that a batching process plays no role in upholding
CSB’s safety. As we discuss in detail throughout the remainder of this paper, a malicious
batching process cannot compromise consistency (it would need to collect two conflicting
quorums of acknowledgements), totality (any server delivering a batch has enough information
to convince all others to do the same) or integrity (batches are still signed, and forged or
improperly aggregated multi-signatures are guaranteed to be detected). Intuitively, the only
damage a batching process can do to the system is to refuse to process client payloads8. This
means that a batching process does not need to satisfy the same security properties as a
server. CSB’s properties cannot be upheld if a third of the servers are faulty. Conversely,
Draft has both liveness and safety as long as a single batching process is correct. This
observation has profound practical implications. In the real world, scaling the resources of
a permissioned, security-critical set of servers can be hard. On the one hand, reputable,
dependable institutions partaking in the system might not have the resources to keep up with
its demands. On the other, more trusted hardware translates to a larger security cross-section.
Trustless processes, however, are plentiful to the point that permissionless cryptocurrencies
traditionally waste their resources, making them compete against each other in expensive
proofs of Sybil-resistance [39]. In this paper, we extend the classical client-server model
with brokers, a permissionless, scalable set of processes whose only purpose is to alleviate
server complexity. Unlike servers, more than two-thirds of which we assume to be correct,
all brokers but one can be faulty. In Draft, brokers act as an intermediary between clients
and servers, taking upon themselves the batching of payloads, verification and aggregation of
signatures, the dissemination of batches, and the transmission of protocol messages.

8 Or cause servers to waste resources, e.g., by transmitting improperly signed batches. Simple account-
ability measures, we conjecture, would be sufficient to mitigate these attacks in Draft. A full discussion
of Denial of Service, however, is beyond the scope of this paper.
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Roadmap. We discuss related work in Section 2. We state our model and recall useful
cryptographic background in Section 3. In Section 4, we introduce our CSB implementation
Draft: we overview Draft’s protocol in Section 4.1, and provide high-level arguments for Draft’s
efficiency in Section 4.2. We draw our conclusions and propose future work in Section 5.
The full formal analysis of our algorithms as well as their pseudocode can be found in the
extended version of this paper [17].

2 Related Work

Byzantine Reliable Broadcast (BRB) is a classical primitive of distributed computing, with
widespread practical applications such as in State Machine Replication (SMR) [38, 15, 11],
Byzantine agreement [40, 18, 32, 31, 47], blockchains [3, 22, 23], and online payments [29, 19,
33]. In classical BRB, a system of n processes agree on a single message from a single source
(one of the n processes), while tolerating up to f Byzantine failures (f of the n processes
can behave arbitrarily). A well known solution to asynchronous BRB with provably optimal
resilience (f < n/3) was first proposed by Bracha [8, 9] who introduced the problem. Bracha’s
broadcast reaches O(n2) message complexity, and O(n2L) communication complexity (total
number of transmitted bits between correct processes [48]), where L is the length of the
message. Since O(n2) message complexity is provably optimal [27], the main focus of BRB-
related research has been on reducing its communication complexity. The best lower bound
for communication complexity is Ω(nL + n2), although it is unknown whether it is tight.
The nL term comes from all processes having to receive the message (length L), while the n2

term comes from each of the n processes having to receive Ω(n) protocol messages to ensure
agreement in the presence of f = Θ(n) failures [27]. One line of research focuses on worst-case
complexity, predominantly using error correcting codes [43, 6] or erasure codes [41, 30, 16, 2],
and has produced various BRB protocols with improved complexity [2, 16, 13, 24, 40],
many of them quite recently. The work of Das, Xiang and Ren [24] achieves O(nL + kn2)
communication complexity (specifically, 7nL + 2kn2), where k is the security parameter (e.g.,
the length of a hash, typically 256 bits). As the authors note, the value of hidden constants
(and k, which is sometimes considered as a constant in literature) is particularly important
when considering practical implementations of these protocols. Another line of research
focuses on optimizing the good case performance of BRB, i.e., when the network behaves
synchronously and no process misbehaves [13, 18, 32, 42, 1]. As the good case is usually
the common case, in practice, the real-world communication complexity of these optimistic
protocols matches that of the good case. A simple and widely-used hash-based BRB protocol
is given by Cachin et al. [13]. It replaces the echo and ready phase messages in Bracha’s
protocol with hashes, achieving O(nL + kn2) in the good case (specifically, nL + 2kn2),
and O(n2L) in the worst-case. Considering practical throughput, some protocols also focus
on the amortized complexity per source message [18, 42, 36]. Combining techniques such
as batching [18] and threshold signatures [46], at the limit (of batch size), BRB protocols
reach O(nL) amortized communication complexity in the good case [42]. At this point, the
remaining problem lies in the hidden constants. In the authenticated setting, batching-based
protocols rely on digital signatures to validate (source) messages before agreeing to deliver
them [42]. In reality, each source message in a batch includes its content, an identifier of
the source (e.g., a k-sized public key), a sequence id (identifying the message), and a k-sized
signature. When considering systems where L is small (e.g., online payments), these can
take up a large fraction of the communication. To be precise, the good-case amortized
communication complexity would be O(nL + kn). In fact, message signatures (the kn factor)
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are by far the main bottleneck in practical applications of BRB today [23, 47], both in terms
of communication and computation (signature verification), leading to various attempts at
reducing or amortizing their cost [22, 36]. For example, Crain et al. [22] propose verification
sharding, in which only f + 1 processes have to receive and verify all message signatures
in the good case, which is a 3-fold improvement over previous systems (on the kn factor)
where all n processes verify all signatures. However, by itself, this does not improve on the
amortized cost of O(nL + kn) per message. When contrasting theoretical research with
practical systems, it is interesting to note the gap that can surge between the theoretical
model and reality. The recent work of Abraham et al. [1], focused on the good-case latency
of Byzantine broadcast, expands on some of these mismatches and argues about the practical
limitations of focusing on the worst-case. Another apparent mismatch lies in the classical
model of Byzantine broadcast. In many of the applications of BRB mentioned previously
(e.g., SMR, permissioned blockchains, online payments), there is usually a set of servers (n,
up to f of which are faulty), and a set of external clients (X) which are the true sources of
messages. The usual transformation from BRB’s classical model into these practical settings
maps the set of n servers as the n processes and simply excludes clients as system entities,
e.g., assuming their messages are relayed through one of the servers. Since the number of
clients can be very large (|X| ≫ n), clients are untrusted (which can limit their usefulness),
and the focus is on the communication complexity of the servers, this transformation seems
reasonable and simplifies the problem. However, it can also limit the search for more practical
solutions. In this paper, in contrast with the classical model of BRB, we explicitly include the
set of clients X in our system while focusing on the communication complexity surrounding
the servers (i.e., the bottleneck). Furthermore, we introduce brokers, an untrusted set B

of processes, only one of which is assumed to be correct, whose goal is to assist servers in
their operation. By doing this, we can leverage brokers to achieve a good-case, amortized
communication complexity (for servers, information received or sent) of nL + o(nL).

3 Model & background

3.1 Model

System and adversary. We assume an asynchronous message-passing system where the set
Π of processes is the distinct union of three sets: servers (Σ), brokers (B), and clients (X).
We use n = |Σ|, k = |B| and c = |X|. Any two processes can communicate via reliable, FIFO,
point-to-point links (messages are delivered in the order they are sent). Faulty processes
are Byzantine, i.e., they may fail arbitrarily. Byzantine processes know each other, and may
collude and coordinate their actions. At most f servers are Byzantine, with n = 3f + 1. At
least one broker is correct. All clients may be faulty. We use ΠC and ΠF to respectively
identify the set of correct and faulty processes. The adversary cannot subvert cryptographic
primitives (e.g., forge signatures). Servers and brokers9 are permissioned (every process
knows Σ and B), clients are permissionless (no correct process knows X a priori). We call
certificate a statement signed by either a plurality (f + 1) or a quorum (2f + 1) of servers.
Since every process knows Σ, any process can verify a certificate.

9 The assumption that brokers are permissioned is made for simplicity, and can be easily relaxed to the
requirement that every correct process knows at least one correct broker.
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Good case. The algorithms presented in this paper are designed to uphold all their properties
in the model above. Draft, however, achieves oracular efficiency only in the good case. In the
good case, links are synchronous (messages are delivered at most one time unit after they
are sent), all processes are correct, and the set of brokers contains only one element. To
take advantage of the good case, Draft makes use of timers (which is uncommon for purely
asynchronous algorithms). A timer with timeout δ set at time t rings: after time (t + δ), if
the system is synchronous; after time t, otherwise. Intuitively, in the non-synchronous case,
timers disregard their timeout entirely, and are guaranteed to ring only eventually.

3.2 Background
Besides commonly used hashes and signatures, the algorithms presented in this paper make
use of two less often used cryptographic primitives, namely, multi-signatures and Merkle
trees. We briefly outline their use below. An in-depth discussion of their inner workings,
however is beyond the scope of this paper.

Multi-signatures. Like traditional signatures, multi-signatures [5] are used to publicly
authenticate messages: a public / secret keypair (p, r) is generated locally; r is used to
produce a signature s for a message m; s is publicly verified against p and m. Unlike
traditional signatures, however, multi-signatures for the same message can be aggregated. Let
(p1, r1), . . . , (pn, rn) be a set of keypairs, let m be a message, and let si be ri’s signature for
m. (p1, . . . , pn) and (s1, . . . , sn) can be respectively aggregated into a constant-sized public
key p̂ and a constant-sized signature ŝ. As with individually-generated multi-signatures, ŝ

can be verified in constant time against p̂ and m. Aggregation is cheap and non-interactive:
provided with (p1, . . . , pn) (resp., (s1, . . . , sn)) any process can compute p̂ (resp., ŝ).

Merkle trees. Merkle trees [37] extend traditional hashes with compact proofs of inclusion.
As with hashes, a sequence (x1, . . . , xn) of values can be hashed into a preimage and collision-
resistant digest (or root) r. Unlike hashes, however, a proof pi can be produced from
(x1, . . . , xn) to attest that the i-th element of the sequence whose root is r is indeed xi. In
other words, provided with r, pi and xi, any process can verify that the i-th element of
(x1, . . . , xn) is indeed xi, without having to learn (x1, . . . , xi−1, xi+1, . . . , xn). The size of a
proof of inclusion for a sequence of n elements is logarithmic in n.

4 Draft: Overview

In this section, we provide an intuitive overview of our CSB implementation, Draft, as well
as high-level arguments for its efficiency.

4.1 Protocol
Dramatis personae. The goal of this section is to provide an intuitive understanding of
Draft’s protocol. In order to do this, we focus on four processes: a correct client χ, a correct
broker β, a correct and fast server σ, and a correct but slow server σ̃. We follow the messages
exchanged between χ, β, σ and σ̃ as the protocol unfolds, as captured by Figure 1.

The setting. χ’s goal is to broadcast a payload p. χ has already used Draft’s underlying
Directory abstraction (DIR) to obtain an id i. In brief, DIR guarantees that i is assigned to
χ only, and provides χ with an assignment certificate a, which χ can use to prove that its id
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Figure 1 Draft’s protocol. Having collected a batch of client payloads, a broker engages in an
interactive protocol with clients to reduce the batch, replacing (most of) its individual payload
signatures with a single, batch-wide multi-signature. The broker then disseminates the batch to all
servers, successively gathering a witness for its correctness and a certificate to commit (some of) its
payloads. Having had a plurality of servers deliver the batch, the broker notifies all clients with a
suitable certificate. In the bad case, servers can ensure totality without any help from the broker,
propagating batches and commit certificates in an all-to-all fashion.

is indeed i. As we discussed in Section 1, Draft uses DIR-assigned ids to identify payload
senders. This is essential to Draft’s performance, as DIR guarantees density: as we outline in
Section 4.2, ⌈log2 (c)⌉ bits are asymptotically sufficient to represent each id in an infinitely
large batch. Throughout the remainder of this paper, we say that a process π knows an id î

iff π knows the public keys to which î is assigned.

Building a batch. In order to broadcast its payload p, χ produces a signature s for p, and
then sends a Submission message to β (fig. 1, step 1). The Submission message contains p,
s, and χ’s assignment certificate a. Upon receiving the Submission message, β learns χ’s id
i from a, then verifies s against p. Having done so, β stores (i, p, s) in its submission pool.
For a configurable amount of time, β fills its pool with submissions from other clients, before
flushing it into a batch. Let us use (i1, p1, s1), . . . , (ib, pb, sb) to enumerate the elements β

flushes from the submission pool (for some n, we clearly have (i, p, s) = (in, pn, sn)). For
convenience, we will also use χj to identify the sender of pj (owner of ij). Importantly, β

flushes the pool in such a way that ij ̸= ik for all j ̸= k: for safety reasons that will soon be
clear, Draft’s protocol prevents a client from having more than one payload in any specific
batch. Because of this constraint, some payloads might linger in β’s pool. This is not an
issue: β will simply flush those payloads to a different batch at a later time. When building
the batch, β splits submissions and signatures, storing (i1, p1), . . . , (ib, pb) separately from
s1, . . . , sb.

Reducing the batch. Having flushed submissions (i1, p1), . . . , (ib, pb) and signatures
s1, . . . , sb, β moves on to reduce the batch, as exemplified in Figure 2. In an attempt
to minimize signature overhead for servers, β engages in an interactive protocol with clients
χ1, . . . , χb to replace as many signatures as possible with a single, batch-wide multi-signature.
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In order to do so, β organizes (i1, p1), . . . , (ib, pb) in a Merkle tree with root r (for brevity, we
call r the batch’s root). β then sends an Inclusion message to each χj (fig. 1, step 2). Each
Inclusion message contains r, along with a proof of inclusion qj for (ij , pj). Upon receiving
its Inclusion message, χ checks qn against r. In doing so, χ comes to two conclusions.
First, χ’s submission (i, p) = (in, pn) is part of a batch whose root is r. Second, because
no Draft batch can contain multiple payloads from the same client, that batch does not
attribute χ any payload other than p. In other words, χ can be certain that β will not
broadcast some spurious payload p′ ̸= p in χ’s name: should β attempt to do that, the
batch would be verifiably malformed, and immediately discarded. This means χ can safely
produce a multi-signature m for r: as far as χ is concerned, the batch with root r upholds
integrity. Having signed r, χ sends m to β by means of a Reduction message (fig. 1, step
3). Upon receiving χj ’s Reduction message, β checks χj ’s multi-signature mj against r.
Having done so, β discards χj ’s original signature sj . Intuitively, with mj , χj attested its
agreement with whatever payload the batch attributes to χj . Because this is equivalent to
individually authenticating pj , sj is redundant and can be dropped. Upon expiration of a
suitable timeout, β stops collecting Reduction messages: clearly, if β waited for every χj to
produce mj , a single Byzantine client could prevent the protocol from moving forward by
refusing to send its Reduction message. β aggregates all the multi-signatures it collected
for r into a single, batch-wide multi-signature m. In the good case, every χj is correct and
timely. If so, β drops all individual signatures, and the entire batch is authenticated by m

alone.

Figure 2 An example of partially reduced batch. B = 8 submissions are organized on the leaves
of a Merkle tree with root r. Each submission (ij , pj) is originally authenticated by an individual
signature sj . Upon collecting a multi-signature mj for r, the broker drops sj . Here the broker collected
multi-signatures m2, m5, m6 and m8, leaving a straggler set S = {(i1, s1), (i3, s3), (i4, s4), (i7, s7)}.
Upon expiration of a suitable timeout, the broker aggregates m2, m5, m6 and m8 into a single
multi-signature m. As such, every payload in the batch is authenticated either by m or by S.

The perks of a reduced batch. Having reduced the batch, β is left with a sequence of sub-
missions (i1, p1), . . . , (ib, pb), a multisignature m on the Merkle root r of (i1, p1), . . . , (ib, pb),
and a straggler set S holding the individual signatures that β failed to reduce. More pre-
cisely, S contains (ij , sj) iff β did not receive a valid Reduction message from χj before the
reduction timeout expired. We recall that m’s size is constant, and S is empty in the good
case. Once reduced, the batch is cheap to authenticate: it is sufficient to verify the batch’s
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multi-signature against the batch’s root, and each straggler signature against its individual
payload. More precisely, let T denote the set of timely clients (χj is in T iff (ij , ..) is not
in S). Let t denote the aggregation of T ’s public keys. Provided with (i1, p1), . . . , (ib, pb),
m and S, any process that knows i1, . . . , ib can verify that the batch upholds integrity by:
(1) computing r and t from (i1, p1), . . . , (ib, pb) and S; (2) using t to verify m against r; and
(3) verifying each sj in S against pj . In the good case, authenticating the batch reduces to
verifying a single multi-signature. This is regardless of the batch’s size.

The pitfalls of a reduced batch. As we discussed in the previous paragraph, reducing a
batch makes it cheaper to verify its integrity. Reduction, however, hides a subtle trade-off:
once reduced, a batch gets easier to authenticate as whole. Its individual payloads, however,
become harder to authenticate. For the sake of simplicity, let us imagine that β successfully
dropped all the individual signatures it originally gathered from χ1, . . . , χb. In order to prove
that (χ = χn) broadcast (p = pn), β could naively produce the batch’s root r, (in, pn)’s
proof of inclusion qn, and the batch’s multi-signature m for r. This, however, would not
be sufficient to authenticate p: because the multi-signature mn that χ produced for r was
aggregated with all others, m can only be verified by the aggregation of all χ1, . . . , χb’s public
keys. This makes authenticating p as expensive as authenticating the entire batch: in order
to verify m, all (ij , pj) must be produced and checked against r, so that all corresponding
public keys can be safely aggregated.

Witnessing the batch. As we discuss next, proving the integrity of individual payloads is
fundamental to ensure Draft’s validity. In brief, to prove that some χk equivocated its payload
pk = (ck, lk), a server must prove to β that χk also issued some payload p′

k = (ck, l′
k ̸= lk).

Lacking this proof, a single Byzantine server could, for example, claim without basis that χ

equivocated p. This could trick β into excluding p, thus compromising Draft’s validity. As we
discussed in the previous paragraph, however, proving the integrity of an individual payload
in a reduced batch is difficult. While we conjecture that purely cryptographic solutions to this
impasse might be achievable in some schemes10, Draft has β engage in a simple protocol to
further simplify the batch’s authentication, replacing all client-issued (multi-)signatures with
a single, server-issued certificate. Having collected and reduced the batch, β sends a Batch
message to all servers (fig. 1, step 4). The Batch message only contains (i1, p1), . . . , (ib, pb).
Upon receiving the Batch message, σ collects in a set Uσ all the ids it does not know (ij

is in Uσ iff σ does not know ij), and sends Uσ back to β by means of a BatchAcquired
message (fig. 1, step 5). Upon receiving σ’s BatchAcquired message, β builds a set Aσ

containing all id assignments that σ is missing (aj is in Aσ iff ij is in Uσ). Having done
so, β sends a Signatures message to σ (fig. 1, step 6). The Signatures message contains
the batch’s multi-signature m, the straggler set S, and Aσ. We underline the importance of
sending id assignments upon request only. Thinking to shave one round-trip off the protocol,
β could naively package in a single message all submissions, all (multi-)signatures, and all
assignments relevant to the batch. In doing so, however, β would force each server to receive

10 For example, using BLS, β could aggregate the public keys of χ1, . . . , χn−1, χn+1, . . . , χb into a public
key t̃n, then show that the aggregation of t̃n with χ’s public key correctly verifies m against r. Doing so,
however, would additionally require β to exhibit a proof that t̃n is not a rogue public key, i.e., that t̃n

indeed results from the aggregation of client public keys. This could be achieved by additionally having
χ1, . . . , χb multi-sign some hard-coded statement to prove that they are not rogues. β could aggregate
such signatures on the fly, producing a rogue-resistance proof for t̃n that can be transmitted and verified
in constant time. This, however, is expensive (and, frankly, at the limit of our cryptographic expertise).
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one assignment per submission, immediately forfeiting Draft’s oracular efficiency. At the
batching limit we assume that all servers already know all broadcasting clients. In that
case, both Uσ and Aσ are constant-sized, empty sets, adding only a vanishing amount of
communication complexity to the protocol. Upon receiving the Signatures message, σ

verifies and learns all assignments in Aσ. Having done so, σ knows i1, . . . , ib. As we outlined
above, σ can now efficiently authenticate the whole batch, verifying m against the batch’s
root r, and each ij in S against pj . Having established the integrity of the whole batch, σ

produces a witness shard for the batch, i.e., a multi-signature wσ for [Witness, r], effectively
affirming to have successfully authenticated the batch. σ sends wσ back to β by means of
a WitnessShard message (fig. 1, step 7). Having received a valid WitnessShard message
from f + 1 servers, β aggregates all witness shards into a witness w. Because w is a plurality
(f + 1) certificate, at least one correct server necessarily produced a witness shard for the
batch. This means that at least one correct server has successfully authenticated the batch
by means of client (multi-)signatures. Because w could not have been gathered if the batch
was not properly authenticated, w itself is sufficient to authenticate the batch, and β can
drop all (now redundant) client-generated (multi-)signatures for the batch. Unlike m, w is
easy to verify, as it is signed by only f + 1, globally known servers. Like m, w authenticates
r. As such, any pj can now be authenticated just by producing w, and (ij , pj)’s proof of
inclusion qj .

Gathering a commit certificate. Having successfully gathered a witness w for the batch, β

sends w to all servers by means of a Witness message (fig. 1, step 8). Upon receiving the
Witness message, σ moves on to check (i1, p1), . . . , (ib, pb) for equivocations. More precisely,
σ builds a set of exceptions Eσ containing the ids of all equivocating submissions in the
batch (ij is in Eσ iff σ previously observed χj submit a payload p′

j that conflicts with pj ; we
recall that pj and p′

j conflict if their contexts are the same, but their messages are different).
σ then produces a commit shard for the batch, i.e., a multi-signature cσ for [Commit, r, Eσ],
effectively affirming that σ has found all submissions in the batch to be non-equivocated,
except for those in Eσ. In the good case, every client is correct and Eσ is empty. Having
produced cσ, σ moves on to build a set Qσ containing a proof of equivocation for every
element in Eσ. Let us assume that σ previously received from some χk a payload p′

k that
conflicts with pk. σ must have received p′

k as part of some witnessed batch. Let r′
k identify

the root of p′
k’s batch, let w′

k identify r′
k’s witness, let q′

k be (ik, p′
k)’s proof of inclusion in r′

k.
By exhibiting (r′

k, w′
k, p′

k), σ can prove to β that χk equivocated: pk conflicts with p′
k, and

(ik, p′
k) is provably part of a batch whose integrity was witnessed by at least one correct server.

Furthermore, because correct clients never equivocate, (r′
k, w′

k, p′
k) is sufficient to convince β

that χk is Byzantine. For each ij in Eσ, σ collects in Qσ a proof of equivocation
(
r′

j , w′
j , p′

j

)
.

Finally, σ sends a CommitShard message back to β (fig. 1, step 9). The CommitShard message
contains cσ, Eσ and Qσ. Upon receiving σ’s CommitShard message, σ verifies cσ against r

and Eσ, then checks all proofs in Qσ. Having collected valid CommitShard messages from a
quorum of servers σ1, . . . , σ2f+1, β aggregates all commit shards into a commit certificate
c. We underline that each σj signed the same root r, but a potentially different set of
exceptions Eσj

. Let E denote the union of Eσ1 , . . . , Eσ2f+1 . We call E the batch’s exclusion
set. Because a proof of equivocation cannot be produced against a correct client, β knows
that all clients identified by E are necessarily Byzantine. In particular, because χ is correct,
(i = in) is guaranteed to not be in E.
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Committing the batch. Having collected a commit certificate c for the batch, β sends c

to all servers by means of a Commit message (fig. 1, step 10). Upon receiving the Commit
message, σ verifies c, computes the exclusion set E, then delivers every payload pj whose
id ij is not in E. Recalling that c is assembled from a quorum of commit shards, at least
f + 1 correct servers contributed to c. This means that, if some ik is not in E, then at least
f + 1 correct servers found pk not to be equivocated. As in most BRB implementations [9],
this guarantees that no two commit certificates can be gathered for equivocating payloads:
Draft’s consistency is upheld.

The role of equivocation proofs. As the reader might have noticed, β does not attach any
proof of equivocation to its Commit message. Having received β’s commit certificate c, σ

trusts β’s exclusion set E, ignoring every payload whose id is in E. This is not because σ

can trust β to uphold validity. On the contrary, σ has no way to determine that β is not
maliciously excluding the payload of a correct client. Indeed, even if σ were to verify a proof
of exclusion for every element in E, a malicious β could still censor a correct client simply
by ignoring its Submit message in the first place. Equivocation proofs are fundamental to
Draft’s validity not because they force malicious brokers to uphold validity, but because they
enable correct brokers to do the same. Thanks to equivocation proofs, a malicious server
cannot trick a correct broker into excluding the payload of a correct client. This is enough
to guarantee validity. As we discuss below, χ successively submits p to all brokers until it
receives a certificate attesting that p was delivered by at least one correct server. Because
we assume at least one broker to be correct, χ is eventually guaranteed to succeed.

Notifying the clients. Having delivered every payload whose id is not in the exclusion set E,
σ produces a completion shard for the batch, i.e., a multi-signature zσ for [Completion, r, E],
effectively affirming that σ has delivered all submissions in the batch whose id is not in E.
σ sends zσ to β by means of a CompletionShard message (fig. 1, step 11). Upon receiving
f + 1 valid CompletionShard messages, β assembles all completion shards into a completion
certificate z. Finally, β sends a Completion message to χ1, . . . , χb (fig. 1, step 12). The
Completion message contains z and E. Upon receiving the Completion message, χ verifies
z against E, then checks that i is not in E. Because at least one correct server contributed
a completion shard to z, at least one correct process delivered all payloads that E did not
exclude, including p. Having succeeded in broadcasting p, χ does not need to engage further,
and can stop successively submitting p to all brokers.

No one is left behind. As we discussed above, upon receiving the commit certificate
c, σ delivers every payload in the batch whose id is not in the exclusion set E. Having
gotten at least one correct server to deliver the batch, β is free to disengage, and moves
on to assembling and brokering its next batch. In a moment of asynchrony, however, all
communications between β and σ̃ might be arbitrarily delayed. This means that σ̃ has no way
of telling whether or not it will eventually receive batch and commit certificate: a malicious
β might have deliberately left σ̃ out of the protocol. Server-to-server communication is thus
required to guarantee totality. Having delivered the batch, σ waits for an interval of time
long enough for all correct servers to deliver batch and commit certificate, should the network
be synchronous and β correct. σ then sends to all servers an OfferTotality message (fig.
1, step 13). The OfferTotality message contains the batch’s root r, and the exclusion set
E. In the good case, upon receiving σ’s OfferTotality message, every server has delivered
the batch and ignores the offer. This, however, is not the case for slow σ̂, which replies to
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σ with an AcceptTotality message (fig. 1, step 14). Upon receiving σ̃’s AcceptTotality
message, σ sends back to σ̃ a Totality message (fig. 1, step 15). The Totality message
contains all submissions (i1, p1), . . . , (ib, pb), id assignments for i1, . . . , ib, and the commit
certificate c. Upon delivering σ’s Totality message, σ̃ computes r from (i1, p1), . . . , (ib, pb),
checks c against r, computes E from c, and delivers every payload pj whose id ij is not in E.
This guarantees totality and concludes the protocol.

4.2 Complexity
Directory density. As we introduced in Section 4.1, Draft uses ids assigned by its underlying
Directory (DIR) abstraction to identify payload senders. A DIR-assigned id is composed
of two parts: a domain and an index. Domains form a finite set D whose size does not
increase with the number of clients, indices are natural numbers. Along with safety (e.g.,
no two processes have the same id) and liveness (e.g., every correct client that requests an
id eventually obtains an id), DIR guarantees density: the index part of any id is always
smaller than the total number of clients c (i.e., each id index is between 0 and (c − 1)).
Intuitively, this echoes the (stronger) density guarantee provided by Oracle-CSB, the oracle-
based implementation of CSB we introduced in Section 1 to bound Draft’s performance. In
Oracle-CSB, the oracle organizes all clients in a list, effectively labeling each client with an
integer between 0 and (c − 1). In a setting where consensus cannot be achieved, agreeing on
a totally-ordered list of clients is famously impossible: a consensus-less DIR implementation
cannot assign ids if |D| = 1. However, DIR can be implemented without consensus if servers
are used as domains (D = Σ). In our DIR implementation Dibs, each server maintains an
independent list of public keys. In order to obtain an id, a client χ has each server add
its public key to its list, then selects a server σ to be its assigner. In doing so, χ obtains
an id (σ, n), where n ∈ 0..(c − 1) is χ’s position in σ’s log. In summary, a consensus-less
implementation of DIR still guarantees that indices will be smaller than c, at the cost of
a non-trivial domain component for each id. This inflates the size of each individual id by
⌈log2 (|D|)⌉ bits.

Batching ids. While DIR-assigned ids come with a non-trivial domain component, the size
overhead due to domains vanishes when infinitely many ids are organized into a batch. This
is because domains are constant in the number of clients. Intuitively, as infinitely many
ids are batched together, repeated domains become compressible. When building a batch,
a Draft broker represents the set I of sender ids not as a list, but as a map ĩ. To each
domain, ĩ associates all ids in I under that domain (n is in ĩ[d] iff (d, n) is in I). Because
ĩ’s keys are fixed, as the size of I goes to infinity, the bits required to represent ĩ’s keys are
completely amortized by those required to represent ĩ’s values. At the batching limit, the
cost of representing each id in ĩ converges to that of representing its index only, ⌈log2 (c)⌉.

Protocol cost. At the batching limit we assume a good-case execution: links are synchronous,
all processes are correct, and the set of brokers contains only one element. We additionally
assume that infinitely many clients broadcast concurrently. Finally, we assume all servers to
already know all broadcasting clients. Let β denote the only broker. As all broadcasting
clients submit their payloads to β within a suitably narrow time window, β organizes all
submissions into a single batch with root r. Because links are synchronous and all clients are
correct, every broadcasting client submits its multi-signature for r in time. Having removed
all individual signatures from the batch, β is left with a single, aggregated multi-signature m

and an empty straggler set S. β compresses the sender ids and disseminates the batch to
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all servers. As m and S are constant-sized, the amortized cost for a server to receive each
payload p is (⌈log2 (c)⌉ + |p|) bits. As m authenticates the entire batch, a server authenticates
each payload at an amortized cost of 0 signature verifications. The remainder of the protocol
unfolds as a sequence of constant-sized messages: because all broadcasting clients are known
to all servers, no server requests any id assignment; witnesses are always constant-sized;
and because all processes are correct, no client equivocates and all exception sets are empty.
Finally, again by the synchrony of links, all offers of totality are ignored. In summary, at the
batching limit a server delivers a payload at an amortized cost of 0 signature verifications
and (⌈log2 (c)⌉ + |p|) bits exchanged.

Latency. As depicted in Figure 1, the latency of Draft is 10 message delays in the synchronous
case (fast servers deliver upon receiving the broker’s Commit message), and at most 13
message delays in the asynchronous case (slow servers deliver upon receiving other servers’
Totality messages). By comparison, the latency of the optimistic reliable broadcast algorithm
by Cachin et al. [13] is respectively 4 message delays (synchronous case) and 6 message
delays (asynchronous case). Effectively, Draft trades oracular efficiency for a constant latency
overhead.

Worst-case complexity. In the worst case, a Draft server delivers a b-bits payload by
exchanging O((log (c) + b)kn) bits, where c, k and n respectively denote the number of
clients, brokers and servers. In brief, the same id, payload and signature is included by
each broker in a different batch (hence the k term) and propagated in an all-to-all fashion
(carried by Totality messages) across correct servers (hence the n term). By comparison,
the worst-case communication complexity of Cachin et al.’s optimistic reliable broadcast
is O(ln) per server, where l is the length of the broadcast payload. A direct batched
generalization of the same algorithm, however, would raise the worst-case communication to
O

(
ln2)

per server, similar to that of Draft when n ∼ k. Both batched Bracha and Draft can
be optimized by polynomial encoding, reducing their per-server worst-case complexity to
O(ln) and O((log (c) + b)k) respectively. Doing so for Draft, however, is beyond the scope of
this paper.

5 Conclusions

Our contributions. In this paper we study Client-Server Byzantine Reliable Broadcast
(CSB), a multi-shot variant of Byzantine Reliable Broadcast (BRB) whose interface is
split between broadcasting clients and delivering servers. We introduce Oracle-CSB, a toy
implementation of CSB that relies on a single, infallible oracle to uphold all CSB properties.
Unless clients can be assumed to broadcast at a non-uniform rate, Oracle-CSB’s signature
and communication complexities are optimal: in Oracle-CSB, a server delivers a payload p

by performing 0 signature verifications, and exchanging (⌈log2 (c)⌉ + |p|) bits, where c is the
number of clients. We present Draft, our implementation of CSB. Draft upholds all CSB
properties under classical BRB assumptions (notably asynchronous links and less than a third
of faulty servers). When links are synchronous and all processes are correct, however, and at
the limit of infinite concurrently broadcasting clients, Draft’s signature and communication
complexities match those of Oracle CSB.
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Future work. We hope to extend Draft to allow multiple messages by the same client in the
same batch. We envision that this could be achieved by using other types of cryptographic
accumulators or variants of Merkle trees, such as Merkle-Patricia trees [25]. It would also be
interesting to see if the worst-case performance of Draft could be improved, e.g. by using
error correction codes (ECC) or erasure codes, without significantly affecting its good-case
performance. Lastly, we hope to use Draft’s keys ideas to implement a total-order broadcast
primitive, improving the scalability of existing SMR implementations.
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