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Abstract

Interannual variation, especially weather, is an often-cited reason for restoration

“failures”; yet its importance is difficult to experimentally isolate across broad spa-

tiotemporal extents, due to correlations between weather and site characteristics.

We examined post-fire treatments within sagebrush-steppe ecosystems to ask:

(1) Is weather following seeding efforts a primary reason why restoration outcomes

depart from predictions? and (2) Does the management-relevance of weather differ

across space and with time since treatment? Our analysis quantified range-wide

patterns of sagebrush (Artemisia spp.) recovery, by integrating long-term records of

restoration and annual vegetation cover estimates from satellite imagery following

thousands of post-fire seeding treatments from 1984 to 2005. Across the Great

Basin, sagebrush growth increased in wetter, cooler springs; however, the impor-

tance of spring weather varied with sites' long-term climates, suggesting differing

ecophysiological limitations across sagebrush's range. Incorporation of spring

weather, including from the “planting year,” improved predictions of sagebrush

recovery, but these advances were small compared to contributions of time-

invariant site characteristics. Given extreme weather conditions threatening this

ecosystem, explicit consideration of weather could improve the allocation of man-

agement resources, such as by identifying areas requiring repeated treatments; but

improved forecasts of shifting mean conditions with climate change may more sig-

nificantly aid the prediction of sagebrush recovery.

KEYWORD S

Artemisia, historical contingency, horseshoe prior, restoration seeding, weather, wildfire,
year effects

1 | INTRODUCTION

The outcomes of ecological restoration are often
unpredictable, and vastly different population or commu-
nity trajectories can emerge when the same treatments

are applied to similar sites (Brudvig, 2011; Crouzeilles
et al., 2016; Suding, 2011). Low predictive power in resto-
ration ecology poses a challenge to the conservation of
biodiversity and ecosystem functions in degraded habi-
tats, and the sources of this variability remain poorly
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understood (Brudvig et al., 2017; Dietze, 2017). In part,
disparities in restoration outcomes may be caused by
interannual weather variation, which can alter assem-
bling communities via its influence on initial propagule
arrival, establishment, and other subsequent ecological
filters (Chase, 2007; Chesson, 2000; Fukami et al., 2005;
Myers & Harms, 2009; Seabloom, 2011). Resource man-
agers consider weather conditions during and after plant-
ings (Hardegree et al., 2018), and conditions during the
treatment year may be correlated with restoration success
(sometimes referred to as “initiation” or “year” effects;
Brudvig et al., 2017, Stuble, Fick, & Young, 2017; Stuble,
Zefferman, et al., 2017, Groves & Brudvig, 2019, Groves
et al., 2020, Werner et al., 2020).

Despite these considerations, the relative importance of
weather in predicting restoration outcomes remains poorly
understood over broad spatiotemporal extents (Brudvig
et al., 2017). One of the key reasons the knowledge gap per-
sists is that interannual weather variation is rarely explic-
itly addressed in ecological experimental designs (�3%–5%
of studies examined in Vaughn & Young, 2010 and Werner
et al., 2020). Moreover, the few experiments that are repli-
cated in time and thus able to isolate the effects of weather
are, by necessity, small in their geographic scope (Werner
et al., 2020). In contrast, datasets spanning larger spatial
extents are often limited in the temporal resolution of their
observations, recording aggregate outcomes of multiple
years or life-history stages. Weather measurements can be
highly correlated over weeks and years; thus, larger-scale
studies that utilize infrequent observations (e.g., restoration
outcomes observed several years following treatment) may
fail to distinguish the effects of a particular year's condi-
tions from longer-term climate drivers or other correlated,
time-invariant site characteristics (Fern�andez-Martínez
et al., 2015; Groves & Brudvig, 2019).

The tendency of studies to not formally consider
interannual weather variation has hindered the incorpo-
ration of ecologically significant weather effects
(e.g. “ecological drought”; Crausbay et al., 2017) into res-
toration planning at management-relevant scales. For
instance, retrospective analyses identifying spatiotempo-
ral variation in the barriers to restoration could improve
treatment design (Copeland et al., 2021) or identify areas
that experienced inopportune post-restoration conditions
to inform the strategic deployment of beneficial follow-
up treatments (Shriver et al., 2018). However, these appli-
cations hinge on addressing a key experimental gap in
restoration: Is weather a widespread driver of why resto-
ration outcomes differ from expectations? And if so, how
transferrable are these effects are in space (i.e., at new
sites) and time (i.e., across years)?

Here, we examine the influence of weather on predic-
tions of restoration outcomes on Bureau of Land

Management (BLM) lands across a broad spatiotemporal
extent, focusing on shrub recovery in an imperiled dry-
land ecosystem characterized by variable precipitation
and temperature. Sagebrush-steppe (dominated by Arte-
misia spp., especially big sagebrush, Artemisia tridentata)
once covered nearly 1,000,000 km2 of western North
America and is a critical habitat component for numer-
ous species of conservation concern; however, its range
has been reduced by half due to land-use, climate change,
conifer encroachment, and invasion of exotic annual
grasses, such as Bromus tectorum (cheatgrass; Miller
et al., 2011; Shi et al., 2018). Cheatgrass reduces fire
return intervals and locally eradicates fire-sensitive sage-
brush shrubs (Balch et al., 2013). This has motivated
large-scale investments into sagebrush restoration, pri-
marily through the broadcasting of seeds in recently bur-
ned areas (Pilliod & Welty, 2013; Pilliod, Welty, &
Toevs, 2017). While these treatments constitute one of
the largest conservation efforts to restore native species
globally, their success is highly variable and often low
(e.g., Arkle et al., 2014; Davies et al., 2013; Davies &
Bates, 2017; Eiswerth et al., 2009; Knutson et al., 2014;
Pyke et al., 2013).

Soil moisture and factors that control it, such as ante-
cedent snowpack, previous or current-years precipitation,
and temperatures, are key drivers of the establishment
and growth of sagebrush shrubs in field-based studies
(Brabec et al., 2017; Nelson et al., 2013; O et al., 2020;
Schlaepfer et al., 2014a; Shriver et al., 2018; Tredennick
et al., 2016). Weather, especially during the year follow-
ing seeding, is often cited as a primary cause of variation
in restoration success in sagebrush steppe; however, these
effects are difficult to isolate at management-relevant
scales, as past studies of the drivers of restoration success
are often subject to tradeoffs in temporal resolution and
spatial extent (Germino et al. 2018; Applestein et al. 2018).
Recent computational advances have enabled the estima-
tion of the cover of plant functional groups from satellite
imagery, providing spatially continuous and temporally
replicated retrospective data that could advance the detec-
tion of widely generalizable weather effects in restoration
(Rigge et al., 2020).

In this work, we quantify the extent to which the
inclusion of weather covariates improves landscape-
scale prediction of the recovery of sagebrush steppe
ecosystems' foundational taxa (Artemisia spp.), which
represents a widespread conservation challenge across
western North America. We integrate a long-term
dataset of restoration reseeding actions and remotely
sensed estimates of sagebrush cover following wildfires
over 20 years across the western United States
(Figure 1), which provide a unique opportunity to
explore variation in the predictive importance of
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interannual weather in restoration over a wide extent.
We addressed the following research questions about
the predictive importance and management-related
transferability of impacts of interannual variation:

1. To what extent does weather improve predictions of
restoration outcomes at new sites, beyond the infor-
mation provided by long-term climatic and static bio-
physical characteristics?

2. Do the weather conditions during the first year after
treatment have a disproportionate impact on restora-
tion outcomes (e.g., initiation “year effects”), com-
pared to subsequent years following seeding?

3. Do the impacts of weather vary spatially, across the
climatic range of treated sagebrush steppe ecosystems?

Retrospective analyses that explicitly quantify the
impacts of interannual variation in restoration will be
essential to improving treatment designs via adaptive
management, prioritizing sites, and enhancing the pre-
diction of highly variable ecological outcomes.

2 | METHODS

To address questions 1 and 2, we compared the predictive
accuracy of Bayesian sparse models that only assessed static
variables (such as long-term climate and time-invariant bio-
physical characteristics) to those that also included sources of
interannual variation (weather variables from the first 4 years
following the fire, as well as other possible “planting year”
effects). We addressed question 3 using a multilevel auto-
regressive model of yearly changes in sagebrush cover during
the first 4 years following fire and seeding. Given the strong
correlation between annual weather and long-term climate
variables, examining yearly changes in cover allowed for the
identification of correlations between a single season's
weather conditions and a single year's outcome.

2.1 | Data extraction

Sagebrush cover was extracted at 30-m pixel resolution
from the USGS Rangeland Condition Monitoring

FIGURE 1 (a) Locations of 2726 sites that received seeding treatments following fires between 1984 and 2005, based on the Land

Treatment Digital Library. Points indicate centroids of spatially contiguous clusters of pixels and have been slightly offset to reduce overlap.

Point color reflects sites' mean sagebrush cover 10 years following treatment. (b–d) the range of 30-year mean spring (February–April)
climate conditions for these sites (in blue), compared to the annual weather conditions (in teal) observed in the first 4 years following fire.
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Assessment and Projection (RCMAP, formerly known as
the National Land Cover Database's “Back in Time”
Sagebrush Rangeland Fractional Component), which
provides estimates of functional group cover for each year
from 1984 to 2018 across the Great Basin (Homer
et al., 2015; Rigge et al., 2020). More details about
RCMAP and its field validation can be found in
Supporting Information S1. Our analysis focused on areas
that burned only once between 1984 and 2005 and were
subsequently seeded with at least one Artemisia species,
using either aerial or ground seeding approaches. We
identified areas that had been seeded only once following
the fire, using the Land Treatment Digital Library
(LTDL, Pilliod & Welty, 2013), a catalog of management
actions on BLM lands in the western United States,
which constitute nearly 60% of the Great Basin region
(Pilliod, Welty, & Toevs, 2017). We extracted or calcu-
lated elevation, slope (U.S. Geological Survey, 2017),
topographic wetness index (TWI) (Beven & Kirkby, 1979),
heat load (McCune & Keon, 2002), and Level-III
ecoregion (US EPA 2019) for each pixel.

To increase computational tractability over our large
study area, we identified clusters of spatially contiguous
pixels with the multivariate clustering algorithm in
ArcGIS Pro (ESRI, Redlands CA), using criteria for eleva-
tion, heat load, TWI, ecoregion, and slope (Supporting
Information S1). This process resulted in 2726 site clus-
ters across 170 fires between 1984 and 2005. To confirm
that variation within clusters was minimized, we verified
that the relative standard error for elevation was less than
20% within a cluster. The median cluster size was
205 pixels (mean = 831.5, SD = 1897.1). We calculated
cluster-level means and standard deviations for each
dependent variable and for sagebrush cover, which was
the response variable in this analysis.

Though numerous weather periods have been dem-
onstrated to impact sagebrush recovery, we focused on
temperature minima, temperature maxima, and total pre-
cipitation during February–April, which have been com-
monly investigated for their influence on establishment
and growth by determining snowmelt, germination
timing, post-germination freezing events, and soil mois-
ture availability for seedlings before the onset of summer
drought (Brabec et al., 2017; Nelson et al., 2013; O'Con-
nor et al., 2020; Schlaepfer et al., 2014a; Shriver
et al., 2018). Using the raster and ncdf4 packages in R
(Hijmans & van Etten, 2012; Pierce, 2019), we extracted
February–April variables for total precipitation, absolute
minimum temperature, and mean maximum tempera-
tures for the first 4 years after the fire, as well as
February–April 30-year averages for each of these param-
eters from the gridMet modeled meteorological dataset
(Abatzoglou, 2013). GridMet contains daily, high-spatial

resolution (4-km) climate estimates for the contiguous
United States from 1979 to the present. Weather devia-
tions were calculated as the residual between each year's
February–April observations and 30-year normal condi-
tions for that month. Throughout the text we refer to
these as “spring” weather variables, indicating that this
period describes the start of the growing season when
sagebrush seeds tend to germinate.

2.2 | Questions 1 and 2: Impacts of
interannual variation and the initiation
year on predicting restoration outcomes

To assess whether annual spring weather variables
improved predictions of sagebrush cover, we developed a
set of five Bayesian “sparse” models. Sparsity-inducing
horseshoe priors were adopted to avoid overfitting and
effectively reduce the set of numerous highly correlated
biophysical and spring weather variables (>0.7) that
could not be chosen solely by our knowledge of the sys-
tem (Carvalho et al., 2009). Regularizing horseshoe priors
have the effect of “selecting” among large variable sets by
shrinking negligible effect sizes, allowing only a subset of
the variables to have large positive or negative parameter
values. Rather than reducing the variable set through tra-
ditional model selection, horseshoe priors achieve a simi-
lar outcome using two parameters: a global parameter
that generally draws coefficients toward zero, while local
scale parameters with half-Cauchy priors allow larger
estimates to “escape” shrinkage (Piironen &
Vehtari, 2017).

While horseshoe priors may be used as a means of
selecting relevant variables on their own, we fit five sepa-
rate models to directly quantify the changes in predictive
error associated with the addition of each set of new
covariates (Tables 1 and 2). Each successive model parsed
the extent to which static biophysical variables (Model 1),
mean spring climate (Model 2), time-varying spring
weather variables (Models 3–4), and other “initiation
year” effects (Model 5) improved the prediction of sage-
brush cover at new sites, a decade after treatment
occurred (see Table 1 for specific covariates included). If
the impacts of spring planting year weather conditions
(Question 2) had distinct predictive importance, we
expected to see improved out-of-sample predictive accu-
racy (metrics described below) for Model 3, compared to
Models 1 and 2, which contained only static biophysical
characteristics and long-term climate variables. If post-
treatment weather beyond the planting year was addi-
tionally important to sagebrush recovery (Question 1), we
expected to see improved predictive accuracy for Model
4, relative to Model 3. If additional characteristics of the
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treatment year, beyond spring weather, were important,
we expected to see additional gains in prediction for
Model 5.

To account for the measurement error inherent in
clustering groups of remotely sensed estimates, we
modeled the observed mean sagebrush cover (yobserved)
for each site as normally distributed around the

unknown true value (ytrue, with mean μi and standard
deviation σ) with a standard deviation equal to the stan-
dard error for each site (σerrÞ. In general, these models
were specified as:

yobserved i½ � �TNormal ytrue i½ �,σerr i½ �
� �

TABLE 2 Comparison of out-of-sample predictive performance for models of remotely sensed sagebrush cover that incorporate time-

invariant biophysical variables, long-term (30 years) climate averages, and annual weather deviations

Out-of-sample predictive performance

Model Variables included Out-of-sample Bayesian R2 ΔELPD SE ΔELPD

Model 5 Spring weather, climate, and time-invariant biophysical
variables, with varying intercept for fire/seeding year

0.69 0.00 0.00

Model 4 All spring weather (years 1–4), climate, and time-
invariant biophysical variables

0.67 �40.49 10.10

Model 3 Year 1 spring weather, climate, and time-invariant
biophysical variables

0.61 �235.59 21.91

Model 2 Long-term (30 years) climate and time-invariant
biophysical variables

0.59 �273.79 23.07

Model 1 Time-invariant biophysical variables only 0.55 �338.41 25.61

Note: Bayesian-R2 is reported as the mean value from the full set of posterior predictions generated. The change in the expected log pointwise predictive density
(ΔELPD) for a new dataset indicates the difference between the model with the highest estimated predictive accuracy (for which ΔELPD = 0) and other
models. More negative ΔELPD values indicate decreased relative predictive accuracy, with associated standard errors (SE).

TABLE 1 Description of variables included in models of post-treatment sagebrush cover

Category Variables Included in:

Time-invariant biophysical site
characteristics

• Slope (�)
• Elevation (m)
• Heat load (index)
• Surviving, post-fire sagebrush cover

before restoration (%)
• Level III Ecoregion (categorical, 7 in

this dataset)

Models 1, 2, 3, 4, and 5

Long-term mean spring climate • 30-year mean for February–April
mean maximum temperature (�C)

• 30-year mean for absolute minimum
February–April temperature (�C)

• 30-year mean for total February–
April precipitation (mm)

Models 2, 3, 4, 5

Spring weather following treatment Annual deviations (for Years 1–4 post-
treatment) of the following variables
from the calculated 30-year means:

• February–April mean maximum
temperature (�C)

• Absolute minimum February–April
temperature (�C)

• Total February–April
precipitation (mm)

Variables for Year 1 in Model 3
Variables for Years 1–4 in
Models 4 and 5

Fire/seeding year • Varying intercept for the year in
which fires occurred

Model 5
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ytrue i½ � �TNormal αþXi �β,σð Þ

βj �Normal 0,τ � eλj
� �

, eλj ¼ cλjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þ τ2λ2j

q

λj � halfCauchy 0,1ð Þ

τ� halfCauchy 0,1ð Þ

c2 � Inverse Gamma
v
2
,
v
2
s2

� �

where β represents a vector of j parameters for the matrix
of included variables Xi (described in Table 1); τ and λ
represent global and local scale parameters for the horse-
shoe priors; c represents a regularization parameter; and
N is the number of observations. The integration of
inverse-gamma and half-Cauchy distributions effectively reg-
ularizes slopes (that exceed the global scale) by a Student's-T
prior with scale s and degrees of freedom v. Based on the dis-
cussion provided in Piironen and Vehtari (2017) and recom-
mendations in the brms package (Bürkner, 2017), v and s2

were assigned values of 4 and 2, respectively. We defined
the ratio of non-zero to zero parameters as 1:4 to identify
a tractable subset of variables for planning restoration
actions. Model 5 additionally contained a varying inter-
cept for the treatment year.

2.3 | Question 3: Effects of weather on
annual growth of sagebrush and their
spatial variation

To isolate the effects of specific weather variables on
post-treatment sagebrush recovery and examine spatial
variation in these effects, we developed a Bayesian multi-
level autoregressive model of annual changes in sage-
brush cover at reseeded sites for the first 4 years
following the fire (n = 8157 observations at 2726 sites).
Covariates were included to isolate the effects of
(1) 30-year mean February–April mean maximum tem-
perature, minimum temperature, and total precipitation
conditions; (2) annual deviations from these long-term
averages; and (3) interaction terms between climate and
weather variables to quantify spatial variation in the
effects of weather across sites. We included quadratic
terms for climate variables to capture non-linear
responses to temperature and precipitation. The model
also contained a temporally autoregressive term for sage-
brush cover in the previous timestep (prev) and varying

intercept components for time since fire (αTSFÞ and site
identity (αsiteÞ to reflect repeated measures of sites. The
model employed a truncated normal distribution
bounded at 0 and 100 (to match the structure of the sage-
brush percent cover estimates) and a measurement error
term, similar to the models described above. The model
was specified as:

yobserved i½ � �TNormal ytrue i½ �,σerr i½ �
� �

ytrue i½ � �TNormal μi,σð Þ

μi ¼ αþαTSF i½ � þαsite i½ � þ γ �previþCiβþWi∂þ Ci �Wið Þρ

αTSF �Normal 0,σTSFð Þ

αsite �Normal 0,σsiteð Þ

where individual observations (i) are nested separately
within sites (site) and years since fire (TSF). α represents
the mean intercept. β, ∂, and ρ indicate vectors of param-
eters associated with climate variables (matrix C),
weather variables (matrix W), and their interaction. Cor-
relations between included variables were <0.6. We
applied the weakly informative standard priors used in
the brms package.

2.4 | Model fit, comparison, and
predictive performance

Variables were centered and scaled by 1 standard devia-
tion. Models were estimated using the language Stan and
the brms package in R, using a Markov Chain Monte
Carlo sampler with four chains, each with 2000 iterations
and 1000 warmup iterations (Bürkner, 2017; Stan Devel-
opment Team, 2020). We assessed effective sample size
and model convergence, indicated by Gelman–Rubin sta-
tistics close to 1 and stable, well-mixed chains (Stan
Development Team, 2020). Parameter estimates with 90%
credible intervals that did not contain zero were consid-
ered to have non-zero effects on the response variable
(Stan Development Team, 2020). We assessed model fit
by calculating Bayesian-R2 values (Gelman et al., 2019)
and examining visualizations of posterior predictive fit
(Supporting Information S2).

To assess predictive performance, we reserved 33% of
the data to calculate out-of-sample Bayesian-R2 from
each model, in addition to calculating the estimated
expected log pointwise predictive density for a new
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dataset from the fitted model (ELPD, Vehtari et al., 2016).
In model comparison, larger ELPD values indicate
improved predictive performance.

The use of remotely sensed data incurs inherent
tradeoffs, between the spatiotemporal scope and the mea-
surement error inherent in the use of remotely sensed
datasets. We examined the sensitivity of our models' pre-
dictions to possible measurement errors, using field vali-
dation data (Applestein & Germino, 2021; the process is
described in Supporting Information S2). Model code can
be found via Github: https://github.com/absimler/
restoration-weather.

3 | RESULTS

3.1 | Question 1: Impacts of interannual
variation on prediction of long-term
restoration outcomes

Static, biophysical, and long-term climate variables cap-
tured a large amount of the variation in test datasets
(Table 2; Out-of-sample R2 = 0.55 for a model containing
static variables alone; 0.59 for a model also containing
long-term climate averages). Sagebrush cover measured
10 years after seeding was greater at steeper, higher-

elevation sites, and decreased with increasing heat load
(Supporting Information S3, Figure S1). Long-term sage-
brush recovery was also greater in the Wyoming Basin
and Idaho Batholith ecoregions and lower in the North-
ern and Central Basin, compared to other zones
(Supporting Information S3, Figure S1).

However, the inclusion of weather variables from the 4
years following the fire improved the predictive perfor-
mance of the model of sagebrush cover a decade after
reseeding, compared to models containing static, biophysi-
cal features and long-term climate averages alone (Figure 2,
Table 2; ΔOut-of-sample R2 = 0.08; ΔELPD = �273.79,
SE = 23.07, with negative ΔELPD values indicating
improved relative predictive performance). Models that
incorporated interannual variation reduced overprediction
at lower values of sagebrush cover and underprediction at
high values of sagebrush cover (Figure 2).

3.2 | Question 2: Importance of
“initiation” year for predicting restoration
outcomes

Inclusion of weather variables from only the first year
following fire also resulted in small gains in out-of-
sample prediction, compared to models containing static
biophysical and climate characteristics (Table 2; ΔOut-of-
sample R2 = 0.02; ΔELPD = �103.2, SE = 15.4). How-
ever, this model's predictive accuracy was considerably
lower than the model containing weather effects for the
first 4 years post-fire (Table 2). Incorporating a varying
intercept for the year in which a fire occurred and in
which the site was reseeded also minorly improved pre-
diction, compared to the model containing all spring
weather covariates (Table 1; ΔOut-of-sample R2 = 0.02,
ΔELPD = �40.49, SE = 10.10; Figure 6), indicating addi-
tional possible long-term effects of planting year.

Posterior parameter estimates for all predictive
models can be found in Supporting Information S3.
Within-sample Bayesian-R2 values for the models of sage-
brush cover a decade after treatment ranged from 0.50
(for Model 1) to 0.67 (for Model 5).

3.3 | Question 3: Effects of weather on
annual growth of sagebrush and their
spatial variation

Interannual increases in sagebrush cover in the first 4
years following the fire were greatest at sites with inter-
mediate mean spring precipitation (172 mm), generally
cooler average spring maximum temperatures (7.6�C),
and colder absolute minimum (�12.8�C) temperatures

FIGURE 2 Comparison of the mean predictive error between

models of sagebrush recovery that contained only time-invariant

biophysical and long-term climate variables (shown in blue and

teal) and models that incorporated sources of interannual variation

(shown in orange and red), across levels of sagebrush cover 10 years

after treatment. Trend lines indicate linear regressions for

individual observations of predictive error and sagebrush cover,

with 95% credible intervals. Predictive error was calculated as the

difference between the model's prediction and the observed

sagebrush cover value. Lines closer to the dashed line (predictive

error = 0) indicate improved average model accuracy.
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(Figures 3–5). Beyond the effects of long-term climate,
annual changes in sagebrush cover generally increased in
wetter and cooler years across treated BLM lands within
the Great Basin, compared to sites' long-term climatic
means (Figure 3).

However, the size and direction of weather effects
exhibited substantial spatial variation across the climatic
range of treated sagebrush systems (Figures 4 and 5).
Years with lower maximum spring temperatures
resulted in increased sagebrush growth in cover (+61%)
at cooler sites but had weaker effects (+9%) at the
warmest sites (Figure 4a,b). By comparison, in years
with lower minimum temperatures, annual percent
growth in cover increased by 68% at warmer sites, but
changed negligibly (�2%) at cooler sites (Figure 4c,d).
Years with greater precipitation were consistently corre-
lated with increased change in sagebrush cover across
both arid and wet sites (Figure 5a,b) but lagged precipi-
tation effects were stronger at drier sites (Δ94%), com-
pared to sites with generally wetter spring conditions
(Δ33%, Figure 5c,d). The model of annual changes in

sagebrush cover had a within-sample R2 of 0.86 and an
out-of-sample R2 of 0.80.

4 | DISCUSSION

Our ability to predict ecological responses to restoration
will be improved if we can first understand and explain
the ecological outcomes of past treatments, especially at
broad spatiotemporal scales (Brudvig et al., 2017). Here,
we find that landscape-scale patterns of post-treatment
sagebrush cover are related to and predicted by spring
weather prevailing in the first few years after restoration
interventions on BLM lands. The inclusion of spring
weather improved predictions of post-fire seeding out-
comes compared to models based only on time-invariant
site characteristics, including climate averages (Table 2,
Figure 2); however, the importance of weather differed
across the climatic range of the burned, treated sagebrush
steppe ecosystems examined here (Figures 3–5),
suggesting that the management implications of weather

FIGURE 3 Parameter estimates for the effects of climate, weather, and other variables on annual changes in sagebrush cover over the

first four years following fire. Climate effects included sites' 30-year means for spring minimum temperatures (MIN TEMP in teal),

maximum temperatures (MAX TEMP in red), and total precipitation (PPT in blue). Weather effects included each spring's deviation from

each long-term climate variable, in addition to a lagged deviation effect for precipitation in the preceding year. Climate-weather interactions

are indicated as deviation � mean. Dots indicate median parameter estimates with associated 50% (thick lines) and 90% (thick lines) credible

intervals, with the full posterior distribution shown in grey. Parameters with 90% credible intervals that did not include zero (indicated by

the dotted line) were considered to have nonzero effects on the response.
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effects may have limited transferability across space
and time.

4.1 | Impacts of spring weather on
prediction of post-treatment sagebrush
cover

Inclusion of spring weather variables improved out-of-
sample predictions of long-term sagebrush recovery on
BLM lands; however, static biophysical factors, such as
heat load and slope, captured much of the variation in
dryland shrub cover (Tables 1 and 2; Davies et al., 2011;
Knutson et al., 2014; Pyke et al., 2013). We propose that
the increased out-of-sample accuracy (of �8–10%) associ-
ated with the inclusion of spring weather and other
“year” effects indicates an appreciable improvement in
the prediction of outcomes that requires further investi-
gation, particularly given (1) the substantial investment
in sagebrush restoration across the Great Basin, (2) urgent
risks posed for declining sagebrush-dependent wildlife
species, and that (3) no existing model provides

satisfactory predictions of sagebrush recovery (Knutson
et al., 2014; Pyke et al., 2013). Though current weather
forecasts may not skillfully predict spring conditions at
the time of fall seedings, the effects of interannual varia-
tion quantified in this study have several possible man-
agement applications on BLM lands. For instance,
retrospective analysis of the past year's weather condi-
tions can be used to identify areas urgently requiring
follow-up seedings, which have been demonstrated to
improve the probability of sagebrush establishment in
burned areas (Shriver et al., 2018). Further, the impor-
tance of weather effects significantly varied across the
examined range of seeded sagebrush steppe ecosystems
(Figures 3–5), suggesting that restoration practitioners
could apply this information to prioritize sites where out-
comes may be more consistently predictable or allocate
funding across several planting years, to minimize risks
at variable sites.

However, the substantial variation captured by time-
invariant and long-term characteristics (Table 2) may fur-
ther inform restoration prioritization. These results sug-
gest that, with climate change, accurate forecasting of

FIGURE 4 Marginal effects

of interannual variation in

spring maximum (a,b) and

minimum (c,d) temperatures on

annual percent sagebrush

growth in the first four years

following fire (with 50% credible

intervals shown in shaded

bands). Annual percent change

((New–Previous)/Previous) has
been calculated for the median

value of preceding year

sagebrush cover, and other

variables have been held at their

means. Panels a and c illustrate

the effects of cooler (10th

percentile, in teal) or warmer

(90th percentile, in orange)

years, relative to a site's 30-year

mean temperature conditions

(in grey). Panels b and d

illustrate effects of annual

weather deviations at sites that

are cooler (10th percentile, in

blue) or warmer (90th

percentile, in red) on average.

SIMLER-WILLIAMSON ET AL. 9 of 15



shifting mean conditions at sites may capture more of the
variation in sagebrush recovery in this ecosystem than in
spring weather. Targeted site selection based on expected
mean climate conditions, rather than the selection of
suitable years for treatment, may more effectively mini-
mize losses in restoration investment. Management appli-
cations that leverage interannual variation must also

weigh the inferential benefits of using more temporally
resolved covariates against the analytical costs, especially
given that the predictive value of weather may not be
equal across all sites (Figures 4 and 5) and all densities of
sagebrush (Figure 2). For instance, at lower sagebrush
densities, interannual variation may result in the differ-
ence between predicting modest levels of recovery and

FIGURE 5 Predicted effects

of interannual variation in

spring precipitation for the

current (a,b) and preceding (c,d)

years on annual percent

sagebrush growth in the first

four years following fire (with

50% credible intervals shown in

shaded bands). Annual percent

change ((Current � Previous)/

Previous) has been calculated

for the median value of

preceding year sagebrush cover,

and other variables have been

held at their means. Panels a

and c illustrate the effects of

drier (10th percentile, in

orange) or wetter (90th

percentile, in teal) years, relative

to a site's 30-year mean

precipitation (in grey). Panels b

and d illustrate effects of annual

weather deviations at sites that

are drier (10th percentile, in

red) or wetter (90th percentile,

in blue) on average.

FIGURE 6 Varying intercept

components for the effect of the year in

which post-fire restoration seeding

occurred on remotely sensed sagebrush

cover (10 years following fire) in a model

containing weather, climate, and

biophysical site covariates; 50% and 90%

credible intervals for each fire year's

deviation from the mean intercept are

indicated by thick and thin lines, with

median estimates indicated by dots.
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complete recruitment failure, compared to high sagebrush
densities, where the management-relevance of modest
overprediction may be less consequential (Figure 2).

4.2 | Impacts of initiation year
conditions on post-treatment sagebrush
recovery

Existing studies of interannual weather variation in restora-
tion frequently focus on the effects of planting years in par-
ticular (referred to as “year effects”; Groves et al., 2020;
Stuble, Fick, & Young, 2017; Vaughn & Young, 2010;
Werner et al., 2020). Planting year conditions may drive spe-
cies arrival, niche preemption, and early niche modification,
generating “historical contingencies” in community struc-
ture (Fukami, 2015). The addition of weather covariates
from the first spring following seeding improved the predic-
tion of sagebrush cover 10 years following treatment,
suggesting that initiation year conditions may indeed leave
long-lasting imprints on restoration outcomes (Table 2).
However, we found that this improvement was minor, and
that predictive performance continued to increase as addi-
tional weather covariates (from post-fire years 2–4) were
added (Table 2). Our findings suggest that management-
relevant variability in sagebrush recovery may emerge at
other points along with these populations' trajectories
beyond the planting year. These effects may be owed addi-
tional consideration in both analysis and experimental
design. It is also possible that initiation year weather may
have greater predictive importance in determining other
ecological patterns, such as sagebrush establishment or com-
munity assembly (which were outside of the scope of this
remotely sensed dataset; Supporting Information S2), com-
pared to population growth (Fukami, 2015).

Across BLM lands within the Great Basin, we also
found that certain reseeding years exhibited substantially
lower or higher sagebrush cover in the decade following
reseeding, beyond what was predicted by spring weather,
climate, and biophysical variables (Table 2, Figure 6).
Other time-varying social or ecological factors, such as
the timing and locations of particular megafires, shifts in
firefighting activities, variation in post-fire seeding prac-
tices (related to budgets and agency policy changes),
yearly differences in grazing by native ungulates and live-
stock (Davies et al., 2020; Manier & Hobbs, 2007), or vari-
ation in remote sensing of sagebrush cover (Shi
et al., 2020) could all contribute to these region-wide dif-
ferences in sagebrush cover on seeded BLM lands. Fur-
ther, other aspects of initiation year weather not
considered in this study could contribute to the dominance
of undesired invasive species overseeded natives (e.g., in
grasslands, Bakker et al., 2003) or variation in competition

with other rangeland plants (Hall et al., 1999; Rinella
et al., 2015, 2016).

4.3 | Spatial variation in the influence of
spring weather on sagebrush recovery

The relationships between spring weather and sagebrush
growth, detected by coarse-scale remotely sensed data,
reflect ecophysiological mechanisms identified in past
field-based studies of sagebrush. Mean temperatures,
spring precipitation, and late-winter snowpack retention
have been linked to the occurrence and growth of res-
eeded sagebrush, primarily by influencing soil–water avail-
ability, specifically in the early stages of sagebrush
development (Apodaca et al., 2017; Applestein et al., 2021;
Nelson et al., 2013; O'Connor et al., 2020; Schlaepfer
et al., 2014b). The overall negative effects of maximum
and minimum temperatures detected here indicate a role
for water deficit in influencing sagebrush recovery at a
larger scale (Figures 3 and 4), as these factors drive the
phenology of spring snowmelt, recharge, soil moisture,
and seedling success during subsequent periods of summer
drought. The positive effect of the previous year's precipi-
tation also suggests that fluctuations in deeper soil water
resources may additionally drive the growth of taprooted
sagebrush shrubs that have survived initial establishment
filters (as detected in past studies; Pilliod, Welty, &
Arkle, 2017; Tredennick et al., 2016).

However, the effects of weather varied with sites'
mean temperature and precipitation conditions, possibly
reflecting shifting physiological constraints across
sagebrush's range (Figures 4 and 5). At warm sites,
reduced minimum temperatures may facilitate increased
growth (Figure 4C,D) by prolonging the period during
which soil water potential stays above thresholds relevant
for germination, establishment, and growth; whereas, at
cooler sites, lower temperature minima may inhibit
snowmelt and the initiation of growing conditions
(O'Connor et al., 2020). At the hottest sites, annual devia-
tions in maximum temperature may be less likely to pro-
long soil moisture in ecologically significant ways,
resulting in similar (and largely negative) changes in
sagebrush cover across years (Figure 4A,B). Increased
spring precipitation resulted in spatially consistent
increases in sagebrush growth (Figure 5), but lagged pre-
cipitation effects were stronger in drier climates, possibly
indicating increased variability in deeper soil water avail-
ability at these sites (Schlaepfer et al., 2012). Together
these results provide evidence that the barriers to sage-
brush restoration vary in space (along climate gradients)
and in time (with annual weather conditions; Copeland
et al., 2021). However, effect sizes for these variables were
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influenced by our focus on treated BLM lands, which
may be more ecologically degraded and experience gener-
ally drier, warmer conditions, compared to the full extent
of sagebrush steppe ecosystems (Reid et al., 2018; Simler-
Williamson & Germino, 2022).

Spatial variation in the importance of weather sug-
gests that the predictability of restoration outcomes may
vary with the severity or nature of the environmental fac-
tors constraining community recovery (as proposed by
Brudvig et al., 2017). Further, our findings emphasize
that the weather effects detected by smaller-scale studies
may not translate to improved prediction or management
across large landscapes (Applestein et al., 2021). Consid-
erations about the transferability of studies (given their
environmental context) are particularly important con-
sidering that restoration treatments may be dispropor-
tionately applied to more stressful or degraded sites,
compared to the full climatic range of sagebrush steppe
ecosystems (Reid et al., 2018; Simler-Williamson &
Germino, 2022).

4.4 | Toward prediction in restoration
science

Future work should aim to explicitly isolate the extent to
which weather conditions improve the prediction of res-
toration outcomes at new sites in management-relevant
ways (Applestein et al., 2021), rather than explaining
within-sample effects. In addition to temporal replication
of treatments, datasets with frequent observations may be
key to isolating the management relevance of annual
weather, compared to long-term climate, given high cor-
relations between these variables (Groves et al., 2020).
An additional challenge inherent in the study of weather
is that there is a myriad of possible variable combinations
and temporal windows to consider, including lag effects
(Ogle et al., 2015). In light of these large candidate vari-
able sets, “sparse” models (e.g., Piironen & Vehtari, 2017)
may be powerful approaches to minimize overfitting and
achieve a model size more realistic for management use
(Dietze, 2017).

Future conditions in the Great Basin are predicted to
be warmer with more variable precipitation (Palmquist
et al., 2016), invasive annual grasses continue to spread
across western North America, and associated fire fre-
quencies are expected to increase (Fusco et al., 2019).
Therefore, “favorable” restoration years and suitable
mean site conditions (Schlaepfer et al., 2014a) may
become rarer regionally, as the total area requiring resto-
ration intervention expands, possibly without a compara-
ble increase in resources for restoration. These rapidly
changing constraints underscore the need for studies that

explicitly isolate the predictive importance of weather,
relative to long-term shifts in mean conditions, to inform
the effective use of limited restoration resources.
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