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ABSTRACT

This study provides evidence of a link between Shelter in Place (SIP) policy response

during the pandemic and demonstration events. Through the combination of daily

county-level government policy response to SIP implementation to limit the spread

of the COVID-19 outbreak in the United States (US) and cell phone mobility data,

this research studied how demonstrations and violence are affected following shut-

down policies. A dynamic framework is visible due to the staggered effect of policies

implementation across the US. At the national level, the results showed reduced par-

ticipation in demonstration events at the national level, suggesting that increasing

social costs may limit public demonstrations. However, regional results indicate de-

pendence on population density (urban vs. rural) or location (west vs. east coast),

along with the benefits of pursuing social well-being, outweigh the additional costs

SIP police bring. The research will conclude with a discussion on potential reasons

behind this heterogeneity and why it is essential to understand the repercussions of

blanketed US policies on individual behavior and social well-being. The research of

this paper contributes to the study of pandemic modeling on demonstrations in the

US. First, it provides a theoretical framework using multiple economic modeling ap-

proaches to study the relationship between SIP policies and demonstrations. Second,

this county/day level data is one of the first studies to look at the individual behavior

effects in the US. Third, a fuller view of the region is observed by using a combination

of statistical analyses, qualitative assessments, and geographical clustering.
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SECTION 1:

INTRODUCTION

“The ultimate measure of a man is not where he stands

in moments of convenience and comfort,

but where he stands at times of challenge and controversy.”

Martin Luther King, Jr.

Demonstrations form a crucial part of the American political landscape and are

inexorably tied to the country’s birth, as seen by historical events like the Boston

tea party (1773). Demonstration movements tend to come when there are divisions

in a society where political systems cannot handle inequalities in well-being and sus-

tainability issues. In recent years, the US has seen the rise of such divisions, with

equality and political polarization, bringing with it a substantial surge in demonstra-

tions. With the occurrence of increasing demonstrations, with an exogenous1 shock

of the Novel Coronavirus SARS-CoV-2 (COVID-19) pandemic, a unique opportunity

presents itself to explore changes in individual behavior. These changes could show

how participation in demonstrations could influence future generations’ well-being.

1An exogenous shock defines a period of prolonged and widespread crisis in which actors struggle
to reconstitute all aspects of social life (Soluk et al., 2021).
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Also, with the indifference of many states to implement the policies, it allows for the

use of quasi-experimental environment methods2.

This research shows that during the initial implementations of the SIP policies,

there was a decrease in demonstration events that led to a reduction in violence. This

reduction suggests that when the economy is under pressure and low-income families

struggle, the same tools that society uses to help increase equality, justice, and well-

being may also be underutilized. The study looks at a moment during the early

days of the pandemic when the government issued SIP policies. Its focus is to see

how human behavior may run contrary to expectations, where during times of great

strain and stress, social trends should push for more equality and demonstrators. But

due to high opportunity cost, the outcomes seen are decreasing behavior.

During the early part of 2020, unemployment increased, and incomes were drop-

ping. Unrest in both Black Lives Matter (BLM) and pandemic policies groups were

rising, yet there was a decrease in demonstration events as well as violence across

the US. In this study, fixed effect lagged modeling3 facilitated controls for entity and

time biases across panel data. The data set contained 50 states over approximately

three months from February to May 2020. Society has gained a greater awareness

of demonstrations through technology and lower barriers to access information. It is

also due to the increased opportunity seen through decreased mobility of society. The

extra time, through reduced movement, gives individuals additional time to focus on

current events with the SIP policies keeping individuals’ home.

2Quasi-experimental methods look to manipulate the independent variable of participants but
outside of a controlled environment. But like an experimental method, there is still treatment
and a controlled grouping through observing the agent’s participation in the independent variable.
Unlike a controlled experiment where participants are randomly assigned, there is still the issue of
confounding variables which will need to be addressed (Chiang et al., 2015)

3Section 4.3 explains the methodology in more detail
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The research of this paper contributes to the study of pandemic modeling on

demonstrations in the US. First, it provides a theoretical framework using multiple

economic modeling approaches to study the relationship between SIP policies and

demonstrations. Second, this county/day level data is one of the first studies to look

at the individual behavior effects in the US. Third, by using a combination of several

methods, especially statistical analyses, qualitative assessments, and geographical

clustering of country cases, a more robust view of the region is observed.

Section two briefly goes over the background of the demonstration environment

during the pandemic. In section three, we conduct a comprehensive literature review

focusing on the linkage between policy, demonstration, and violence. The reviews look

at how exogenous shocks can affect demonstration event numbers, how COVID-19

influences behavior response, and case studies of how SIP affect both global demon-

stration and the Sub-Saharan region. Section four covers the data collection, model-

ing techniques, statistical breakdown, and the assumption and inherent biases in the

model. Section five presents the model results and regional analysis with sensitiv-

ity tests. The discussion, in section six, looks at how the decrease in demonstration

events could affect policies and political change through the scope of social well-being.

We believe that this paper will convey the importance of understanding the impact

of broad SIP policies on peripheral social behaviors. A peripheral behavior includes

demonstration participation4 which can affect third-tier social well-being pursuits5.

4In this context, SIP policies do not have the intent to directly impact demonstrations. But it
is reasonable to expect it to have a situational influence through limiting societies movement.

5Limited changes in policies through reduced freedom of movement in the pursuits of demon-
strations for future generations.
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SECTION 2:

BACKGROUND

2.1 Demonstrations During the Pandemic

2020 was fraught with political unrest and the global pursuit of demonstrations

for racial justice. With the introduction of the pandemic, this increased stress and

division in the way of decreased incomes and increased unemployment has only inten-

sified the environment. The death of George Floyd also ignited a new fight against

injustice that brought forceful arrests, rubber bullets, and teargas against the civilian

population. Were these incidences of violence exaggerated by social media and the

lagging workforce sitting at home surfing the net? Or was there already an increasing

environment of demonstrations leading to an inevitable violent clash between the US

population, organizations, and the government.

In her essay on local and national civil rights movements, Yvonne Frear from

the San Jacinto College explains that the civil rights movement has been on the

march since the 1950s (Haynes & Wintz, 2016). The very violence that she has seen

throughout history has not only highlighted the inequalities in society but also helped

form avenues of change in the US. The essay points out that other countries see the

US as a violent environment for demonstrations, but sometimes violence is needed for

change. The significant difference between past and current demonstrations is how

social media informs the nation and the world. In the past, a consumer would have
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to seek out the information, and it was second or third-hand accounts at best. Now,

consumers get first-hand accounts through cell phone video, but individuals will be

inundated with the same report told ten different ways by multiple outlets. It can

feel like one incident can have a more significant impact due to over publication. The

issue is how to ascertain if first-hand videos make accounts more accurate or too many

biased viewpoints in the mix.

While the US has been an environment that supports freedom through demon-

stration, 2020 has seen an increasing trend of demonstrations. In Roudabeh Kishi’s

research, she found demonstrations have spread to additional states, and statistics

indicate that demonstrations that clashed with government authorities increased by

more than five times (Kishi, 2020b). In 2020 government authorities implementing

“use of force” had increased six times which illustrated a rise in violence in 2020 com-

pared to 2019. One of the main findings was how participation in different specific

demonstration groups had begun to shift away from the BLM movement and towards

COVID-related issues in the latter part of 2020.

These types of demonstrations could range from medical care to moratorium1

issues not just case number and death rates. In comparison, BLM demonstrations

are specific to violence against the populous and were from particular events that

stemmed from violence against minorities. Even considering the differentiation be-

tween organizations, the data observed a shift that initially saw BLM consisting of

78% of demonstrations in June of 2020. By August, only 25% of demonstrations

were BLM. This shift was significant as BLM had become prevalent in the wake of

the killing of George Floyd (May 25, 2020). The pandemic exacerbated the envi-

1A moratorium is a delay or suspension of an activity or a law. CDC Issues Eviction Moratorium
Order in Areas of Substantial and High COVID-19 Transmission (CDC, 2021).
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ronment as the country saw higher unemployment rates, increasing participation in

demonstrations. Midway through 2020, one of the most significant driving factors for

COVID-related demonstrations became the rise in students’ and teachers’ opposition

to an unsafe school environment (Kishi, 2020a).

Current studies have tried to compare the numbers of deaths to the number of

demonstrations to explain the correlation between demonstrations with the number

of new deaths (Kishi, 2020a). But due to collection and reporting bias, this may be

difficult to do. In these studies, there was a large portion of demonstrations related

to election events and rallies by November after the general election. Over 70% of

demonstrations were attributed to such events as “Stop the Steal” or “Count Every

Vote.” By now, COVID had become so politicized it may be hard to see which events

were purely about political voting rights and not spillover from COVID agendas.

While it did seem that demonstrations followed a similar pattern to those of deaths

from the pandemic, there are expected lagged effects in demonstration responses

to fatalities. The lags are partly due to the dynamic environment and individual

behavior for processing and setting up demonstrations. Also, reports of deaths are

not instantaneous, are backdated and reported to the public retroactively. So even

if society took to the streets as soon as demonstrators heard the news of the death

count, it would not be current data points (Kishi, 2020a). This lagged effect led to

SIP data research with a dynamic approach.

2.2 Impact of Government Pandemic Policies

Clashes between groups or vandalism may not purely drive violence during demon-

strations. Sometimes, there is a strategic desire for change. For some, violence

through demonstration may be the only option available to grab the attention of



7

policymakers and the social community. Omar Wasow, a professor of politics at

Princeton University, examined the strategic reasoning behind the violence during

the demonstration. Wasow explains that it isn’t an easy question to answer as non-

violence is the best course of action if good media and public backing are available.

This will help keep the general public on the demonstrator’s side and compassionate

to their cause. But when there’s no good media and public backing, violence may

be the only means to gain attention and support for the policy changes needed to

create a more balanced social environment (Wasow, 2020). Even then, it is hard to

anticipate what will happen, as seen in the 1960s when some white moderates were

willing to advance racial equality but keeping order was also a priority.

This meant that racial equality was part of their plan but only if there was no

violence on the part of the demonstrations as this would push them to the opposing

side. When looking at how SIP policies may play in the dynamics of the demonstration

landscape, consideration needs to be given about individuals’ decision-making process.

That even if an individual, or a group, wants to demonstrate, demonstrators may

consider holding off as going against the SIP police may be viewed as having a negative

external effect through disobeying non-related policy. However, with demonstrations

for civil justice going back decades, viral videos show first-hand accounts of current

demonstration issues and governments’ unwillingness to release body-cam footage.

Could this non-transparency override an individual’s behavior to stay home during

the pandemic?

Because COVID-19 came on so rapidly with a rise in cases, government interven-

tion was needed to curtail the pressures on the health industries. At this time, there

was a shift in individual behavior as SIP policies were implemented, and behavioral

change shows the psychological effect of the pandemic on the socioeconomic environ-
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ment. Due to the inconsistency of the local government’s implementation of these

policies, it can be hard to see the actual effectiveness of these policies. It shows that

some results can be attributed to a health contention society where individuals were

distancing themselves without mandates. At the same time, businesses and industries

needed government guidance through the SIP policies. There is also the “spillover

effect” from neighboring states that implemented SIP policies that would influence

social behavior.

Recent research suggests that additional SIP policies helped increase safety by de-

creasing cases and deaths during the pandemic (Berry et al., 2021). When observing

mobility at the state level, the data shows many states are already seeing a down-

ward trend before the SIP policies were implemented. This mobility decrease may

have indicated that the behavioral change is partly due to voluntary social distanc-

ing. Government entities influence the social environment of demonstrations and the

opportunity cost that drives the demonstrator’s ability to participate. Even if areas

had already seen a decrease in mobility due to preemptive local advisories, SIP was

able to create an even more significant drop in movement among individuals (Berry

et al., 2021). The question now is, will this translate to decreased demonstration and

political violence, or will there still be enough organizational influences as seen in

other regions to cause it to increase?
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SECTION 3:

LITERATURE REVIEW

3.1 Determinants of Demonstrations

Policies imposed during a pandemic can have varying outcomes depending on

the local characteristics of the economy. A region could see more violence as the

economy decreases income opportunities, lowering an individual’s opportunity cost

for demonstrations and violence (Dal Bó & Dal Bó, 2011). Although if a state has

plenty of resources and those resources are not controversial, there may be a decrease

in conflict intensity (Besley & Persson, 2009). These policies that restrict mobility to

lessen the pandemic impact have increased the participation costs, negatively affecting

conflicts around the world (Berman et al., 2021). For example, Lebanon and Iraq had

the second and third, respectively, largest demonstration event decreases in the region.

These decreases led to a significant reduction in anti-government demonstrations,

which would end with the people ousting their prime ministers due to infringement

on their freedoms (Pavlik, 2020).

With the risk of high unemployment and loss of wages, individuals are less likely

to engage in risk-taking action. Demonstrations are activities that inherently have

unknown actors who gather spontaneously at relatively short-lived events during a

high health risk environment (Berman et al., 2021). The policies used will directly

affect how participants and groups decide to engage in demonstrations. While many
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will choose to forgo the cost of participating in the risk-taking activity, there will still

be those who organize and may induce violent conflict. Implementing policies and

mobility restrictions may not be the only deterrent to organized violence. Due to

the unstable economic environment, policymakers will also have to identify who the

actors are (armed vs. civilian) and the types of tactics the actors are using (rioting

vs. peaceful demonstrations) (Chenoweth & Cunningham, 2013).

Observing downward pressure on the economy from the pandemic indicates there

would be more demonstrations. Individuals have lower opportunity costs due to more

free time through higher unemployment and increased public stresses, motivating

more demonstrations (Berman et al., 2021). Looking at what drives demonstrations

through public resentment levels1, greater participation levels are expected during the

pandemic environment (Chenoweth & Cunningham, 2013). This study explores how

policies raise the private cost of participation, therefore increasing the opportunity

cost of demonstrations that lower subsequent incidence of violent activities for the

US environment.

3.2 Demonstrations and Sustainability

A paper presented at the Eighteenth J. Seward Johnson Lecture by Robert M.

Solow (Solow, 1991) looks at moving away from daily individual life and how economic

policies and annual voting might impact sustainability concerns. He acknowledges

that no one definition fully encapsulates the idea of sustainability as it is a challenging

pursuit, and current goals can be vague. There is an all-encompassing idea that

society must ensure that future generations are at least as well off as those living

in today’s economy (Solow, 1991). The pursuits demonstrators are to identify when

1Coordination, mobilization, and participation cost can influence levels of resentment withing a
social group
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policies and government interventions fall short of equitable endeavors2 mirror social

needs and drive for long-term well-being. These perceived inequalities lead social

groups to undertake inefficiencies or unjust policies for current and future generations.

In Pamela Matson’s book “Pursuing Sustainability, chapter 2: A framework for

Sustainability Analysis” (Matson et al., 2016), she identifies the five clusters that

societies pursue to maximize their well-being. These clusters include:

• Natural Capital: Land, water, biotic, mineral resources, climate, and atmo-

sphere, and biodiversity

• Human Capital: Human population (size, distribution, health, education, and

other social characteristics

• Manufactured Capital: Buildings (homes, factories, and their products), infras-

tructure (transportation, energy production, and information provisions)

• Social Capital: Laws, norms, rules, customs, trust, instructions (political, judi-

cial, economic)

• Knowledge Capital: Conceptual, factual, and practical know-how

The above list shows areas where society identifies inefficient utilization of re-

sources. The balance of capital is inadequate or inequitable when communities have

little access to resources to maintain their well-being. Inequality pushes the need

for change through the pursuit of demonstrations. External factors like SIP policies

influence demonstration participation. Matson measures well-being through a life

matrix of happiness, health, and personal success (Matson et al., 2016). Since this is,

in part, the pursuit of SIP policies to aid in the health and well-being of a community,

2These endeavors can range from political, social, the purpose of knowledge, or environmental.
It is outside the scope of this research, as this study focuses on the ability to demonstrate more than
the reasons for demonstrations
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it can still be a complex topic of whether a decrease in the demonstration will assist

or be detrimental to long term social well-being.

Expanding into US-specific effects on how US policies affect demonstrations and

violence, the commonalities between global and national are observed. There may

be similar outcomes of participation but different effects throughout the US region.

While the US is under a more unified government, it covers such a vast area with

differing economic dynamics. In recent years the diverse nature of our government has

caused polarization in policy implementation and influenced social behavior (Doherty

et al., 2021). The most significant influence of violence in the US will be through high-

density regions, as seen in section 5.2.2.

3.3 COVID-19 & Behavioral Responses

The government’s actions in response to the COVID-19 pandemic can induce

economic shocks to the general population. US regions have seen what a major crisis,

such as the 2008 global financial collapse, can have on the economy (Ilzetzki, 2020).

The peripheral and complex effect of the policy is essential to identify the impacts

of newly created policies on a region’s social behavior. As COVID cases increase

in the US, states and counties issue SIP mandates. The issue is that not all US

states responded the same to the policy mandates (Baccini & Brodeur, 2020). Some

of the characteristics significant to implementing these state-wide mandates were

political position, term limits, and ideology. Democratic governors were more likely

to implement mandates by 50%, while those with no term limits also implemented

them faster. These are also both influenced by the ideology of the area and can differ

throughout regions. It is important to note that other characteristics of government

officials such as gender and race play a negligible effect on the implementation and
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speed of the lockdown procedures (Ferreira & Gyourko, 2014).

These findings are significant when understanding how individuals will react dur-

ing the pandemic. The environment affects how society will attempt to influence

policies through their local government. The federal government needs to know how

the characteristics of a state will influence stay-at-home order policy implications

(Baccini & Brodeur, 2020). Policies are significant when looking at individual behav-

ior as effects vary between states and regions due to varying differences in the timing

of implemented orders. Regardless of all other indicators, a state is still sensitive

to COVID-19 deaths. Section 5.2.1 illustrates that all but four states implemented

stay-at-home orders in the early part of 2020. Evidence shows that during an exoge-

nous event like the pandemic, it is business as usual for politicians during extreme

times (Baccini & Brodeur, 2020). Through cost-benefit analysis, individuals will have

choices that significantly influence policies that governments do or do not implement.

Even before mandates are enforced, there is a substantial decrease in mobility

which would suggest social distancing was not purely SIP induced (Gupta et al.,

2020). Event studies show 55% of the populous increased hours spent at home due to

emergency declarations, while the other 45% was from non-policy-driven trends. Both

factors help in decreasing the epidemic size so the medical industry can redistribute

caseload over time (Peak et al., 2020). In a democracy, it is a question of personal

freedoms and how policies will affect the socioeconomic environment for each com-

munity. Identifying the most robust social distancing policies to minimize pandemic

health numbers and economic impact while maintaining personal freedoms is essential

(Schwartz & Cheek, 2017). While procedures did cause mobility patterns in human

behavior to slow through preemptive means3, it is essential to remember that after

3Business and restaurant closures, restrictions, and emergency declarations.
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the first announcements of confirmed cases in the US, a reduction in mobility had

already begun (Gupta et al., 2020).

3.4 COVID-19, SIP, and Conflict

Recent research has shown that implementing government policies to help reduce

the spread of COVID-19 during the pandemic had increased the costs on the partic-

ipation rate of demonstrations across countries (Berman et al., 2021). When policies

are imposed nationwide, not only does this cause the number of demonstrations to

drop by 0.8%, but it also indicates an overall increase in transit costs through policy

implementation. The increased opportunity cost leads to participants in decreas-

ing mobility and demonstration pursuits. The additional effects these policies have

had on different regions include declines in GDP which indicates a global recession

and higher unemployment which pushes declining household per capita income levels.

These changes can push world societies into extreme poverty if the economy does not

recover soon (Berman et al., 2021).

The findings in the global environment showed a decrease in violence for organized

armed groups as well. There is heterogeneity4 between poorer and authoritarian

countries than in developed nations. While there is a decline in demonstrations,

there is an attenuation of public desire for change due to the subsequential economic

downturn (Berman et al., 2021). Expectations with prolonged restrictive policies show

that armed conflict in some areas will increase violence. The poorer nations will see

the additional influence of violence due to organizational involvement, especially when

the countries are not democratic institutions or already have elevated levels of social

poverty. These high-risk areas may see a longer effect from the pandemic environment

4Heterogeneity is the quality or state of being diverse in character or content. Identified here are
the differences between not only SIP implementation but regional characteristics through economics.
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due to a conflict-poverty cycle that international corporations will need to provide

aid to increase welfare (Berman et al., 2021). Trends like these are transferable when

observing demonstrations and policy implications on a regional or state level.

The Sub-Saharan region of Africa saw increased violence from the COVID-19

pandemic shock and the pressures of lockdown policies in 2020. Research conducted

in the region suggests that the surge in violence is only partly to do with the “COVID-

19 unrest” (Basedau & Deitch, 2021). It primarily stemmed from the government’s

reaction to the pandemic and the stringency of its policies. The rigor of the policies

exacerbates an already fragile environment of areas with deficient health levels and low

development. And it allowed armed groups to take advantage of low socioeconomic

regions by oppressing travel and movement even further. Looking at pandemic data

from before and after SIP policies implementation, it showed a rise in fatalities which

indicated a 20% increase in violence (Basedau & Deitch, 2021).

Even though the pandemic has not directly increased violence in the regions, it

has mitigated the effects through increased opportunities for armed groups, notably

the jihadist groups (Basedau & Deitch, 2021). Even with the understanding that

the guidelines have worsened the conflict in higher fragility5 areas, officials warn that

removing them was risky. Policymakers have warned not to sound the all-clear for

possible pandemic relapses. Conditions of the pandemic could worsen in the Sub-

Saharan region despite the rise in violence. It is vital to notice that in the areas of

the Democratic Republic of the Congo (DRC) and Nigeria, the significant increase

in violence that occurred was perpetrated by armed Jihadist groups6 (Basedau &

5Fragility is the quality of being easily damaged or vulnerable. For the Sub-Saharan region,
aspects include prior environments of corruption, low development, and previous conflict.

6Boko Haram in Nigeria, and the Allied Democratic Forces (ADF) in the DRC, a group origi-
nating in Uganda that pledged allegiance to the so-called Islamic State (IS) in 2019. Jihadist and
other violence produced approximately 1,000 more victims in Mali and Mozambique, the latter the
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Deitch, 2021). While there is a need for pandemic politics and policies matter, the

fallout of these policies through conflict can have a lasting effect on future social

pursuits. These effects worsen when the global environment is also feeling the impact

of the pandemic, and developing nations are struggling to acquire vaccines in efficient

quantities.

Through global and regional research, there is a consistent impact on individ-

ual behavior when SIP policies get used. Upon implementing international policies,

there is an 0.8% decrease in worldwide participation in the number of demonstration

events. When SIP policies get implemented regionally, as seen in the Sub-Saharan

regions of Africa, there can be changes in the proportion of violence due to transit

costs and organizational involvement. These spill-over effects show how direct pan-

demic policies may not just influence primary COVID-19 indicators but also have a

significant impact on individual behavior. In this study, the results show a consistent

decreasing effect on demonstration events in the US. These results are comparable to

the global findings. Upon implementation of SIP policies in the US demonstration

decrease in the US by 0.2% to 0.5%. However, unlike the Sub-Saharan region, this

study finds decreases in demonstration violence when SIP policies get implemented.

These findings support the previous studies of SIP exogenous influence. This study

extends the regional understanding of the heterogeneity observed across the global

environment.

latest theatre of insurgencies with affiliates of Al-Qaida and IS south of the Sahara.
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SECTION 4:

DATA & ECONOMETRIC STRATEGIES

4.1 Data Sources

4.1.1 ACLED Disaggregated Data Collection

The Armed Conflict Location & Event Data (ACLED) Project collects politically

motivated data to include demonstration events, violence, fatalities, strategic indica-

tors, locations, and the actors involved. The ACLED database includes locations all

over the globe and can be used to conduct descriptive analyses and aid in conflict

scenarios and exploration. The data was accessed through the ACLED site on 28

June 2021, which offers individuals the ability to download for examination or testing

as an open-source dataset. Individuals must request a key to register for access to

the portal, which monitors access to the data. The data requested include 31 vari-

ables that encompass both quantitative and qualitative values. A subset of this data

is combined with additional data sources to create a new data set for this research

paper (Raleigh et al., 2010).

4.1.2 Replication Data from Harvard Dataverse

This study takes advantage of replication data from the research conducted by

Berry et al. (2021). Access to the data is from the Harvard Dataverse site on 15 Jun

2021. Harvard Dataverse Repository is a publicly accessible data repository where
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researchers from both outsides and inside the University may utilize it for exploration

and research. The file used from this site and study is CountyData.dta and is publicly

available. The data set includes ten variables and 42 lagged variables. A subset of

this data is combined with additional data sources to create a new data set for this

research paper (Fowler, 2021)1

4.1.3 Working Dataset

The consolidated indicators the working dataset consists of including the date,

county name, two alpha state IDs, and fips2 ID. Demonstration types get broken

down into two primary categories from the ACLED dataset. In addition to these

primary categories, there are five subcategories for further sensitivity evaluation. Each

occurrence is collapsed down to the county level to observe the accumulative effect of

its cities. From the Harvard dataset, the SIP, new cases, new deaths, and mobility

indicators get combined. Geographic shapefiles get added to evaluate heterogeneity

between states and counties. The data set is uniquely identified for each observation

at the county-date level. There are 3,035 counties with 297,430 observations from 24

Feb to 31 May 2020. The time increment of the data set is daily.

4.2 Summary Statistics

To employ a comprehensive analysis of shelter in place policies’ effect on the envi-

ronment of demonstrations, clean and consolidated data that was publicly available

(See Section 4.1) was constructed. This section describes the data used and reports

on the summary statistics.

1Fowler is the data manager for the research team. This citation is the preferred formate for the
data portion of the research.

2FIPS codes deal with US states and counties. US states are identified by a 2-digit number,
while US counties are identified by a 3-digit number. For example, a FIPS code of 06071 represents
California -06 and San Bernardino County -071.
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4.2.1 Variable Description

Table 4.1: Summary Statistics of County Level Day Indicators

Mean SD Min Max N

Demonstration indicators

Non-Violent Protesters 0.00918 0.10828 0.0 8.0 297430

Peaceful Protesters 0.00870 0.10449 0.0 7.0 297430

Protest w/Interveition 0.00042 0.02090 0.0 2.0 297430

Exec/Force on Protesters 0.00005 0.00733 0.0 1.0 297430

Riotous Protests 0.00082 0.03105 0.0 4.0 297430

Group Violence 0.00079 0.03045 0.0 4.0 297430

Mob Violence 0.00003 0.00550 0.0 1.0 297430

COVID-19 indicators

Shelter in Place Policy 0.40410 0.49072 0.0 1.0 297430

Civilan Cell Phone Mobility -0.17787 0.19706 -1.0 1.8 297430

Daily COVID-19 Cases 32.60760 239.01525 -2,725.0 79,493.1 297430

Daily COVID-19 Deaths 1.31285 10.52347 -383.6 1,064.2 297430

Note: Demonstration indicators are number of events for each type.
Note: SIP policy is a dummy indicator with implementation = 1.
Note: Mobility is the proportional change in location through cellphone data.
Note: Cases and deaths reported as daily counts.

There were seven indicators from the ACLED dataset and four indicators from

the Harvard dataset to analyze SIP effects on demonstrations. In Table 4.1 the con-

solidated data is balanced as all indicators have consistent samples of 297,430 (N).

The dataset consists of 3,035 locations, including counties, census areas, or political

borough3 (n) within the 98 days (T) of the data set. The table is broken up into

3A borough is an administrative division in various English-speaking countries. In principle, the
term borough designates a self-governing walled town, although, in practice, official use of the term
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demonstration indicators and COVID indicators. This table includes the mean, stan-

dard deviation, min, and max of the data set. The values are minimal due to the

high number of counties and the daily observations within the dataset.

The Demonstration indicators include two main grouped observations that are

accumulative at the county/day level. These include ’Non-Violent Demonstrationers’

and ’Riotous Demonstrationers.’ ’Non-Violent Demonstrationers’ have three sub-

groups that show the government’s interaction with peaceful demonstrations. ’Peace-

ful Demonstrations’ show those that participate and go home, while ’Demonstration

w/Intervetion’ are those groups that need encouragement to disperse but are still

peaceful. ’Exec/Force on Demonstrationers’ indicates when government agents inter-

vene or overstep their authority on peaceful demonstrations, but the demonstrators

do not retaliate.

For ’Riotous Demonstrations,’ two subgroups show the differences in the size of a

violent demonstration. ’Group Violence’ is when groups or subgroups of a demonstra-

tion become violent, but the larger group can still be peaceful. Whereas the ’Mob4

Violence’ is when the environment turns inward and the whole group participates in

violent pursuits, leaving peaceful means behind. It is important to note that while

’Riotous Demonstrations’ includes vandalism, road blocking, and other destructive

behavior, it does not include the use of lethal weapons.

The COVID-19 Indicators consist of four variables. The ’Shelter in Place Policy’

indicator is a binary measure of whether a county implemented a SIP policy or not.

Data points get recorded daily, but issuing and removing the policy are the primary

observations. The Civilian Cell Phone Mobility indicator shows how active individuals

varies widely.
4Mob: “A large crowd of people, especially one that is disorderly intent on causing trouble,

violence, and destruction.”
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are during the study. The mobility indicator will show a proportional change in

mobility activity where the value may be positive or negative. For example, the

indicator can have a negative value if individuals reduce their activity compared to

the previous period. This data was collected using cell phone data and is collected

daily. ’Daily COVID-19 Cases, Deaths’ have been normalized5 to standardize to

formate of the data points, per million residents.

4.2.2 Scatter Plots

Figure 4.1: Daily Demonstrations by State, 24 February - 31 May, 2020

Figure 4.1 demonstrates the daily events by states between 24 Feb and 31 May of

2020. Observing the fitted values curve shows events increase as the data approach

the months leading up to the George Floyd demonstrations. The trend of the involve-

ment in SIP policies6 across the states also increased. From this graph, through the

5The steps to normalize are 1. Calculate the range of the data set 2. Subtract the minimum x
value from the value of this data point 3. Insert these values into the formula and divide 4. Repeat
with additional data points.

6sip variable was scaled by ten for visualization due to actual value between 0-1
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participation in SIP policies, it’s expected that the demonstration environment would

still have a positive relationship. However, when looking at state-by-state level graphs

(See Figure A.1 thru A.3) the graphs show that not all states implement their SIP

policies at the same time. Some states chose not to implement the policy during this

period, while others implemented and kept the policy extending outside this dataset’s

scope. Yet other states ended their SIP policies and have increased participation in

demonstrations.

Figure 4.2: Daily Riots by State, 24 February - 31 May, 2020

Similar trends are observed within the riot data, as seen in 4.2. During the

majority of the period, there was little violent activity in the US until the days

leading up to the George Floyd demonstrations. The low violence data also alludes

to the fact that violent political demonstrations may not be as prevalent outside of

immediate social upheavals. Even though most states participated in SIP policies, we

look at individual agents to see how ending these state-mandated policies may have
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influenced specific regions. Dropping the policy may have caused premature lowing

of social and transitory cost to the demonstrator (See Figure A.4 thru A.6).

4.3 Modeling Strategy

Through panel data that includes both entity and time variables, fixed effect

modeling will be utilized to control biases. Fixed effects modeling7 will remove omit-

ted variable bias unobservant between entities’ characteristics and demonstrate no

change over time. This approach measures changes within groups across the lim-

ited time frame in the data to omit unknown differences between counties and their

characteristics. Some constants observed over time across entities (states) would be

age, sex, or ethnicity. These are an example of traits that would not change or,

at a minimum, change at a constant rate over time but could be different between

entities. Through fixed effects modeling individual observational behavior capturing

any slow-moving county characteristics8. Equation 4.1 is an example of a fixed-effect

model.

DVit ≡ β0 + β1SIPit + αi + λt + ϵ (4.1)

This research uses lagged modeling due to the dynamic effect9 of SIP policies

on human behavior. Using lagged10 variables in the model will help estimate rela-

7Fixed-effects models are a class of statistical models in which the levels (i.e., values) of inde-
pendent variables are assumed to be fixed (i.e., constant), and only the dependent variable changes
in response to the levels of independent variables.

8These characteristics can include culture, institutions or political systems that influence demon-
strations

9Human behavior changes due to many factors to include psychological processes, biological
needs, socio-cultural considerations, learning, and even new experiences. These dynamic behavioral
influences determine the elements that make changes in human behavior.

10Distributed lags in a time series are used to predict current values of dependent variables using
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tionships between the expected human behavior from past action due to SIP policy

implementation. This approach will help provide a more robust estimator of the ef-

fects of the independent variables. This approach will help identify which explanatory

variables have the expected exogenous impact or endogenous to each entity. Equation

4.2 is an example of a time series lagged model.

DVt ≡ β0DVt + β1DVt−1 + ...+ βkDVt−k + ϵ (4.2)

The data has a unique distribution due to high occurrences of lower daily obser-

vations and fewer occurrences of higher daily observations. This type of distribution

leads to a Poisson Regression Model approach (equation 4.3) where (λ) represents the

type of distribution of the dependent values. The Poisson Model will better fit and

interpret the data. Because the dependent variable is a count variable (demonstra-

tions), this log-likelihood model gives a rate-ratio explanatory coefficient. Equation

4.3 is an example of the complete Poisson Model.

log(λi) ≡ β0 + β1SIPi (4.3)

When solving for β1 in equation 4.3, the rate ratio is identified on the left-hand side

with the interpretability of the coefficient on the right. (See proof 4.4). The rate ratio

will give the relative risk, representing a percentage change of a unit change in X. The

model will indicate how the independent variables increase or decrease the dependant

variables through a percentage change. Through the use of statistical software, the

current values of explained variables and “lagged” past period values.
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coefficient is already exponentially evaluated. The value in the regression table will

represent the rate ratio in decimal form and not the unprocessed beta coefficient.

log(λi) ≡ β0 + β1SIPi

log(λi+1) ≡ β0 + β1SIPi+1

log(λi+1)− log(λi) ≡ β1

log(
λSIP+i

λSIP
) ≡ β1

λSIP+i

λSIP
≡ eβ1

RateRatio ≡ 1− eβ1

(4.4)

Due to the diverse nature of the US, SIP policies will have different effects on

states and counties. A geographical heterogeneity11 and spatial clustering12 evalua-

tion is used to examine these effects. These visual representations will illustrate the

differences in sip and demonstration participation by the various counties. With the

combined modeling approaches, individual state coefficients will demonstrate the in-

fluences of financial and transportation costs, labor pools, or possible social makeup

of the location. Observing the different identifiers through each state’s political,

economic, and social characteristics will show the differences in the coefficient. Mag-

nitude may be different due to population, location, or an event’s epicenter. Utilizing

Malmberg, Solvell, Zander’s clustering model (Boja, 2011), identifying clustering or

11The statistical study of dissimilar quality or state of diverse elements. In the case the difference
in demonstration participation of States concerning the involvement of the exogenous SIP policy.

12Spatial clustering aims to partition spatial data into a series of meaningful subclasses, called
spatial clusters, such that spatial objects in the same cluster are similar to each other, and are
dissimilar to those in different clusters.
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divergence in states or dense urbane environments get visualized.

4.4 Assumptions and Biases

Several assumptions are used to help identify and understand the modeling pro-

cess. When making economic decisions, these assumptions get broken down into the

model’s three main modeling approaches. While there may be outliers in some situa-

tions, the data consists of assumptions that are true of the majority of observations.

However, even with the processed data and the assumptions given, some biases may

be inherent in the data.

4.4.1 Fixed Effect Assumptions

The first assumption is a zero conditional mean term. It assumes that there is no

omitted variable bias and that the mean error ϵit does not depend on past, present,

or future values of the X entities13. The second assumption shows no autocorrelation

between entities with an F-test of 7.7. The data is assumed to be independently

and identically distributed with Independent and Identically Distributed (i.i.d) across

entities. Assumptions three and four are consistent when the panel data consist of

large observations (n). This data set contains 98 time periods (t) with 3,035 entities

(n) culminating in 297,430 observations (N) (Stock & Watson, 2015).

1. ϵit has conditional mean zero: E(ϵiT |Xi1, Xi2, ..., XiT , ai) = 0

2. (Xi1, Xi2, ..., XiT , ϵi1, ϵi2, ..., ϵiT ), i = 1 are i.i.d. and draws from their joint dis-
tribution.

3. Large outliers are unlikely: (XiT , ϵit) have nonzero finite fourth moments.

4. There is no perfect multicollinearity.

13This assumption is also control for n the lagged effects.
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4.4.2 Distributed Lag Assumptions

The first assumption identifies the exogenous nature of the primary independent

variable. The homogeneity of all past values of XT will provide an error term with a

conditional mean of zero. Schwarz Information Criterion (SIC) unit root test identifies

the efficient number of lags for the model. The second assumption requires that the

distribution of the variable be stationary. When testing for stationary within the

data, the variable is stationary with a t-test of 11.8. Assumptions three and four are

consistent when the panel data consist of large observations (n). This data set contains

98 time periods (t) with 3,035 entities (n) culminating in 297,430 observations (N)

(Stock & Watson, 2015).

1. ϵit has conditional mean zero: E(ϵiT |Xi1, Xi2, ..., XiT , ai) = 0

2. (Xi1, Xi2, ..., XiT , ϵi1, ϵi2, ..., ϵiT ), i = 1 are i.i.d. draws from their joint distribu-
tion.

3. Large outliers are unlikely: (XiT , ϵit) have nonzero finite fourth moments.

4. There is no perfect multicollinearity.

4.4.3 Poisson Regression Assumptions

Assumptions one implies that a dependent variable is a whole number that can

differ over time. Demonstrations are collected at the event level and are in absolute

value, and the data has lower value observation occurring more frequently while larger

valued data occurrences happen less regularly. Assumption two states that observa-

tions must be independent, where the past observation is a different observational

input from the previous one (not accumulative). The collection site that compiled

the data collects data at the event/day level, and there should be no accumulative
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effect. Assumptions three and four look at multiple output levels when taking the

mean and variance of the input. In Table 4.2 the means and standard deviations are

similar and do not vary broadly. It can also be conceptually identified that the means

construct a linear mean rate and not an exponential rate (Legler, 2021).

1. Poisson Response: The response variable is a count per unit of time or space
described by a Poisson distribution.

2. Independence: The observations must be independent of one another.

3. Mean = Variance: By definition, the mean of a Poisson random variable must
be equal to its variance.

4. Linearity: The log of the mean rate, log(λ), must be a linear function of x.

Table 4.2: Summary of Shelter in Place Policy

Non-Violent Mean Std. Dev. Freq.

0 0.40287816 0.49047749 294,980
1 0.54107143 0.49842155 2,240
2 0.63580247 0.48269653 162
3 0.77777778 0.42163702 36
4 0.625 0.51754917 8
6 0.66666667 0.57735027 3
8 1 0 1
Total 0.40410181 0.49071819 297,430

Note: Incremental Non-Violent values.

4.4.4 Potential Biases and Limitations

All models will have some biases inherently in the data. These biases may

come in the way of selection, availability, or oversimplification of the data. Selec-

tion bias can occur when collecting demonstration data at the local level, depending

on the organization and agents participating in the events. This data uses all state

and most county-level aggregated data to control this. The data is collected at the
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event/incident level and not marked continuously for one event. At the same time,

the model collapses the data to the overall categories of demonstrations for this anal-

ysis. Availability Bias is an issue when using data that is current and active. This

data set is a specific window of time with updated data sources. It is assumed that

relevant data may have been overlooked in the past but is now included in the most

current data available. The last item of biasness is that the model may give an over-

simplification of a more complex picture when it comes to reality (Underfitting Bias).

This biased landscape can be seen and is identified in Section 5.2 (Heterogeneity of

Model).

There are limitations to this study. Additional controls are not implemented

for this model due to the limited timeframe and detailed daily observations of the

data. In future studies, longer time series data sets will allow aggregated monthly,

quarterly, or annual control indicators. Extended timeframes will allow for economic

mechanisms other than mobility and possible instrumental indicators that were not

feasible for this 98-day time frame. Also, due to technical limitations, a Zero Inflated

Poisson (ZIP) method could not be used through statistical software (Stata). While

this study uses a quasi-ZIP method by clustering participating counties from non-

participants counties, this is only a proxy for the ZIP process. And a final limitation,

while minimal, is some gaps in data coverage. Even with a vast majority of the US

covered by the data, some counties have missing observations. A more comprehensive

data set will ensure greater sensitivity of SIP policies on demonstrations.
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SECTION 5:

RESULTS

5.1 Impact of SIP on Demonstrations

log(DV it) ≡ β0 + β1SIP it + β2casesit + β3deathsit+

β4mobilityit +
∑14

k−1
βkDV i(t−k) + αi + λt

(5.1)

The regression model 5.1 utilizes the combination of fixed effects, time lags, and

the Poisson modeling approaches. As a log-likely approach, the log(DV it) represents

either the number of non-violent events or the number of violent events in a county

i for each day t. Since the model uses the Poisson model to estimate the maximum

likelihood, the interpretation will identify the rate ratio1 for demonstrations. Poisson

estimation technique is preferred due to the Ordinary Least Squares (OLS) estimators

having biased outputs due to heteroskedasticity. The heteroskedasticity is represented

by the left-skewed distribution of the data.

Due to the dynamic nature of the model 14-day lag (DV i(t−1) + ... + DV i(t−14))

get added by utilizing a unit-root test2. The lags allow the estimate of the k sample

autocorrelation in a population. Adding the Lagged Dependent Variables (LDVs)

provides a more robust estimator of the model’s independent variables. The lag

1Rate Ratio: represents a percent change in the response for a unit change in X.
2This study used SIC and Fisher Demonstrations unit-root test to identify the lag length of the

model.
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values are from t = 1 to T = 14.

The SIP it indicator is the primary regression variable that denotes the set of

observations when a SIP policy gets implemented. It is a dummy variable with the

value one indicating that the SIP policy is in place and zeroes indicating it is not.

The SIP indicator is at the county i level for each day t. The interpretation is a

rate ratio upon implementing the SIP policy. The rate ratio will show a percentage

influence on demonstrations events for each model. Not all counties participate in

the SIP police, but the data is accurate and complete.

The casesit and deathsit indicators are normalized daily count value of COVID-19

pandemic data. The data is a continuous value due to the normalization process. The

interpretation will be a given percentage daily change in demonstration participation

with each increase in daily cases or deaths. Whereas mobilityit is a proportional

change in cellphone movement. The indicator takes a value from 0 − 1 representing

percentage changes in decimal form. The interpretation is that there is a percent

change in demonstration participation with each additional proportional change in

cellphone movement. Both indicators are at the county i level for each day t.

The αi value is the county fixed effects indicator for each county i. It accounts for

the non-changing (or slow-moving) characteristics in a county region that may affect

demonstrations, SIP policy implementations, or the control varables. The λt value is

the time fixed effects indicator for each day t. It accounts for the daily shocks that the

current COVID-19 environment may correlate with SIP policies and seasonal trends

that may influence demonstration event participation.
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Table 5.1 includes Non-violent demonstration indicators. Upon implementation of

SIP policies, there is a decrease of 0.19% in the likelihood of peaceful events occurring.

In the subgroups, viewed in columns two through four, SIP policies continue to have

a negative and significant effect at the 1% level. The negative indicators show that

SIP policies significantly change social behavior due to the higher cost associated with

peaceful demonstration efforts.

Daily COVID cases and deaths are not significant in the primary non-violent

regression of peaceful sub-regression.However, external forces influence non-violent

demonstrations there is a statistically significant effect. These coefficient are small

due to the larger daily counts but when cases or deaths increase, demonstrations will

decrease. These lower occurrences indicate that limiting stressful events may have

become a priority with an environment surrounded by high COVID cases and death

in society.

The Mobility indicator is significant at the 1% level but indicates that overall non-

violent demonstrations are likely to rise by 0.26% with increased mobility. Under

Peaceful demonstrations, there is a slight decrease in significance to 5%, but the

positive coefficient has only decreased by .02%. The subgroup indicates that an

event is likely to increase once restrictions are relaxed, and mobility increases. It

is interesting how the decrease in Intervention and Excessive Force events occur.

These indicators are significant at the 1% level, showing ever-increasing mobility will

decrease events containing government altercations.
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Table 5.2 includes Violent demonstration indicators. The first thing to notice is

almost all the indicators of this table are significant at the 1% level. As with peace-

ful demonstrations, SIP policies cause demonstration events to decrease for violent

demonstrations. These decreases indicate that even during higher stress and economic

downturn, the policy immediately increased the costs of violence and, therefore, de-

creased potential demonstrations. Daily COVID cases and deaths are not statistically

significant in the primary riot model. But when deaths rise there is a significantly

negative effect on group violence. Where the pressure of increased case’s cause a

significant negative effect on Mob violence. Again this shows that all significant indi-

cators are sensitive to the environment surrounded by high COVID cases and death

in society.

Unlike the peaceful demonstrations table, the mobility indicators all have de-

creasing values. These decreasing values indicate a unit increase in mobility has a

significant negative effect on violent demonstrations. It suggests that instead of in-

creasing violence through mobility, social behavior is cognizant of mobility restriction

and less likely to become violent. This illustrates the increased transit costs felt by

the demonstrators. Due to the large area that the US encompasses, the next step is

to look at a regional breakdown of the model through mapping and clustering.

5.2 Heterogenous Impact

5.2.1 Geographical Heterogeneity by sIP

Referring back to the state level SIP plots, from the statistical section in Figures

A.1 thru A.3 the data shows the implementation of policies per state is different across

time. Regional clustering begins to appear using detailed US county-level mapping

to aggregate the demonstration in these policies across the US. In Figure 5.1 the
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aggregate demonstration in the policy can be seen, which illustrates the state of the

country at the saturation of its implementation. The map representation shows that

not all states implemented the police, but it also shows some counties within states

did. Looking at a three-month break down in B.1 thru B.3 the demonstration is

slightly more random in the first month. It reaches full saturation in the second

month while the central states ease their policies by the third month. The third-

month map shows that the nation’s demonstration can be broken down into the west,

central, and eastern regions.

Figure 5.1: County Level Participation in SIP Policies

Figure 5.2 shows a more detailed trend of the SIP policy participation from 24

Feb - 31 May 2020. This graph shows increasing demonstration with each additional
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state implementation of the policy over time (dark black line). The bar chart under

the state curve represents the individual counties’ policy implementation. The fast

implementation illustrates how quickly and all-encompassing the policy was midway

through March. But the graph shows that by the end of April, individual counties

began to relax the policy, but still affected many states. This larger gap between the

black line and the bar graph indicates the policy may have been initiated in areas

that did not initially induce the need for pandemic relief through decreased mobility.

This may indicate that blanketed implementation may not be beneficial to social well-

being as the US was signaled through SIP policies that things were getting better.

However, this was still in the being months of the pandemic.

Figure 5.2: Participation in SIP Policies 24 February - 31 May, 2020
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5.2.2 Geographical Heterogeneity by Regional

Using the detailed US county-level map to aggregate the application of demon-

stration demonstration(See Figures 5.3 and 5.5), a regional comparison between the

east and west coast areas can be visually identified. In Figure 5.3, it observed that

overall participation in non-violent demonstrations between 24 February 2020 and 31

May 2020 had the highest density around the Seattle, San Francisco, Sacramento, and

Los Angeles areas for the west coast. Highest demonstration in the northern regions

on the east coast where concentrated around New York. High-density urban loca-

tions that are more sensitive to economic and policy impacts tended to have higher

demonstration rates. A monthly breakdown can be seen in Figures B.4 thru B.6).

Figure 5.3: County-Level Map: Non-Violent Demonstration

However, adjusting per capita in each county means a more even distribution
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across regions. In Figure 5.4 demonstrations have been adjusted per capita and then

represented at the mean US county level. If looking at any participation level above 70

events per 100,000 people, there is only one county at this level. Richmond, Vergina,

has a population of 9,077 for 2020 with an above-average demonstration events level

of 16. Whereas Los Angeles did have more demonstrations at 86 events but had a

population of over 9.97 million. The per capita adjustment gives a better visualization

of county-level behavior when population changes occur.

Figure 5.4: County-Level Map: Non-Violent Demonstration per Capita

Note: County population source: (Bureau, 2022).

Table 5.2.2 consists of five regressions to include three states with the highest

number of events for the data set. And two models that cluster counties that had at

least one demonstration event with those that had no occasion. Until software tech-

nology allows for a Zero Inflation Poisson for panel sets, this is the method of choice.

The first thing to notice is the difference in directionality between the west coast
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states (WA CA) and east coast state (NY). Washington, California, and New York

are significant at the 1% level and have high likelihood values. However, Washington

and California indicate an increased likelihood of demonstration, whereas New York

reveals a decrease when implementing SIP policies. The mobility indicators mirror

this directionality for the states. On the west coast, the effect of increased mobil-

ity will increase demonstrations while increased mobility in New York will still see a

decline.However, only California shows a significant effect from mobility.

The fourth and fifth column in Table 5.2.2 reflects the counties with at least one

demonstration event (SZiP > 0) or no events (SZIP = 0) during the timeframe of the

dataset. Clustering these counties helps identify the differences in behavior between

participating regions and non-participating areas. Not only are SIP policies significant

at the 5% for counties with non-violent demonstrations but at 1% levels for those

without. When clustering there is an increase in the coefficient for the participating

counties by a magnitude of 0.3%. Additionally, when daily deaths increase, they have

a 5% statistical significance. Daily Deaths have not been a highly significant indicator

for the main regression until now. But when deaths per day rise, social behavior

will increase demonstrations in the regions that are more prone to participate in

demonstrations.

Column four indicates that even though these areas do not participate in demon-

stration during this data frame, SIP policies still influence their behavior. Even

though the coefficients are small it is significant due to the fact that the negative

change is representative of a shift from zero. When the control indicators increased,

the public would decrease their participation in demonstrations. The separation of the

clustered groups allows for stronger coefficients and primary indicator interpretations.
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In Figure 5.3 the data shows concentrated regions with higher participation in riot

activities. These all have accumulative violence greater than four and include LA (Los

Angeles, CA), King (Seattle, WA), and Hennepin (Minneapolis, MN) counties. These

counties are approximately two thousand miles apart, so their geographic locations are

not driving for violent participation in demonstrations. However, the urban density

influences the effect of peaceful demonstrations. A monthly breakdown can be seen

in Figures B.7 thru B.9).

Figure 5.5: County-level Map: Violent Demonstration

Again, adjusting per capita in each county means a more even distribution across

regions. In Figure 5.6 violent demonstrations have been adjusted per capita and

then represented at the mean US county level. If looking at any participation level

above three events per 100,000 people, there are three counties3 These counties only

3The three counties are Cibola(NM, 26,462 3.78), Holmes (MS, 16,808, 5.95), and Richmond
(VA, 9077, 11.02), (county, state, population, events per capita).
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have one violent event but also smaller populations. Again, Los Angeles did have

more violent demonstrations at nine events but had that higher population of over

9.97 million. While per-capita adjustment gives a better visualization of county-level

behavior, it may be a less efficient process with smaller occurrences in the dataset.

Figure 5.6: County-level Map: Violent Demonstration per Capita

Note: County population source: (Bureau, 2022).

Looking at the histogram of each state (See Figure A.4 thru A.6), the related

SIP policies for these areas show violence began to pick up at the end of May. All

three state graphs give a different interpretation. In California, the SIP policy is

still in place, but violence increases. Washington sees a smaller spike due to the

specific county that has increased activity while keeping its SIP policy in place. In

contrast, Minnesota has ended its SIP policy, seeing a spike in violent participation.

The indicator seen here is the event pushing demonstration that drove the change in

behavior, which outweighs the SIP policies’ opportunity cost.
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One of the main driving factors for the spike in Minneapolis (MN) towards the

end of May was the killing of George Floyd (20 May 2020). The additional increases

in violent demonstrations may indicate the spillover effect in the other two locations.

Taking a closer look at the landscape by dividing the observations into three different

time periods, the data shows that most violent demonstrations happen around George

Floyd’s death (See Figures B.7 thru B.9).

Riot indicators were processed through the model at the same levels as the Non-

Violent demonstrations (See Table 5.4). The first thing to notice is there is no longer

a clear difference between coastal states.Washington shows SIP negatively affecting

demonstrations, it is not statistically significant, whereas California is positive but it

too is not statistical significant. Whereas, New York has a negative and .1% signifi-

cance level for sip implementation. This regression also shows that as cases increase

demonstrations decrease. However, mobility effects show that lowering mobility will

increase demonstrations while easing mobility will decrease demonstrations.

The fourth and fifth column in Table 5.4 reflects the counties with violent events

(QZIP > 0) or no events (QZIP = 0). Clustering these counties helps identify the

differences in behavior between participating regions and non-participating areas. Not

only are SIP policies significant at the 5% for counties with violent demonstrations

but at 1% levels for those without. When clustering there is an increase in the

coefficient for the participating counties by a magnitude of 0.3%. Column four allowed

for excluding counties within states that did not observe any violence. Cases and

Mobility do increase participation for areas with observed violent events but decreases

for those without violent events. However, daily deaths do not significantly influence

demonstrations in either group. But there are significantly stronger coefficients and

primary indicator interpretations when clustering the two groups.
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5.3 Sensitivity Analysis

To test the performance of the model, Table 5.5 includes five regressions to com-

pare the strength and validity of SIP policy effects on demonstrations. Regression

one is an OLSregression without the Poisson addition. The SIP indicator is negative

and significant at the 5% level. The controls are both positive and statistically sig-

nificant for this model. However, the coefficient is harder to interpret at a decrease

of 0.0013 events per day when SIP policies get implemented. The control indicators

are positive and statistically significant.

The Poisson regression model (2) indicates the same error distribution but dif-

ferent interpretations due to the data’s “count” nature. The SIP indicator is still

negative and significant at the 1% level. When SIP policies get implemented, there is

approximately a 0.2% increase in demonstrations event participation per day. Again

the control indicators are positive and statistically significant. But in the third model,

when the control indicators get removed, the coefficient is doubled, showing that their

indicators help control biases. But SIP coefficient is still negative and significant at

the 1% level.

Regression Four removes all counties with zero participation in demonstration

events, which is a quasi ZIP approach. The SIP indicator is negative, but the co-

efficients rate ratio has increased to approximately 0.5%. The coefficient shows the

directionality is still constant but has a greater magnitude with decreased statistical

significance at 5%. The controls have also increased but are still positive and sta-

tistically significant. When the control indicators get removed (See model five), the

coefficient doubles showing that the controls indicators were controlling for biases,

but the directionality is still negative.
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The five models in Table 5.5 have a consistent negative directionality of SIP on non-

violent demonstrations. While the magnitude of each model is dependent on the

controls and observations within the model, they are all statistically significant above

the 5% level.

Not only did participation in demonstrations vary, participation in SIP policies

varied, creating a quasi-experimental environment. In Table 5.6 column one rep-

resents the primary regression model output observed in Table 5.1. Column three

represents the clustered regression model when using the quasi zero inflationary pro-

cess Table 5.3 for the participation group. Columns two and four represent counties

that implement SIP policies and will represent the difference between SIP effects and

other mechanisms inherent in the demonstration process.

When controlled for non-participants in the SIP policies, there is a 0.006% decrease

in the ratio from the original effects of 0.195% to 0.189%. While this is a small

amount, it shows other unobservable influences within the non-implemented counties.

These indicators could be changes in social norms, decreased migration patterns4, or

event-driven factors themselves. When clustering by counties with demonstration

participation and policies implementation (see column four), there is an increase in

the effect on the demonstration by 0.029%. This marginal change is a small effect but

could indicate additionally unseen influences in the model. These differences could

be due to the demographics or regional 5 effects of demonstrators.

4The slowing of human migration in the US could impact mobility and show indications of an
economic downturn. 60% of domestic moves in the US were within counties with population ages
between 20-29 of those most likely to relocate (Fry & Cohn, 2021).

5These differences could include urban densities vs. rural, demographic per event, and partici-
pation numbers instead of event-driven. Due to the pandemic impact, lower participating numbers
could lower overall event data.
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While controlling for SIP perticipaton at the counties level through fixed effects,

demonstrations are very heavily impacted by social norms. But these finds do show

that there may be other control mechanisms influencing demonstrations.

Due to the short time span and the daily reporting nature of the dataset, additional

controls are not added at this time. Different economic, demographic, and trend

indicators should be added in more extended datasets to increase fidelity for future

research and modeling approaches. The quasi-experimental findings of the significant

estimates are only marginally different from the main result. The consistant findings

show that the main effects are mostly felt through SIP policies during the COVID-19

pandemic, and it is seen through the mechanism of mobility and individual behavior

shifts.
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SECTION 6:

DISCUSSION

6.1 Inequality and Demonstrations

Section two stressed the importance of equality through the pursuits of demon-

strations throughout our history. These pursuits of demonstrations have continued

during the pandemic, with even more emphasis on issues such as climate change,

police brutality, and racial equality. When policies meant to help society become

problems at the national level, the government needs to understand how it affects all

possible behavioral shifts. SIP may have a more even effect on a nation with a more

homogenous social makeup. When the US sees a large ethnic fractionalization causing

a heterogeneous environment, the government should note how this may cause the

policy’s intent to fall short of the needs in a state or region (Glaeser, 2005).

Demonstrators push to make changes when the division of wealth and inequality

spreads, which can be difficult. Primarily because of how different the wealthy and the

poor influence political change. Since the poor rely on voting and demonstrations to

push change, this can be tricky as sometimes peaceful demonstrations may not work,

but violence can drive supporters away. In contrast, the wealthy use their membership

in special interest groups or lobbying activities to fight for what more affluent society

members want (Glaeser, 2005). In this case, it may be up to the highest bidder

rather than social needs, leading to an unequal socioeconomic environment. Unequal
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influence on the democratic process is why the results of our research are significant

in understanding the short-run effects of blanketed policies.

6.2 Policy Implications

Section five shows that during the exogenous effects of the pandemic and sub-

sequential SIP policy implementation, the participation in demonstrations lessened

through the decreases in events. Demonstrations are a way for a society to increase its

social capital through “features of social organization, such as trust, norms, and net-

works that can improve the efficiency of society by facilitating coordinated actions”

(Wallis et al., 2004). Equation C.1 (Hall & Jones, 1999) represents a production

function where yi represents country output per worker 1. Using Joe Wallis’s addi-

tion of a social capital scaler (Reference equation C.2)), a better represented human

capital function indicates the influences of social capital (when all other observations

are held constant )(Wallis et al., 2004). The equation can describe the divergence in

productivity in the US if country output is replace with state or county level output.

A visual way to see how social capital impacts economic outcomes through the

pursuit of livelihood capital assets is seen in figure C.1 (Chhibber, 2000). The in-

stitutional environment consists of both formal rules provided by state legal systems

and informal norms societies build through networking. A collaborative environment

means that states must follow established rules set through the political process of

social norm drivers. This balance drives incentives, along with technology, to effi-

ciently control transaction costs2 of the process on an industry. However, if formal

rules get implemented that negatively impact informal rules (normative behavior), it

1Standard production function where Yi = Total output, Ki = Stock of physical capital, Li =
Labor, Hi = Stock of human capital, Ai = Measure of Technology (Hall & Jones, 1999).

2The transactions costs could include cost of restructuring, set up of a new business, or even
bribes.
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could destroy social capital (Chhibber, 2000). Therefore, there is a need for states

to produce formal rules that efficiently represent informal rules and support social

capital needs.

When formal rules are inefficient, demonstrations are a way for individuals to

pursue change to increase social capital. While social capital is a non-tangible value,

it can be affected by individual, cultural, and historical influences. These elements get

used to generate a ranking value through a Social Capital Index (SCI). It measures

the well-being and stability of a population (Chisadza et al., 2021). By utilizing SCI

database this research output could be used as a scalar for some of the subindices of

the index. The influences of demonstrations could be seen through the subindices of

civic engagement, voting rates, confidence in institutions, and violence rates. These

smaller sub-effects could have a larger cumulative effect on the SCI index. And

through this extended research, demonstration influences could be seen on social

capital trends.

This research shows a consistent decreasing effect of policies that suppress demon-

stration participation through higher transit costs. These effects lead to fewer demon-

strations events for society to pursue efficiency in social capital. Depending on the

SCI in a county, the impact of policy implementation can lead to higher social capital

costs. While the results and research look at short-term behavior effects, the ques-

tion is, could long-term trends in demonstrations and political policies change social

capital in a complex economic environment?

While this model does show significant impacts of SIP policies on immediate

individual behavior, more extensive modeling will need to be done to identify the

long-term effects of the pandemic. Annual data that can cluster heterogeneity effects

concerning time may give a better picture of the trends in demonstration participa-
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tion. These clustering techniques could include comparing weekdays to weekends,

national events to local events, or types of events to identify the distribution and

magnitude demonstrations play on social capital.

6.3 Long-Run and Global Relationship

While the expectation in the US is to see an initial decrease in demonstrations

due to policy implementations, events like the death of George Floyd can cause spikes

in social participation. Looking forward to future research, the question will be if

the participation rate would have been greater without the policies and pandemic

environment. Looking at dashboard from the ACLED site3, there is the initial spike

in quarter two of 2020 leading up to the demonstrations for civil justice. But there is

an almost linear decreasing trend for the next two years even with additional social

and global events occurring, including the current global crises in Ukraine. Yet,

protests and riots are lower than they have been since the implementation of the

SIP policies in the US. The decreasing trend in demonstrations could indicate the

persistence of the policy and pandemic influence on social behavior change and its

impact on pursuing well-being goals (ACLED, 2021).

The long-run effects stress why it is essential to understand large-scale policies’

impacts. The diminishing consequences on the social environment in the US are

similar to the outcomes seen in the Sub-Saharan report (Basedau & Deitch, 2021).

When observing global behavior, the research found that areas with conflict-poverty

cycles would see a more prolonged effect through the pandemic environment (Berman

et al., 2021). While violence does tend to be more prevalent in US demonstrations

than those of the global community (Haynes & Wintz, 2016), when demonstrations

3https://acleddata.com/dashboard//dashboard: Date from 1 January 2020 to 1 February 2022,
Event types (Protests, Riots), Region – US)
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decrease, then violence at the demonstration events tend to decrease proportionately.

This study shows an extension to the previous literature and that other similar socioe-

conomic countries can be modeled and observed through these modeling processes.
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SECTION 7:

CONCLUDING REMARKS

The research in this study used comprehensive data from two sources to evaluate

the linkage between SIP policies and demonstration events. Using over 254.9 thousand

observations while controlling for mobility and Covid death, the model used Poisson

county by day fixed effects to estimate the rate ratio of the likelihood of SIP policies

affecting demonstrations. Since the model used a 14-day lag approach, the study

showed an overall negative 14-day effect of 2.7% on Non-Violent demonstrations and

an overall negative effect of 1.5% on Riot Violence. The sensitivity testing shows

that the controls help to keep the model unbiased as well as showing the primary

indicator of SIP as consistently negative and only marginally affected. This study

explored the heterogeneity inherent in the vastness of the US geographical layout to

include differences in states, regions, and urban concentrations.

While this research has shown a stable modeling approach, its acknowledged that

more sophisticated models may better fit the data. A Zero-inflated Poisson Regression

Modal may be a viable choice in the future, but the research had limitations to this

approach. First, while there are statistical software packages for Stata1 to use Zero-

inflated methods on sectional and time-series data, there is no coding at this time for

panel data. During the scope of this research, the Zero-inflation method for panel

1stata is the software used to data analysis for this study.https://www.stata.com/
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sets was ambiguous on its importance over a fixed-effect model. But with that said,

the data does have a large amount of non-players (zeros) in the set, and it may be

worth comparing a regular Poisson and a Zero-inflation model to find a better fit.

In the end, it may still be up to the data influence, structure, and overall questions

being asked.

It is also beyond the scope of this study to analyze the data at the organizational

and event level. This is due to the variability within the data and time limitations.

The variability of organizations, and their demonstration pursuits, include 2,905 dif-

ferent groups. The data for this set only observes a total of 2,450 non-Violent demon-

strations. This study does point out the need for a more extensive data set to look at

the effects of a great range of observations and levels. This study primarily focuses

on the effect SIP policies have on the US during the initial implementation period.

The importance is easily viewed through the scope of the Sustainable Livelihood

Framework (Bohle, 2009). Society is balancing the four critical dimensions of sustain-

ability (economic, environmental, social, and institutional sustainability) by efficient

use of five livelihood assets2 represented by a pentagon in Figure C.2 (Bohle, 2009).

Policies, institutions, and processes manage these Livelihood assets. Still, if the out-

comes are seen as inequitable or misaligned with societal well-being goals, then one of

the pursuits of the Livelihood Strategies would be the use of demonstrations. If this

were suppressed, this would not only move the arrow that influences the assets from

outcomes of adjustment to the government control level, but it would also increase

the vulnerabilities in the environment. This study shows why it’s essential to iden-

tify influence of policies on social environments and their effect on social well-being

through demonstrations.

2The five livelihood assets are: Human, natural, financial, physical, and social capital.
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APPENDIX A:

GRAPHS
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Figure A.1: Protest With SIP Policy Implementation: Section 1

Figure A.2: Protest With SIP Policy Implementation: Section 2
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Figure A.3: Protest With SIP Policy Implementation: Section 3

Figure A.4: Riots With SIP Policy Implementation: Section 1
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Figure A.5: Riots With SIP Policy Implementation: Section 2

Figure A.6: Riots With SIP Policy Implementation: Section 3
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APPENDIX B:

GEOGRAPHIC MAPS
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Figure B.1: County Level SIP Implementation - Period 1

Figure B.2: County Level SIP Implementation - Period 2
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Figure B.3: County Level SIP Implementation - Period 3

Figure B.4: Participation in Non-violent Demonstration - Period 1
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Figure B.5: Participation in Non-violent Demonstration - Period 2

Figure B.6: Participation in Non-violent Demonstration - Period 3
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Figure B.7: Participation in Violent Demonstration - Period 1

Figure B.8: Participation in Violent Demonstration - Period 2
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Figure B.9: Participation in Violent Demonstration - Period 3
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APPENDIX C:

CONCLUDING REFERENCE MATERIAL
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Figure C.1: State, Institutions, and Economic Outcomes

source: (Chhibber, 2000)



76

Figure C.2: The Sustainable Livelihood Framework. Original: DFID
(1999)

source: (Bohle, 2009)
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