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Abstract 

Biodiversity science encompasses multiple disciplines and biological scales from molecules to 

landscapes. Nevertheless, biodiversity data are often analyzed separately with discipline-specific 

methodologies, constraining resulting inferences to a single scale. To overcome this, we present 

a topic modeling framework to analyze community composition in cross-disciplinary datasets, 

including those generated from metagenomics, metabolomics, field ecology, and remote 

sensing. Using topic models, we demonstrate how community detection in different datasets can 

inform the conservation of interacting plants and herbivores. We show how topic models can 

identify members of molecular, organismal, and landscape-level communities that relate to 

wildlife health, from gut microbes to forage quality. We conclude with a future vision for how 

topic modeling can be used to design cross-scale studies that promote a holistic approach to 

detect, monitor, and manage biodiversity. 

Keywords: biodiversity, metagenomics, metabolomics, Latent Dirichlet Allocation, wildlife conservation, 

sagebrush 

Introduction 

Understanding biodiversity will require crossing disciplinary boundaries to link biological organization across scales. 

Early efforts to quantify biodiversity focused on the organismal scale of plants and animals (Simpson 1949). However, 

modern biodiversity research encompasses molecular scales, as well as scales beyond individual organisms, including 

biotic and abiotic features within landscapes, regions, and continents. Studying biodiversity at microscopic and 

macrosystem scales has led to insights with relevance for human health (Mohajeri et al. 2018), global sustainability 

(Bennett et al. 2015) and wildlife conservation (Trevelline et al. 2019). As recognition of the importance of 

biodiversity has increased, so have methods for analyzing biodiversity, from molecular approaches such as Next 

Generation sequencing for genomic data to airborne sensors that can measure large-scale landscape features. These 

discipline-specific methods limit analysis of biodiversity patterns that may be nested within or interact among scales. 

The lack of interdisciplinary cohesion in biodiversity studies with different terminology and varying scales of interest 

is a barrier to understanding biological processes vital to biodiversity conservation. One step toward overcoming this 

lack of cohesion is to identify patterns in data across disciplines that can then be discussed with a common language 

(Mosher et al. 2020). 

Community organization is a unifying pattern in biodiversity data across scales. Ecological communities of species 

that occupy the same space at the same time are a major focus of empirical and theoretical work in community ecology 

(Vellend 2010). More recently, ideas from community ecology have been extended to other biological disciplines, 

including detecting co-occurring microbes (Nemergut et al. 2013), functional genes (Burke et al. 2011), and landscape 

features (Räsänen et al. 2016). Despite differences in community assembly and study techniques, co-occurring 

features can reveal ecologically meaningful patterns in metabolites, microbial taxa, plant and animal species, and 

spectral bands from land surface reflectance. Community detection across multiple scales opens the possibility to 

study cross-scale interrelationships. For example, metabolite features within plants influence the microbial organisms 

of individual herbivores (Kohl et al. 2014b) and reflectance features of plants can predict herbivore population 

dynamics across landscapes (Fauchald et al. 2017). The overarching importance of communities in ecology and 

evolution has led to a multitude of methods to detect communities in ecological data (Legendre and Legendre 2012). 

A common challenge of detecting communities is mixed membership, when single features and single samples can 

potentially be assigned to more than one community. The degree of mixed membership in communities depends on 

whether features arrange themselves as discrete members of different communities (Clements 1936), or as fluid 

entities with membership in multiple communities (Gleason 1926). Within cellular units, biomolecular processes such 

as mutation and differential gene expression can promote mixing of metabolic and genetic features. Within a 

landscape, processes such as dispersal and anthropogenic disturbances lead to mixing of species and obscure 

boundaries between communities (Lortie et al. 2004). Another challenge for community detection is the tradeoff 

between sampling extent and resolution, a methodological choice that can affect community membership results. For 

example, in metagenomics, the benefit of deep sequencing must be weighed against the cost of generating more reads. 

Similarly, in remote sensing, larger pixels capture more surface area than smaller pixels, but the higher resolution of 

smaller pixels improves detection of land cover features (Kennedy et al. 2009). 
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Altogether, mixed membership of features within sampling units and communities is common. Nevertheless, many 

analytical methods, such as clustering and ordination techniques (McCune et al. 2002), lack a probabilistic 

interpretation of community membership, which limits the potential for model transferability and prediction in novel 

environments. One solution is topic modeling of community membership, which has revolutionized multivariate 

analysis by enabling a single feature or sampling unit to belong to multiple communities. The term “topic model” 

arises from text mining, where models are used to assign co-occurring words in documents to underlying subjects 

(“topics”; Barde and Bainwad 2017). Topics are referred to as “latent” because they are not known before hand and 

must be inferred from the data. Latent Dirichlet Allocation (LDA) is a topic modeling approach that can identify 

communities of features, while allowing for mixed membership of features across communities as well as mixtures of 

communities within individual sampling units (Valle et al. 2014). LDA was first developed in population genetics, 

motivated by the need to use genotypes as features that could group individuals into populations, while allowing for 

admixture (i.e., the presence of several distinct genotypes/genomes in a single population) (Pritchard et al. 2000). 

Several years later, LDA was independently developed as a tool to uncover latent structure in text data and broadly 

adopted by the machine learning community (Blei et al. 2003). Since then, LDA has resulted in transformative 

biological insights across disciplines including annotating unknown chemicals in fermented beverages (van Der Hooft 

et al. 2016), characterizing functional roles of gene regions (Chen et al. 2010) and identifying communities of bird 

species in citizen science data (Valle et al. 2018). Beyond single discipline applications, we contend that topic 

modeling has unrealized potential to unify biodiversity science across scales. 

Here we demonstrate how to apply LDA across multiple scales to inform conservation of herbivores. We focus on the 

sagebrush steppe ecosystem that once covered ~ 1 million km2 of land in the western United States but is increasingly 

threatened by wildfires and invasive species (Requena-Mullor et al. 2019). Sagebrush (Artemisia spp.) are the 

dominant plant species in these ecosystems and are critical for two sagebrush obligate species: the pygmy rabbit 

(Brachylagus idahoensis) and the Greater sage-grouse (Centrocercus urophasianus, hereafter sage-grouse). Both 

herbivores are considered species of conservation concern across the Intermountain West. However, efforts to 

conserve and reintroduce populations of pygmy rabbits and sage-grouse have had mixed success due to problems that 

range from lack of consideration of local diet adaptations (Oh et al. 2019) to ecosystem fragmentation (Cross et al. 

2018). 

Management of threatened species, including pygmy rabbits and sage-grouse, will benefit from a deeper and more 

functional understanding of the biological communities that impact individual health and population dynamics. We 

use four case studies from the sagebrush steppe ecosystem to show how LDA can assess community mixtures of (1) 

metabolites from leaf material of individual sagebrush plants, (2) microbial species from fecal pellets of pygmy 

rabbits, (3) plant species from field plots within sagebrush patches, and (4) spectra from pixels across a sagebrush 

landscape (Figure 1). At the micro-scale, microbial features in herbivores (Kohl et al. 2016) interact with metabolite 

concentrations in the gut after herbivores consume sagebrush (White et al. 1982). At the macro-scale, features of 

herbivores and sagebrush are dependent on metabolite concentrations of plant taxa within habitat patches (Ulappa et 

al. 2014, Frye et al. 2013) and those plant taxa can be detected with aerial remote sensing platforms (Olsoy et al. 

2020). Ultimately, the community patterns that emerge from analyzing features across scales could deepen our 

understanding of plant-herbivore interactions and identify molecular, organismal, and landscape targets for 

management in changing landscapes. 

Overview of Latent Dirichlet Allocation 

The overall objective of LDA is to identify latent communities of co-occurring features in data. Communities are 

latent because they are not directly observed in relative abundance data; instead, communities represent a hidden 

structure that can be uncovered with statistical modeling. For example, consider a book as a sampling unit, filled with 

words as features. The co-occurrence of particular words (e.g., “spaceship,” “alien,” “planet”) indicate that book is 

likely to represent a particular topic, or community (e.g., science fiction).  LDA assigns both individual words and 

individual books to latent communities. LDA factorizes relative abundance data into two matrices, one representing 

membership of communities in sampling units and the other representing feature membership in communities (Box 

1). Input relative abundance data can either represent binary (zero or one) or multinomial (count) data (Valle et al. 

2018). The number of communities in LDA can either be set in advance or estimated from the data (Albuquerque et 

al. 2019) LDA output includes probabilities of community membership for each sampling unit and feature. As a  
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generative model (see Box 2), LDA can account for missing data, predict relative abundance at new sites, and represent 

uncertainty in community membership. For further technical details on LDA, we refer readers to recent reviews by 

Sankaran and Holmes (2017) and Valle et al. (2014). 

Box 1: Modeling Framework 

Latent Dirichlet Allocation (LDA) is a statistical model for identifying latent (unobserved) communities. Input data 

structure for LDA consists of an abundance matrix organized with sampling units (m) as rows and features (n) as 

columns. Sampling units contain measurements of features. Features measured in sampling units could include 

species abundance, chemical concentration, or sets of reads from DNA sequencing. Count data on abundance of 

features in each sample unit is modeled using a multinomial version of LDA: 

Abundance of feature n in sample unit m Ym,n ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜙𝑧[m,n], 𝑧m,n ); 

Abundance of community z in sample unit m 𝑧m,n ~ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝜃𝑚, 𝑆𝑚𝑎𝑥); 
Membership of features in communities 𝜙𝑘 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛽); 
Membership of communities in sample units 𝜃𝑚 ~ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛾) 

where (Ym,n) represents the observed abundance of n-th feature in m-th sample unit. Each entry in the data matrix is 

assigned to a community type, which is estimated as a latent variable zm,n and depends on the distribution of 

communities across sample unit m (𝜃𝑚), and the maximum possible abundance of features in a site (𝑆𝑚𝑎𝑥). The 

Dirichlet distribution is a probability distribution for proportional data (Douma and Weedon 2019) that enables 

mixed membership. The 𝑚  and 
𝑘
 parameter matrices reveal the probability that sample units and features, 

respectively, belong to k communities. The hyperparameters,  and , represent the degree of mixed membership in 

the Dirichlet distribution and are often specified to initiate the model (Appendix S2). An alternate parameterization 

of LDA for binary data assumes that observations are drawn from a binomial distribution but is otherwise similar to 

the multinomial model (Valle et al. 2018b). LDA can be fit with frequentist maximum likelihood estimation or with 

Bayesian approaches, such as Gibbs sampling (Hornik and Grün 2011). See Supporting Information for more details, 

including R scripts with examples of LDA fit to multiple types of data. 

Applying Latent Dirichlet Allocation Across Data Sets 

We analyzed each of our datasets with LDA models in RStudio (v. 3.4.4) to detect communities within sampling units. 

Our models applied a Bayesian framework from the ‘Rlda’ package (Albuquerque et al. 2019). We used a binomial 

version of the LDA (Valle et al. 2018) to detect communities from occurrence data on metabolites and spectral 

reflectance, and a multinomial parametrization (Blei et al. 2003; Valle et al. 2014) for the analyses of count data on 

microbial taxa and leaf area index. We provide detailed methods for each case study in the Supplementary material 

(Appendix S1). 
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Figure 1: Illustration of how communities are measured in sampling units that span micro- and macro-scales. In the 

sagebrush steppe ecosystem, these communities are linked across scales. Microbial taxa in fecal pellets from individual 

herbivores interact with chemical features in leaf material when herbivores consume individual plants. Metabolite 

features in leaf material consumed by herbivores are dependent on the abundance of individual plant taxa detected 

within field plots. The distribution of plant taxa can be detected with spectral bands in pixels of aerial imagery obtained 

remotely within landscapes. 

Case Study 1. Reflectance of Spectral Bands within Pixels at the Landscape Scale. 

Our first case study uses LDA to assess patterns in spectral data obtained from remotely sensed images. In this case 

study, communities represent co-occurring wavelengths of spectral reflectance. Understanding impacts of global 

change on sagebrush ecosystems will require measurements over areas larger than that provided by field plots alone. 

We used a binomial version of LDA to detect communities or patterns in reflectance from aerial imagery of a 

sagebrush steppe landscape (Data available from National Ecological Observatory Network. 2019, Figure 2a). 

Using LDA, we were able to detect ecological patterns related to changing composition of plants. We identified two 

communities of spectral features characteristic of vegetation (Figure 2a). Based on visual interpretation of 

concurrently collected Red-Green-Blue (RGB) imagery, the first community (Community 1) represents juniper trees 

(Juniperus spp.) while the second community is associated with low-growing shrubs (Figure 2b). Juniper range 

expansion threatens wildlife species (Severson et al. 2017). The patchiness of Community 1 suggests fine-scale 

variation in juniper cover during the early stages of woody encroachment (Figure 2b). The more uniform 

representation of Community 2 (Figure 2b, right panel) is attributable to a dominant but sparse canopy of shrubs 

documented in ground observations. Our results demonstrate how high-resolution hyperspectral data can detect and 

map juniper encroachment in sagebrush steppe. Ultimately, patterns of remotely-sensed, spectral features could be 

used to monitor ecological change in landscapes where herbivores forage (Frye et al. 2013; Ulappa et al. 2014). 
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Figure 2: LDA applied to a subset of hyperspectral (1 m2 resolution) orthomosaic from a sagebrush steppe ecosystem 

(Onaqui, Utah, USA). (a) The probability of each wavelength of reflected light (nm) belonging to two communities. 

The rapid change in reflectance between 690 nm and 750 nm (the “red edge”) is representative of changes in plant 

photosynthetic activity. (b) Red, Green, Blue (RGB) image of the area with encroaching juniper trees (Juniperus spp.) 

circled in yellow (left image) with community 1 overlay (middle) and community 2 overlay (right) in the same area 

outlining a high probability that junipers belong to Community 1. Colors approaching yellow in the community 

overlays indicate higher probability of pixel membership from a particular spectral feature. 

Case Study 2. Plants within Field Plots at the Habitat Scale. 

Our second case study uses LDA to detect communities of plant species in field plots using measurements of leaf-

area-index (LAI). LAI is the relative size of one leaf over a unit of ground surface (Ewert 2004). Measurements of 

LAI in drylands relate to food availability for herbivores (Olsoy et al. 2015). We quantified LAI in field plots within 

a Wyoming big sagebrush habitat (Artemisia tridentata ssp. wyomingensis) (Figure 3). 

Results from applying LDA suggest that this habitat type contained six plant species communities (Figure 3). We 

report on the composition of three of these communities due to their ecological significance. Community 1 and 3 were 

dominated by the presence of Wyoming big sagebrush and a native bunchgrass Sandberg bluegrass (Poa secunda), 

respectively. Wyoming big sagebrush and Sandberg bluegrass are of particular importance because their presence 

indicates habitats favorable for herbivores (Beck et al. 2009). Community 6 was dominated by cheatgrass (Bromus 

tectorum), an invasive annual (Figure 3a) that indicates degraded ecosystems less suitable for herbivores 

(Steenvoorden et al. 2019). 
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Figure 3. The results of LDA analysis on leaf area index (LAI) in a Wyoming big sagebrush habitat. (a) The 

probability of plant species occurring within three communities with an image of the dominant species, Artemisia 

tridentata ssp. wyomingensis, in inset. (b) A landscape level photo (left) and the probability of presence of the six 

most common communities within the habitat sampling units (right). (c) A representative photo of a single 1m2 field 

plot sampling unit (left) and the probability of presence of each community within a single plot (right). 

Our results show that communities in this habitat are dominated by Wyoming big sagebrush and Sandberg bluegrass, 

with low probability of the invasive cheatgrass community (Figure 3b). These results are visible at the level of a single 

sampling unit (1m2, Figure 3c). Our leaf-level analysis could be used to quantify fine-scale suitability for particular  
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wildlife species. For example, plots monitored after fires with high probability of Wyoming big sagebrush and low 

probability of cheatgrass might indicate successful post-fire restoration (Baker 2006), including the regeneration of 

suitable forage for herbivores (Beck et al. 2012). 

Case Study 3. Metabolites within Leaves at the Plant Scale. 

Our third case study uses LDA to detect patterns in metabolite features, specifically volatile monoterpenes, between 

two sagebrush taxa. While several herbivores rely on sagebrush as forage year-round, the volatile monoterpene 

features of this plant influence selection by herbivores at the species, patch, and plant scale (Frye et al. 2013). Although 

there are known concentration-dependent consequences of individual monoterpenes, the unique mixtures of 

metabolites in plants may better explain intake by herbivores (Nobler et al. 2019). Moreover, foraging herbivores 

consume mixtures of metabolites, not individual metabolites. Approaches that focus on the presence or concentration 

of a specific metabolite likely miss differences in the relative ratios of compounds that better determine diet selection 

by herbivores and predict interactions with the microbial features (e.g., case study 4 below) in herbivore guts. In this 

case study, communities represent “chemical bouquets,” or groups of secondary metabolites. 

We found that LDA detected communities of monoterpenes that were relevant to herbivore diet selection in two 

different sagebrush taxa (Figure 4). Specifically, there were three communities that contained unique individual 

monoterpenes known to predict foraging by herbivores. While the identity of several monoterpenes quantified are 

unknown (Unk indicate unknown compounds), the suite of monoterpenes in Community 1, 3, and 4 were present 

across many of the plant samples (Figure 4b).  At the individual sampling unit (plant) level, three-tip sagebrush 

(Artemisia tripartita) had a high probability of Community 4, whereas Wyoming big sagebrush was dominated by 

Communities 1 and 3 (Figure 4c). Concentrations of Unk 21.0 (dominant in Community 4) and Unk 21.5 (dominant 

in Community 3) have previously been found to predict diet selection by free-ranging sage-grouse (Fremgen-Tarantino 

et al. 2020) and β-pinene (dominant in Community 1) was avoided by captive mountain cottontails (Sylvilagus 

nuttallii) (Nobler et al. 2019). Our results demonstrate how LDA can reveal communities of metabolite features that 

predict foraging decisions by herbivores. A potential application of LDA could be to improve post-fire restoration by 

reseeding with plants that have similar chemical community profiles to plants consumed and preferred by threatened 

herbivores. 
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Figure 4. Results of LDA analysis of monoterpenes from leaves of sagebrush plants consumed by herbivores. (a) 

Probability of monoterpenes occurring within three metabolite communities with an image of the molecular structure 

of the dominate known monoterpene in inset. (b) Probability of the eight most common metabolite communities across 

all sagebrush samples. (c) Probability of the eight metabolite communities occurring within an individual three-tip 

(Artemisia tripartita) and a Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) sampling unit with an 

image of the leaf morphology of each species in inset. 

Case Study 4. Microbial Taxa within Fecal Pellets at the Herbivore Scale. 

Chemical communities in herbivore forage, including plants in the wild and artificial pellets in captivity, can modify 

microbial species composition within animal guts (Kohl et al. 2014; Sandifer et al. 2015; Mohajeri et al. 2018). Our 

fourth case study uses LDA to identify patterns in microbial taxonomic features detected in fecal pellets of pygmy 

rabbits over time. For this case study, communities represent groups of co-occurring microbial taxa. Specifically, we 

analyzed how the taxa of the fecal microbiome from this obligate sagebrush herbivore would change as they were 

transitioned from a natural diet containing Wyoming big sagebrush to a captive diet, containing commercial rabbit 

food, over a seven-day period. Fecal samples from the rabbits on day 1 (sagebrush diet) and day 10 (captive diet) were 

collected and analyzed using shotgun metagenomics. We used LDA to identify communities of bacteria at the genus 

level (Figure 5). The anaerobes, Clostridium and Bacteroides, were common features of these bacterial communities 

(Figure 5a). Communities 3 and 8 show the highest probability of being found within all fecal samples (Figure 5b). 

Community 3 was dominated by Bacteroides and had a higher probability of being present when the rabbits were on 

a natural diet, whereas Community 8, which was dominated by Clostridium species, was more prevalent after a week 
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of transitioning to a captive diet (Figure 5c). Some Clostridium species are associated with enteritis (inflammation of 

the small intestine) and increased mortality in wild and captive animals (Paul and Friend 2019) whereas other 

Clostridium species may improve animal health (Liu et al. 2019). These preliminary results suggest that LDA can be 

used to monitor changes in bacterial communities associated with dietary shifts, and potential health, in sagebrush-

dependent herbivores. Because microbial function is largely driven by communities, rather than individual species, 

community-level analyses (e.g., LDA) are crucial for identifying physiologically-relevant changes in herbivore 

metagenomes. 

 

Figure 5. LDA analysis using genus level taxonomy counts from metagenomics of fecal samples collected from 

pygmy rabbits (Brachylagus idahoensis, shown top left). (a) Probability of microbial features within the three most 

prevalent communities detected in fecal samples, each dominated by different microbial taxa. (b) Probability of the 

ten identified microbial communities within fecal samples from the pygmy rabbit (n=22). (c) Probability of the ten 

microbial communities in fecal samples from the pygmy rabbit sampling units consuming a natural diet (primarily 

Wyoming big sagebrush (Artemisia tridentata ssp. wyomingensis) and after seven days on an artificial pellet diet in 

captivity. 
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Discussion 

As biodiversity science grows to encompass scales from molecular to continental, the need for integrative approaches 

has increased as well. We have demonstrated the potential for community detection to unite patterns of biodiversity 

across disciplines. Latent Dirichlet Allocation, a topic model that can represent mixed membership of features, enabled 

us to quantify communities across molecular, organismal, and landscape scales. Our results have potential relevance 

for conservation of threatened herbivores in the sagebrush steppe ecosystem, including the pygmy rabbit. At the 

landscape scale, LDA detected juniper encroachment, a driver of habitat degradation in sagebrush steppe, from aerial 

remote sensing data. At the plant scale, LDA enabled discrimination between plant species assemblages, with 

relevance for habitat structure, including the availability of quality forage for herbivores and the presence of invasive 

species. At the molecular scale, LDA identified mixtures of secondary metabolites that can differentiate plant species 

and predict diet selection by herbivores. At the microbial scale, LDA quantified shifts in bacterial communities that 

are predictive of disease and survival, and respond to diet transitions of herbivores. Co-analyzing datasets with LDA 

improved comprehension of biodiversity across scales for members of our multidisciplinary research team, leading us 

to develop a more holistic view of plant-herbivore ecology. Common models for disparate datasets, including LDA, 

will enable collaborative studies that can better inform cross-scale strategies for conservation. 

One realization that emerged from co-analyzing our data is the importance of herbivore gut microbiomes for uniting 

scales. We argue that studying gut microbiomes has great potential to develop a more complete understanding of 

herbivore ecology, particularly if multiple scales are incorporated into analyses. Herbivores, such as the pygmy rabbits 

in our study, make foraging decisions at individual metabolite, leaf, plant, and landscape scales (Ulappa et al. 2014; 

Nobler et al. 2019). In turn, foraging herbivores can influence patterns of habitat structure and plant species 

composition (Eldridge et al. 2016). Over long periods of time, we would expect that gut microbes mediate feedback 

loops between plants and herbivores, with ecological and evolutionary implications (Ley et al. 2008; Kohl and Dearing 

2016). In a practical sense, the gut microbiome links these disparate scales and represents the net sum of forage 

availability and quality across landscapes (Figure 2), habitat patches (Figure 3) and within plants (Figure 4). Herbivore 

foraging has wide-ranging consequences for above-ground (Frye et al. 2013; Ulappa et al. 2014; Fremgen-Tarantino 

et al. 2020) and below-ground (Chomel et al. 2016) ecological processes, therefore a more holistic understanding of 

co-occurring plant, metabolite, and microbial communities in the guts of herbivores is needed. Topic models, such as 

LDA, present an opportunity to describe microbial community structure (Chen et al. 2012). The development of 

analytical tools that integrate hierarchies of scale and complex network structure will further enable researchers to 

uncover how microbial communities might interact with communities at other scales, from molecular to landscape. 

Given the importance of the gut microbiome, we envision designing future studies to collect data from multiple 

biological units at the same time and place with a focus around fecal collections. Data collection focused around 

herbivore fecal pellets could involve sampling feces from herbivores for metagenomic and metabolite analyses while 

simultaneously collecting leaf tissue from plants browsed by herbivores for metabolite content (parent and 

detoxification products), and mapping the GPS location where pellets and plant samples are collected. Subsequently, 

research teams could assess how communities of microbes, plant-derived metabolites, and plant species detected in 

feces are influenced by variation in plant species availability at the scale of foraging plots. Remote sensing data, such 

as hyperspectral aerial images, could then be applied to detect temporal and spatial variation in the composition of 

plant species and foliar chemistry across the landscape (Fine et al. 2021). This type of data collection will require 

extensive interdisciplinary coordination, but will lead to a more connected understanding of coupled biodiversity 

among scales. Long-term ecological research sites, such as the NEON network, provide a valuable starting point for 

this type of study where collection and analyses of herbivore metagenomics and metabolites from plants could add 

substantial value to existing data on plant diversity and soil microbial communities. In the context of planning field 

studies, LDA could be applied as a generative model to simulate data and estimate appropriate sample sizes for 

statistical inference (Box 2). 

LDA has distinct advantages over other clustering techniques. A key strength of LDA is its probabilistic nature, 

enabling detection of novel communities. For example, when analyzing metabolomic data sets from tandem mass 

spectrometry analysis, LDA identified relevant substructures from co-occurrence of mass fragments and neutral losses 

in 70% of spectra analyzed, in contrast to other clustering techniques that only found hits for 25 and 6% of spectra 

respectively (van der Hooft 2016). In some cases, LDA may also improve classification accuracy. For example, LDA-

based methods outperformed simple harmonization methods based on semantic affinity scores for identifying latent 

land cover communities from different source maps (Li et al. 2020). More broadly, continuous representations of 
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community membership from LDA enable explanatory analyses that would not be possible with clustering methods 

that assume discrete membership (Knott et al. 2020). In addition, LDA is a generative model that can simulate data to 

improve links between ecological theory and statistical analyses (Box 2).  Altogether, probabilistic topic models for 

community detection are poised to generate novel insights from biodiversity data. 

Box 2: Latent Dirichlet Allocation as a Generative Model for Biodiversity 

LDA belongs to a broad class of models known as generative models that define joint probabilities for latent variables 

and observed features (Bernardo et al. 2007), including a data generating mechanism for observed data based on 

probability distributions. In contrast, commonly used models for multivariate data in ecology (e.g., ordination; 

Legendre and Legendre 2012) tend to be non-generative, describing patterns in community data without a 

probabilistic explanation. A key advantage of generative models is the ability to simulate data that is consistent with 

observed data. Data simulation from generative models is increasingly considered best practice for statistical 

analyses (Gabry et al. 2019). Comparing observed data to simulations improves overall understanding of data, can 

identify potential pathologies in statistical models, and assists the design of more efficient sampling schemes. 

Generative models can also provide a link to ecological theory (Harris et al. 2017). In community ecology, long-

standing debates on biodiversity metrics for alpha, beta, and gamma diversity have relied upon simulations for 

understanding these metrics (Legendre et al. 2005; Baselga 2010; Veech and Crist 2010). However, simulation 

models used to explore general properties of biodiversity metrics are often not the same models used to analyze 

observed data; LDA presents an opportunity to better integrate simulation experiments and statistical models. 

To demonstrate the potential for LDA to simulate biodiversity data, we generated 50 fake datasets from the 

multinomial model described in Box 1. For each dataset, we varied the hyperparameter for membership of species 

(i.e., features) in latent communities (𝛽 in Box 1) from 𝛽 = 0.01  to 𝛽 = 1.5. A heuristic explanation for this 

hyperparameter is the degree of species mixing within communities. A lower 𝛽 value corresponds to a minimal 

mixing of species in communities and results in a few high-abundance species. In contrast, with increasing 𝛽, there 

is a high degree of species mixing resulting in higher probability of a more uniform distribution of species 

abundances. Note, the datasets were generated with the site mixing hyperparameter (𝛾 in Box 1) set to zero, resulting 

in no mixing across communities (high species turnover). In practice, however, the observed patterns of species 

abundances within and across sites jointly depend on both 𝛽 and 𝛾 hyperparameters. 
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The figure above shows two simulated datasets on species relative abundance, generated by LDA. The left panel 

shows three communities from a simulated dataset with low species mixing in and the right panel shows three 

communities from a simulated dataset with high mixing. Each icon represents one species, with the relative size of 

each icon indicative of relative abundance of that 

species within a community. 

After simulating datasets using LDA, we then 

calculated alpha diversity, the variation in 

species composition within sites, for each of the 

simulated communities using the Expected 

Number of Species (𝑒𝐻𝑆ℎ𝑎𝑛𝑛𝑜𝑛). Results from 

this simulation experiment demonstrate a strong 

relationship between a commonly-used metric 

for alpha diversity and LDA. These results 

demonstrate how using LDA as a generative 

model could provide a way to better understand 

fundamental concepts in community ecology by 

linking statistical models for observed data with 

simulation experiments. 

 

Continued Advances in Community Detection Across Scales 

While our case studies of community membership represent separate analyses, topic modeling is well-poised to 

address long-standing questions of whether different taxonomic units co-occur in space and time (Heino 2010). 

Correlated topic models represent covariance between communities (Blei and Lafferty 2007), using mathematical 

relationships that are similar to existing models for co-occurrence between species in joint species distribution models 

(Pollock et al. 2014). Correlated topic models could quantify whether species from different trophic levels co-occur 

in space (often referred to as spatial concordance or cross-taxon congruence; Pearson and Carroll 1999; Su et al. 2004). 

Analyses of cross-taxon congruence typically involves a two-step process, first to identify latent communities and 

second to analyze correlations between them (Heino 2010). Correlated topic models present an opportunity to combine 

both of these steps into a single statistical model. The flexibility of probabilistic models, such as LDA, could prove 

invaluable for extending questions of cross-taxon congruence beyond species to secondary metabolites, genes, 

landscape features, and other levels of biological organization. 

The hyperparameter for species mixing in LDA (𝛽 in Box 

1) provides a generative model for biodiversity metrics, 

including alpha diversity. Each dot represents one 

simulation, with a different hyperparameter for species 

mixing. 
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Biodiversity data commonly includes features and communities that change over time and in response to 

environmental covariates. Newly developing topic modeling approaches could improve our capacity for inference on 

drivers of community membership. Dynamic topic models are currently used in text mining to account for changing 

community membership (Blei and Lafferty 2006), while dynamic mixture models enable realized proportions of 

communities to change over time (Wei et al. 2007). In ecology, LDA has recently been applied to interpret how 

gradual changes in rodent communities over a 40-year period were related to environmental drivers (Christensen et 

al. 2018). As a statistical approach conceptually related to regression models for proportional data (Douma and 

Weedon 2019), LDA can provide insights on community dynamics across time and space. 

Conclusions 

Coordinated studies of community structure across scales will enable researchers to address fundamental questions in 

ecology and evolution. One such question relates to the long-standing debate over whether biological features, from 

genes to species assemblages, are organized by neutral processes or deterministic ecological and evolutionary forces 

(Kreitman 1996; Lynch 2007; Lowe and McPeek 2014). For example, convergent communities of microbes in the soil 

and guts of herbivores exposed to similar plant metabolite communities across broad biogeographical scales would 

provide powerful evidence for the role of non-neutral processes. Alternately, random associations between overlain 

communities could suggest neutral theory as an explanation for observed assemblages. Common models for 

community structure will provide detailed and cohesive insight into the complex interactions among plants, animals, 

and microbes co-occurring across landscapes. Altogether, we anticipate that interdisciplinary collaboration, facilitated 

by the common modeling language of LDA, will have payoffs for biodiversity studies that must address complex 

problems across scales. 

Acknowledgements 

We thank J. Connelly, D. D. Musil, L. Cross, L.A. Shipley and the GUTT seminar working group in addition to 

financial support from a NASA grant 80NSCCC17K0738, a Idaho State Board of Education grant IGEM19-002, a 

Semiconductor Research Corporation grant SRC 2018-SB-2842, Pittman-Robertson 683 funds from the Idaho 

Department of Fish and Game, Sigma Xi Grants-In-Aid, Bureau of Land Management grant #L09AC16253, the 

USDA Agricultural Research Service and National Science Foundation grants IOS-1258217, DEB-1146194, DEB-

1146368, OIA-1826801, OIA-1757324, OIA-1738865 and ECCS-1807809. Thanks to James Hudon for drawings in 

Figures 4 and 5. 

References 

Albuquerque PHM, Valle DR do, and Li D. 2019a. Bayesian LDA for mixed-membership clustering analysis: The 

Rlda package. Knowl-Based Syst 163: 988–95. 

Albuquerque PHM, Valle DR do, and Li D. 2019b. Bayesian LDA for mixed-membership clustering analysis: The 

Rlda package. Knowl-Based Syst 163: 988–95. 

Baker WL. 2006. Fire and Restoration of Sagebrush Ecosystems. Wildl Soc Bull 34: 177–85. 

Barde, BV, Bainwad, AM. An overview of topic modeling methods and tools. In: IEEE international conference on 

intelligent computing and control systems (ICICCS), Madurai, India, 15–16 June 2017, pp. 745–750. New 

York: IEEE. 

Baselga A. 2010. Multiplicative partition of true diversity yields independent alpha and beta components; additive 

partition does not. Ecology 91: 1974–81. 

Beck JL, Connelly JW, and Reese KP. 2009. Recovery of Greater Sage-Grouse Habitat Features in Wyoming Big 

Sagebrush following Prescribed Fire. Restor Ecol 17: 393–403. 

Beck JL, Connelly JW, and Wambolt CL. 2012. Consequences of Treating Wyoming Big Sagebrush to Enhance 

Wildlife Habitats. Rangel Ecol Manag 65: 444–55. 

Bennett EM, Cramer W, Begossi A, et al. 2015. Linking biodiversity, ecosystem services, and human well-being: 

three challenges for designing research for sustainability. Curr Opin Environ Sustain 14: 76–85. 

Bernardo JM, Bayarri MJ, Berger JO, et al. 2007. Generative or discriminative? getting the best of both worlds. 

Bayesian Stat 8: 3–24. 

Blei DM and Lafferty JD. 2006. Dynamic topic models. In: Proceedings of the 23rd international conference on 

Machine learning. Pittsburgh, Pennsylvania, USA: Association for Computing Machinery. 

Blei DM and Lafferty JD. 2007. A correlated topic model of science. Ann Appl Stat 1: 17–35. 

Blei DM, Ng AY, and Jordan MI. 2003. Latent Dirichlet Allocation. J Mach Learn Res 3: 993–1022. 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Oikos, 
published by John Wiley & Sons, Ltd on behalf of the Nordic Society Oikos. Copyright restrictions may apply. 

https://doi.org/10.1111/oik.08393. 



15 

Burke C, Steinberg P, Rusch D, et al. 2011. Bacterial community assembly based on functional genes rather than 

species. Proc Natl Acad Sci 108: 14288–93. 

Chen X, Hu X, Lim TY, et al. 2012. Exploiting the functional and taxonomic structure of genomic data by 

probabilistic topic modeling. IEEE/ACM Trans Comput Biol Bioinform 9: 980–91. 

Chen X, Hu X, Shen X, and Rosen G. 2010. Probabilistic topic modeling for genomic data interpretation. In: 2010 

IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE. 

Chen X, Hu X, Shen X, Rosen G (2010) Probabilistic topic modeling for genomic data interpretation. IEEE 

International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE, Piscataway, NJ), pp 149–152. 

Chomel M, Guittonny‐Larchevêque M, Fernandez C, et al. 2016. Plant secondary metabolites: a key driver of litter 

decomposition and soil nutrient cycling. J Ecol 104: 1527–41. 

Christensen EM, Harris DJ, and Ernest SKM. 2018. Long-term community change through multiple rapid 

transitions in a desert rodent community. Ecology 99: 1523–9. 

Clements FE. 1936. Nature and Structure of the Climax. J Ecol 24: 252. 

Cross, T. B. et al. 2018. The genetic network of greater sage-grouse: Range-wide identification of keystone hubs of 

connectivity. - Ecology and evolution 8: 5394–5412. 

Der Hooft JJJ van, Wandy J, Barrett MP, et al. 2016. Topic modeling for untargeted substructure exploration in 

metabolomics. Proc Natl Acad Sci 113: 13738–43. 

Douma JC and Weedon JT. 2019. Analysing continuous proportions in ecology and evolution: A practical 

introduction to beta and Dirichlet regression. Methods Ecol Evol 10: 1412–30. 

Eldridge DJ, Poore AGB, Ruiz‐Colmenero M, et al. 2016. Ecosystem structure, function, and composition in 

rangelands are negatively affected by livestock grazing. Ecol Appl 26: 1273–83. 

Ewert F. 2004. Modelling Plant Responses to Elevated CO2: How Important is Leaf Area Index? Ann Bot 93: 619–

27. 

Fauchald P, Park T, Tømmervik H, et al. 2017. Arctic greening from warming promotes declines in caribou 

populations. Sci Adv 3: e1601365. 

Fine PVA, Salazar D, Martin RE, et al. 2021. Exploring the links between secondary metabolites and leaf spectral 

reflectance in a diverse genus of Amazonian trees. Ecosphere 12: e03362. 

Fremgen-Tarantino MR, Peña JJ, Connelly JW, and Forbey JS. 2020. Winter foraging ecology of Greater Sage-

Grouse in a post-fire landscape. J Arid Environ 178: 104154. 

Frye GG, Connelly JW, Musil DD, and Forbey JS. 2013. Phytochemistry predicts habitat selection by an avian 

herbivore at multiple spatial scales. Ecology 94: 308–14. 

Gabry J, Simpson D, Vehtari A, et al. 2019. Visualization in Bayesian workflow. J R Stat Soc Ser A Stat Soc 182: 

389–402. 

Gleason HA. 1926. The Individualistic Concept of the Plant Association. Bull Torrey Bot Club 53: 7–26. 

Harris K, Parsons TL, Ijaz UZ, et al. 2017. Linking Statistical and Ecological Theory: Hubbell’s Unified Neutral 

Theory of Biodiversity as a Hierarchical Dirichlet Process. Proc IEEE 105: 516–29. 

Heino J. 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic 

ecosystems? Ecol Indic 10: 112–7. 

Hornik K and Grün B. 2011. topicmodels: An R package for fitting topic models. J Stat Softw 40: 1–30. 

Kennedy RE, Townsend PA, Gross JE, et al. 2009. Remote sensing change detection tools for natural resource 

managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote 

Sens Environ 113: 1382–96. 

Knott, J. A. et al. 2020. Community-level responses to climate change in forests of the eastern United States. - 

Global Ecology and Biogeography 29: 1299–1314. 

Kohl, K. D. et al. 2016. Microbial detoxification in the gut of a specialist avian herbivore, the Greater Sage-Grouse. 

- FEMS Microbiology Letters 363: fnw144. https://doi.org/10.1093/femsle/fnw144 

Kohl KD and Dearing MD. 2016. The Woodrat Gut Microbiota as an Experimental System for Understanding 

Microbial Metabolism of Dietary Toxins. Front Microbiol 7. 

Kohl KD, Weiss RB, Cox J, et al. 2014. Gut microbes of mammalian herbivores facilitate intake of plant toxins. 

Ecol Lett 17: 1238–46. 

Kreitman M. 1996. The neutral theory is dead. Long live the neutral theory. Bioessays 18: 678–83. 

Legendre P, Borcard D, and Peres-Neto PR. 2005. Analyzing Beta Diversity: Partitioning the Spatial Variation of 

Community Composition Data. Ecol Monogr 75: 435–50. 

Legendre P and Legendre L. 2012. Numerical Ecology. Elsevier. 

Ley RE, Hamady M, Lozupone C, et al. 2008. Evolution of Mammals and Their Gut Microbes. Science 320: 1647–

51. 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Oikos, 
published by John Wiley & Sons, Ltd on behalf of the Nordic Society Oikos. Copyright restrictions may apply. 

https://doi.org/10.1111/oik.08393. 



16 

Li Z, White JC, Wulder MA, et al. 2020. Land cover harmonization using Latent Dirichlet Allocation. Int J Geogr 

Inf Sci 0: 1–27. 

Liu L, Zeng D, Yang M, et al. 2019. Probiotic Clostridium butyricum Improves the Growth Performance, Immune 

Function, and Gut Microbiota of Weaning Rex Rabbits. Probiotics Antimicrob Proteins 11: 1278–92. 

Lortie CJ, Brooker RW, Choler P, et al. 2004. Rethinking plant community theory. Oikos 107: 433–8. 

Lowe WH and McPeek MA. 2014. Is dispersal neutral? Trends Ecol Evol 29: 444–50. 

Lynch M. 2007. The evolution of genetic networks by non-adaptive processes. Nat Rev Genet 8: 803–13. 

McCune B, Grace JB, and Urban DL. 2002. Analysis of ecological communities. MjM software design Gleneden 

Beach, OR. 

Mohajeri MH, Brummer RJM, Rastall RA, et al. 2018. The role of the microbiome for human health: from basic 

science to clinical applications. Eur J Nutr 57: 1–14. 

Mosher BA, Bernard RF, Lorch JM, et al. 2020. Successful molecular detection studies require clear communication 

among diverse research partners. Front Ecol Environ 18: 43–51. 

National Ecological Observatory Network. 2019. Data Product DP3.30006.001, Spectrometer orthorectified surface 

directional reflectance - mosaic. Provisional data downloaded from http://data.neonscience.org February 

2019. 

Nemergut DR, Schmidt SK, Fukami T, et al. 2013. Patterns and processes of microbial community assembly. 

Microbiol Mol Biol Rev 77: 342–56. 

Nobler JD, Camp MJ, Crowell MM, et al. 2019. Preferences of Specialist and Generalist Mammalian Herbivores for 

Mixtures Versus Individual Plant Secondary Metabolites. J Chem Ecol 45: 74–85. 

Oh KP, Aldridge CL, Forbey JS, et al. 2019. Conservation Genomics in the Sagebrush Sea: Population Divergence, 

Demographic History, and Local Adaptation in Sage-Grouse (Centrocercus spp.). Genome Biol Evol 11: 

2023–34. 

Olsoy PJ, Forbey JS, Rachlow JL, et al. 2015. Fearscapes: Mapping Functional Properties of Cover for Prey with 

Terrestrial LiDAR. BioScience 65: 74–80. 

Olsoy, P. J. et al. 2020. Mapping foodscapes and sagebrush morphotypes with unmanned aerial systems for multiple 

herbivores. - Landscape Ecology: 1–16. 

Paul GC and Friend DG. 2019. Clostridial Enterotoxemia and Coccidiosis in Weanling Cottontail Rabbits 

(Sylvilagus audubonii, Sylvilagus floridanus, Sylvilagus nuttallii) from Colorado, USA. J Wildl Dis 55: 

189–95. 

Pearson DL and Carroll SS. 1999. The influence of spatial scale on cross-taxon congruence patterns and prediction 

accuracy of species richness. J Biogeogr 26: 1079–90. 

Pollock LJ, Tingley R, Morris WK, et al. 2014. Understanding co-occurrence by modelling species simultaneously 

with a Joint Species Distribution Model (JSDM). Methods Ecol Evol 5: 397–406. 

Pritchard JK, Stephens M, and Donnelly P. 2000. Inference of population structure using multilocus genotype data. 

Genetics 155: 945–59. 

Räsänen, A. et al. 2016. The role of landscape, topography, and geodiversity in explaining vascular plant species 

richness in a fragmented landscape. 21, 53–70. 

Requena‐Mullor, J. M. et al. 2019. Integrating anthropogenic factors into regional-scale species distribution 

models—A novel application in the imperiled sagebrush biome. - Global Change Biology 25: 3844–3858. 

Sandifer PA, Sutton-Grier AE, and Ward BP. 2015. Exploring connections among nature, biodiversity, ecosystem 

services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. 

Ecosyst Serv 12: 1–15. 

Sankaran, K. and Holmes, S. P. 2019. Latent variable modeling for the microbiome. - Biostatistics 20: 599–614. 

Severson JP, Hagen CA, Maestas JD, et al. 2017. Effects of conifer expansion on greater sage-grouse nesting habitat 

selection. J Wildl Manag 81: 86–95. 

Simpson EH. 1949. Measurement of Diversity. Nature 163: 688–688. 

Steenvoorden J, Meddens AJH, Martinez AJ, et al. 2019. The potential importance of unburned islands as refugia 

for the persistence of wildlife species in fire-prone ecosystems. Ecol Evol 9: 8800–12. 

Su JC, Debinski DM, Jakubauskas ME, and Kindscher K. 2004. Beyond species richness: Community similarity as 

a measure of cross-taxon congruence for coarse-filter conservation. Conserv Biol 18: 167–73. 

Trevelline BK, Fontaine SS, Hartup BK, and Kohl KD. 2019. Conservation biology needs a microbial renaissance: a 

call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B 

Biol Sci 286: 20182448. 

Ulappa AC, Kelsey RG, Frye GG, et al. 2014. Plant protein and secondary metabolites influence diet selection in a 

mammalian specialist herbivore. J Mammal 95: 834–42. 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Oikos, 
published by John Wiley & Sons, Ltd on behalf of the Nordic Society Oikos. Copyright restrictions may apply. 

https://doi.org/10.1111/oik.08393. 



17 

Valle D, Albuquerque P, Zhao Q, et al. 2018a. Extending the Latent Dirichlet Allocation model to presence/absence 

data: A case study on North American breeding birds and biogeographical shifts expected from climate 

change. Glob Change Biol 24: 5560–72. 

Valle D, Albuquerque P, Zhao Q, et al. 2018b. Extending the Latent Dirichlet Allocation model to presence/absence 

data: A case study on North American breeding birds and biogeographical shifts expected from climate 

change. Glob Change Biol 24: 5560–72. 

Valle D, Baiser B, Woodall CW, and Chazdon R. 2014. Decomposing biodiversity data using the Latent Dirichlet 

Allocation model, a probabilistic multivariate statistical method. Ecol Lett 17: 1591–601. 

Veech JA and Crist TO. 2010. Diversity partitioning without statistical independence of alpha and beta. Ecology 91: 

1964–9. 

Vellend M. 2010. Conceptual Synthesis in Community Ecology. Q Rev Biol 85: 183–206. 

Wei, X. et al. 2007. Dynamic Mixture Models for Multiple Time-Series. - Ijcai 7: 2909–2914. 

White SM, Flinders JT, and Welch BL. 1982. Preference of Pygmy Rabbits (Brachylagus idahoensis) for Various 

Populations of Big Sagebrush (Artemisia tridentata). J Range Manag 35: 724–6. 

Zaiats, Andrii et al. (2021), Unifying community detection across scales from genomes to landscapes., Dryad, 

Dataset, https://doi.org/10.5061/dryad.8w9ghx3mf 

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at Oikos, 
published by John Wiley & Sons, Ltd on behalf of the Nordic Society Oikos. Copyright restrictions may apply. 

https://doi.org/10.1111/oik.08393. 


	Unifying Community Detection Across Scales from Genomes to Landscapes
	Publication Information
	Authors

	tmp.1661876628.pdf.0Kw6M

