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Abstract

We investigate noncritical multi-type Markov branching processes with im-
migration generated by Poisson measures. Limiting distributions are obtained
when the rates of the Poisson measures are asymptotically equivalent to ex-
ponential or regularly varying functions. In particular, results analogous to a
strong LLN are presented, and limiting normal distributions are obtained when
the rates increase. When the rates decrease, then conditional limiting distribu-
tions are established. A stationary limiting distribution is obtained when the
mean Poisson measure grows linearly. The asymptotic behaviour of the first
and second moments of the processes is also investigated.
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1. Introduction. The main objective of this paper is to study noncriti-
cal multitype Markov branching processes with immigration governed by Poisson
random measures with time-varying rates. This paper continues the results an-
nounced first in [1] and after that published with proofs in [2], where this family
of processes were investigated in the critical case.
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Multitype Markov branching processes were introduced by Kolmogorov
and Dmitriev [3], where the terminology branching process officially appeared
for the first time. The first branching process with immigration was proposed
by Sevastyanov [4]. He investigated a single-type Markov branching process in
which immigration occurs in accordance with a time-homogeneous Poisson pro-
cess, and obtained limiting distributions in the sub-, super-, and critical cases (see
also Sevastyanov [5]).

Many variants of branching processes with immigration were subsequently
investigated. Most of these models have been reviewed by Sevastyanov [6] and
Vatutin and Zubkov [7,8]. Some of the references considered models with time-
inhomogeneous immigration. In particular, we mention the work by Badalbaev,
Rahimov and some of their collaborators who focused on critical processes. See
Rahimov’s monograph [9] for a review.

Branching processes with time-inhomogeneous Poisson immigration have
been successfully used to describe the dynamics of cellular systems (e.g., red blood
cell progenitor cells, leukemia) [10–13]. In these applications, the immigration pro-
cess describes an influx of cells (e.g., stem cells) arising from a compartment that
is not directly observable but remains a significant contributor to population dy-
namics. A key feature of cell kinetics is that this influx is often time-dependent.

This paper focuses on the asymptotic behaviour of noncritical multitype
Markov branching processes that develop along an immigration process gener-
ated by Poisson measures with a rate r(t) and a mean measure R(t). To this end,
we have organized the paper as follows. Section 2 presents the model and its basic
equations. These results are used in Sections 3 and 4, where the limiting distribu-
tions are presented when the Perron–Frobenius root ρ 6= 0 (i.e. in the noncritical
cases). Different limiting distributions are obtained depending of the rate r(t) of
the Poisson measures. Section 3 deals with the subcritical case ρ < 0 : Theorem
1 considers settings that include the case, where r(t) = O(eθt), θ < ρ, and The-
orem 2 the case, where r(t) ∼ r0e

θt, θ < 0. Both theorems present conditional
limiting distributions. Theorem 3 proves that a stationary limiting distribution
holds when R(t)/t → r0 > 0 as t → ∞. Theorem 4 shows, when r(t) ∼ r0e

θt,
θ > 0, that the process exhibits limit behaviours analogous to a strong Law of
Large Numbers (LLN) and a Central Limit Theorem (CLT) as t → ∞. Finally,
Theorem 5 investigates the case, where r(t) ∼ r0t

θ, t → ∞, where r0 > 0 and
θ ∈ R. When θ < 0, a conditional limiting distribution holds; when θ > 0, a
LLN and CLT are presented. In Section 4 three different types of limiting distri-
butions are obtained in the supercritical case ρ > 0. Notice that the condition

r̃(ρ) =

∫ ∞
0

e−ρxr(x)dx < ∞ in Theorem 6 in fact includes the cases, where r(t)

is a regularly varying function (r.v.f.) or r(t) = O(eθt), θ < ρ. Then we obtain L2

convergence of the process normalized by its mean. Theorems 7 and 8 investigate
the cases, where r(t) ∼ r0e

θt, θ ≥ ρ and r0 > 0, t → ∞. Theorem 7 can be

C. R. Acad. Bulg. Sci., 74, No 5, 2021 659



considered an analogue to the strong LLN while Theorem 8 presents two variants
of CLT. Notice that in all theorems in Sections 3 and 4 the asymptotic behaviour
of the first and second moments of the corresponding processes is also obtained.

Finally, we would like to point out that multitype Markov branching pro-
cesses with nonhomogeneous Poisson immigration are considered in [14]. The
authors investigated subcritical processes in the case r(t) ∼ r0e

θt, θ ≥ 0, r0 > 0,
and they obtained a convergence in probability to some constant, when θ > 0,
or a convergence in distribution to some random variable, when θ = 0. Notice
that in the case θ > 0 we proved a.s. and L2 convergences and we also obtained
limiting normal distributions. In fact the case θ = 0 follows from our Theorem 3
and moreover we obtained also a differential equation for the limiting probability
generating function (p.g.f.). In the supercritical case the authors investigated the
case r(t) ∼ r0e

θt, θ ≥ ρ, and obtained convergence in probability to some constant,
when we proved a.s. and L2 convergence and obtained limiting normal distribu-
tions. Under the condition r̃(ρ) < ∞ the authors obtained only convergence of
the characteristic functions.

We have to point out that the methods of proofs in [14] are quite different
from the methods developed in our paper. Moreover Lemma 2 of [14] is in fact a
particular case of Theorem 1 from [2] and the limiting result in the critical case
of Theorem 5 of [14] has been previously obtained in Theorem 8 of [2].

2. Model and equations. We consider a population that consists of d types
of cells (individuals, particles), and evolves in accordance with an immigration
process and a branching mechanism. Let 0 < T1 < T2 < · · · be random time

points arising from a Poisson random measure Π(t) =

∞∑
i=1

1{Ti≤t}, t ≥ 0, with local

intensity r(t) > 0 and mean measure R(t) =

∫ t

0
r(x)dx. Then, P{Π(t) = n} =

e−R(t)Rn(t)/n! for n = 0, 1, . . . . Assume that Ik = (Ik1, . . . , Ikd), k = 1, 2 · · · ,
are independent and identically distributed (i.i.d.) non-negative integer-valued
random vectors with p.g.f. g(s) = E{sIk} =

∑
α∈Nd

P{Ik = α}sα, s = (s1, . . . , sd),

| s |≤ 1, where sα =
d∏
i=1

sαi
i for every α = (α1, . . . , αd). We consider the marked

point process {(Tk, Ik), k = 1, 2, . . .}. The vector Ik is interpreted as the number
of immigrants that join the population at time Tk.

Let Z = {Zi(t) = (Zi1(t), Zi2(t), . . . , Zid(t)), i = 1, . . . , d; t ≥ 0} be a multi-
type branching process where Zij(t) denotes the number of type-j cells at time
t produced by a single type-i cell born at t = 0, where i, j = 1, . . . , d, and as-
sume that cells evolve independently of each other. Next, we introduce the p.g.f.
Fi(t; s) = E{sZi(t)} =

∑
α∈Nd

P{Zi(t) = α}sα, with Fi(0, s) = si, and define the
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vector F(t; s) = (F1(t; s), F2(t; s), . . . , Fd(t; s)).
Let Z̃ = {Z̃k(t) = (Z̃k1(t), . . . , Z̃kd(t)); t ≥ 0; k = 1, 2, . . .} be i.i.d. copies

of Z, but with initial conditions Z̃k(0) = Ik. Therefore, E{sZ̃k(t)} = g(F(t; s))
because of the independence of the individual evolutions. We assume that the
sets Z̃ and Π ={Π(t), t ≥ 0} are independent.

Define the process

(1) Y(t) =

Π(t)∑
k=1

Z̃k(t− Tk)1{Π(t)>0}, t ≥ 0, Y(0) = 0.

Its first increment occurs when the first group of I1 immigrants enters the
population at time T1, each of which evolves independently and in accordance with
a process Z. A second group of I2 immigrants arrives at time T2, etc. We refer to
Y ={Y(t) = (Y1(t), . . . , Yd(t)), t ≥ 0} as a multitype branching process generated
by Poisson measure or multitype branching process with non-homogeneous Poisson
immigration.

If Φ(t; s) = E{sY(t)}, then by (1) the following presentation holds (see The-
orem 1 from [2])

(2) Φ(t; s) = exp

{
−
∫ t

0
r(t− x)[1− g(F(x; s))]dx

}
,Φ(0; s) = 1.

Remark 1. As it is proved in [2], the relation (2) is valid for a broad class of
branching processes in which individuals evolve independently of each other. Such
processes include multitype Markov, Bellman–Harris, Sevastyanov or Crump–
Mode–Jagers branching models, which are described in well-known monographs
[5,15,16].

Remark 2. The relation (2) is presented as Lemma 2 in [14] as mentioned
in the Introduction.

Similarly for Φ(t, τ ; s1, s2) = E{sY(t)
1 s

Y(t+τ)
2 } one can obtain that

(3)
Φ(t, τ ; s1, s2) = exp

{
−
∫ t

0
r(x)[1− g(F(t− x, τ ; s1, s2))]dx

−
∫ t+τ

t
r(x)[1− g(F(t, τ − x; 1, s2))]dx

}
,

where Fi(t, τ ; s1, s2) = E{sZi(t)
1 s

Zi(t+τ)
2 }.

From now on we consider the case where Z is a multitype Markov branch-
ing process; that is, the lifespan and the offspring vector of any type-i cell, τi
and νi = (νi1, . . . , νid), are independent, P{τi ≤ t} = 1 − e−t/µi , and hi(s) =

E{sνi} =
∑
α∈Nd

piαsα, i = 1, . . . , d. Under these assumptions, the p.g.f. Fi(t; s) =
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∑
α∈Nd

P{Zi(t) = α}sα satisfy the system of differential equations

(4)
∂

∂t
F(t; s) = f(F(t; s)),

∂

∂t
F(t; s) =

d∑
i=1

fi(s)
∂

∂si
F(t; s), F(0; s) = s,

where fi(s) = [hi(s)− si]/µi are the infinitesimal generating functions and f(s) =
(f1(s), . . . , fd(s)). Under these assumptions, Y(t) is a multitype Markov branch-
ing process with non-homogeneous Poisson immigration. For 1 ≤ i, j ≤ d, let

Aij(t) = E{Zij(t)} =
∂Fi(t; s)

∂sj

∣∣∣∣
s=1

, and introduce the matrix of first infinitesimal

characteristics a = ‖aij‖1≤i,j≤d where aij =
∂fi(s)

∂sj

∣∣∣∣
s=1

. It is well known that

A(t) = ||Aij(t)||1≤i,j≤d = exp(at) =
∞∑
n=0

antn

n!
.

We assume that a is a positive regular matrix with Perron–Frobenius root ρ.
Further on we will consider the noncritical case when ρ 6= 0. The associated right
and left eigenvectors u = (u1, . . . , ud) and v = (v1, . . . , vd) can be chosen positive,

with u1 > 0 and v1 > 0, and normalized such that
d∑
i=1

ui = 1 and
d∑
i=1

uivi = 1.

Define the second infinitesimal characteristics bijk =
∂2fi(s)

∂sj∂sk

∣∣∣∣
s=1

for 1 ≤ i, j, k ≤

d, and immigration moments mi =
∂g(s)

∂si

∣∣∣∣
s=1

, βij =
∂2g(s)

∂si∂sj

∣∣∣∣
s=1

. All these

quantities are assumed finite when the second momentsBi
jk(t) = E{Zij(t)(Zik(t)−

δjk)} =
∂2Fi(t; s)

∂sj∂sk

∣∣∣∣
s=1

are investigated, where as usual δjk = 1 if j = k, and 0

otherwise.
It is known (see for example [5,15,16]) that Aij(t) ∼uivjeρt, t → ∞. Also if

ρ < 0 (subcritical case), then one gets Bi
jk(t) ∼ B̃i

jke
ρt for some constants B̃i

jk > 0.
Now using the above asymptotic results and applying Theorem VI.7.7 of Sev-
astyanov [5] one can obtain for ρ < 0 and τ > 0 that Bi

jk(t, τ) ∼ B̃i
jk(τ)eρt, where

B̃i
jk(τ) =

d∑
l=1

B̃i
jlAlk(τ) + uivjAjk(τ). In the supercritical case (ρ > 0) it holds

that Bi
jk(t) ∼ B̂ivjvke

2ρt, t → ∞, where B̂i =

d∑
l,m,n=1

Di
lb
l
mnumun/|2ρδαβ − aαβ|

and Di
l is the algebraic complement to the element 2ρδli − ali of the determinant

|2ρδαβ − aαβ|. Similarly for ρ > 0 one has that Bi
jk(t, τ) = E{Zij(t)Zik(t+ τ)} ∼

B̂ivjvke
ρ(2t+τ), t→∞.
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Let Mi(t) = E{Yi(t)} and the covariances Cij(t) = Cov{Yi(t), Yj(t) − δij}
and Cij(t, τ) = Cov{Yi(t), Yj(t+ τ)}. Notice that Cij(t) = Cov{Yi(t), Yj(t)} for
i 6= j and Cii(t) = Var{Yi(t)}. Then from (2) and (4) one obtains

Mi(t) =
∂ log Φ(t; s)

∂si

∣∣∣∣
s=1

=

∫ t

0
r(t− x)Ai(x)dx,

where Ai(x) =
d∑

k=1

mkAki(x) ∼ viAeρx, A =
d∑

k=1

mkuk, x→∞.

Similarly one can verify that from (2) and (4)

Cij(t) =
∂2 log Φ(t; s)

∂si∂sj

∣∣∣∣
s=1

=

∫ t

0
r(t− x)Cij(x)dx,

where Cij(x) =
d∑

k=1

mkB
k
ij(x) +

d∑
k=1

d∑
l=1

βklAki(x)Alj(x) and from (3) and (4)

Cij(t, τ) =
∂2 log Φ(t, τ ; s1, s2)

∂s1i∂s2j

∣∣∣∣
s=1

=

∫ t

0
r(t− x)Cij(x, τ)dx,

where Cij(x, τ) =
d∑

k=1

mkB
k
ij(x, τ) +

d∑
k=1

d∑
l=1

βklAki(x)Alj(x+ τ).

Then for ρ < 0 one can obtain that

Cij(x) ∼ C̃ijeρx, Cij(x, τ) ∼ C̃ij(τ)eρx, x→∞,

where C̃ij =

d∑
k=1

mkB̃
k
ij and C̃ij(τ) =

d∑
k=1

mkB̃
k
ij(τ) and

C̃ij(τ) =

d∑
k=1

d∑
l=1

mkB̃
k
ilAlk(τ) + uivj

d∑
k=1

mkAjk(τ).

Similarly in the supercritical case ρ > 0 we obtain that

Cij(x) ∼ Cije2ρx, Cij(x, τ) ∼ Cijeρ(2x+τ), x→∞,

where Cij = vivjC,C =

d∑
k=1

mkB̂
k +

d∑
k=1

d∑
l=1

βklukul.

Further on it is assumed also that bijk < ∞ everywhere they appear and
similarly for the immigration moments mi <∞ and βij <∞, 1 ≤ i, j, k ≤ d.
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3. Asymptotic behaviour of the subcritical processes. In this section
we will consider the case ρ < 0.

Theorem 1. Let r̃(ρ) =

∫ ∞
0

e−ρxr(x)dx <∞. Then as t→∞ :

(i) Mi(t) ∼ viAr̃(ρ)eρt, Cij(t) ∼ C̃ij r̃(ρ)eρt, for i, j = 1, . . . , d;

(ii) P{Y(t) > 0} ∼ KAr̃(ρ)eρt, K > 0, and P{Y(t) = α|Y(t) > 0} → P∗α,
where F ∗(s) =

∑
α∈Nd

P∗αsα is the unique solution of the equation

(5)
d∑

k=1

fk(s)
∂F ∗(s)

∂sk
= −ρ(1− F ∗(s)), F ∗(0) = 0.

Theorem 2. Let r(t) ∼ r0e
θt, θ < 0, and t→∞.

(i) If θ = ρ, then Mi(t) ∼ r0viAte
ρt, Cij(t) ∼ r0C̃ijte

ρt, P{Y(t) > 0} ∼
r0KAte

ρt, and Ψ(t; s) = E{sY(t)|Y(t) > 0} → F ∗(s), where F ∗(s) is the unique
solution of equation (5).

(ii) If θ > ρ, then Mi(t) ∼ r0Ãi(θ)e
θt, Cij(t) ∼ r0C̃ij(θ)e

θt, where Ãi(θ) =∫ ∞
0

e−θxAi(x)dx < ∞ and C̃ij(θ) =

∫ ∞
0

e−θxCij(x)dx < ∞; P{Y(t) > 0} ∼

r0D(θ)eθt and Ψ(t; s) = E{sY(t)|Y(t) > 0} → Ψ∗(s) = 1 − D(θ; s)/D(θ), where

D(θ; s) =

∫ ∞
0

e−θx[1− g(F(x; s))]dx <∞ and D(θ) = D(θ; 0).

Remark 3. The case r(t) ∼ r0e
θt, θ < ρ, is treated in fact by Theorem 1

because in this case r̃(ρ) =

∫ ∞
0

e−ρxr(x)dx <∞.

Theorem 3. If R(t)/t→ r0 > 0 as t→∞, then

(i) Mi(t)→ r0

∫ ∞
0

Ai(x)dx <∞, Cij(t)→ r0

∫ ∞
0

Cij(x)dx <∞;

(ii) P{Y(t) = α} → P∗α, where Φ(t; s) = E{sY(t)} → Φ∗(s) = e−r0J(s) and

J(s) =

∫ ∞
0

[1− g(F(x; s))]dx <∞ satisfies the equation

(6)
d∑

k=1

fk(s)
∂

∂sk
J(s) = −[1− g(s)],

which admits an unique solution.

Corollary 1. If d = 1, then it follows from (6) that J(s) =

∫ 1

s

1− g(u)

f(u)
du.

Remark 4. A similar result as in Corollary 1 was obtained from Sevastyanov
[4] when he investigated single type subcritical Markov branching process with
homogeneous Poisson immigration.

664 M. N. Slavtchova-Bojkova, O. Hyrien, N. M. Yanev



Remark 5. In Theorem 4, (i) of [14] the authors obtained also a convergence
in distribution to a random variable but under the stronger condition r(t)→ r0 >
0 as t → ∞ and without equation (6). Notice that if r(t) → r0 > 0 as t → ∞,
then one has R(t) ∼ r0t, t→∞.

Theorem 4. Let r(t) ∼ r0e
θt, r0 > 0, θ > 0. Then as t→∞

(i) Mi(t) ∼ r0Ãi(θ)e
θt, Cij(t) ∼ r0C̃ij(θ)e

θt, Cij(t, τ) ∼ r0C̃ij(θ, τ)eθt, where

Ãi(θ) =

∫ ∞
0

e−θxAi(x)dx <∞, C̃ij(θ) =

∫ ∞
0

e−θxCij(x)dx <∞

and
C̃ij(θ, τ) =

∫ ∞
0

e−θxCij(x, τ)dx <∞, i, j = 1, . . . , d;

(ii) Xi(t) =
Yi(t)

Mi(t)
→ 1, in L2 and a.s., i = 1, 2, . . . , d;

(iii) U(t) = (U1(t), U2(t), . . . , Ud(t)) → N(0,Σ(θ)) in distribution, where

Uj(t) = [Yj(t) −Mj(t)]/
√
Cjj(t) and Σ(θ) = ||σ̃jk(θ)|| is the covariance matrix

with σ̃jk(θ) = C̃jk(θ)/

√
C̃jj(θ)C̃kk(θ), j 6= k, and σ̃jj(θ) = 1 + Ãj(θ)/C̃jj(θ).

Remark 6. Theorem 4, (i) can be interpreted as an analogue of a Strong
LLN and Theorem 4, (ii) as a CLT.

Remark 7. In Theorem 4 (iii) as a CLT from the preprint [14] a convergence
in distribution to some constant is proved (which is equivalent in this case to the
convergence in probability).

Theorem 5. Let r(t) ∼ r0t
θ, t→∞, where r0 > 0 and θ ∈ R. Then

(i) Mi(t) ∼ r0A
∗tθ, Cij(t)→ r0C

∗
ijt

θ, Cij(t, τ)→ r0C
∗
ij(τ)tθ, where

A∗ =

∫ ∞
0

Ai(x)dx <∞, C∗ij =

∫ ∞
0

Cij(x)dx <∞

and
C∗ij(τ) =

∫ ∞
0

Cij(x, τ)dx <∞, i, j = 1, 2, . . . , d.

(ii)If θ < 0, then P{Y(t) > 0} ∼ r0Q
∗tθ, where

Q∗ =

∫ ∞
0

[1− g(1−Q(t))]dt <∞

and
Ψ(t; s) = E{sY(t)|Y(t) > 0} → 1−Q∗(s)/Q∗,

where

Q∗(s) =

∫ t

0
[1− g(1−Q(x; s))]dx <∞.
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(iii) If θ > 0, then Xi(t) =
Yi(t)

Mi(t)
→ 1, in probability and L2, where for θ > 1

the convergence is also a.s., i = 1, 2, . . . , d;
U(t) = (U1(t), U2(t), . . . , Ud(t)) → N(0,Σ∗)) in distribution, where

Uj(t) = [Yj(t) −Mj(t)]/
√
Cjj(t) and Σ∗ = ||σ∗ij || is the covariance matrix with

elements σ∗ij = C∗ij/
√
C∗iiC

∗
jj, i 6= j, and σ∗ii = 1 +A∗i /C

∗
ij , i, j = 1, 2, . . . , d.

4. Limiting distributions for the supercritical processes. In this sec-
tion we will consider the supercritical case ρ > 0.

Theorem 6. Let r̃(ρ) =

∫ ∞
0

e−ρxr(x)dx <∞. Then as t→∞

(i) Mi(t) ∼ viAr̃(ρ)eρt, Cij(t) ∼ vivjCr̃(2ρ)e2ρt,

Cij(t, τ) ∼ vivjCr̃(2ρ)eρ(2t+τ), i, j = 1, . . . , d;

(ii) Xi(t) =
Yi(t)

Mi(t)
converges in L2 to a random variable Xi where EXi = 1,

VarXi =
r̃(2ρ)C

r̃2(ρ)A
2 , i = 1, 2, . . . , d, and X1 = X2 = · · · = Xd a.s.;

(iii) The limiting Laplace transform E{e−
∑d

j=1 λjXj} = ψ(λ), where ψ(z) =

E{e−zX1} and λ =

d∑
j=1

λj, has the presentation

(7) ψ(λ) = exp

{
−
∫ ∞

0
[1− g(ϕ(λe−rx/(r̃(ρ)A)))]r(x)dx

}
,

where ϕ(λ) = (ϕ1(λ), . . . , ϕd(λ)) is the unique solution of the system of differential

equations:
d

dλ
ϕ(λ) = f(ϕ(λ))/(λρ), ϕ(0) = 1.

Corollary 2. Consider the classical case of homogeneous Poisson immigra-
tion (where r(t) ≡ r0) and assume the classical norming vieρt instead of Mi(t).
Then from (7) applying the substitution y = λe−rx one obtains that

(8) ψ∗(λ) = exp

{
−r0ρ

−1

∫ λ

0
[1− g(ϕ(y))]y−1dy

}
.

Hence for the single type process Y (t), putting λ = λ in (8) one gets just the
classical result obtained by Sevastyanov [4].

Remark 8. The condition r̃(ρ) < ∞ implies that r(t) could be a regularly
varying function or in general r(t) = O(eθt), θ < ρ. Notice that it also covers the
homogeneous Poisson case r(t) ≡ r0 because in this case r̃(ρ) = r0/ρ. Hence it
will be interesting to consider the case, where r(t) ∼ r0e

θt, θ ≥ ρ, r0 > 0.
Remark 9. In Theorem 3, [14], the authors obtained only the convergence

of the characteristic function.
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Theorem 7. If r(t) ∼ r0e
θt, θ ≥ ρ and r0 > 0, then

Xi(t) =
Yi(t)

Mi(t)
→ 1, t→∞, in L2 and a.s., i = 1, 2, . . . , d.

Remark 10. Notice that in Theorem 4, (ii) and (iii) of [14] the authors proved
a convergence in distribution to some constant which is in fact equivalent in this
case to the convergence in probability.

Theorem 8. Let r(t) ∼ r0e
θt, θ ≥ ρ, r0 > 0, and for j = 1, 2, . . . , d

Uj(t) = [Yj(t)−Mj(t)]/
√
Cjj(t), U(t) = (U1(t), U2(t), . . . , Ud(t)).

(i) If ρ ≤ θ ≤ 2ρ, then lim
t→∞

U(t) = U = (U1, U2, . . . , Ud) in distribution,
where U1 = U2 = · · · = Ud a.s. and U1 has N(0, 1) distribution.

(ii) If θ > 2ρ, then U(t) as t → ∞ has a limiting multidimensional normal
distribution N(0,Σ(θ)), where Σ(θ)= ||σkl(θ)|| is the covariance matrix with ele-

ments σ̃kl(θ) = C̃kl(θ)/

√
C̃kk(θ)C̃ll(θ), for k 6= l, and σ̃kk(θ) = 1 + Ãk(θ)/C̃kk(θ),

k, l = 1, 2, . . . , d.
Remark 11. Theorem 7 can be interpreted as an analogue of a Strong LLN

and Theorem 8 as a CLT.
5. Concluding remarks. The results presented in this paper complete the

study of the asymptotic behaviour of multitype Markov branching processes in
the subcritical, critical and supercritical cases. The investigation of the multitype
age-dependent processes is an open problem. It could be done as in the single
type case for Sevastyanov age-dependent model (see [17–20]).
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