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Abstract: Dedicated to the memory of Professor Richard Askey (1933–2019) and to pay tribute to the
Bateman Project. Harry Bateman planned his “shoe-boxes” project (accomplished after his death as
Higher Transcendental Functions, Vols. 1–3, 1953–1955, under the editorship by A. Erdélyi) as a “Guide
to the Functions”. This inspired the author to use the modified title of the present survey. Most of
the standard (classical) Special Functions are representable in terms of the Meijer G-function and,
specially, of the generalized hypergeometric functions pFq. These appeared as solutions of differential
equations in mathematical physics and other applied sciences that are of integer order, usually of
second order. However, recently, mathematical models of fractional order are preferred because they
reflect more adequately the nature and various social events, and these needs attracted attention to

“new” classes of special functions as their solutions, the so-called Special Functions of Fractional Calculus
(SF of FC). Generally, under this notion, we have in mind the Fox H-functions, their most widely
used cases of the Wright generalized hypergeometric functions pΨq and, in particular, the Mittag–
Leffler type functions, among them the “Queen function of fractional calculus”, the Mittag–Leffler
function. These fractional indices/parameters extensions of the classical special functions became
an unavoidable tool when fractalized models of phenomena and events are treated. Here, we try
to review some of the basic results on the theory of the SF of FC, obtained in the author’s works
for more than 30 years, and support the wide spreading and important role of these functions by
several examples.

Keywords: special functions; generalized hypergeometric functions; fractional calculus operators;
integral transforms

MSC: 33C60; 33E12; 26A33; 44A20

1. Historical Introduction

Special functions are particular mathematical functions that have more or less estab-
lished names and notations due to their importance in mathematical analysis, functional
analysis, geometry, physics, astronomy, statistics or other applications (Wikipedia: Special
Functions [1]). It might be Euler, who started to talk, since 1720, about lots of the stan-
dard special functions. He defined the Gamma-function as a continuation of the factorial,
also the Bessel functions and looked after the elliptic functions. Several (theoretical and
applied) scientists started to use such functions, introduced their notations and named
them after famous contributors. Thus, the notions as the Bessel and cylindrical functions;
the Gauss, Kummer, Tricomi, confluent and generalized hypergeometric functions; the
classical orthogonal polynomials (as Laguerre, Jacobi, Gegenbauer, Legendre, Tchebisheff,
Hermite, etc.); the incomplete Gamma- and Beta-functions; and the Error functions, the
Airy, Whittaker, etc. functions appeared and a long list of handbooks on the so-called
“Special Functions of Mathematical Physics” or “Named Functions” (we call them also “Classical
Special Functions”) were published. We mention only some of them in this survey.

As Richard Askey (to whose memory we dedicate this survey) confessed in his lectures [2]
on orthogonal polynomials and special functions: “Now, there are relatively large num-
ber of people who know a fair amount about this topic. Nevertheless, . . . most of the
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mathematicians are totally unaware of the power of the special functions. They react to a
paper which contains a Bessel function or Legendre polynomial by turning immediately
to the next paper”, and continued: “Hopefully these lectures will show ... how useful
hypergeometric functions can be. Very few facts about them are known, but these few
facts can be very useful in many different contexts. So, my advice is to learn something
about hypergeometric functions: or, if this seems too hard or dull a task, get to know
someone who knows something about them. If you already know something about these
functions, share your knowledge with a colleague or two, or a group of students. Every
large university and research laboratory should have a person who not only finds things in
the Bateman Project (i.e., [3]), but can fill in a few holes in this set of books ... In any case, I
hope my point has been made; special functions are useful and those who need them and
those who know them should start to talk to each other ... The mathematical community
at large needs the education on the usefulness of special functions more than most other
people who could use them . . . ”.

As a participant in the NATO International Conference on Special Functions and
Applications 2000 (Arizona State University), the author had the chance to witness the late
night long discussions (mainly between Richard Askey and Oleg Marichev) for the merits
and competition of the two great projects on Special Functions, on which the Computer
Algebra Systems packages Mathematica and Maple are based, the Bateman Project [3] and
the NIST Project [4] based on the Abramowitz–Stegun handbook [5] and on a more recent
one, edited by Olver–Lozier–Boisvert–Clark [6].

The author of this survey was tempted to start paying attention to Special Functions
by having the handbook [3] on her desk, while working on a M.Sc. thesis. We cite
some texts from the Preface of this encyclopedia book, known as the Bateman Project:
“. . . During his last years he (Professor Harry Bateman) had embarked upon a project
whose successful completion, he believed, would prove of great value to scientists in
all fields. He planned an extensive compilation of “special functions”—solutions of a
wide class of mathematically and physically relevant functional equations. He intended
to investigate and to tabulate properties of such functions, inter-relations between such
functions, their representations in various forms, their macro- and micro-scopic behavior,
and to construct tables of important definite integrals involving such functions . . . anyone
who has been faced with the task of handling and discussing and understanding in detail
the solution to an applied problem which is described by a differential equation is painfully
familiar with the disproportionately large amount of scattered research on special functions
one must wade through in the hope of extracting the desired information . . . ”. In the
time of Bateman’s death (1946) his notes amounted to a veritable mountain of paper.
His card-catalogue alone filled several dozen cardboard boxes (the famous “shoe-boxes”).
. . . “Bateman planned his Project as a ‘Guide to the Functions’ on a gigantic scale . . . the
great importance of such a work hardly needs emphasis . . . (this) would have made this
book as a kind of ‘Greater Oxford Dictionary of Special Functions’ (from the Introduction
to [3])”. This project resulted in publication of five important reference volumes ([3,7]),
under the editorship of Arthur Erdélyi, in association with W. Magnus, F. Oberhettinger
and F.G. Tricomi.

In 2007, the Askey–Bateman Project was announced by Mourad Ismail as a five- or
six-volume encyclopedic book series on special functions, based on the works of both
Harry Bateman and Richard Askey. Starting in 2020, Cambridge University Press began
publishing Volumes 1 and 2 of this Encyclopedia of Special Functions with series editors
Mourad Ismail and Walter Van Assche [8].

2. Preliminaries—Basic Definitions and Facts

We give here only a short background on the considered Special Functions of Fractional
Calculus (SF of FC). As for the standard special functions and same for the SF of FC, most of
them are entire functions of the complex variable z or analytic ones in disks in C. We skip
the details on defining single-valued branches of the considered functions, functional
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spaces and operators’ properties there (see our previous works, e.g., ref. [9] (§5.5.i)). In
addition, we limit ourselves to the Fox H-functions of one complex variable, as enough
general level to expose our approach and results.

Among the long list of handbooks and surveys dedicated not only to classical SF but
also to the SF of FC, we mention only few of them of the few decades: Mathai–Saxena [10],
1973; Marichev [11], 1978; Srivastava–Gupta–Goyal [12], 1982; Srivastava–Kashyap [13], 1982;
Prudnikov–Brychkov–Marichev [14], 1992; Kiryakova [9], 1994; Yakubovich–Luchko [15],
1994; Podlubny [16], 1999; Kilbas–Saigo [17], 2004; Kilbas–Srivastava–Trujillo [18], 2006;
Mathai–Haubold [19], 2008; Mathai–Saxena–Haubold [20], 2010; Mainardi [21], 2010;
Gorenflo–Kilbas–Mainardi–Rogosin [22], 2014–2020; the recent ones as Cohl–Ismail [23],
2020; Assche–Ismail [8], 2020; Mainardi [24], 2020; etc. (see more sources also the sur-
vey paper Machado-Kiryakova [25]). The basic classes of SF considered here are shortly
discussed below.

Definitions of the Basic Special Functions

We refer to the survey by Mainardi–Pagnini [26] that points out the pioneering role of
Salvatore Pincherle on developing the generalized hypergeometric functions (and, thus,
later appearing G-functions) by means of Mellin–Barnes integrals, where a historical note
from the Bateman Project [3] (Vol. 1, p. 49) is cited: “... Of all integrals which contain
Gamma functions in their integrands the most important ones are the so-called Mellin-
Barnes integrals. Such integrals were first introduced by S. Pincherle, in 1888; their theory
has been developed in 1910 by H. Mellin ... and they were used for a complete integration
of the hypergeometric differential equation by E.W. Barnes, 1908.”

Definition 1. (Ch. Fox [27], 1961, see books as [9,12,14,18], and other earlier and latest
ones) The Fox H-function is a generalized hypergeometric function, defined by means of the
Mellin–Barnes type contour integral

Hm,n
p,q

[
z

∣∣∣∣∣ (ai, Ai)
p
1

(bj, Bj)
q
1

]
=

1
2πi

∫
L

Hm,n
p,q (s) z−sds, with Hm,n

p,q (s)=

m
∏
j=1

Γ(bj+Bjs)
n
∏
i=1

Γ(1−ai−Ais)

q
∏

j=m+1
Γ(1−bj−Bjs)

p
∏

i=n+1
Γ(ai+Ais)

, (1)

with complex variable z 6= 0 and a contour L in the complex domain; the orders (m, n, p, q) are non-
negative integers so that 0 ≤ m ≤ q, 0 ≤ n ≤ p, the parameters Ai > 0, Bj > 0 are positive and
ai, bj, i = 1, . . . , p; j = 1, . . . , q are arbitrary complex such that Ai(bj+l) 6= Bj(ai−l′−1), l, l′ =
0, 1, 2, . . . ; i = 1, . . . , n; j = 1, . . . , m. Note that the integrandHm,n

p,q (s) with s 7→ −s is the Mellin
transform of the H-function (1).

The details on the properties of the Fox H-function and types of contour L can be found
in many contemporary handbooks on SF as [12,14,18], where its behavior is described in
terms of the following parameters:

ρ =
p

∏
i=1

A−Ai
i

q
∏
j=1

B
Bj
j ; ∆ =

q
∑

j=1
Bj −

p
∑

i=1
Ai; γ = lim

s→∞, s∈Li∞
Re s,

µ =
q
∑

j=1
bj −

p
∑

i=1
ai +

p−q
2 ; a∗ =

n
∑

i=1
Ai −

p
∑

i=n+1
Ai +

m
∑

j=1
Bj −

q
∑

j=m+1
Bj.

(2)

Depending on the values in (2), the H-function is a function analytic of z in disks
|z| < ρ or outside them, in some sectors, or in the whole complex plane. In particular,
the integral (1) converges (see [14] (§8.3)), if one of the following conditions is satisfied:
(1) L = Li∞: a∗ > 0, | arg z| < a∗π/2; (2) L = Li∞: a∗ ≥ 0, | arg z| = a∗π/2, γ∆ < −1− Re µ;
(3) L = L−i∞: ∆ > 0, 0 < |z < ∞, or ∆ = 0, 0 < |z| < ρ, or ∆ = 0, a∗ ≥ 0, |z| = ρ, Re µ < 0;
or (4) L = L+i∞: ∆ < 0, 0 < |z < ∞, or ∆ = 0, |z| > ρ, or ∆ = 0, a∗ ≥ 0, |z| = ρ, Re µ < 0.
The contour L−i∞ (respectively, L+i∞) is a left (respectively, right) loop in some horizontal
strip that begins the point −∞ + iϕ1 (respectively, +∞ + iϕ1) keeping all poles of the
functions Γ(bj + Bjs), j = 1, 2, ..., m on the left side, and those of Γ(1− ai− Ais), i = 1, 2, ..., n
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on its right side, and ends at the point −∞ + iϕ2 (respectively, +∞ + iϕ2), where ϕ1 < ϕ2.
The contour Li∞ starts at the point γ − i∞ and ends at γ + i∞ in a way to separate the
mentioned poles, same as for L±i∞.

For studies on the behavior of the H-function around the singular points, one can see
also the work of Karp [28], commenting and revisiting the results of Braaksma [29].

If all Ai = Bj = 1, i = 1, ..., p; j = 1, ..., q, the H-function Hm,n
p,q

[
z
∣∣∣∣ (ai, 1)p

1
(bj, 1)q

1

]
reduces

to the Meijer G-function (C.S. Meijer [30], 1936–1941; see details in [3] (Vol. 1) and all
above-mentioned books):

Gm,n
p,q

[
z
∣∣∣∣ (ai)

p
1

(bj)
q
1

]
=

1
2πi

∫
L

Gm,n
p,q (s) z−sds

=
1

2πi

∫
L

m
∏
j=1

Γ(bj + s)
n
∏
i=1

Γ(1− ai − s)

q
∏

j=m+1
Γ(1− bj − s)

p
∏

i=n+1
Γ(ai + s)

z−sds, z 6= 0. (3)

In this case, the behavior of the function (3) depends on conditions (2) with ρ = 1,
∆ = q − p, δ = m + n − p+q

2 . Although simpler than (1), the G-function is yet enough
general as it incorporates most of the Classical SF (known also as Named SF) and many
elementary functions (see lists of examples in [3] (Vol. 1), [9] (Appendix C)).

The basic SF of FC that are Fox H-functions but do not reduce to Meijer G-functions in
the general case (of irrational Aj, Bk) are the following generalized hypergeometric functions,
extending the more popular pFq-functions.

Definition 2. (see [9,14,22]) The Wright generalized hypergeometric function pΨq(z), called also
Fox–Wright function (abbrev. as F-W g.h.f. or Wright g.h.f.), is defined as:

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = ∞

∑
k=0

Γ(a1 + kA1) . . . Γ(ap + kAp)

Γ(b1 + kB1) . . . Γ(bq + kBq)

zk

k!
(4)

= H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1, A1), . . . , (1− ap, Ap)
(0, 1), (1− b1, B1), . . . , (1− bq, Bq)

]
. (5)

It was introduced and studied by Sir Edward Maitland (E.-M.) Wright in a series of his works
(e.g., [31,32], pp. 1933–1940). In denotations for the parameters (2), the power series (4) defines an
entire function of z if ∆ > −1; it is absolutely convergent in the disk {|z|<ρ} for ∆ = −1; and it
is the same for |z|=ρ if Re (µ)>1/2, (see details, for example, in [33]).

When all A1 = · · · = Ap = 1, B1 = · · · = Bq = 1, the Wright g.h.f. reduces to the
generalized hypergeometric pFq-function which itself is a case of the G-function (3) (for early
details, see [3] (Vol. 1)):

pΨq

[
(a1, 1),. . ., (ap, 1)
(b1, 1),. . ., (bq, 1)

∣∣∣∣z] = c pFq(a1,. . ., ap; b1,. . ., bq; z) =
∞

∑
k=0

(a1)k . . . (ap)k

(b1)k . . . (bq)k

zk

k!
(6)

= G1,p
p,q+1

[
−z
∣∣∣∣ 1− a1, . . . , 1− ap

0, 1− b1, . . . , 1− bq

]
;

where

c =

[
p

∏
i=1

Γ(ai) /
q

∏
j=1

Γ(bj)

]
, (a)k := Γ(a + k)/Γ(a).

In general (that is, except in certain integer values of parameters when the series
terminates or fails to make sense), pFq converges for all finite z if p ≤ q, converges for



Mathematics 2021, 9, 106 5 of 40

|z| < 1 if p = q + 1 and diverges for all z 6= 0 if p > q + 1. The simplest particular cases are
the Gauss hypergeometric function 2F1, the Kummer (confluent hypergeometric) function
1F1 and the Bessel type functions 0F1.

A very special and important case of SF of FC, as a H-function and also as a Wright
pΨq-function, is the “Queen”-function of FC (see [34]), namely the Mittag–Leffler (M-L)
function, which has recently enjoyed many extensions (along with many basic elementary
and known SF as its particular cases) and wide applications in solutions of fractional order
models. This is the topic of Sections 4 and 5.

3. On the Use of Some G- and H-Functions in Theory of Integral Transforms and
Special Functions

The Meijer G-function includes most of elementary and special functions (the classical
ones) as particular cases, one can find lists of these, say in [3] (Vol. 1), [9] (Appendix C), [11,14].
Naturally, the more general Fox H-function incorporates all cases of the G-functions, and
much more the SF of FC. Here, we attract readers’ attention to the use of two basic classes
of G- and H-functions with specific orders: Gm,0

0,m , respectively, Hm,0
0,m with m = q, n = p = 0;

and Gm,0
m,m, respectively, Hm,0

m,m with m = p = q, n = 0.

3.1. Use of G- and H-Functions as Kernels of Laplace Type Integral Transforms

The Laplace transform

L{ f (t); s} =
∞∫

0

exp(−st) f (t)dt, Re s > µ, (7)

is usually considered for functions f (t) of the form{
f (t) = tp f̃ (t), p > −1, f̃ ∈ C[0, ∞); f (t) = O(exp µt), t→ ∞, µ ∈ R

}
.

Definition 3. The G- and H-transforms (see, for example [35], also [15,36]) of the form

G{ f (t); s} =
∞∫

0

Gm,n
p,q

[
st

∣∣∣∣∣ (aj)
p
1

(bk)
q
1

]
f (t)dt, resp. H{ f (t); s} =

∞∫
0

Hm,n
p,q

[
st

∣∣∣∣∣ (aj, Aj)
p
1

(bk, Bk)
q
1

]
f (t)dt,

are said to be generalized integral transforms of Laplace type when

δ = m + n− p + q
2

> 0, resp. a∗ =
n

∑
j=1

Aj −
p

∑
j=n+1

Aj +
m

∑
k=1

Bk −
q

∑
k=m+1

Bk > 0,

and are considered in suitable functional spaces of “transformable” functions.

In 1958, Obrechkoff [37] introduced a far reaching generalization of the Laplace
and Meijer transforms, particular cases of which were studied by many authors years
later, mainly for the purposes of operational calculi for different classes of differential
operators. His aims were to extend the theorem of S. Bernstein for absolutely monotonic
functions representable by means of Laplace–Stieltjes transforms, when the conditions for
nth derivatives are replaced by similar ones with more general differential operators. The
Obrechkoff transform was defined as

F (s) =
∞∫

0

Φ(st) f (t)dt

with a kernel Φ(s) given by the integral representation

Φ(s) =
∞∫

0

· · ·
∞∫

0

uβ1
1 · · · u

βp exp
(
−u1 − · · · − up −

s
u1 . . . up

)
du1 · · · dup. (8)



Mathematics 2021, 9, 106 6 of 40

Later, in 1966, Dimovski [38] introduced a class of differential operators of Bessel
type and of arbitrary integer order m > 1, called by the author (as for example in [9]) as
hyper-Bessel differential operators. They have the alternative representations

B f (t) = tα0
d
dt

tα1
d
dt
· · · tαm−1

d
dt

tαm f (t)

= t−β Pm

(
t

d
dt

)
f (t) = t−β

m

∏
k=1

(
t

d
dt

+ βγk

)
f (t), t > 0, (9)

with arbitrary parameters α0, α1, ..., αm, β := m− (α0 + α1 + ... + αm) > 0, γk := 1
β (αk +

αk+1 + ... + αm), k = 1, ..., m, Pm a polynomial of degree m. Evidently for m = β = 2,
γ1,2 = ± ν

2 , one has the second-order Bessel differential operator Bν with the Bessel function
y(t) = Jν(t) satisfying Bνy(t) = −y(t). For other choices of parameters, many other
particular differential operators appear in equations of mathematical physics, operational
calculus and applied analysis. To combine the Mikusinski type algebraic approach to
operational calculus for (9) with a transform method, Dimovski used a modified Obrechkoff
transform (we shortly call it also Obrechkoff transform), defined as

O{ f (t); s} = β

∞∫
0

tβ(γm+1)−1 K
[
(st)β

]
f (t)dt = β

∞∫
0

λ(t, s) f (t)dt,

with the kernel-function

K(s) =
∞∫

0

. . .
∞∫

0

exp
(
−u1 − . . .− um−1 −

s
u1 . . . um−1

) m

∏
k=1

uγm−γk−1
k du1 . . . dum−1. (10)

In [9] (Ch.3), also in other works like [39], we proved that the kernel-functions (8)
and (10) of the Obrechkoff transforms are representable as Meijer’s Gm,0

0,m-functions, namely
(for a proof see, e.g., Lemma 1 of [39]):

Φ(s)=Gp+1,0
0,p+1

[
s
∣∣∣∣ −−
(βk+1)p

1 , 0

]
, λ(t, s)= s−β(γm+1)+1 Gm,0

m,m

[
(st)β

∣∣∣∣∣ −−
(γk− 1

β+1)m
1

]
. (11)

Therefore, the Obrechkoff transform appears to be a G-transform of Laplace type (because
δ = m/2 > 0), and its theory has been further developed in whole details (convolution
theorems, real and complex inversion formulas, images, examples, etc.) more easily by
using the tools of the G-functions (see for example [9] (Ch.3), [39]).

Another not observed fact was that functions of the form of kernels (8) and (10) of
the Obrehkoff transform were studied yet in 1937 by Erdélyi [40]. He might be the first
who derived a relation between the 0Fm−1-functions (what we mention next as hyper-Bessel
functions) and these kernel-functions (formula (7.4) in [40]). However, at the time of
Erdélyi’s work [40], 1937, the next step in introducing the G-functions had not yet been
done by Meijer [30], 1946. Obrechkoff himself made no attempts to identify the kernel-
function Φ(s) with some known special functions and studied its properties “ad hoc”. Thus,
the Gm,0

0,m-functions seemed to appear in use for the hyper-Bessel operators and related
integral transforms in author’s works since 1980 (see [9] (Ch.3), [41]).

Next, the generalized Obrechkoff transform (a fractionalized analog) was introduced and
studied by Kiryakova [9] (Ch.5), Al-Mussalam–Kiryakova–Tuan [42] and Yakubovich–
Luchko [15], with the Fox Hm,0

m,m-function as kernel:

B(s) = B(ρi),(µi)
{ f (t); s} =

∞∫
0

Hm,0
0,m

[
st

∣∣∣∣∣ −−
(µi − 1

ρi
, 1

ρi
)m

1

]
f (t)dt. (12)

We call it as multi-index Borel–Dzrbashjan transform, because for m = 1 it is reduced to
the Borel transform

B(ρ),(µ){ f (t); s} =
∞∫

0

exp(−sρtρ) tµρ−1 f (t)dt (13)
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whose kernel appears to be a H1,0
0,1 -function. This integral transform was shown by Dzr-

bashjan [43,44] to have inversion formula involving the Mittag–Leffler function E1/ρ,µ.
The generalized Obrechkoff transform (12) is a tool in operational calculus for fractional
multi-order analogs of hyper-Bessel differential operators (9), formally of the kind

D(ρi),(µi)
f (t) = t−1

m

∏
i=1

(
t1+(1−µi)ρi D1/ρi

tρi t(µi−1)ρi
)

f (t), (14)

in the same way as the Laplace transform, the Obrechkoff transform and its particular cases
serve for the classical differentiation, respectively for the hyper-Bessel operators (9).

In the studies on these Laplace type G- and H-integral transforms, we used essentially
the theory of the G- and H-functions, mainly of the cases of orders (m, 0; 0, m). Note that,
for example, Gm,0

0,m(s) is an analytic function in the sector | arg s| < (m/2)π (where in
this case δ = m/2 > 0). Some additional necessary results on these G- and H- kernel
functions were derived by Kiryakova [9] (Appendix), as Lemmas B.1–B.4, Corollaries
B.5–B.7, Formula (E.21), etc.

From the known representations of some elementary and special functions in G- and
H-terms, one observes many particular cases of simpler Laplace type integral transforms.
Namely, the Laplace and Borel–Dzrbashjan transforms (7) and (13) are Obrechkoff trans-
form (10) and multi-index Borel–Dzrbashjan transform (12), respectively, for m = 1, since

exp(−s) = G1,0
0,1

[
s
∣∣∣∣ −−0

]
, exp(−sρtρ) = H1,0

0,1

[
st

∣∣∣∣∣ −−
(µ− 1

ρ , 1
ρ )

]
.

For m = 2, we have the classical Meijer transform as a case of the Obrechkoff transform,

related to the Bessel differential operator Bν =
d
dt

t1−ν d
dt

tν:

Kν{ f (t); s} =
∞∫

0

√
st Kν(t) f (t)dt, since Kν(s) =

1
2

G2,0
0,2

[
s2

4

∣∣∣∣ −−ν
2 , −ν

2

]
, (15)

the kernel Macdonald function Kν(s) has such a G-function representation.
In a series of papers [45,46], Krätzel introduced a generalization of the Meijer transform

(again with m = 2), and further a more general one of the type of Obrechkoff transform for
arbitrary integer m > 1,

L(m)
ν { f (t); s} =

∞∫
0

λ
(m)
ν [m(st)1/m] f (t)dt :=

∞∫
0

Λ(s, t) f (t)dt. (16)

He used the transformation (16) for operational calculus for the following (hyper-
Bessel type) operator or order m > 1:

B(m)
ν =

d
dt

t
1
m−ν

(
t1− 1

m
d
dt

)m−1
tν+1− 2

m with β = 1, γ1 = 0, γk = ν +
k− 2

m
, k = 2, ..., m. (17)

As expected, we can represent the Krätzel kernel in terms of the G-function corre-
sponding to (11):

Λ(s, t) =
∞∫

0

· · ·
∞∫

0

[
m−1

∏
k=1

uν−1+ k−1
m

k

]
exp

(
−u1 − ...− um−1 −

st
u1...um−1

)
du1...dum−1

= s−ν−1+ 2
m Gm,0

0,m

[
st
∣∣∣∣ −−

0, (ν + k−2
m )m

2

]
. (18)

Krätzel started from the simple case m = 2 with a kernel of the form
∞∫
0

uγ−1 exp(−u−

st/u)du (with some variations as t 7→ tρ, ρ > 0), close to the Macdonald function (15),
which is often called as the Krätzel function. Then, many other authors continued to study
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it and established its relations to hypergeometric functions. We can refer to such works
by Kilbas–Saxena–Trujillo [47], Mathai–Haubold [48], etc. In a paper by Glaeske–Kilbas–
Saigo [49], a fractionalized analog of the Krätzel transform (7) was introduced, where
instead of integer m > 1 in the transformation (16), they took a (fractional) parameter
ρ > 0. Then, naturally, its kernel is represented as a H-function (due to some variations
in the definition, it appears as H2,0

1,2 instead of H2,0
0,2 ). Relations with operators of fractional

calculus are considered, but one should mention that such an integral transform is analog
of the generalized Obrechkoff transform (12) for a fractional order differential operator of
the form (14). In all these mentioned cases, the kernel functions have the form of (8) as
also studied earlier by Erdélyi [40]. We conclude here the list of cases of the Obrechkoff
transform with emphasize on the works by Ditkin–Prudnikov (as [50]) on operational calculi
for (hyper-Bessel) operators of the form

B1 =
d
dt

t
d
dt

, and more generally, Bm =
d
dt

t
d
dt

t
d
dt
· · · d

dt
= t−1

(
t

d
dt

)m
, m ≥ 2. (19)

For m = 2, the corresponding integral transform is a variant of the Meijer transform
(with ν = 0), and in the general case m > 1, Ditkin and Prudnikov [50] made use of an
integral transform of the form

B{ f (t); s} = 2
∫ ∞

0
E0m(st) f (t)dt, where we can represent the kernel E0m as a Gm,0

0,m − function.

For more details on the Obrechkoff type transforms with kernels Gm,0
0,m and Hm,0

0,m , their
properties, images and special cases, see Kiryakova [9] (Ch.3, Ch.5), [39].

3.2. Use of G- and H-Functions as Kernels in Generalized Fractional Calculus

For basic background on Fractional Calculus (FC) as theory of operators of integration
and differentiation of arbitrary (fractional) order, and its closely related topics as special func-
tions (SF) and integral transforms, we refer to the books by Samko–Kilbas–Marichev [51],
Podlubny [16], Kilbas–Srivastava–Trujillo [18], and Yakubovich–Luchko [15], as well as
one by the author [9], among many others. For wider list, see, for example, Machado–
Kiryakova [25]. In our works, and mainly for the needs of the SF theory, we consider
the Riemann–Liouville (R-L) type integrals and their corresponding derivatives of R-L
and Caputo type, respectively, their generalizations involving G- and H-functions in the
kernels. Note that we concentrate on the left-hand side variants and skip details (in most
cases being similar) for the Weyl-type, right-hand sided operators.

The basic tools in our studies are the fractional integration operators of the form
Ĩ f (z) = zδ0 Iγ,δ

β f (z), δ0 ≥ 0, to which we refer as “classical fractional integrals”, where

Iγ,δ
β f (z)=

1
Γ(δ)

1∫
0

(1− σ)δ−1σγ f (zσ
1
β ) dσ=

z−β(γ+δ)

Γ(δ)

z∫
0

(zβ − ξβ)δ−1 ξβγ f (ξ)d(ξβ), (20)

is the Erdélyi-Kober operator (E-K) of integration of order δ ≥ 0, depending on two additional
parameters γ ∈ R, β > 0. In this general form, it is introduced in Sneddon’s works [52] and
considered in some books (for example, [9] (Ch.2), [15,18,51]). The earlier versions with
β = 1, β = 2 are due to Kober and Erdélyi. The R-L operator of integration Rδ appears as a
case with one parameter only, for γ=0, β=1, δ0 = δ ≥ 0,

Rδ
0+,z f (z) := Rδ f (z) = zδ I0,δ

1 f (z); conversely, Iγ,δ
1 f (z) = z−γ−δRδzγ f (z). (21)

The E-K fractional derivative Dγ,δ
β , corresponding to (20), is defined explicitly almost

simultaneously in the works of Kiryakova [9] (Ch.2) and Yakubovich–Luchko [15] (Ch.3).

It serves as an interpretation of the formal inversion formula
{

Iγ,δ
β

}−1
= Iγ+δ,−δ

β , namely:

Dγ,δ
β f (z) = Dn Iγ+δ,n−δ

β f (z) =
n

∏
j=1

(
1
β

z
d
dz

+ γ + j
)

Iγ+δ,n−δ
β f (z), n− 1 < δ ≤ n, n ∈ N. (22)
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Here, the simplest integer order derivative (d/dz)n in the definition of the R-L frac-

tional derivative Dδ f (z) :=
(

d
dz

)n
Rn−δ f (z), is replaced by an auxiliary differential

operator Dn of integer order, a polynomial of (z d/dz). The Caputo-type R-L and E-K frac-
tional derivatives are defined in the same way but with exchanged order of the nonnegative
order integration and the integer order differentiation (see, e.g., [53]).

The notion for generalized operators of fractional integration was introduced by Kalla in
his 1969–1979 works (see the survey [54]), who suggested their common form

I f (z) =
1∫

0

Φ(σ) σγ f (zσ)dσ = z−γ−1
z∫

0

Φ(
ξ

z
)ξγ f (ξ)dξ,

where Φ(σ) can be an arbitrary continuous (analytical) function for which the integral
makes sense. The idea of such generalized fractional calculus is to replace the elementary
function in the kernel of R-L and E-K operators (20) (and, say, the logarithmic kernel in the
Hadamard integral) by some special function. Variants with the Gauss-, Bessel-, Whittaker-,
arbitrary G- and H-functions appeared in papers of several authors (see historical details
and references in [54,55]). If such a special function Φ is taken to be too general or too
specific, only some formal operational rules for the corresponding fractional calculus can
be derived. The lucky hint in our studies was to choose suitably the kernel-functions Φ to
be of the form of Gm,0

m,m- and Hm,0
m,m-functions. Then, the operators of the generalized fractional

calculus happen to be also commutative products of classical operators of FC, namely of
finite number of Erdélyi-Kober operators. Thus, the tools of the special functions and the
wide use of the classical FC are combined into a Generalized Fractional Calculus (GFC) in
Kiryakova [9], with developed full theory and many illustrated applications in different
areas of analysis, differential equations, special functions and integral transforms. Below,
we briefly review the basic definitions and few results on this GFC.

Definition 4. (Kiryakova, [9] (Ch.5)) We define the multiple E-K integral (of multiplicity m>1),
by means of the real parameters’ sets (δ1≥0, ..., δm≥0) (multi-order of integration) (γ1, ..., γm)
(multi-weight) and (β1>0, ..., βm >0) (additional multi-parameter), as:

I(γk),(δk)
(βk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + δk + 1− 1
βk

, 1
βk
)m

1
(γk + 1− 1

βk
, 1

βk
)m

1

]
f (zσ)dσ, (23)

if
m
∑

k=1
δk > 0; and as the identity operator: I(γk),(0,...,0)

(βk),m
f (z) = f (z), if δ1 = δ2 = · · · = δm = 0.

It is important to mention that, for the particular conditions (2), the above ker-
nel Hm,0

m,m-function is analytic function in the unit disk and Hm,0
m,m(σ) ≡ 0 for |σ| > 1

(Kiryakova, ref. [9]).

In the case of all equal βs: β1=β2= ...=βm =: β > 0, integral (23) has a simpler form
with a Meijer Gm,0

m,m-function ([9] (Ch.1)), which is also analytic in unit disk and Gm,0
m,m(σ) ≡ 0

for |σ| > 1,

I(γk),(δk)
(β,...,β),m f (z) := I(γk),(δk)

β,m f (z)=
1∫

0

Gm,0
m,m

[
σ

∣∣∣∣ (γk+δk)
m
1

(γk)
m
1

]
f (zσ1/β)dσ=

[
m

∏
k=1

Iγk ,δk
β

]
f (z).

(24)
In both cases of (23) and (24), the operators of the form

Ĩ f (z) = zδ0 I(γk),(δk)
(βk),m

f (z), Ĩ f (z) = zδ0 I(γk),(βk)
β,m f (z), with δ0 ≥ 0, (25)

are called generalized fractional integrals of multi-order (δ1, ..., δm).

The important decomposition property (for proof, see for example, [9] (Th.1.2.10,
Th.5.2.1), says that the same GFC integrals (23) and (24) can be represented, instead of
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using the kernel H- and G-functions, by repeated integral representations for the commutative
product of classical E-K operators (20):

I(γk),(δk)
(βk),m

f (z) :=

[
m

∏
k=1

Iγk ,δk
βk

]
f (z)

=

1∫
0

· · ·
1∫

0

[
m

∏
k=1

(1− σk)
δk−1σ

γk
k

Γ(δk)

]
f
(

z σ
1/β1
1 . . . σ

1/βm
m

)
dσ1 . . . dσm. (26)

In the book [9] and subsequent papers, we provided a full set of operational properties
of the operators (23) and (24) that justify their names as operators of GFC, as semigroup
property, formal inversion formula, reduction to identity or to the conventional integration
operators for special parameters’ choice.

Analogously to the R-L and E-K fractional derivatives, we define the corresponding
generalized fractional derivatives. The auxiliary differential operator Dη is chosen on the base
of the specific differential relations for the kernel function, derived for the G-functions, and
especially for Gm,0

m,m by Kiryakova [9] (App., Lemmas B.3, B.4, Cor. B.6) and for Hm,0
m,m by

Kiryakova [9] (Ch.5, Lemma 5.1.7)and Kiryakova–Luchko [53] (Lemma 18).

Definition 5. (Kiryakova [9]) Let Dη be the following polynomial of z(
d
dz

) of degree η1 + ...+ ηm:

Dη =

[
m

∏
r=1

ηr

∏
j=1

(
1
βr

z
d
dz

+ γr + j
)]

, with ηk :=

[δk ] + 1, for noninteger δk,
δk , for integer δk,

k = 1, . . . , m. (27)

The multiple (m-tuple) Erdélyi–Kober fractional derivative of R-L type of multi-order (δ1 ≥
0, . . . , δm ≥ 0) is defined by means of the differ-integral operator:

D(γk),(δk)
(βk),m

f (z) := Dη I(γk+δk),(ηk−δk)
(βk),m

f (z) = Dη

1∫
0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γk + ηk + 1− 1
βk

, 1
βk
)m

1

(γk + 1− 1
βk

, 1
βk
)m

1

]
f (zσ) dσ. (28)

Similarly, the Caputo-type generalized fractional derivative was introduced by Kiryakova and
Luchko [53], as

∗D(γk),(δk)
(βk),m

f (z) = I(γk+δk),(ηk−δk)
(βk),m

Dη f (z). (29)

In the case β1 = ... = βm := β > 0, simpler representations involving the Meijer
G-function hold for the R-L and Caputo-type “derivatives” which correspond to the
generalized fractional integral (24):

D(γk),(δk)
β,m f (z) = Dη I(γk+δk),(ηk−δk)

β,m f (z) =

[
m

∏
r=1

ηr

∏
j=1

(
1
β

z
d
dz

+γr+ j
)]

I(γk+δk),(ηk−δk)
β,m f (z),

∗D(γk),(δk)
β,m f (z) = I(γk+δk),(ηk−δk)

β,m Dη f (z). (30)

More generally, the differ-integral/integro-differential operators of the form

D̃ f (z) = D(γk),(δk)
(βk),m

z−δ0 f (z) = z−δ0 D
(γk−

δ0
β ),(δk)

(βk),m
f (z), and

∗̃D f (z) = ∗D(γk),(δk)
(βk),m

z−δ0 f (z) with δ0 ≥ 0, (31)

are all called generalized (multiple, multi-order) fractional derivatives (of R-L or Caputo type).

Next, in Section 8, we often use also the notion of (generalized) fractional differintegrals.
We have in mind either (generalized) fractional integrals or derivatives or compositions
of some E-K fractional integrals and some E-K fractional derivatives. These appear as
meanings of operators (26) when part of the order’s δs are non-negative and the other parts
are negative.
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For the functional spaces (here, we mainly limit to weighted analytical functions of
complex z), mapping properties, long list of operational properties, images, etc., we refer,
for example, to the work of Kiryakova [9,53,56].

We use also a further extension of the generalized fractional integrals (23), based on
the so-called Wright–Erdélyi–Kober (W-E-K) operator of fractional integration (see [57]), with
parameters as in E-K integral: δ ≥ 0, γ real, β > 0 and additional parameter λ > 0, where
the Wright–Bessel (Bessel–Maitland) function of the form Jµ

ν (see (57)) in Section 5) is used
in the kernel:

Wγ,δ
β,λ f (z) := Iγ,δ

β,λ,1 f (z) = λ

1∫
0

σλ(γ+1)−1 J−λ/β

γ+δ−λ(γ+1)/β
(σλ f (zσ)dσ. (32)

One can show that, for λ = β, the above kernel-function reduces to the kernel of the
E-K operator, therefore the W-E-K integration becomes the E-K one. Using compositions of
W-E-K operators (32), Kalla and Galue [57] tried to develop a next step in the generalized
fractional calculus with Hm,0

m,m kernel-functions that have the same structure but different
parameters βks and λks in upper and low rows. Some revisions and properties of these
operators were further provided by Kiryakova [58–60].

Definition 6. For integer m ≥ 1 and real parameters δk ≥ 0, γk, βk > 0, λk > 0, βk ≥ λk,
k = 1, ..., m, we define the multiple Wright–Erdélyi–Kober (W-E-K) fractional integrals, as follows:

Ĩ f (z) = I(γk),(δk)
(βk),(λk),m

f (z) :=
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣∣ (γi + δi + 1− 1
βi

, 1
βi
)m

1

(γi + 1− 1
λi

, 1
λi
)m

1

]
f (zσ)dσ =

[
m

∏
k=0

Wγk ,δk
βk ,λk

]
f (z), (33)

if
m
∑

i=1
δi > 0; and as the identity operator: Ĩ f (z) = f (z), when δ1 = δ2 = . . . = δm = 0 and

λk =βk, k = 1, . . . , m. For γk > −1, k = 1, ..., m and the above-mentioned conditions on the other
parameters, the operators (33) are shown to preserve the space of analytic functions in disks or in
starlike complex domains.

If βk = λk, k = 1, ..., m, the “new” operators of GFC (33) coincide with operators (23).
The corresponding generalized fractional derivatives D(γk),(δk)

(βk),(λk),m
are defined by means of

differential-integral operators similar to those for (28).
Here, we mention some few of the numerous special cases of the above defined GFC

operators, to emphasize the particular elementary and special functions appearing in their
kernels, and thus as cases of the kernel Hm,0

m,m- and Gm,0
m,m-functions.

For m = 1, we have the kernel-functions:

H1,0
1,1

[
σ

∣∣∣∣ (γ + δ, 1/β)
(γ, 1/β)

]
= β σβ−1G1,0

1,1

[
σβ

∣∣∣∣ γ + δ
γ

]
= β

σβγ+β−1(1− σβ)δ−1

Γ(δ)
, (34)

thus the generalized fractional integrals and derivatives (23) and (28) reduce to the cor-
responding E-K (20) and (22) and R-L operators (21): Iγ,δ

β,1 = Iγ,δ
β , Dγ,δ

β,1 = Dγ,δ
β , Rδ and Dδ.

Many other integration and differentiation operators introduced and used by different
authors appear as their special cases.

In the case m = 2, the kernel functions H2,0
2,2 and G2,0

2,2 reduce to a Gauss hypergeometric
function or its variations, for example:

H2,0
2,2

[
σ

∣∣∣∣∣ (γ1 + δ1 + 1− 1
β , 1

β ), (γ2 + δ2 + 1− 1
β , 1

β )

(γ1 + 1− 1
β , 1

β ), (γ2 + 1− 1
β , 1

β )

]
= G2,0

2,2

[
σβ

∣∣∣∣ γ1 + δ1, γ2 + δ2
γ1, γ2

]

=
σβγ2 (1− σβ)δ1+δ2−1

Γ(δ1 + δ2)
2F1(γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ). (35)
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Therefore, the generalized fractional integrals in this case are known as hypergeometric
fractional integrals; some of them were introduced and studied by, e.g. Love, Saxena, Saigo
and Hohlov (see [54]).

For m = 3, we have as special case the Marichev–Saigo–Maeda (M-S-M) operators of FC,
the integration operators introduced and studied by Marichev (1974) and Saigo et al. (1996,
1998) (see [55]). This is because their kernel-function, the Appel F3 function (Horn function)

F3
(
a, a′, b, b′, c, z, ξ

)
=

∞

∑
m,n=0

(a)m(a′)n(b)m(b′)n

(c)m+n

zmξn

m!n!
, |z| < 1, |ξ| < 1(see, e.g., [3,14]),

is a case of the GFC kernel-functions H3,0
3,3 and G3,0

3,3 (see, for example, [14], §8.4.51, (2)):

(1− σ)c−1

Γ(c)
F3

(
a, a′, b, b′, c, 1− 1

σ
, 1− σ

)

= G3,0
3,3

[
σ

∣∣∣∣∣ a + b, c− a′, c− b′

a, b, c− a′ − b′

]
= H3,0

3,3

[
σ

∣∣∣∣∣ (a + b, 1), (c− a′, 1), (c− b′, 1)
(a, 1), (b, 1), (c− a′ − b′, 1)

]
, Re c > 0. (36)

Let m ≥ 1 be an arbitrary integer, but all δs be equal integers, say δ1 = ... = δm = 1.
Then, from (24), we obtain the hyper-Bessel integral operators L (we denote below their kernel
by G1) that correspond to the hyper-Bessel differential operators (9) of arbitrary (higher)
integer order m > 1. In practice, these are operators of integer multi-orders (1, 1, ..., 1),
but their fractional powers Lλ, λ > 0 have been represented (Kiryakova [9,41]) as GFC
integrals of multi-order (λ, λ, ..., λ) with kernels Gλ, where

G1(σ) = Gm,0
m,m

[
σ

∣∣∣∣ (γk + 1)m
1

(γk)
m
1

]
, Gλ(σ) = Gm,0

m,m

[
σ

∣∣∣∣ (γk + λ)m
1

(γk)
m
1

]
.

The kernel of Lλ in the form Gλ appeared also in the work of McBride [61]. These
expressions gave us the hint how to introduce our GFC, replacing (λ, λ, ..., λ) by arbitrary
fractional multi-order (δ1, δ2, ..., δm), explanations are in [41]. We can mention also the
Gelfond–Leontiev [62] operator (47) generated by the multi-index M-L functions (see next
section and the works by Kiryakova [63,64]), as a more general example of operators of
fractional multi-order where the Fox Hm,0

m,m-functions serve as kernels.
The H-functions of the form Hq,0

p,q, of which the kernel functions of (23) are cases with
p = q = m, were studied in series of papers by Karp. In [28], he revisited the Braaksma
results [29] for the H-function’s behavior in the neighborhood of the singular points
and its analytical continuation. There he commented also works on applications of H-
functions not only in fractional calculus, but also widely in statistics, including the book by
Mathai–Saxena–Haubold [20].

In relation to the use of the Gm,0
m,m-functions (the kernel-functions of GFC integrals (24))

in applications to statistics, it is interesting to note that, in 1958, Kabe [65] explored them in
statistics, as density functions of a random variable. He also distinguished the cases m = 1
and m = 2 (mentioned above) related to the kernel-functions of the E-K and of the hyper-
geometric fractional integrals, respectively, (34) and (35). Studies on the closely related
Gm,1

m+1,m+1-functions as R-L integrals of Gm,0
m,m can be found in the work by Karp [66].

4. Mittag–Leffler Functions and Their Extensions

The Mittag–Leffler (M-L) function Eα(z) was introduced by G. Mittag–Leffler ([67],
1902–1905), extended to 2-parameters as Eα,β(z) by A. Wiman [68] and studied later by P.
Humbert and R.P. Agarwal [69]. It was presented in the Bateman Project [3], Vol. 3 (1954),
in a chapter for “Miscellaneous Functions”. However, for long time, it was ignored in the
other handbooks on special functions because the applied scientists suffered from the lack
of tables for its Laplace transforms. Although arising from the studies of Mittag–Leffler
on a problem not related to fractional calculus, but on analytical continuation of series to
maximal starlike domain (Mittag–Leffler star), nowadays, the M-L function is the most
popular and most exploited SF of FC. It was titled as the “Queen”-function of FC by Gorenflo
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and Mainardi in 1997 (see also the very recent survey by Mainardi [34]). The basic theory
and more details, can be found, for example, in [22,43] (see also, e.g., [9,16,70,71]).

Definition 7. The Mittag–Leffler (M-L) functions Eα and Eα,β, are entire functions of order
ρ = 1/α and type 1, defined by the power series

Eα(z) =
∞

∑
k=0

zk

Γ(αk + 1)
, Eα,β(z) =

∞

∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0. (37)

As “fractional index” (α > 0) analogs of the exponential and trigonometric functions
that satisfy ODEs of first and second order (α = 1, 2), the M-L functions serve as solutions
of fractional order differential and integral equations. An example is the Rabotnov function,
called also “fractional exponent”, y(z) = zα−1Eα,α(zα) that solves the simplest fractional
order differential equation Dαy(z) = y(z). Let us refer also to the pioneering work by
Hille–Tamarkin [72], where the solution of the Abel integral equation of the second kind
was provided in terms of a M-L function. As far as the Laplace transform images are
mentioned, one can find these for the M-L type functions and their kth derivatives in the
work of Podlubny ([16] (S.1.2.2)):

L
{

zαk+β−1 E(k)
α,β(±λzα)); s

}
=

k! sα−β

(sα ∓ λ
)k+1, Re s > |λ|1/α.

A Mittag–Leffler type function with three indices, known as the Prabhakar function [73],
is also often studied and used (for details, see [22,70,71,74,75] and other contemporary
books and surveys on M-L type functions):

Eγ
α,β(z) =

∞

∑
k=0

(γ)k
Γ(αk + β)

zk

k!
, α, β, γ ∈ C, Re α > 0; (38)

where (γ)0 = 1, (γ)k = Γ(γ + k)/Γ(γ) denotes the Pochhammer symbol. Its Laplace
transform has the form

L
{

Eγ
α,β(λzα); s

}
=

s−β

(1− λs−α)γ
.

For γ = 1, we get the M-L function Eα,β, and, if additionally β = 1, then it is Eα.
These M-L type functions are simple cases of the Wright g.h.f. and of the H-function,

namely:

Eα,β(z) = 1Ψ1

[
(1, 1)
(β, α)

∣∣∣∣z] = H1,1
1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
,

Eγ
α,β(z) =

1
Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

∣∣∣∣z] = H1,1
1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
.

Another generalization of M-L function (37) with additional parameters, for exam-
ple l ∈ C, µ ∈ R, was considered by Gorenflo–Kilbas–Rogosin [76], and its relations to
FC operators:

Eα,µ,l(z) =
∞

∑
k=0

ckzk, with ck =
k−1

∏
j=0

Γ[α(jµ + l) + 1]
Γ(α(jµ + l + 1) + 1]

.

A vector index extension of (37) appeared in the works by Luchko et al. (e.g., [15,77,78])
on operational calculus’ methods for some fractional order PDE and multi-term FO differ-
ential equations. Under the name multi-index (multiple) M-L function, it was introduced by
Kiryakova [63,79] using a different approach, as to be the generating function of Gelfond–
Leontiev generalized integration and differentiation operators (47) (see Definition 9) and
inspired from the paper by Dzrbashjan [44] on M-L type function with 2× 2 indices. Fur-
ther, this class of functions were studied in details by Kiryakova [59,80], Kilbas–Koroleva–
Rogosin [81], Paneva–Konovska [74] and many other followers. Luchko et al. also consid-
ered multivariate analogs of the so-called vector index M-L functions [78].
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Definition 8. (Kiryakova [59,80]) Let m > 1 be an integer, (α1 > 0, α2 > 0, . . . , αm > 0)
and (β1, β2, . . . , βm) be arbitrary real parameters. By means of these sets of “multi-indices”, the
multi-index Mittag–Leffler function (abbrev. as multi-M-L f.) is defined as:

E(αi),(βi)
(z) :=E(m)

(αi),(βi)
(z) =

∞

∑
k=0

zk

Γ(α1k + β1) . . . Γ(αmk + βm)
. (39)

Under weakened restrictions on αs (or their real parts) not to be obligatory all non-negative,
the study was extended by Kilbas et al. [81].

As a further extension of both Prabhakar function (38) and of the (2m) multi-index
M-L functions (39), Paneva–Konovska [74,82] introduced and studied the so-called (3m)-
parametric (multi-index) Mittag–Leffler functions, similar to (39) but with additional set of
parameters (γ1, ..., γm):

E(γi),m
(αi), (βi)

(z) =
∞

∑
k=0

(γ1)k . . . (γm)k
Γ(α1k + β1) . . . Γ(αmk + βm)

zk

(k!)m . (40)

For m = 1, one has the Prabhakar function, and, for γ1 = ... = γm = 1, these are (39).
The Mellin transforms of (39), (40) and their particular cases can be found in [83].

The so-called Le Roy type function has been an object of several recent studies, e.g., by
Gerhold [84], Garra–Polito [85], Garrappa–Rogosin–Mainardi [86], Garrappa–Orsingher–
Polito [87], as a new special function

F(γ)
α,β (z) =

∞

∑
k=0

zk

[Γ(αk + β)]γ
, (41)

which is an entire function of z ∈ C for parameters Re (α) > 0, β ∈ R and γ > 0. This
resembles to the M-L function (for γ = 1) and to the multi-index M-L function (39) (for
integer γ = m, all αi = α, βi = β, i = 1, ..., m). The function (41) appeared as extension of

the function Rγ(z) =
∞
∑

k=0
zk/[(k + 1)!]γ, introduced by E. Le Roy [88] (1899), similarly to

the purposes of G. Mittag–Leffler [67] (1903) to study analytical continuations of the sums
of power series, and it seems they were working in competition on such ideas. Similar
to the M-L type functions, (41) is involved in solutions of various problems, including a
Convey–Maxwell–Poison distribution for different degrees of over- and under-dispersion.

Some Basic Properties of the Multi-Index Mittag-Leffler Functions

The basic properties and results for the functions (39) and long lists of their examples,
all of them having wide applications in solutions of integer- and fractional-order models,
are provided in our previous papers (e.g., [59,60,79,80]). Some of them are reminded here.

Theorem 1. The multi-index M-L functions (39) are entire functions with the following order ρ
and type σ:

1
ρ
= α1 + · · ·+ αm,

1
σ
= (ρα1)

ρα1 · · · (ραm)
ραm , (42)

respectively with αis replaced by Re (αi)s. Note that the type σ > 1 for m > 1 and only for m = 1
(classical case (37)): σ = 1. The following asymptotic estimate holds:

|E(αi),(βi)
(z)| ≤ C|z|ρ((1/2)+µ−(m/2)) exp(σ|z|ρ), µ := β1 + · · ·+ βm, for |z| → ∞.

The (3m)-parameters M-L type functions (40) are also entire functions with the same
order and type as in (42), see [74,82].
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Lemma 1. The multi-index M-L functions (39) are important examples of the Wright generalized
hypergeometric functions pΨq and of the Fox H-functions:

E(αi),(βi)
(z) = E(m)

(αi),(βi)
(z) = 1Ψm

[
(1, 1)

(βi, αi)
m
1

∣∣∣∣∣z
]
= H1,1

1,m+1

[
−z

∣∣∣∣∣ (0, 1)
(0, 1), (1− βi, αi)

m
1

]
. (43)

Thus, the following Mellin–Barnes type integral representation holds (cf. with (1)):

E(αi),(βi)
(z) =

1
2πi

∫
L

Γ(s)Γ(1− s)
m
∏
i=1

Γ(βi − sαi)
(−z)−sds, z 6= 0,

based on the Mellin transform (see [59,83]; also [18] (p. 48)):

M
{

E(αi),(βi)
(−z); s

}
=

Γ(s)Γ(1− s)
m
∏
i=1

Γ(βi − sαi)
, 0 < Re (s) < 1. (44)

Additionally, as shown by Paneva–Konovska [74,82], the (3m)-parametric functions (40)
can be represented as

E(γi), m
(αi), (βi)

(z)=A mΨ2m−1

[
(γ1, 1), ..., (γm, 1)

(β1, α1), ..., (βm, αm), (1, 1), ..., (1, 1)

∣∣∣∣z]

= A H1,m
m,2m

[
−z
∣∣∣∣ (1− γ1, 1), ..., (1− γm, 1)

[(0, 1), (1− βi, αi)]
m
1

]
, with A =

[
m

∏
i=1

Γ(γi)

]−1

, (45)

which is in agreement with (43) for γ1 = ... = γm = 1.
As an analog of the Laplace transform (L), relationship between the classical M-L

function (37) and the classical Wright function: L{φ(α, β; z); s} = 1
s

Eα,β(
1
s
) (see in the

books [16,18]), we derive the following new relation.

Lemma 2.

L
{

0Ψm

[
−

(β1, α1), ..., (βm, αm)

∣∣∣z]; s
}

=
1
s

E(αi),(βi)
(

1
s
), Re (s) > 0 . (46)

Note that we can consider the 0Ψm-functions on the left-hand side as “fractional indices”
analogs of the 0Fm-functions, that is of the hyper-Bessel functions J(m)

ν1,...,νm of Delerue [89], related
to the hyper-Bessel operators (9) as their eigenfunctions, and discussed further as special
cases of (39). For details on these special functions, see Kiryakova [9] (Ch.3).

Various relations for the multi-M-L functions in terms of the operators of classical
FC and GFC have been derived in our previous works (e.g., [59,80]). First, let us consider
the so-called Gelfond–Leontiev (G-L) operators of generalized integration and differentiation,
generated by the coefficients of an entire function ϕ(σ). For the theory of the G-L operators
in general, see Gelfond and Leontiev’s paper [62]) of 1951, and for details in the case
when the mentioned entire function is taken to be the M-L function or multi-index Mittag–
Leffler function, we refer to Kiryakova [9] (Ch.1), [59,63,79]. Here, we only remind the

definition of the G-L operators related to ϕ(σ)=E(αi),(βi)
(σ) :=

∞
∑

k=0
bkzk whose coefficients

bk = 1/(Γ(α1k + β1)...Γ(αmk + βk)) are taken as multipliers’ sequences below.

Definition 9. (Kiryakova [63,64]) For functions f (z) =
∞
∑

k=0
akzk analytic in a disk {|z| < R},

we consider the operators

D̃ f (z) := D(αi),(βi) f (z) =
∞

∑
k=1

ak
bk−1

bk
zk−1, L̃ f (z) := L(αi),(βi) f (z) =

∞

∑
k=0

ak
bk+1

bk
zk+1, (47)
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and call them multiple (multi-index) Dzrbashjan–Gelfond–Leointiev (D-G-L) differentiations and
integrations, respectively. These are generated by the multi-index M-L functions and the name of
Dzrbashjan is used in addition to Gelfond–Leontiev to honor his contribution to one of the first deep
studies on M-L type functions, the book [43].

Evidently, D(αi),(βi)
L(αi),(βi)

f (z) = f (z), and it is proven that the radii of convergence
(and analyticity) of resulting analytical functions in (47) are the same R as for f (z). Accord-
ing to Theorem 3 in [79], operators (47) can be analytically extended outside the disks to
starlike domains and represented as operators of GFC, as follows:

D̃ f (z) = z−1D(γi−1−αi),(αi)
(1/αi),m

f (z)−
[

m

∏
i=1

Γ(γi)

Γ(γi−αi)

]
f (0)

z
, L̃ f (z) = z I(γi−1),(αi)

(1/αi),m
f (z). (48)

To start with the classical FC operators for the multi-index M-L functions, we state the
following

Lemma 3. (Kiryakova [80] (Lemma 3.2)) For any fixed l, 1 ≤ l ≤ m and integration order
δl > 0, we have for the E-K fractional integral the relation

Iγl−1,δl
1/αl

E(αi),(γ1,...,γl ,...,γm)(λz) = E(αi),(γ1,...,γl+δl ,...,γm)(λz), λ 6= 0,

that is, a fractional integration can transform a multi-M-L function into another one with same αis
and corresponding parameter γl increased by the order of integration to γl + δl .

Applying E-K fractional integrals of the form Iγi−1,δi
1/αi

successively m-times (i = 1, ..., m)
to (39) and using the composition (decomposition) property (26), we obtain for the general-
ized fractional integrals (23) the image:

I(γi−1),(δi)
(1/αi),m

E(αi),(γi)
(λz) = E(αi),(γi+δi)

(λz). (49)

Then, for δi := αi, i = 1, ..., m, and applying the operational rules for the operators
I(γi),(δi)
(βi),m

and D(γi),(δi)
(βi),m

of GFC, the following generalized fractional integration and differen-
tiation relations follow:

(λz) I(γi−1),(αi)
(1/αi),m

E(αi),(γi)
(λz) = E(αi),(γi)

(λz)− 1
Γ(γ1)...Γ(γm)

,

D(γi−1−αi),(αi)
(1/αi),m

E(αi),(γi)
(λz) = (λz) E(αi),(γi)

(λz) +
1

Γ(γ1 − α1)...Γ(γm − αm)
, (50)

as analogs of the classical relation zαDαEα(λz) = λzα Eα(λz) +
1

Γ(1− α)
for the R-L deriva-

tive Dα = z−αD−α,α
1 .

It remains to combine the results (48) and (50) to verify the fact that the multi-index
M-L functions that generate the G-L operators (47) appear as their eigenfunctions:

Theorem 2. The multi-index Mittag–Leffer function (39) satisfies the differential equation of
fractional multi-order (α1, ..., αm):

D̃ E(αi),(βi)
(λz) = Dαi ,βi E(αi),(βi)

(λz) = λ E(αi),(βi)
(λz), λ 6= 0. (51)

The classical Poisson integral formula, representing the Bessel function via the cosine-
function ([3] (Vol. 2)), can be written in terms of an E-K fractional integral, as

Jν(z) =
2√

π Γ(ν+1/2)

( z
2

)ν
1∫

0

(1− t2)ν−1/2 cos(zt)dt =
1√
π

( z
2

)ν
I−1/2,ν+1/2
1/2 {cos z}. (52)
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This representation has been extended in our works [9] (Ch.4), [90] for the hyper-Bessel
functions (58), m ≥ 2, that is for the 0Fm−1-functions, via generalized fractional integrals (24)
of the function cosm. The details follow in Section 8. For the multi-index M-L functions,
a Poisson type integral representation of the kind of (52) has to explore the more general
fractional calculus operators from Definition 6. This is a part of the general results discussed
in Section 8, but we expose it here as to close (at least partly) the topic with some properties
of the multi-index Mittag–Leffler functions.

Theorem 3. (Kiryakova [59]) Let αk > 1, βk ≥ k
m , k = 1, . . . , m. Then, we have the following

Poisson-type integral representation of the multi-index M-L functions my means of multiple W-E-K
fractional integrals (33) of the cosine function (54) of order m (from the next section):

E(αk),(βk)
(−z) = c∗ I(

k
m−1)m

1 ,(βk− k
m )m

1
(1/αk)

m
1 ,(1)m

1 ,m

{
cosm(mz1/m)

}

= c∗
1∫

0

Hm,0
m,m

[
σ

∣∣∣∣ (βk − αk, αk)
m
1

(k/m− 1, 1)m
1

]
cosm

(
m(zσ)1/m)dσ, with c∗ :=

√
m/(2π)m−1. (53)

Remark 1. The above result is parallel with (52) for the Bessel functions. If we take αk = 1,
βk = k

m , the above GFC operator, the multiple W-E-K fractional integral, has a multi-order
(0, ..., 0) and since also λk = βk, it turns into identity. Then, the E(αk),(βk)

-function reduces
to the cosm(z)-function. It is similar in the simplest case to the Bessel function with index

ν =−1/2: J−1/2(z) =
√

2
πz cos z. More generally, it is also known that the Bessel functions

of “semi-integer” indices (called also “spherical functions” for their use in theory of spherical
waves) are reducible to trigonometric functions or to integer order operators of them: Jn−1/2(z) =
(2z)n+1/2
√

π

dn

(dz2)n

{cos z
z

}
, n = 0, 1, 2, .... In the case of multi-index M-L functions (39), we

can call multi-indices of the form αk = 1, βk := νk− k
m = 0, 1, 2, ...; for k = 1, ..., m, as “semi-

integer multi-indices”. A corollary of Theorem 3 tells that for such multi-indices the functions
E(αk),(βk)

reduce either directly to generalized trigonometric functions, or to integer order integral
or differential operators of them.

The results for the images of the multi-index Mittag–Leffler functions (39) and (40) under
GFC integrals and derivatives, or under their particular cases a R-L, E-K, Saigo, Marichev–
Saigo–Maeda operators, etc. can be written from the general results in Section 7 according
to definition via the Wright g.h.f. 1Ψm.

Series in systems of special functions, in the general cases of 2m- and 3m-parameters
M-L functions and their particular case (mentioned in next section) as the M-L function,
Parbhakar function, multi-index and fractional analogs of the Bessel- and hyper-Bessel
functions, were studied recently in details by Paneva–Konovska in a series of papers and
in the book [74], especially with respect to their convergence in complex domain, including
Cauchy–Hadamard, Abel, Tauber type, Hardy–Littlewood and Ostrovski type theorems.

5. Examples of M-L Type and Multi-Index M-L Functions

5.1. For m = 1, this is the classical M-L function Eα,β(z) with all its special cases:

• α > 0, β = 1: E0,1(z) =
1

1− z
; E1,1(z) = exp(z); E2,1(z2) = cosh(z), E2,1(−z2) =

cos(z); E1/2,1(z1/2) = exp(z)
[
1 + erf(z1/2)

]
= exp(z) erfc(−z1/2) = exp(z)

[
1 +

1√
π

γ(
1
2

, z)
]

(the error functions, or incomplete gamma functions);

• β 6= 1: E1,2(z) =
ez−1

z
; E1/2,2(z) =

sh
√

z
z

; E2,2(z) =
sh
√

z√
z

;

the Miller-Ross function zνE1,ν+1(az); etc.;
• β = α: the α-exponential (Rabotnov) function yα(z) = zα−1Eα,α(zα).
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• The trigonometric functions of order m, and, respectively the hyperbolic functions of order m:

cosm(z)=
∞

∑
j=0

(−1)jzmj

(mj)!
=Em,1(−zm), (54)

y(z)=cosm(z) is the solution of IVP y(m)(z) = −y(z), y(0)=1, y(j)(0)=0, j = 1, ..., m−1;

kr(z, m)=
∞

∑
j=0

(−1)jzmj+r−1

(mj+r−1)!
= zr−1 Em,r(−zm), r = 1, 2, . . . ; k1(z, m) :=cosm(z)=Em,1(−zm),

hr(z, m)=
∞

∑
j=0

zmj+r−1

(mj+r−1)!
= zr−1 Em,r(zm), r = 1, 2, . . . ; h1(z, m) := coshm(z) = Em,1(zm),

can also be expressed in terms of the M-L function (see in [3] (Vol. 3) and [16] (Ch.1)); and
the same for their fractionalized versions, as by Plotnikov [91] and Tseytlin [92]:

Scα(z) =
∞

∑
k=0

(−1)kz(2−α)m+1

Γ((2− α)m + 2)
= z E2−α,2(−z2−α),

Csα(z) =
∞

∑
k=0

(−1)kz(2−α)m

Γ((2− α)m + 1)
= E2−α,1(−z2−α),

and by Luchko–Srivastava [77]:

sinλ,µ(z) =
∞

∑
k=0

(−1)kz2k+1

Γ(2µk + 2µ− λ + 1)
= z E2µ,2µ−λ+1(−z2),

cosλ,µ(z) =
∞

∑
k=0

(−1)kz2k

Γ(2µk + µ− λ + 1)
= E2µ,µ−λ+1(−z2),

(see details again in Podlubny [16] (Ch.1)).
• Here, we mention also the so-called Lorenzo–Hartley functions [93], the F-function and its
generalization the R-function, shown to be solutions of some linear fractional differential
equations. We can represent them in terms of M-L function, namely, for z > 0, c = 0, q ≥ 0,
ν ≤ q:

Fq(a, z) =
∞

∑
k=0

akz(k+1)q−1

Γ((k + 1)q)
= zq−1 Eq,q(az),

Rq,ν(a, 0, z) =
∞

∑
k=0

akz(k+1)q−1−ν

Γ((k + 1)q− ν)
= zq−1 Eq,q−ν(az).

5.2. For m = 2: We start with the not enough popular M-L type function of Dzrbash-
jan [44], with 2× 2 indices, which he denoted alternatively by (we need to set 1/ρi :=
αi, µi := βi, i = 1, 2):

Φρ1,ρ2(z; µ1, µ2)=
∞

∑
k=0

zk

Γ(µ1+
k

ρ1
)Γ(µ2+

k
ρ2
)

:= E( 1
ρ1

, 1
ρ2
),(µ1,µ2)

(z)=E(α1,α2),(β1,β2)
(z). (55)

Dzrbashjan found the order and type of this entire function, claimed on few simple
particular cases, and considered some integral relations between (55) and Mellin transforms
on a set of axes. Then, he developed a theory of integral transforms in the class L2, involving
kernel close to functions (55) and, further, proposed approximations of entire functions in
L2 for an arbitrary finite system of axes in complex plane starting from the origin.

The 2× 2-indices M-L type functions (55) were also studied in detail by Luchko in the
recent paper [94]. He allowed the parameters ρ1, ρ2 to be also negative or zero and called
them “4-parameters Wright functions of second kind”, separating the cases when ρ1 + ρ2 > 0,
ρ1 + ρ2 = 0 or ρ1 + ρ2 < 0.

Some of the simple cases of (55), as mentioned and denoted in Dzrbashjan [44], are:
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• the M-L function itself: E 1
ρ ,µ(z) = E( 1

ρ ,0),(µ,1)(z) = Φρ,∞(z; µ, 1); 1
1− z

= E(0,0),(1,1)(z) =

Φ∞,∞(z; 1, 1); the Bessel function: Jν(z) =
( z

2
)ν E(1,1),(ν+1,1

(
− z2

4

)
=
( z

2
)ν Φ1,1

(
− z2

4 ; 1, ν + 1
)

; etc.

To these examples, we added (see, e.g., Kiraykova [59]) the following cases:

• The Struve and Lommel functions (see [3] (Vol. 2); and details in [9] (App.,(C.8)), [79,80]):

sµ,ν(z) =
1
4

zµ+1 E(1,1),((3−ν+µ)/2,(3+ν+µ)/2)(−
z2

4
), Hν(z) =

1
π2ν−1(1/2)ν

sν,ν(z).

• The “classical” Wright function that arose in the studies of Fox ([95], 1928), Wright ([31], 1933)
and Humbert and Agarwal ([69], 1953) and was also referred to in Erdélyi et al. [3] (Vol. 3).
Initially, Wright [31] defined this function only for α > 0, then extended its definition for
α > −1 [32]. Now, we see this is a case of multi-index M-L function with m = 2:

φ(α, β; z) := Wα,β(z) =
∞

∑
k=0

1
Γ(αk + β)

zk

k!
= 0Ψ1

[
−

(β, α)

∣∣∣∣z] = E(2)
(α,1),(β,1)(z), (56)

which is entire function of order 1/(1 + α). The survey papers by Gorenflo–Luchko–
Mainardi [96] and Mainardi–Consiglio [97] reflect in detail its analytical properties and
applications, see also the book [22] as well as the related literature. In the case α ≥ 0, the
Wright function is said to be of first kind, and for −1 < α < 0 of second kind. The latter
survey [97] concentrates on the Wright function of second kind. It is noted that the first
kind Wright function is of exponential order, while the second kind is not of exponential
order, and naturally they have different asymptotic behaviors, Laplace transforms, etc.
(see also Luchko [94]). The function (56) plays an important role in the solutions of linear
partial fractional differential equations as the fractional diffusion-wave equation studied by
Nigmatullin (1984–1986, to describe the diffusion process in media with fractal geometry,
0 < α < 1) and by Mainardi et al. (since 1994, for propagation of mechanical diffusive
waves in viscoelastic media, 1 < α < 2). In the form M(z; β) = φ(−β, 1− β;−z), β := α/2,
this function is recently called as the Mainardi function (see [16] (Ch.1)). In our denotations,
it is a multi-index M-L function with m = 2 and a Dzrbashjan function (55): M(z; β) =

E(2)
(−β,1),(1−β)

(−z) and has its own particular cases, such as M(z; 1/2) = 1/
√

π exp(−z2/4)

and the Airy function, M(z; 1/3) = 32/3 Ai(z/31/3). Note also that, for α = 0, the Wright

function (56) reduces to the exponent, since φ(0, β; z) =
∞
∑

k=0
zk/(k!Γ(β)) = (1/Γ(β)) exp(z).

In alternative form and denotation, the Wright function (56) is known as the Wright–
Bessel function or is misnamed as the Bessel–Maitland function:

Jµ
ν (z)=φ(µ, ν+1;−z)= 0Ψ1

[
−

(ν+1, µ)

∣∣∣∣− z
]
=

∞

∑
k=0

(−z)k

Γ(ν+kµ+1) k!
=E(2)

(1/µ,1),(ν+1,1)(−z) ,

(57)
again as an example of the Dzrbashjan function. It is an obvious (and was introduced as
such by Sir E. Maitland Wright [32]) “fractional index” analog of the classical Bessel function
Jν(z) = c(z/2) 0F1(z2/4), more exactly, of the Bessel–Clifford function Cν(z).

Several further “fractional-indices” generalizations of Jν(z) and Jµ
ν (z) are found in the

studies of other authors (details are in [59]), and we can represent all of them as multi-index
M-L functions. One of them is the so-called generalized Wright–Bessel(–Lommel) functions,
introduced by Pathak ([98], 1966),

Jµ
ν,λ(z)=(z/2)ν+2λ

∞

∑
k=0

(−1)k(z/2)2k

Γ(ν+kµ+λ+1)Γ(λ+k+1)

= (z/2)ν+2λ E(2)
(1/µ,1),(ν+λ+1,λ+1)

(
−(z/2)2

)
, µ > 0.
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For µ = 1, it includes the mentioned Lommel and Struve functions, e.g., J1
ν,λ(z) =

const S2λ+ν−1,ν(z). A next example is the generalized Lommel–Wright function with four
indices, introduced by de Oteiza, Kalla and Conde ([99], 1986), with r > 0, n ∈ N, ν, λ ∈ C:

Jr,n
ν,λ(z) = (z/2)ν+2λ

∞

∑
k=0

(−1)k(z/2)k

Γ(ν+kr+λ+1)Γ(λ+k+1)n

= (z/2)ν+2λ E(n+1)
(1/r,1,...,1),(ν+λ+1,λ+1,...,λ+1)

(
−(z/2)2

)
.

5.3. The above is an interesting example of a multi-M-L function with m = n + 1.

Other particular cases of multi-index (2m-parameters) M-L functions with greater
multiplicity m ≥ 2 are:

• For arbitrary m ≥ 2: let ∀αi = 0 and ∀βi = 1, i = 1, ..., m. Then, from definition (39), we
get again the geometric series

E(m)
(0,0,...,0),(1,1,...,1)(z) =

∞

∑
k=0

zk =
1

1− z
.

• Consider the case m ≥ 2, ∀αi = 1, i = 1, . . . , m. Then, the function

E(m)
(1,1,...,1),(β1,...,βm)

(z) = 1Ψm

[
(1, 1)

(βi, 1)m
1

∣∣∣∣z] = [
m

∏
i=1

Γ(µi)]
−1

1Fm(1; β1, β2, . . . , βm; z)

reduces to 1Fm-function and also to a Meijer’s G1,1
1,m+1-function. Denote βi = γi+1, i=1, . . . , m,

and let additionally one of the βi be 1, e.g., βm = 1, i.e., γm = 0. Then, the multi-index
M-L function becomes a 0Fm−1-function, that is, a hyper-Bessel function in the sense of
Delerue [89] (see also [9] (Ch.3)):

J(m−1)
γi ,...,γm−1(z) =

( z
m

)m−1
∑

i=1
γi

E(m)
(1,1,...,1),(γ1+1,γ2+1,...,γm−1+1,1)

(
−( z

m
)m
)

(58)

=

[
m−1

∏
i=1

Γ(γi+1)

]−1( z
m

)m−1
∑

i=1
γi

0Fm−1

(
γ1+1, γ2+1,. . ., γm−1+1;−( z

m
)m
)

:=

[
m−1

∏
i=1

Γ(γi+1)

]−1( z
m

)m−1
∑

i=1
γi

j(m−1)
γ1,..,γm−1(−z), (59)

where j(m−1)
γ1,..,γm−1 is called as normalized hyper-Bessel function.

This representation suggests that the multi-index M-L functions (39) with arbitrary
(α1, ..., αm) 6= (1, ..., 1) can be interpreted as fractional-indices analogs of the hyper-Bessel func-
tions (58) and (59), which themselves are multi-index (but integer) analogs of the Bessel func-
tion. Functions (58) and (59) are closely related to the hyper-Bessel differential operators (9)
(see Section 3.1), and form a fundamental system of solutions of the differential equations
of the form By(z) = λy(z); the details are found in Kiryakova [9] (Ch.3, Th.3.4.3). For
example, if the hyper-Bessel operator (9) is with β = m, γ1 < γ2 < ... < γm = 0 < γ1 + 1,
the solution of the Cauchy problem By(z) = −y(z), y(0) = 1, y(j)(0) = 0, j = 1, ..., m−1,
is given by the normalized hyper-Bessel function (59): y(z) = j(m−1)

γ1,..,γm−1(−z). Closely related
functions are also the Bessel–Clifford functions of order m:

Cν1,...,νm(z)=
∞

∑
k=0

(−1)kzk

Γ(ν1+k+1) . . . Γ(νm+k+1) k!
= E(m+1)

(1,...,1),(ν1+1,...,νm+1,1)(−z).

Let us mention the special functions appearing in a very recent paper by Ricci [100].

He considered the so-called Laguerre derivative DL =
d
dz

z
d
dz

and its iterates DmL =

d
dz

z
d
dz

z...
d
dz

z, same as the particular hyper-Bessel differential operators (19) considered in
operational calculus by Ditkin and Prudnikov [50], as mentioned in Section 3.1. Then, the L-
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exponentials e1(z), e2(z), ..., em(z), ..., which are eigenfunctions of DmL, that is, DmL em(λz) =
λ em(λz), are shown in [100] to have the form

em(z)=
∞

∑
k=0

zk

(k!)m+1 = 0Fm(−; 1, 1, ..., 1; z)= 1Ψm+1

[
(1, 1)

(1, 1), (1, 1), ..., (1, 1)

∣∣∣∣z]. (60)

Then, these are examples of the hyper-Bessel functions (58) and of the multi-index
Mittag–Leffler functions E(m+1)

(1,...,1),(1,...,1)(z) as well. In [100], applications to population
dynamics and in solutions of linear dynamical systems of these SF and of the related
Laguerre-type Bell polynomials and Laguerre-type generalized hypergeometric functions
are discussed.

• The Rabotnov function (the α-exponential function), presented in 5.1., appeared in Rabot-
nov’s works on application of fractional order operators in mechanics of solids. It is inter-
esting to consider its multi-index analog, that is the case with all βi = αi = α > 0, i = 1, ..., m.
This is the function

y(m)
α (z)= zα−1E(m)

(α,...,α),(α,...,α)(z
α)= zα−1

∞

∑
k=0

zαk

[Γ(α+αk)]m
. (61)

Observe that, for α = 1, we get the Ricci function (60), namely: em−1(z) =
∞
∑

k=0

zk

[k!]m
,

and also a case of the original Le Roy function with γ = m.

• In general, for rational values of ∀αi, i = 1, ..., m, the functions (39) are reducible to
generalized hypergeometric functions 1Fm and to Meijer’s G-functions G1,1

1,m+1, that is, to classical
special functions.

Remark 2. Note that all the results we derived for the multi-index M-L functions can be applied
for their particular cases mentioned above.

6. Other Special Cases of the Wright Generalized Hypergeometric Functions pΨq

6.1. Virchenko and Ricci generalized hypergeometric functions. In [101] and some other
papers, Virchenko studied some generalized hypergeometric functions denoted by 2Rτ

1(z)
and 1Φτ

1(z), as well as their integral representations, relations and applications to the gen-
eralized Legendre functions Pm,m

k (z), Qm,n
k (z), gamma functions, Laguerre’s functions, etc.

•
2Rω,µ

1 (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + ω
µ k)

Γ(c + ω
µ k)

· zk

k!
.

For
ω

µ
:= τ > 0, and a, b, c - complex, a + k 6= 0,−1,−2, ...; b + τk 6= 0,−1,−2, ..., k =

0, 1, 2, ...; |z| < 1, it is rewritten as
2Rτ

1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + τk)
Γ(c + τk)

· zk

k!
,

which is nothing but the Wright g.h.f.
Γ(c)

Γ(a)Γ(b) 2Ψ1

[
(a, 1), (b, τ)

(c, τ)

∣∣∣∣z]. Virchenko also

proposed some examples of elementary functions for these special functions, e.g., (ln (1 +
z))τ and (arcsin z)τ ; some generalized incomplete B-function; the Gauss function 2F1; etc.

•
1Φτ

1(a; c; z) =
Γ(c)
Γ(a)

∞

∑
k=0

Γ(a + τk)
Γ(c + τk)

· zk

k!
,

and, in Virchenko [101], generalizations of the gamma function, incomplete gamma func-
tion, probability integrals and Laguerre’s functions are introduced by means of 1Φτ

1(z),

which is a Wright g.h.f. of the form
Γ(c)
Γ(a) 1Ψ1

[
(a, τ)
(c, τ)

∣∣∣∣z], and, according to our classifica-

tions in Section 8, a confluent type g.h.f.
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• In 5.3., the recent paper by Ricci [100] is mentioned for the Laguerre-type derivatives
and related special functions. Along with the functions (60), there he also considered
the Laguerre-type (L-) Bessel functions, L-type Gauss hypergeometric functions and the
Laguerre-type generalized hypergeometric functions LpFq. They can be shown to be repre-
sentable by pFq+1, thus also as pΨq+1, namely:

LpFq(a1, .., ap; b1, ..., bq; z) =
∞

∑
k=0

a(k)1 ...a(k)p

b(k)1 ...b(k)q

· zk

(k!)2

=
∞

∑
k=0

a(k)1 ...a(k)p

b(k)1 ...b(k)q (1)(k)
· zk

k!
= pFq+1(a1, ..., ap; b1, ..., bq, 1; z). (62)

6.2. Mainardi-Masina and Paris generalized exponential integrals. In [102], Mainardi and
Masina introduced a generalized exponential integral Einα(z) by replacing the exponential
function in the complementary exponential integral Ein(z) by the Mittag–Leffler function
Eα(z) and mentioned the physical applications for 0 < α < 1 in the studies of the creep
features of linear viscoelastic models. In the recent paper [103], Paris made the next
step to involve the two-parameter M-L function, namely to consider the generalized
exponential integral

Einα,β(z) = z
∞

∑
k=0

(−1)k zαk

(ak + 1)Γ(αk + α + β)
, which for β = 1 gives Einα(z). (63)

As observed, this function can be seen as a case of the Wright g.h.f. with p = q = 2,
namely

Einα,β(z) = z
∞

∑
k=0

Γ(αk + 1)Γ(k + 1)
Γ(αk + 2)Γ(αk + α + β)

(−zα)k

k!
= z 2Ψ2

[
(1, α), (1, 1)

(2, α), (α + β, α)

∣∣∣∣− zα

]
.

Paris studied in details the asymptotic expansion of (63) for |z| → ∞. In [102,103],
generalized Sine and Cosine integrals are also considered (of the kind mentioned in 5.1.),
for example Sinα,β(z) = Ein2α,β−α(z), with their asymptotics and plots for different values
of parameters.

6.3. The so-called k-analogs of special functions. Claims on inventing and studying “new”
classes of special functions in several recent papers have been based on the extended notion
of the k-Gamma function, k > 0. However, in all such works, its representation in terms of
the classical Gamma-function is explicitly written there, and then is ignored:

Γk(s) =
∞∫

0

exp(− tk

k
) ts−1dt = k

s
k−1 Γ(

s
k
), s ∈ C, Re (s) > 0, (64)

where Γ(.) is the classical Gamma-function.
In addition, the k-Pochhammer symbol is used in the next denotations:

(λ)ν,κ := Γk(λ + νκ)/Γk(λ), λ ∈ C \ {0}, ν ∈ C, with Γk as in (64). (65)

In [104], using the above two definitions, we showed that most of these “new” functions
are in fact some known special functions, namely Wright g.h.f. and its cases. For the details of
establishing the mentioned relations, see Kiryakova [104]. In addition, in the references
lists of [104,105], one can find the particular authors/sources mentioned below.

• A generalized k-Bessel function was introduced by Gehlot ([106], 2014), and studied by
Mondal ([107], 2016) and Shaktawat et al. ([108], 2017). It is defined by

Wk
ν,c(z) =

∞

∑
n=0

(−c)n

Γk(nk + ν + k)
· (z/2)2n+ ν

k

n!
, z ∈ C, k > 0, Re (ν) > −1, c ∈ C. (66)
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However, after simple exercise, the function (66) can be represented as a Wright g.h.f.
0Ψ1, and even as the simpler g.h.f. 0F1 of the same type as the classical Bessel function:

Wk
ν,c(z) = (z/2)

ν
k

∞

∑
n=0

[−c( z
2 )

2]n

kn+1+( ν
k )Γ(n + 1 + ( ν

k ))Γ(n + 1)
= ...

=
( z

2 )
ν
k

k1+( ν
k )

∞

∑
n=0

[−( c
k )(

z
2 )

2]n

Γ(1 + ( ν
k ) + n.1) Γ(1 + n.1)

=
( z

2 )
ν
k

k1+( ν
k )

1Ψ2

[
(1, 1)

(1 + ν
k , 1), (1, 1)

∣∣∣∣− c
k

( z
2

)2
]
=

(z/2)ν/k

k1+(ν/k) 0Ψ1

[
−−

(1 + ν
k , 1)

∣∣∣∣− c
k

( z
2

)2
]

=
( z

2 )
ν
k

k1+( ν
k )Γ(1 + ν)

0F1

(
−; 1 +

ν

k
;− c

k
z2

4

)
. (67)

Indeed, if we take k = 1 and c = 1, this function reduces to the classical Bessel
function: W1

ν,1(z) =
(z/2)ν

Γ(1+ν) 0F1

(
−; 1+ν;− z2

4

)
. For k > 0 and c = 1 Gehlot [106] used (66)

as a solution of a k-Bessel differential equation. Mondal [107] studied some properties
of (66) for arbitrary c ∈ C. Shaktawat et al. [108] evaluated the Marichev–Saigo–Maeda
(M-S-M) operators of FC

Ia,a′ ,b,b′ ,c f (z) = zc−a−a′
1∫

0

(1− σ)c−1

Γ(c)
σ−a′ F3(a, a′, b, b′; c; 1− σ, 1− 1

σ
) f (zσ)dσ (68)

of this function. Since its kernel Appel F3-function is a H-function (36) with m = 3, in view
of author’s result from Corollary 3 in Section 7, it is well expected that the result appears in
terms of a 3Ψ4-function (because the indices of 0Ψ1 are increased by 3 under the 3-tuple FC
integral).

• Generalized k-Mittag–Leffler function. It was studied by many authors, for example in its
simplest case by Gupta and Parihar ([109], 2014) in the form

Ek,α,β(z) =
∞

∑
n=0

zn

Γk(αn + β)
.

This function has various further extensions, such as the generalized k-Mittag–Leffler
function by Nisar–Eata–Dhaifalla–Choi ([110], 2016):

Eη,δ,p,q
κ,α,β (z) =

∞

∑
n=0

(η)qn,κ

Γk(αn + β) (δ)pn,κ
zn, with κ, p, q ∈ R+; α, β, η, δ ∈ C, (69)

and min{Re (α), Re (β), Re (η), Re (δ)} > 0; q ≤ Re (α) + p.

Again, by using (64) and (65), it can be transformed into a Wright g.h.f. (see [104],
Case 5.2), namely:

Eη,δ,p,q
κ,α,β (z) = k1− β

k
Γ(δ/k)
Γ(η/k) 2Ψ2

[
( η

k , qκ
k ), (1, 1)

( δ
k , pκ

k ), ( β
k , α

k )

∣∣∣∣∣k (q−p)κ−α
k z

]
.

Nisar–Eata–Dhaifalla-Choi [110] put efforts to evaluate FC operators’ images
of (69) by the standard techniques, and as expected in view of the general results in
next Section 7 Theorem 5, Corollarys 1–3) these appear in terms of 5Ψ5-functions (for
the M-S-M operators (68)), in particular, as 4Ψ4-functions (for the Saigo operators (78))
and 3Ψ3-functions (for the R-L and E-K operators). In addition, the pathway integrals (that
are related to E-K integrals) are calculated there.
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• The generalized multi-index Bessel function. In a series of papers, Nisar et al. ([111], 2017,
2019) introduced and studied the function

J
(αj)m ,γ,c
(β j)m ,κ,b (z) =

∞

∑
k=0

ck (γ)κk
m
∏
j=1

Γ(αjk + β j +
b+1

2 )

zk

k!
, m = 1, 2, 3, ..., (70)

with the Pochhammer symbol denotation (65) for (γ)κk; and for αj, β j, γ, b, c ∈ C, j =

1, 2, ..., m;
m
∑

j=1
Re (αj) > max{0, Re (κ)− 1}; κ > 0, Re (β j) > 0, Re (γ) > 0. As shown in

Kiryakova [104], this is only a very special case of the Wright generalized hypergeometric function
1Ψm, namely:

J(α)m ,γ,c
(β j)m ,κ,b(z) =

1
Γ(γ)

∞

∑
n=0

Γ(κn + γ)
m
∏
j=1

Γ
(

αjn + (β j +
b+1

2 )
) (cz)n

n!
(71)

=
1

Γ(γ) 1Ψm

[
(γ,κ)

(β j +
b+1

2 , αj)
m
j=1

; cz

]

=
1

Γ(γ)
H1,1

1,m+1

[
−cz

∣∣∣∣∣ (1− γ,κ)
(0, 1), (1− β j − b+1

2 )m
j=1

]
, that is, it is also a Fox H-function.

Then, the R-L fractional integral (21) can be evaluated as part of Kiryakova’s general
results in next Section 7 (Theorem 5, in particular Corollary 1 for m = 1, γ = β = 1), or
directly from Kilbas’ Theorem 2 in [33], which is a variant of Lemma 1 in Kiryakova [112].
Taking there p = 1, q = m, c1 = γ, C1 = κ, dj = β j +

b+1
2 , Dj = αj and µ = 1, one obtains

the following R-L image for the multi-index Bessel function (70):

Iλ

{
tδ−1 J

(αj)m ,γ,c
(β j)m ,κ,b(z)

}
=

1
Γ(γ)

zδ+λ−1
2Ψm+1

[
(γ,κ), (δ, 1)

(β j +
b+1

2 , αj)
m
1 , (λ + δ, 1)

; cz
]

.

This was to be the result in Theorem 1, Equation (2.4) in arXiv:1706.08039 [111], its v1:
2017, but was written wrongly there—similarly looking but involving a 2Ψ2-function. The
evident true result involves the Wright function 2Ψm+1 (see Kiryakova [104] (5.3.)), as later
corrected in v2: 2019 of [111].

• A special case of (70) appears as a kind of generalized multi-index Mittag–Leffler function.
It was introduced by Saxena and Nishimoto ([113], 2010). As mentioned by Agarwal–
Rogosin–Trujillo ([114], 2015), it is representable also as a Wright g.h.f. 1Ψm, namely:

E(γ,κ)
(αj ,β j)m

(z) =
∞

∑
n=0

(γ)κn
m
∏
j=1

Γ(β j + αj n)
· zn

n!
=

1
Γ(γ) 1Ψm

[
(γ, κ)

(β j, αj)
m
1

∣∣∣∣z]. (72)

Therefore, all the GFC operators (say the R-L, E-K, Saigo, M-S-M operators) of this special
function can be evaluated by means of the general results in Section 7, Corollaries 1–3 there.
For m = 1, b = −1, this is the SF considered by Srivastava and Tomovski ([115], 2009):

Eγ,κ
α,β(z) =

∞

∑
n=0

(γ)κn

Γ(αn + β)
· zn

n!
.

• Similar, but simpler, is the case of the generalized Lommel-Wright function from the paper
by Agarwal–Jain–Agarwal–Baleanu ([116], 2018), which is commented in Kiryakova [117].
It has a representation as a Wright g.h.f. as follows:

Jϕ,m
ω,θ (z) = (

z
2
)ω+2θ

∞

∑
k=0

(−1)k( z
2 )

2k

(Γ(θ + k + 1))m Γ(ω + kϕ + θ + 1)
(73)

= (
z
2
)ω+2θ

1Ψm+1

[
(1, 1); (θ + 1, 1), ..., (θ + 1, 1), (ω + θ + 1, ϕ);−z2/4

]
, ϕ > 0.
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Note, additionally, that (73) is an example of the multi-index Mittag–Leffler func-
tion (39), namely: Jϕ,m

ω,θ (z) = ( z
2 )

ω+2θ( z
2 )

ω+2θE(m+1)
(1,...,1,ϕ),(θ+1,...,θ+1,ω+θ+1)

(
−( z

2 )
2). Then, all

the FC images of (73) evaluated in the commented paper follow at once by our general
results (see details in [117]).

6.4. The S-function. It was introduced by Saxena-Daiya ([118], 2015) as a “new” special
function extending the M-L function (p = q = 0, k = 1), the Prabhakar function (38), the
M-series (76) of Sharma and Jain ([119], 2009) with γ = 1, k = 1, etc., as follows:

S[z] := Sα,β,γ,τ,k
(p,q) (a1, ..., ap; b1, ..., bq; z) =

∞

∑
n=0

(a1)n...(ap)n · (γ)nτ,k

(b1)n...(bq)n · Γk(nα + β)

zn

n!
, (74)

with k ∈ R; α, β, γ, τ ∈ C; Re (α) > 0; Re (α) > k Re (τ), p < q + 1.

For p = q = 0, it reduces to the generalized k-Mittag–Leffler function Eγ,τ
k,α,β(z),

a variant of (69). However, it can be easily seen to be special case of the generalized
hypergeometric function of Wright of the form p+1Ψq+1. Unfortunately, this fact has not
been observed, neither by the authors introducing (74) nor by their numerous followers.
Namely, one can write (74) as follows (see details in [104]):

S[z] = k1− β
k

Γ(b1)...Γ(bq)

Γ(a1)...Γ(ap) · Γ( γ
k )

p+1Ψq+1

[
(a1, 1), ..., (ap, 1), ( γ

k , τ)

(b1, 1), ..., (bq, 1), ( β
k , α

k )
; zkτ− α

k

]
.

That is, the “new” special function S[z] is nothing but a case of the Wright function

p+1Ψq+1

(
zkτ− α

k

)
. Then, all results for images of FC operators, as R-L, E-K, Saigo, M-S-M

and the Euler-transform, follow from the statements in Section 7.

• Special cases of the S-function in 6.4. are the generalized K-series and the M-series. Recently,
(K.) Sharma ([120], 2012) introduced an extension of both g.h.f. pFq(z) and Prabhakar
function Eγ

α,β(z):

p
α,β;γ

K q
(
a1, ..., ap; b1, ..., bq; z

)
=

∞

∑
n=0

(a1)n...(ap)n

(b1)n...(bq)n

(γ)n zn

Γ(αn+β)
, z, α, β ∈ C, Re α > 0, (75)

with integers p ≤ q (and additional requirement |z|<R= αα if p= q+1). For γ = 1, this
gives the M-series (76) of (M.) Sharma and Jain ([119], 2009):

p
α,β
Mq

(
a1, . . . , ap; b1, . . . , bq; z

)
:= p

α,β
Mq (z) =

∞

∑
n=0

(a1)n . . . (ap)n

(b1)n . . . (bq)n

zn

Γ(αn + β)

= κ p+1Ψq+1

[
(a1, 1), . . . (ap, 1), (1, 1)
(b1, 1), . . . , (bq, 1), (β, α)

∣∣∣∣z], where κ =
q

∏
j=1

Γ(bj)/
p

∏
i=1

Γ(ai). (76)

We can mention its particular cases, for example: (1) for β = 1, the (simpler) M-series,
introduced by M. Sharma (2008); (2) for p = q = 0 (no upper and lower parameters),
M-L function Eα,β(z); (3) for p = 0, q = 1, b1 = 1, the Wright function φ(α, β; z), or the
generalized Bessel-Maitland function (57); (4) for p = q = 1, a1 = γ, b1 = 1 in (75), the
Prabhakar type function (38); and (5) for α = β = 1, the g.h.f. pFq(a1, ..., ap; b1, ..., bq; z).

In the recent arXiv preprint [121], Lavault represented (75) as a Wright g.h.f.:

p
α,β;γ

K q
(
a1, ..., ap; b1, ..., bq; z

)
:= p

α,β;γ
K q (z)

=

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+2Ψq+2

[
(a1, 1), ..., (ap, 1), (γ, 1), (1, 1)
(b1, 1), ..., (bq, 1), (1, 1), (β, α)

∣∣∣∣z], (77)
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although this can also be reduced to: =

q
∏
j=1

Γ(bj)

Γ(γ)
p

∏
i=1

Γ(ai)
p+1Ψq+1

[
(a1, 1), . . . (ap, 1), (γ, 1))
(b1, 1), . . . , (bq, 1), (β, α)

∣∣∣∣∣z
]
,

since the two pairs (1, 1) of parameters in the upper and low rows eliminate each other.
In [121] some FC operators of this K-series are calculated, as the R-L, Saigo and M-S-M

operators. Naturally, a R-L integral is transforming a p
α,β;γ

K q-function into a p+1
α,β;γ

K q+1-
function (Theorem 4.1, there), similarly to our Example 11 in [112] for the M-series. Next, in
Theorem 4.2 of [121] for the M-series and Corollary 4.3 for the K-series, the Saigo operator (78)
(with Gauss hypergeometric function (35), GFC with m = 2) is derived,

Iα,β,η f (z)=
z−α−β

Γ(α)

z∫
0

(z− ξ)α−1
2F1(α + β,−η; α; 1− ξ

z
) f (ξ)dξ

=
z−β

Γ(α)

1∫
0

(1− σ)α−1
2F1(α + β,−η; α; 1− σ) f (zσ)dσ. (78)

Since the K-series (75) is a p+1Ψq+1-function, from our results (and Corollary 3 [112];
see also Corollary 2 in the next section), it is expected that the result should be given as a
p+3Ψq+3-function (the indices are to be increased by 2), which is the result (4.10) in [121]:

Iα,β,γ
{

tσ−1
p

ξ,η;ν
K q (czµ)

}

=
∏

q
1 Γ(bj)

∏
p
1 Γ(ai)

zσ−β−1

Γ(ν) p+3Ψq+3

[
(ai, 1)p

1 , (σ, µ), (−β + γ + σ, µ), (ν, 1)
(bj)

q
1, (β + σ, µ), (α + γ + σ, µ), (η, ξ)

∣∣∣∣czµ

]
.

Similarly, the M-S-M-images (68) follow as p+4Ψq+4-functions, according to Corollary 3
in next section.

6.5. k-Wright generalized hypergeometric function pΨk
q. Purohit and Badguzer ([122],

2018) introduced the generalized k-Wright function, as a k-extension (k > 0) of the Wright
g.h.f. (4), by

pΨk
q(z)= pΨk

q

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = ∞

∑
n=0

Γk(a1 + nA1) . . . Γk(ap + nAp)

Γk(b1 + nB1) . . . Γk(bq + nBq)

zn

n!
. (79)

Replacing the k-Gamma function by the classical Gamma function according to (64),
it is seen that the “new” function is again a Wright generalized hypergeometric function,
of the form

const p+1Ψq+1

[
(ai/k, Ai/k)p

i=1
(bj/k, Bj/k)q

j=1

∣∣∣∣∣k(A1+...+Ap−B1−...−Bq)/k · z
]

. (80)

7. Results for the FC and GFC Images of SF of FC

Recently, there have appeared too many papers that deal with evaluation of FC
and GFC operators of various special functions. They use the same standard techniques—
replace the particular function by its power series, then interchange the orders of integration
(fractional order integrals) and summation, etc. Usually only the special functions are
changed and also the FC operators—with more and more general ones (but all these
happen to be cases of our GFC operators). The great number of combinations “special function
+ particular operator” explains the dramatically increasing production of such works.

Based on our older results on GFC for SF, since the work in [9], in the pa-
pers [64,104,112,117,123], and in a recent survey paper [105] in this same journal, we
propose an unified approach how this job can be done at once, for all SF of FC (we mean
the H- and G-functions and in particular the Wright g.h.f., multi-index M-L functions and
all their particular cases) and for all operators of GFC (we mean the generalized fractional
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integrals and derivatives of the form (25) and (28), thus including the R-L, E-K, Saigo,
Marichev–Saigo–Maeda operators, etc.). For the initiating idea, we need to pay tribute to
the initial classical results of 20th century in the Bateman Project on Integral Transforms [7]
and in works by Askey [2], Lavoie–Osler–Tremblay [124], etc. for the R-L images of many
elementary functions and of the simplest pFq-functions, as: 0F1, 1F1 and 1F2. We combined
these with the composition/decomposition rule (26) presenting the GFC operators as com-
positions of weighted R-L/E-K operators. As a recent survey on FC images of elementary
functions, we mention also the work of Garrappa–Kaslik–Popolizio [125].

Below, we remind only the statements of the main results from the mentioned author’s
papers, as surveyed in [105], in this same journal.

Theorem 4. The I(γk),(δk)
(βk),m

-image (23) of a H-function is also a H-function whose last three com-
ponents of the order are increased by m (the multiplicity in GFC operators), and with additional
parameters depending on those of the generalized fractional integration. Namely,

I(γk),(δk)
(βk),m

{
Hs,t

u,v

[
λz

∣∣∣∣∣ (ci, Ci)
u
1

(dj, Dj)
v
1

]}
= Hs,t+m

u+m,v+m

[
λz

∣∣∣∣∣ (ci, Ci)
t
1, (−γk)

m
1 , (ci, Ci)

u
t+1

(dj, Dj)
s
1, (−γk − δk)

m
1 , (dj, Dj)

v
s+1

]
. (81)

Then, GFC images of almost all SF of FC can be evaluated from (81). This result is
based on a formula for the integral of product of two arbitrary H-functions, namely for the
Mellin transform of such a product ([9] (App., (E.21′), [12] (§5.1, (5.1.1)), [14] (§2.25, (1))).
A similar formula presents the GFC operators (with Gm,0

m,m-kernel) of arbitrary G-function,
in terms of another G-function with increased orders and additional parameters (Lemma
1.2.2 in [9] and Corollary 1 in [105]).

Since most of the considered SF of FC are Wright g.h.f., the main and most useful result is
as follows.

Theorem 5. The image of a Wright g.h.f. pΨq(z) by a generalized fractional integral (23) (multiple,
m-tuple Erdélyi-Kober integral), provided δk ≥ 0, γk > −1, k = 1, ..., m, c > −1, µ > 0, λ 6= 0,
is another Wright g.h.f. with indices p and q increased by the multiplicity m and additional
parameters related to these of the GFC integral:

I(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣λzµ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + 1 + c

βk
, µ

βk
)m

1
(bj, Bj)

q
1, (γk + δk + 1 + c

βk
, µ

βk
)m

1

∣∣∣∣∣λzµ

]
. (82)

Specially, for c = 0, µ = 1, this result is simplified to pΨq(λz) 7−→ p+mΨq+m(λz), as above.

Similarly (Theorem 4.2 in [104]; Theorem 4 in [105]),

D(γk)
m
1 ,(δk)

m
1

(βk)
m
1 ,m

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣λzµ

]}

= zc
p+mΨq+m

[
(ai, Ai)

p
1 , (γk + δk + 1 + c

βk
, µ

βk
)m

1
(bj, Bj)

q
1, (γk + 1 + c

βk
, µ

βk
)m

1

∣∣∣∣∣λzµ

]
. (83)

The simpler results for the pFq-functions read by analogy (Corollarys 4.1 and 4.2 in [104]),
for example with β = 1, as:

I(γk)
m
1 ,(δk)

m
1

1,m
{

zc
pFq
(
a1, . . . , ap; b1, . . . , bq; λz

)}
=

[
m

∏
k=1

Γ(γk+c+1)
Γ(γk+δk+c+1)

]
zc

p+mFq+m
(
ai, ..., ap, (γk+c+1)m

1 ; b1, ..., bq, (γk+δk+c+1)m
1 ; λz

)
. (84)
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We also describe the corollaries of the results (82) and (83) for the particular cases of
most often FC operators on which the other authors have exercised their evaluations, say for:
m = 1 (R-L and E-K), m = 2 (Saigo operators) and m = 3 (M-S-M operators). These results
for arbitrary Wright g.h.f. are mentioned below.

Corollary 1. For the Riemann–Liouville (R-L) integrals and derivatives, the simplest results are
parts of Lemmas 1 and 2 in Kiryakova [105]:

Rδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣λzµ

]}
= zc+δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, µ)

(bj, Bj)
q
1, (c + δ + 1, µ)

∣∣∣∣∣λzµ

]
, (85)

Dδ

{
zc

pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣λzµ

]}
= zc−δ

p+1Ψq+1

[
(ai, Ai)

p
1 , (c + 1, µ)

(bj, Bj)
q
1, (c + 1− δ, µ)

∣∣∣∣∣λzµ

]
. (86)

The results for the E-K operators have same expressions as in (82) and (83) with m = 1.

Corollary 2. The images of the Wright g.h.f. pΨq and, in particular, of the g.h.f. pFq under the
Saigo operators (78) are given by the formulas:

Iα,β,η

{
zc

pΨq

[
(ai , Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣∣λzµ

]}
= zc−β

p+2Ψq+2

[
(ai , Ai)

p
1 , (η − β + 1 + c, µ), (1 + c, µ)

(bj, Bj)
q
1, (−β + 1 + c, µ), (α + η + 1 + c, µ)

∣∣∣∣∣λzµ

]
, (87)

(for c = 0, µ = 1, this is Corollary 3 in [112]) and

Iα,β,η{
p Fq
(
a1, ..., ap; b1, ..., bq; λz

)}
= z−β

p+2Fq+2
(
a1, ..., ap, η − β + 1, 1; b1, ..., bq,−β + 1, α + η + 1; λz

)
. (88)

Corollary 3. The Marichev–Saigo–Maeda (M-S-M) operators (68) transform a Wright g.h.f.
function into same kind of special function but with indices increased by 3:

Ia,a′ ,b,b′ ,c
{

pΨq

[
(ai, Ai)

p
1

(bj, Bj)
q
1

∣∣∣∣λzµ

]}

= zc−a−a′
p+3Ψq+3

[
(ai, Ai)

p
1 , (a− a′ + 1, 1), (b− a′ + 1, 1), (c− 2a′ − b′ + 1, 1)

(bj, Bj)
q
1, (a− a′ + b + 1, 1), (c− 2a′ + 1, 1), (c− a′ − b′ + 1, 1)

∣∣∣∣∣λzµ

]
. (89)

We state here also the more general result for images of arbitrary Wright generalized
hypergeometric function in the case of multiple Wright–Erdélyi–Kober operators (33).

Theorem 6. (Kiryakova, [60], Theorem 9) The image of a Wright generalized function pΨq(z)
by a multiple W-E-K operator (33) has the form

I(γk),(δk)
(βk),(λk),m

{
pΨq

[
(a1, A1), . . . , (ap, Ap)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣∣z
]}

= p+mΨq+m

[
(aj, Aj)

p
1 ; (γk+1, 1/λk)

m
1

(bk, Bk)
q
1; (γk+δk+1, 1/βk)

m
1

∣∣∣∣∣z
]

. (90)

Conversely, the alternatively stated result reads as: each p+mΨq+m-function can be represented
by means of a multiple (m-tuple) operator Ĩ of GFC, of a pΨq-function, the orders of which are
reduced by m:

p+mΨq+m

[
(aj, Aj)

p
j=1; (ap+i, Ap+i)

m
i=1

(bk, Bk)
q
k=1; (bq+i, Bq+i)

m
i=1

∣∣∣∣∣z
]
= Ĩ

{
pΨq

[
(aj, Aj)

p
j=1

(bk, Bk)
q
k=1

∣∣∣∣∣z
]}

, (91)

with
Ĩ f (z) = I

(ap+i−1)m
i=1,(bq+i−ap+i)

m
i=1

(1/Bq+1)
m
i=1,(1/Ap+1)

m
i=1,m f (z) of the form (33).

A long list of examples how these general results work at once for any of the SF of
FC mentioned in previous sections is provided in author’s works [104,105,112,117,123],
including some of the particular cases of W.g.h.f. and of multi-index M-L f., mentioned in
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Sections 5 and 6. There we also provided the details on the references items for the authors
cited here only with years.

8. Theory of SF of FC in View of GFC Operators

Usually, the special functions of mathematical physics are defined by means of power
series representations. However, some alternative representations can be used as their
definitions. Let us mention the well-known Poisson integral (52) for the Bessel function
and the analytical continuation of the Gauss hypergeometric function via the Euler integral
formula. The Rodrigues differential formulas, involving repeated or fractional differentiation
are also used as definitions of the classical orthogonal polynomials and their generaliza-
tions. As to the other special functions (most of them being pFq- and pΨq-functions), such
representations have been less popular and even unknown in the general case. There
exist various integral and differential formulas, but, unfortunately, quite peculiar for each
corresponding special function and scattered in the literature without any common idea to
relate them.

In our works since 1985 (e.g., [9] (Ch.4), [58,60]), we showed that all the classical SF
and the SF of FC (in the sense of generalized hypergeometric functions pFq and pΨq) can
be presented by means of generalized fractional integrals or derivatives of three basic
elementary functions. On this basis, these special functions have been classified into
three specific classes, and several new integral and differential representations have been
proposed under a unified idea. Besides, for these three classes of SF, we provide analogs of the
mentioned Poisson and Euler integral formulas and of the Rodrigues differential formulas, which
can also be used for alternative definitions of these special functions, their analytical extensions or
for numerical algorithms.

The idea is briefly explained as follows: (i) most of the classical SF (SF of mathematical
physics) and SF of FC are nothing but modifications of the g.h.f. pFq or pΨq; (ii) each pFq-
function or pΨq-function can be represented as an E-K fractional differintegral (i.e., integral
or derivative) of a p−1Fq−1-function or p−1Ψq−1, respectively; (iii) a finite number of steps
(ii) leads to one of the basic g.h.f. (0Fq−p (for q−p = 1: Bessel function); 1F1 (confluent
h.f.) and 0F0 (exponent); and 2F1 (Gauss h.f.) and 1F0 (beta-distribution) to the simplest
functions 0Ψq−p, 1Ψ1, 1Ψ0, respectively); (iv) the above three basic g.h.f. can be considered
themselves as fractional differintegrals of the three elementary functions, depending on
whether p < q, p = q, or p = q + 1; and (v) the compositions of E-K operators arising in
Step (iii) give generalized (q-tuple) fractional integrals or derivatives.

Thus, for the simpler case of pFq-functions, we have the following general proposition.

Theorem 7. (Kiryakova [58]) All the generalized hypergeometric functions pFq can be considered
as generalized (q-tuple) fractional differintegrals (24), (30) (with Gm,0

m,m-kernels) of one of the
elementary functions

cosq−p+1(z) (if p < q), zα exp z (if p = q), zα(1− z)β (if p = q + 1), (92)

depending on whether p < q p = q p = q + 1.

It is based on the known auxiliary result coming yet from the Bateman Project on
integral transforms [7], Askey [2], Lavoie–Osler–Tremblay [124] for the R-L derivatives that
we have paraphrased in terms of E-K operators (e.g., Equation (4.2.2′) in [9] and Lemma 3.2
in [58]) as follows:

Γ(ap)

Γ(bq)
pFq(a1, ..., ap; b1, ..., bq; z)

=

 I
ap−1,bq−ap
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; z)

}
if bq > ap,

D
bq−1,ap−bq
1,1

{
p−1Fq−1(a1, ..., ap−1; b1, ..., bq−1; z)

}
if bq < ap,

(93)



Mathematics 2021, 9, 106 30 of 40

for all complex z, and if p = q + 1 we require additionally |z| < 1. Then, this basic fact is
to be used repeatedly, and combined with the composition/decomposition property (26)
for the operators of GFC. In each of the three separate cases, we reach to one of the basic
functions (92) with smallest possible first index p, namely: 0Fq−p(z) = cosq−p+1(z); 1F1(z)
and then 0F0(z) = exp z; and 2F1(z) and then 1F0(β;−; z) = (1− z)−β.

For the Wright generalized hypergeometric functions (4), this proposition reads almost the
same, only the third basic function (for p = q + 1) is more general, namely 1Ψ0 = H1,1

1,1 , and

the GFC operators have as kernel the Hm,0
m,m-function with different parameters βs and λs in

the upper and low rows.

Theorem 8. (Kiryakova [60] (Theorem 14)) All the Wright generalized hypergeometric functions
pΨq can be represented as multiple (q-tuple) W-E-K fractional integrals (33), or their corresponding
fractional derivatives, of one of the following three basic functions:

cosq−p+1(z) (if p < q) , exp z (if p = q) , 1Ψ0[ (a, A) | z ] (if p = q + 1). (94)

In this case, the basic used result is Theorem 6, following similar Steps (i)–(v) as
described above.

The three cases, for both Theorems 7 and 8, are considered in detail, in separate
statements.

(1) p < q. The Poisson integral representation (52) is extended in [9] (Ch.4) and [90]
for the hyper-Bessel functions (58), m ≥ 2, that is for the 0Fm−1-functions, via generalized
fractional integrals (24) of the function cosm, (54) as follows:

J(m−1)
ν1,..,νm−1(z) =

√
m

(2π)m−1

( z
m

)ν1+...+νm−1
I(

k
m−1),(νk− k

m +1)
1
m ,m−1

{cosm(z)}. (95)

By analogy with the hyper-Bessel functions (58), we consider what we call the Wright
hyper-Bessel functions:

0Ψm

[
−

(b1, B1), ..., (bm, Bm)

∣∣∣∣− z
]
= H1,0

0,m+1

[
z
∣∣∣∣ −
(0, 1), (1− b1, B1), . . . , (1− bm, Bm)

]

=
∞

∑
k=0

zk

Γ(b1 + kB1) . . . Γ(bm + kBm) . k!
:= JB1,...,Bm

b1−1,...,bm−1(z). (96)

The latter denotation is to remind of the analogy with the hyper-Bessel functions (58),
when ∀Bk = 1. It is easy to observe that (96) appears as special case of the multi-index
Mittag–Leffler functions (39), namely: JB1,...,Bm

b1−1,...,bm−1(z) = E(m+1)
(1,B1,...,Bm),(1,b1,...,bm)

(−z).

We have then a result, analogous to (95), and more general than (53) for the multi-M-L
functions, that: each Wright hyper-Bessel function 0Ψq−p, p < q, can be represented by means of
a Poisson type integral of the cosp−q+1-function, written in the form

0Ψq−p

[
−

(b1, B1), ..., (bq−p)

∣∣∣∣− z
]
= JB1,...,Bm

b1−1,...,bm−1(z)

= I
( k

q−p+1−1),(bk− k
q−p+1 )

( 1
Bk

),(1),q−p

{
cosq−p+1

(
(q− p + 1)z

1
q−p+1

)}
. (97)

Let us now apply to the function 0Ψq−p above, p-times the results (90), (91)
(Theorem 6) with m=1, combined with the composition rule for the W-E-K integrals (33).
Then, we obtain the following:

Theorem 9. (Kiryakova [60] (Theorem 15)) Each pΨq-function with p < q is a generalized
q-tuple W-E-K fractional (differ-)integral operator of cosq−p+1(z),
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pΨq

[
(a1, A1), . . . , (ap, Ap)
(b1, B1), . . . , (bq, Bq)

∣∣∣∣− z
]
= I(γk),(δk)

( 1
Bk

),(λk),q

{
cosq−p+1((q− p + 1) z

1
q−p+1 )

}
, (98)

with the following parameters:

γk =

{
k

q−p+1 − 1,
ak−q+p − 1,

; δk =

{
bk − k

q−p+1 ,
bk − ak−q+p,

; λk =

{
1, k = 1, . . . , q− p

1
Ak−q+p

, k = q− p + 1, . . . , q.

If the following conditions are satisfied:

bk >
k

q− p + 1
, k = 1, . . . , q− p; bk > ak−q+p > 0, k = q− p + 1, . . . , q,

Bk ≥ 1, k = 1, . . . , q− p; Bk ≥ Ak−q+p, k = q− p + 1, . . . , q,

then relation (98) gives a Poisson type integral representation; otherwise, the operator in the R.H.S.
should be interpreted as a multiple W-E-K derivative (see, e.g., Definition 7 in [60]), and then (98)
turns into a new Rodrigues type differential formula, or a mixed differ-integral representation.

The particular case of Poisson type representation (53) for the multi-index M-L func-
tion has been already stated as Theorem 3 in Section 4.

In the other two cases, p = q and p = q + 1, the starting results for pΨq were formu-
lated as Lemmas 11 and 12 in Kiryakova [60]:

1Ψ1

[
(a1, A1)
(b1, B1)

∣∣∣∣z] = Wa1−1,b1−a1
1/B1,1/A1

{ exp z }, if A1 ≥ B1, b1 ≥ a1, for |z| < ∞; (99)

2Ψ1

[
(a1, A1), (a2, A2)

(b1, B1)

∣∣∣∣z] = Wa1−1,b1−a1
1/B1,1/A1

{
1Ψ0

[
(a2, A2)
−

∣∣∣∣z]} (100)

= Wa1−1,b1−a1
1/B1,1/A1

{
H1,1

1,1

[
−z
∣∣∣∣ (1− a2, A2)

(0, 1)

]}
,

if A1 ≥ B1, b1 ≥ a1; and if A2 < 1, for |z| < ∞; or if A2 = 1, for |z| < 1.

After additional (p−1) steps, from pΨq passing via 1Ψ1 to 0Ψ0, respectively, to 1Ψ0,
the following explicit results for the statement in Theorem 8 are provided in [60].

(2) p = q.

Theorem 10. If p = q, each g.h.f. pΨp(z) is an p-tuple W-E-K fractional integral of the exponen-
tial function, namely, if Bk ≥ Ak > 0, bk > ak > 0, k = 1, ..., p:

pΨq

[
(a1, A1), ..., (ap, Ap)
(b1, B1), ..., (bp, Bp)

∣∣∣∣z] = I(ak−1),(bk−ak)

( 1
Bk

),( 1
Ak

),p
{ exp z }, for |z| < ∞. (101)

If for some indices k, the above inequalities for parameters are not satisfied, representation (101)
turns into differ-integral one, or in special cases to purely differential one.

Theorem 10 suggests us to separate the g.h.f-s pΨp with p = q in a class of so-called
Wright g.h.f. of confluent type, involving the confluent hypergeometric function 1F1(a; b; z) =
Φ(a; b; z) and exp z as the simplest cases.

(3) p = q + 1. Analogously, we call the q+1Ψq-functions with p = q + 1 as Wright g.h.f.
of Gauss type, since the simplest case of such special function is the Gauss function. We
have following specific result.

Theorem 11. Each Wright g.h.f. of Gauss type pΨq, that is with p=q + 1, is a q-tuple Wright–
Erdélyi–Kober fractional integral (or differ-integral) of the 1Ψ0-function. Namely, for 0 < A0 ≤ 1
and bk > ak > 0, k = 1, ..., p:
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q+1Ψq

[
(a0, A0), (a1, A1), . . . , (aq, Aq)

(b1, B1), . . . , (bq, Bq)

∣∣∣∣z] = I(ak−1),(bk−ak)

( 1
Bk

),( 1
Ak

),q

{
1Ψ0

[
(a0, A0)
−

∣∣∣∣z]} (102)

= I( 1
Bk

),( 1
Ak

),q

{
H1,1

1,1

[
−z
∣∣∣∣ (1− a0, A0)

(0, 1)

]}
, if A0 < 1 for |z| < ∞; or if A0 = 1, for |z| < 1.

For other arrangements between bk and ak, the operator in (102) is a generalized fractional
derivative.

For particular choices of parameters bk and ak not satisfying the conditions bk > ak > 0,
some integer order differentiations appear in place of the fractional integrals or derivatives
and lead to Rodrigues type differential formulas, analogous to these for the classical orthogonal
polynomials.

Note that the integral representation (102) generalizes the Euler integral formula for the
Gauss hypergeometric functions that serves for its analytical extension outside |z| < 1 to the
domain |arg(1− z)| < π:

2F1(a1, a2; b1; z) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

1∫
0

(1− σ)b1−a2−1σa2−1

(1− zσ)a1
dσ, b1 > a2 > 0. (103)

This gave us the reason to name pΨq with p = q + 1 as a Gauss type g.h.f.
In particular, for A0 = 1, the basic function in the case p = q + 1 reduces to the

geometric series:

1Ψ0
[

(a0, 1)
∣∣z]=H1,1

1,1

[
−z
∣∣∣∣ (1−a0, 1)

(0, 1)

]
=G1,1

1,1

[
−z
∣∣∣∣ 1−a0

0

]
= 1F0(a0;−; z) = (1−z)−a0 .

Therefore, based on the statements in Theorems 7–11, we suggest a classification of the
classical SF and of the SF of FC into three classes, namely “Bessel”, “confluent” and “Gauss”
types, depending on whether p < q, p = q or p = q + 1. This approach can facilitate applied
scientists and engineers, escaping a deep knowledge on SF, to think of them in a very general
view as similar to a cosine- (Bessel) function, exponent or geometric series, because the
fractional integrations keep in some sense the asymptotic and general behavior.

The results from Theorems 7–11 for pΨq, and their specifications for the pFq-functions,
yield also several new integral and differential formulas for them, with possible hints for compu-
tational procedures.

Below, we mention some few of them, say in the simpler cases of pFq-functions.

The case p = q: For the g.h.f. pFp, the integral representation can be written not

only by means of Gp,0
p,p-functions in the kernel, but also avoiding SF due to decomposition

property (26). Thus, we have an integral formula, as follows:

pFp(a1, ..., ap; b1, ..., bp; z) = B z1−a1 I(ak−a1),(bk−ak)
1,p

{
za1−1 exp z

}
= B

1∫
0

. . .
(p)

1∫
0

p

∏
k=1

[
(1−σk)

bk−ak−1σ
ak−1
k

Γ(bk − ak)

]
exp(z σ1...σp) dσ1...dσp, B :=

p

∏
j=1

Γ(bj)

Γ(aj)
, (104)

under conditions bk > ak > 0, k = 1, ..., p. If the parameters do not satisfy them, the GFC
operator above is interpreted as generalized fractional derivative of the form (30).

Specially, let all the differences ak − bk = ηk, k = 1, ..., p be non-negative integers. In this
case, we call the pFp-functions as “spherical” g.h.f. of confluent type, using the analogy with
the spherical Bessel, hyper-Bessel functions and spherical multi-M-L functions E(αi),(βi)

(z)
with “semi-integer” indices, mentioned in Remark 1. Then, the operator in (104) turns into
a differential operator Dη of integer order η = η1 + ... + ηp ≥ 0 of the form (27), and we
obtain a differential formula of the form

Γ(ap)

Γ(bq)
pFq(a1, ..., ap; b1, ..., bq; z)pFp(b1+η1, . . . , bp+ηp; b1, ..., bp; z)
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= pFp(b1+η1, . . . , bp+ηp; b1, ..., bp; z)

=

[
p

∏
j=1

Γ(bj)

Γ(bj+ηj)

][
p

∏
k=1

ηk

∏
j=1

(z
d
dz

+bk+ j−1)

]
{exp z}=Qp(z){exp z}. (105)

The representation (105) gives an example how differential formulas for the “spherical”
g.h.f. introduced by Kiryakova [9] can be used for their explicit calculation, especially
in the case p = q in the form Qp(z){exp z}, where Qp(z) is a p-degree polynomial. A

special case of (105) with bk =ηk = 1, k=1, ..., p and Qp(z) =
d
dz

(
z

d
dz

)p
was presented by

Prudnikov–Brychkov–Marichev [14] (p. 593).

The case p = q + 1: For the Gauss type g.h.f. q+1Fq, we have in the unit disk |z| < 1

an integral representation (if written by repeated integral with no use of the kernel Gq,0
q,q -

function), for bk > ak+1, k = 1, .., q:

q+1Fq(a1, ..., aq+1; b1, ..., bq; z)

=

 q

∏
j=1

Γ(bj)

Γ(aj+1)Γ(bj − aj+1)

 z1−a2 I(ak+1−1)q
1,(bk−ak+1)

q
1

1,q

{
za2−1(1− z)−a1

}

=

 q

∏
j=1

Γ(bj)

Γ(aj+1)Γ(bj−aj+1)

 1∫
0

. . .
(p)

1∫
0

q

∏
j=1

[
(1−σk)

bk−ak+1−1σ
ak+1−1
k

]
(1− z σ1...σq)

−a1 dσ1...dσq. (106)

In this form, (106) can also be found in [14] (p. 438). In the case q = 1, this is exactly the
Euler integral formula (103) for the Gauss hypergeometric function. Similarly, (106) proposes
a way for an analytical continuation of the functions q+1Fq(z) outside the unit disk to the
domain | arg(1− z)| < π.

In the case when the ak’s and bk’s do not satisfy the above conditions, the operator in (106)
turns into a generalized fractional derivative, and this also provides useful corollaries. By
analogy with the previous two cases (p < q and p = q), we introduce the notion of spherical
g.h.f. of Gauss type when all the differences ak+1 − bk = ηk, k = 1, ..., q are non-negative
integers. Then, q+1Fq(z) is representable by a purely differential operator of a function
(1− z)−a1 , and a special case of such differential formula is presented in [14] (p.572).

Another interesting case concerns the so-called hypergeometric polynomials

q+1Fq(−n, a1, ..., ap; b1, ..., bq; z) =
n

∑
k=0

(−n)k (a1)k...(ap)k

(b1)k...(bq)k

zk

k!
. (107)

Taking aq+1 = −n with integer n ≥ 0 and ak > bk > 0, k = 1, ..., q, the fractional
derivative form of the operator in (106) provides the Rodrigues type formula ([9] (Ch.4)):[

q

∏
j=1

Γ(aj)

Γ(bj)

]
p+1Fq(−n, a1, . . . , aq; b1, ..., bq; z) = D(bk−1),(ak−bk)

1,q {(1− z)n}

= z1−aq D
(bk−aq),(ak−bk)
1,q

{
za1−1(1− z)n

}
= z1−bq Daq−bq zap−bq−1 Dap−1−bq−1

× . . . za3−b2 Da2−b2 za2−b1 Da1−b1
{

za1−1(1− z)n
}

.

(108)

Special cases of (108) yield some classical Rodrigues formulas. For example, p = q = 1
with a1 = n + 1, b1 = 1 and z→ 1−z

2 gives the Rodrigues formula for the Legendre polynomials:

Pn(z) = (−1)n
2F1(−n, n + 1; 1;

1− z
2

) =
(−1)n

n!
dn

dzn

[
1− z

2

n
· 1 + z

2

n]
=

1
2nn!

dn

dzn

{
(z2 − 1)n

}
,
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and p = q = 2 with a1 = n + 1, b1 = 1, a2 = ζ, b2 = p (ζ > p > 0) gives the Rodrigues
formula for the Rice polynomials, namely

Rn(z) = 3F2(−n, n + 1, ζ; 1, p; z) =
Γ(p)

n!Γ(ζ)

[
dn

dzn z1−p
(

d
dz

)ζ−p
]
{zn(1− z)n}.

9. Numerical Aspects of SF of FC

In the days before the electronic computers, the necessary complement to a special
function was the computation, by hand, of extended tables of its values, intended to make
the function available for users, similarly to the familiar logarithm tables. After mechani-
cal calculators appeared and were more widespread, several huge special-function-table
projects were started. Let us mention as examples the handbooks Gradshteyn–Ryzhik [126]
and Magnus–Oberhettinger [127], both initiated in 1943.

R. Askey (at the Conf. “SF 2000”, ASU): “. . . The advent of fast computing machines was
thought to have made special functions a subject of the past. The reality has been different.
Continued development of older functions and the introduction of new special functions has
been the reality ... and still remains to be discovered ... The classical handbooks as mentioned,
although useful as references, maybe no longer the primary means of accessing the special
functions of mathematical physics. A number of high level programs appeared that are
better suited for this challenging purpose, to mention as Mathematica, Maple, Matlab,
Mathcad, ...”

We like to add a citation from Stephen Wolfram [128] (Wolfram Mathematica), “... and
special functions became a big business. Table making had become a major activity for the
governments, and was thought strategically important. Particularly for things like navigation,
nuclear physics, military reasons, H-bomb, etc. And there were lots of tables . . . The aspects
of the theory then mattered might be as two: – for numerical analysis, discovery of infinite
series or other analytical expression allowing rapid calculation; and – reduction of as many
functions as possible to the given (better known) function . . . ” (Author’s comment: compare
with the approach applied in works of Kiryakova as [9] (Ch.4), [58,60], discussed in Section 8).
(S. Wolfram:): “. . . There gradually started to appear systematic reference works on the
properties of special functions. Each one based on lot of work . . . ”, “. . . I guess integrals are
timeless. They don’t really bear the marks of the human creators. So we have the tables, but we
really don’t quite know where they came from ...”. (Author’s comment: However, it seems
Marichev knew, and we refer to his book [11]).

In the 1960s and 1970s, a lot of efforts started for developing numerical algorithms for
computers. Evaluation of special functions became a favorite area. S. Wolfram: “Well, a
few years passed. And in 1986, I started designing Mathematica. I wanted to be sure to do
a definitive job, and to have good numerics for all functions, for all values of parameters,
anywhere in the complex plane, to any precision . . . And I remember very distinctly a
phone call I had with someone at a government lab. And there was a silence. And then
he said: “Look, you have to understand that by the end of the 1990s we hope to have the
integer-order Bessel functions done to quad precision.” ... (S.W., cont’d): “You know, it’s
actually quite a difficult thing to put a special function into Mathematica. You don’t just
have to do the numerics... So what makes a special function good? Well, we can start
thinking about that question empirically. Asking what’s true about the special functions
we normally use. And of course, from what we have in Mathematica and in our Wolfram
Functions Site [129], we should be in the best position to answer this.”

Let us note that the standard SF—the hypergeometric functions (Gauss, pFq-), the
Meijer G-function, etc.—are well presented there ([129]), but (it seems) none of the M-L type,
Wright and H-functions, that is cases of SF of FC, are available yet. Meanwhile, the fractional
nature of the world needs better reflection by fractional order (FO) models in whose
solutions the so-called SF of FC appear. Thus, it is yet a challenging trend to be developed.
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Here, we try to provide only a short information on some “recent” numerical jobs done
with respect to the M-L-function, classical Wright function and only few of their extensions.

For numerical algorithms and results in the case of the Mittag–Leffler functions (one- and
two-parameter and matrix analog), we start with reference to Caputo–Mainardi [130] (1971).
We note that this is one of the first works to propose a plot of the M-L function. On those
times, without possibilities to take advantage of software packages such as Mathematica,
Maple and Matlab, this task was difficult, as it was managing series expansions convergent
only in the mathematical sense but not in the numerical sense. Further, some other authors
worked on similar problems either simultaneously but independently, or in years afterward:
Gorenflo–Loutchko–Luchko [131], 2002; Diethelm–Ford–Freed–Luchko [132], 2005; Pod-
lubny [133], 2005–2009–2012, (v 1.2.0.0) 2021; Hilfer–Seybold and Seybold–Hilfer [134,135],
2006–2008; Garrappa [136], 2015 and Garrappa–Popolizio [137], 2018; etc.

Numerical algorithms and results on the (classical) Wright function (56) and its special
cases, including the Mainardi function, can be found in works by Luchko [138], 2008; Luchko–
Trujillo–Velasco [139], 2010; Consiglio [140], 2019; Mainardi–Consiglio [97], 2020; etc.

Concerning the Prabhakar (three-parameter) M-L type function (38), see Garrappa [136],
2015; etc.

For the generalized exponential integrals as (63) and related generalized trigonometric
functions involving M-L functions (in the sense of 6.2.), and shown to be Wright g.h.f.
2Ψ2, one can find some tables and plots for physically interesting parameters and related
models, proposed by Mainardi and Masina [102] (2018) and Paris [103] (2020).

This list can surely be extended with more information.
We would like to attract readers’ attention to the challenging Open Problem: What about

possibilities for numerical and graphical interpretations, plots and tables and implementing
software packages for some more general Special Functions of Fractional Calculus, such
as the multi-index Mittag-Leffler functions? At least, to treat illustrative examples for few
typical sets if multi-indices?

10. Conclusions

In this survey, under the notion of Special Functions of Fractional Calculus (SF of FC), we
have in mind the Fox H-function and the Wright generalized hypergeometric functions pΨq,
including the Mittag–Leffler function, its multi-index extensions and all their particular
cases. The standard (classical) special functions (SF) naturally come as part of this scheme,
as cases of the Meijer G-function and of the pFq-functions, including so many named SF
and orthogonal polynomials. Here, we try to review some of the basic results on the theory
of the SF of FC, obtained in author’s works over more than 30 years, and support the wide
spreading and important role of these functions by several examples.

The short outline of the contents is as follows:

In Section 1, we start with a historical introduction to pay tribute to the older projects
that gave life to the contemporary development of the topic. Some short definitions and
facts on the considered basic special functions are given in Section 2. In Section 3, we
pay attention to the use of the H- and G-functions, especially of orders (m, 0; 0, m) and
(m, 0; m, m), as kernel-functions of generalized integral transforms of Laplace type and
of the operators of the so-called generalized fractional calculus (GFC). In Section 4, we
introduce the Mittag–Leffler functions and the multi-index Mittag–Leffler functions, with
short information on their properties derived in author’s works. Sections 5 and 6 contain
long lists of examples of SF that appear as cases of the multi-index Mittag–Leffler functions
and in more general setting, of the Wright generalized hypergeometric functions pΨq. These
include also citations to many other authors who introduced and applied such functions in
their works. The author’s unified approach to evaluate images of classical SF and of SF of
FC under operators of FC and GFC is shortly described in Section 7, because the details are
presented in another survey paper in the same journal [105]. In Section 8, we collect some
of our basic propositions on the representations of the SF and of SF of FC as operators of
GFC of three basic and simplest elementary functions and propose a classification of the SF
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based on the cases p < q, p = q and p = q + 1. Thus, a new sight on the theory of SF is
proposed. Since the computational aspects related to the considered SF are of important
interest for their applications, in Section 9, we provide some short information on the state
of affairs and some recent works on this direction by other authors. A provoking challenge
in this respect is mentioned.
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