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1. Introduction

Anomalous (non-Fickian) diffusion processes are modeled by employing different
types of fractional partial differential and integro-differential equations [1]. Analytical and
numerical solutions to fractional differential equations have been investigated by several
authors, see e.g., [2,3]. Recently, generalized subdiffusion equations with different memory
kernels are extensively studied as models that unify a wide range of anomalous diffusion
patterns [4–6].

In this work we consider the generalized subdiffusion equation in the form

D(k)
t u(x, t) = uxx(x, t) + F(x, t), (1)

where D(k)
t is an integro-differential operator defined by

(D(k)
t f )(t) =

d
dt

∫ t

0
k(t− τ)( f (τ)− f (0))dτ, t > 0, (2)

with a locally integrable memory kernel k(t). For the kernel k(t) we also assume that its
Laplace transform k̂(s) exists for all s > 0 and

k̂(s) ∈ SF , lim
s→+∞

sk̂(s) = +∞, (3)

where SF denotes the class of Stieltjes functions (the definition of this class is given in the
next section). The most prominent particular examples of operators D(k)

t are the first-order
derivative d

dt
, corresponding to k̂(s) = 1, the Caputo time-fractional derivative of order

α ∈ (0, 1), where k̂(s) = sα−1, as well as linear combinations with positive coefficients of
such derivatives.

Let us note that assumptions (3) are weaker than those required in the definition of the
so-called general fractional derivative, introduced in [7] and studied in detail in [8,9]. The
operator D(k)

t is a general fractional derivative, if, along with (3), the following additional
limiting behavior conditions are imposed: k̂(s) → 0 as s → ∞; k̂(s)→ ∞ and sk̂(s)→ 0
as s→ 0. To cover some examples of physically meaningful models with corresponding
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memory kernels, which do not satisfy some of the additional conditions, they are not
required in this work. Such are, for instance, the subdiffusion equation with the truncated
power-law memory kernel k(t) = e−γt t−α

Γ(1−α)
, γ > 0, α ∈ (0, 1), considered in [4,6], the

fractal mobile/immobile solute transport equation introduced in [10], and the Jeffreys’ type
heat conduction model in the diffusion regime [11,12]. On the other hand, the assumption
k̂(s) ∈ SF is typical for a subdiffusion model (see e.g., [4–6]) and allows the use of
the convenient Bernstein functions technique [13]. It implies that the kernel k(t) admits
the representation

k(t) = k0δ(t) + k1(t), (4)

where k0 ≥ 0, δ(·) denotes the Dirac delta function, and k1(t) ∈ L1
loc(R+) is a completely

monotone function, i.e. it is of class C∞(R+) and

(−1)nk(n)1 (t) ≥ 0, t > 0, n = 0, 1, 2, . . . (5)

For example, in the case of the first-order derivative k0 = 1 and k1 ≡ 0, while k0 = 0
and k1 = t−α

Γ(1−α)
for the Caputo time-fractional derivative of order α ∈ (0, 1).

A more general setting for the subdiffusion equation (1) has been introduced in [14]
and further developed and applied in e.g., [15,16]. In this setting, it is assumed that the
function k1(t) in representation (4) is non-negative and non-increasing (satisfies (5) only
for n = 0, 1) and there exists a locally integrable kernel l(t), such that (k ∗ l)(t) = 1, t > 0.
The kernel l(t) with these properties is referred to as completely positive kernel. Let us
note that assumptions (3) also ensure the existence of such kernel l(t), which in this case is
completely monotone.

In the present work we are concerned with an inverse source problem for the subdif-
fusion Equation (1). Different kinds of inverse problems for the diffusion equation with the
Caputo time-derivative of order α ∈ (0, 1) are extensively studied recently, see e.g., [17–21].
For a comprehensive tutorial on inverse problems for anomalous diffusion processes we re-
fer to [22]. Identification of a space-dependent source factor h(x) in a source function of the
form F(x, t) = h(x)q(x, t) from final overdetermination are studied in [17,19,23–25], where
different assumptions on the known source factor q(x, t) are discussed. Concerning the
generalized subdiffusion equation, various types of inverse problems for such equations
are studied in [26–28].

In this work, we consider the problem of identifying a space-dependent source factor
h(x) and the solution u(x, t) to the following nonlocal boundary-value problem with
final overdetermination

D(k)
t u(x, t) = uxx(x, t) + q(t)h(x), x ∈ (0, 1), t ∈ (0, T), (6)

u(1, t) = 0, ux(0, t) = ux(1, t), t ∈ (0, T], (7)

u(x, 0) = 0, u(x, T) = g(x), x ∈ [0, 1], (8)

where the operator D(k)
t acting with respect to the time variable is defined in (2), q(t) is a

prescribed continuous function, g(x) is a known square integrable function, and T > 0 is
the final time.

In practical applications, the input data g(x) is given by measurement and actually
the measured data gν(x) is available, which is merely in L2(0, 1) and satisfies

‖gν − g‖L2(0,1) ≤ ν, (9)

where the constant ν represents the noise level.
The study of nonlocal boundary-value problems is motivated by the fact that in many

cases a nonlocal condition is more realistic in treating physical problems than the classical
local conditions. Inverse source problems with nonlocal boundary conditions are studied
e.g., in [29–34]. The papers [29,30] are concerned with two particular cases of the inverse
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source problem (6)–(8). In these works, existence of a unique solution in the classical
sense is established for D(k)

t = d
dt

and D(k)
t —the Caputo time-fractional derivative of order

α ∈ (0, 1), respectively, and q(t) = 1.
In the case of inverse source problem with final overdetermination for the time-

fractional subdiffusion equation on Ω× (0, T) with the classical Dirichlet boundary condi-
tions the following estimates are satisfied (see e.g., [19,22,35])

C1‖g‖H2(Ω) ≤ ‖h‖L2(Ω) ≤ C2‖g‖H2(Ω).

The same behavior is observed as well with the classical diffusion equation. Therefore,
such inverse problems are moderately ill-posed: the overdetermination function g(x) has a
better regularity than the source term h(x), as the regularity loss is two spatial derivatives.

The main goal of the present work is to study stability of the inverse source
problem (6)–(8) in Sobolev spaces, and to prove analogous estimates for the overdeter-
mination function g(x) and the source factor h(x). To this end generalized eigenfunction
expansions are used with respect to a biorthogonal pair of bases. The present paper is a
continuation of the recent work [36], in which inverse source problem (6)–(8) is solved in
the classical sense, together with detailed study of particular cases for the operator D(k)

t
and some numerical examples.

The rest of the paper is organized as follows. In Section 2 the assumptions on the
memory kernel are discussed by the use of the Bernstein functions technique. In Section 3
two examples of generalized subdiffusion equations are considered. Properties of the
solution of the generalized relaxation equation are summarized in Section 4. Section 5 is
concerned a biorthonormal pair of Riesz bases for the considered problem. In Section 6
formal spectral expansions for the solution are derived. In Section 7 we establish uniqueness
and stability estimates for the inverse problem. Concluding remarks are given in Section 8.

2. Assumptions on the Memory Kernel

We start with some preliminaries on completely monotone functions, Bernstein, com-
plete Bernstein and Stieltjes functions. Let us denote the Laplace transform of a function by

L{ f (t)}(s) = f̂ (s) =
∫ ∞

0
e−st f (t)dt.

The class of completely monotone functions, defined in (5), is denoted by CMF .
The characterization of the class CMF is given by the Bernstein’s theorem stating that
a function is completely monotone if and only if it can be represented as the Laplace
transform of a non-negative measure (non-negative function or generalized function).

The class of Stieltjes functions (SF ) consists of all functions defined on R+ which can
be written as a restriction of the Laplace transform of a completely monotone function to the
real positive semi-axis. More precisely, ϕ ∈ SF if and only if it admits the representation [7]

ϕ(s) = ϕ0 +
∫ ∞

0
e−stψ(t)dt, s > 0, (10)

where ϕ0 ≥ 0, ψ ∈ CMF and the Laplace transform of ψ exists for any s > 0. Moreover,
ϕ0 = lims→+∞ ϕ(s), see e.g., [37], Theorem 2.6.

A non-negative function ϕ on R+ is said to be a Bernstein function (ϕ ∈ BF ) if
ϕ′(s) ∈ CMF ; ϕ(s) is said to be a complete Bernstein function (CBF ) if and only if

ϕ(s)/s ∈ SF , s > 0. (11)

The inclusions SF ⊂ CMF and CBF ⊂ BF are valid. An example of a completely
monotone function is the Mittag–Leffler function Eα,β(−s) (for definition see (16)) provided
0 < α ≤ 1 and α ≤ β. If α ∈ [0, 1] then sα ∈ CBF and sα−1 ∈ SF .
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A selection of properties of the classes of functions defined above is given next. For
proofs and more details on these special classes of functions we refer to [13,15], Chapter 4.

(P1) The class CMF is closed under point-wise multiplication.
(P2) If ϕ ∈ CMF and ψ ∈ BF then the composite function ϕ(ψ) ∈ CMF .
(P3) ϕ ∈ CBF if and only if 1/ϕ ∈ SF .
(P4) If ϕ ∈ BF then it admits a continuous extension to C+, which is holomorphic in C+

and satisfies <ϕ(s) > 0 for all <s > 0.

We proceed with a short discussion on the assumptions (3) for the kernel k(t) and
their implications.

Let us first note that the assumption k̂(s) ∈ SF implies the non-negativity of the
Green function G(x, t) to Equation (1), which is a necessary condition for a diffusion model.
Indeed, in Laplace domain the Green function obeys the identity

Ĝ(x, s) =
k̂(s)

2
exp

(
−|x|sk̂(s)

)
, x ∈ R, s > 0.

By the Bernstein’s theorem, it is sufficient to prove that Ĝ(x, s) ∈ CMF for s > 0
and |x| considered to be a parameter. According to (11), k̂(s) ∈ SF is equivalent to
sk̂(s) ∈ CBF . Then (P2) implies that exp

(
−|x|sk̂(s)

)
∈ CMF as a composition of the

completely monotone in t function e−|x|t and the Bernstein function sk̂(s). Moreover,
k̂(s) ∈ SF ⊂ CMF . Therefore, Ĝ(x, s) ∈ CMF as a product of two completely monotone
functions, see (P1).

Concerning the limiting behavior of the kernel k(t) the initial value theorem for the
Laplace transform implies limt→0+ k(t) = lims→∞ sk̂(s) = +∞. Thus, we restrict our
attention to kernels, singular at the origin.

The representation (4) for the kernel k(t) follows from the assumption k̂(s) ∈ SF and
the characterization (10) of Stieltjes functions.

Furthermore, we are looking for a corresponding Sonine kernel l(t) to the kernel k(t).
This is a function satisfying l(t) ∈ L1

loc(R+), such that

(k ∗ l)(t) ≡ 1. (12)

Here ∗ denotes the convolution (k ∗ l)(t) =
∫ t

0 k(t− τ)l(τ)dτ. Relation (12) is equiv-
alent to k̂(s)l̂(s) = 1/s and by the use of (P3) assumptions (3) imply l̂(s) ∈ SF and
lims→+∞ l̂(s) = 0. Therefore, according to (10), under the assumptions (3) a resolvent
kernel l(t) exists and l(t) ∈ CMF .

Let us note that if f ′ is integrable then (k ∗ f )′(t) = (k ∗ f ′)(t) + k(t) f (0). Therefore,
in this case (D(k)

t f )(t) = (k ∗ f ′)(t) and (12) implies that (D(k)
t f )(t) = g(t) is equivalent

to f ′(t) = (l ∗ g)′(t). This enables us to rewrite Equation (1) as a generalized diffusion
equation in the so-called modified form, see e.g., [4]. In [38] we presented arguments
why this form is more natural when considering multi-component systems, in particular,
systems with a source. Assume that there is a source term h(x) in the conservation law,
which depends only on the space variable. Then the subdiffusion equation in modified
form reads

ut(x, t) =
∂

∂t
(l ∗ uxx)(x, t) + h(x). (13)

Applying the convolution operator (k∗) to both sides of (13) we obtain

k ∗ ut = k ∗ ∂

∂t
(l ∗ uxx) + (k ∗ 1)(t)h(x) =

∂

∂t
(k ∗ l ∗ uxx)− k(t)(l ∗ uxx)(x, 0) + (k ∗ 1)(t)h(x),

which implies by the use of (12)

D(k)
t u = uxx(x, t) + q(t)h(x),
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where q(t) =
∫ t

0 k(τ)dτ. Therefore, q(t) is a Bernstein function with q(0) = k0 ≥ 0. In
particular, it is continuous, non-negative and non-decreasing function.

3. Two Examples of Generalized Subdiffusion Equations

In [36] we considered basic examples of kernels k(t), satisfying (3), which do not
contain a Dirac delta function in their definition, i.e., k0 = 0 in (4). In this section, two
additional physically meaningful examples are given, such that k0 > 0.

The two models are defined in terms of derivatives of fractional order and kernels of
Mittag–Leffler type.

The Riemann-Liouville and the Caputo fractional derivatives of order α ∈ (0, 1),
denoted by Dα

t and CDα
t , respectively, are defined by the identities [39]

(Dα
t f )(t) =

d
dt

(
J1−α
t f

)
(t),

(
CD

α
t f
)
(t) =

d
dt

(
J1−α
t ( f (·)− f (0))

)
(t), 0 < α < 1, (14)

where Jβ
t denotes the Riemann-Liouville fractional integral:(

Jβ
t f
)
(t) =

1
Γ(β)

∫ t

0
(t− τ)β−1 f (τ)dτ, β > 0; J0

t = I. (15)

The Mittag–Leffler function is defined by the series [39]

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
, α, β, z ∈ C, <α > 0; Eα(z) = Eα,1(z); (16)

and satisfies the Laplace transform pair

L
{

tβ−1Eα,β(−λtα)
}
(s) =

sα−β

sα + λ
. (17)

3.1. Two Time-Scale Diffusion Model

The time-fractional diffusion equation with the fractional Caputo time-derivative of
order α ∈ (0, 1) accurately describes the power-law decaying behavior of the subdiffusive
transport of solutes in heterogeneous media. However, the first-order time derivative of
the solution to this equation exhibits a nonphysical singularity of order O(tα−1) near the
initial time t = 0. This disadvantage can be avoided if the following two time-scale model
is considered

ut(x, t) + aCD
α
t u(x, t) = uxx(x, t) + F(x, t), α ∈ (0, 1). (18)

Equation (18) is introduced in [10] as a model for anomalously diffusive transport of
solute in heterogeneous porous media, where it is referred to as Fractal mobile/immobile
solute transport equation.

In the case of Equation (18) the corresponding Sonine kernels k(t) and l(t) satisfy
the identities

k(t) = δ(t) + a
t−α

Γ(1− α)
, k̂(s) = 1 + asα−1,

l(t) = E1−α(−at1−α), l̂(s) =
s−α

s1−α + a
.

3.2. Fractional Jeffreys-Type Heat Conduction Equation

According to the fractional Jeffreys-type constitutive law (see [11] Chapter 7) the heat
flux q(x, t) and the temperature u(x, t) are related via the equation

(1 + aDα
t )q(x, t) = −k(1 + bDα

t )ux(x, t), (19)
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where Dα
t denotes the Riemann-Liouville fractional time-derivative of order α ∈ (0, 1],

a > 0 and b > 0 are generalized relaxation times, k is the thermal conductivity. Combining
Equation (19) with the energy balance equation

− ∂

∂x
q(x, t) + J(x, t) = Cut(x, t), (20)

where C denotes the heat capacity and J(x, t) is a heat source, one finds the following
fractional Jeffreys-type heat conduction equation

(1 + aDα
t )ut(x, t) = D(1 + bDα

t )uxx(x, t) + C−1(1 + aDα
t )J(x, t), (21)

where D = k/C is the thermal diffusivity. For notational simplicity we set D = 1. Suppose
a heat source, which does not change with time and set h(x) = C−1 J(x).

Let us assume in addition 0 < a < b. It is proven in [12] that in this case Equation (21)
is a generalized subdiffusion equation and admits the form (6) with kernel (see [12])

k(t) =
a
b

δ(t) +
(

1− a
b

)1
b

tα−1Eα,α

(
−1

b
tα

)
; k̂(s) =

1 + asα

1 + bsα
. (22)

By the use of (12) and (17) one finds that the corresponding Sonine kernel l(t) obeys

l(t) = 1 +
(

b
a
− 1
)

Eα

(
−1

a
tα

)
; l̂(s) =

1 + bsα

s(1 + asα)
. (23)

For the source factor q(t) we derive from (22) q(t) = 1 +
( a

b − 1
)
Eα

(
− 1

b tα
)

. Therefore,
in this case q(t) is a continuous, positive and increasing function with q(0) = a/b > 0.

4. Generalized Relaxation Equation

This section contains preliminary results on the inhomogeneous generalized relaxation
equation, for more details we refer to [35,36].

The solution of the inhomogeneous generalized relaxation equation

(D(k)
t v)(t) + λv(t) = r(t), λ ≥ 0, t > 0, v(0) = a, (24)

admits the representation

v(t) = aS(t; λ) +
∫ t

0
G(t− τ; λ)r(τ) dτ, (25)

where the functions S(t; λ) and G(t; λ) are defined in Laplace domain as follows

Ŝ(s; λ) =
k̂(s)

sk̂(s) + λ
, Ĝ(s; λ) =

1

sk̂(s) + λ
, λ ≥ 0. (26)

In the particular case λ = 0

S(t; 0) ≡ 1, G(t; 0) = l(t), t ≥ 0, (27)

where l(t) is the corresponding Sonine kernel to the kernel k(t), see (12).
Next, we summarize some properties of the functions S(t; λ) and G(t; λ), see e.g., [35],

Theorem 2.2 and [36], Lemma 4.1, and [40], Theorem 5.2.

Proposition 1. Assume the kernel k satisfies conditions (3) and λ ≥ 0. Then Equation (24) has a
unique solution given by (25), where the functions S(t; λ) and G(t; λ) are locally integrable and
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completely monotone with respect to t ∈ R+, and admit holomorphic extensions to the half-plane
C+. Moreover,

d
dt

S(t; λ) = −λG(t; λ), t ≥ 0; (28)

and for any λ ≥ λ∗ > 0
S(t; λ) ≤ S(t; λ∗), t ≥ 0; (29)

and

c ≤ λ
∫ T

0
G(t; λ) dt < 1, T > 0, (30)

where the constant c = 1− S(T; λ∗) > 0 is independent of λ.

Let us note that for any λ ≥ 0 and t > 0∫ t

0
G(τ; λ)dτ > 0. (31)

For λ > 0 this follows from (30). If λ = 0 then (31) reduces to (1 ∗ l)(t) > 0, see (27).
Since l(t) ∈ CMF then (1 ∗ l)(t) ∈ BF . This implies that it is positive for all t > 0, as
a continuous, non-negative and non-decreasing function for t ≥ 0, which is analytic for
t > 0, see property (P4) in Section 2.

In the particular case of the relaxation equation with the Caputo fractional deriva-
tive of order α ∈ (0, 1) the representation are valid S(t; λ) = Eα(−λtα) and G(t; λ) =
tα−1Eα,α(−λtα), where Eα,β(·) is the Mittag–Leffler function. In this case, (29) is the well-
known relation

d
dt

Eα(−λtα) = −λtα−1Eα,α(−λtα)

and estimates (30) are used in [17,19–21] for the proof of uniqueness or/and (conditional)
stability results of inverse problems for time-fractional diffusion equations.

Inequalities (30) and (31) are used in [35,36] for the study of inverse source problems
for generalized subdiffusion equations, based on eigenfunction expansion.

5. Biorthonormal Pair of Riesz Bases

Let us denote by 〈., .〉 the inner product in L2(0, 1), i.e., 〈 f , g〉 =
∫ 1

0 f (x)g(x)dx.
The norm ‖.‖L2(0,1) in L2(0, 1) is ‖ f ‖L2(0,1) = 〈 f , f 〉1/2. The Sobolev space H2(0, 1) is
defined as the subset of functions f ∈ L2(0, 1), such that f and its weak derivatives f ′, f ′′

have a finite L2 norm. Consider the space H2(0, 1) equipped with the norm ‖ f ‖H2(0,1) =

‖ f ‖L2(0,1) + ‖ f ′′‖L2(0,1).
We apply the technique of spectral decomposition with respect to generalized eigen-

functions for the non-selfadjoint operator defined by the boundary conditions (7), see
e.g., [41–43]. Since the eigenvalues of the spectral problem for the second order differ-
ential operator with the boundary conditions (7) are 4π2n2, n ∈ N0, and for n 6= 0 each
eigenvalue has multiplicity 2, the system of eigenfunctions is not complete and must be
supplemented with associated functions. In this way, the following system of general-
ized eigenfunctions (eigenfunctions and associated eigenfunctions) {X0,n, X1,n, X2,n}∞

n=1
is obtained:

X1,0(x) = 2(1− x), X1,n(x) = 4(1− x) cos λnx, X2,n(x) = 4 sin λnx, λn = 2πn, n ∈ N. (32)

This system of functions is a basis in L2(0, 1). Any function f ∈ L2(0, 1) admits the
following unique formal spectral expansion

f (x) = f1,0X1,0(x) +
∞

∑
n=1
{ f1,nX1,n(x) + f2,nX2,n(x)} (33)
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with coefficients defined by the identities

f j,n =
〈

f , Yj,n
〉
, (34)

where the system of functions {Y0,n, Y1,n, Y2,n}∞
n=1 is

Y1,0(x) = 1, Y1,n(x) = cos λnx, Y2,n(x) = x sin λnx, λn = 2πn, n ∈ N. (35)

It is a basis in L2(0, 1), orthonormal to {X0,n, X1,n, X2,n}∞
n=1, that is

〈
Xi,n, Yj,m

〉
= δijδnm.

The system of functions {X0,n, X1,n, X2,n}∞
n=1 defined in (32) is a Riesz basis in

L2(0, 1) [41–43]. This means that for any f ∈ L2(0, 1) the following estimates are satisfied

C−‖ f ‖2
L2(0,1) ≤ f 2

1,0 +
∞

∑
n=1

{
f 2
1,n + f 2

2,n

}
≤ C+‖ f ‖2

L2(0,1) (36)

for some constants C± > 0.

Proposition 2. Assume f ∈ H2(0, 1) and f (1) = 0, f ′(0) = f ′(1). Then there exist constants
C±1 , such that the estimates hold true

C−1 ‖ f ‖2
H2(0,1) ≤ f 2

1,0 +
∞

∑
n=1

(1 + λ4
n)
{

f 2
1,n + f 2

2,n

}
≤ C+

1 ‖ f ‖2
H2(0,1). (37)

Proof. Let f satisfies the assumptions of the proposition. Taking into account the ele-
mentary inequalities a2 + b2 ≤ (a + b)2 ≤ 2(a2 + b2) for a, b ≥ 0, it is sufficient to prove
the estimates

C−2 ‖ f ′′‖2
L2(0,1) ≤

∞

∑
n=1

λ4
n

{
f 2
1,n + f 2

2,n

}
≤ C+

2 ‖ f ′′‖2
L2(0,1). (38)

Applying twice integration by parts and taking into account that f (1) = 0, f ′(0) = f ′(1),
we find by the use of (34) the following expressions for the coefficients of f ′′(x)

f ′′1,0 =
〈

f ′′, Y1,0
〉
= 0, f ′′1,n =

〈
f ′′, Y1,n

〉
= −λ2

n f1,n, f ′′2,n =
〈

f ′′, Y2,n
〉
= 2λn f1,n − λ2

n f2,n, n ∈ N.

In this way, we obtain the expansion

f ′′(x) =
∞

∑
n=1

{
−λ2

n f1,nX1,n(x) + (2λn f1,n − λ2
n f2,n)X2,n(x)

}
, (39)

which gives by applying the Riesz basis property (36) the estimates

C−‖ f ′′‖2
L2(0,1) ≤

∞

∑
n=1

{
λ4

n f 2
1,n + (2λn f1,n − λ2

n f2,n)
2
}
≤ C+‖ f ′′‖2

L2(0,1). (40)

The lower bound in (38) follows easily from the lower bound in (40) using the inequal-
ities (2λn f1,n − λ2

n f2,n)
2 ≤ 8λ2

n f 2
1,n + 2λ4

n f 2
2,n and λ2

n < λ4
n, n ∈ N.

To deduce the upper bound in (38) from the upper bound in (40), we use the following
identities obtained from (34) by integration by parts

f1,n = 〈 f , cos λnx〉 = − 1
λ2

n

〈
f ′′, cos λnx

〉
; (41)

f2,n = 〈x f (x), sin λnx〉 = − 1
λ2

n

〈
x f ′′(x), sin λnx

〉
− 2

λ3
n

〈
f ′′(x), cos λnx

〉
. (42)
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By applying the Bessel inequality for the trigonometric series identity (41) yields

∞

∑
n=1

λ4
n f 2

1,n =
∞

∑
n=1

〈
f ′′, cos λnx

〉2 ≤ ‖ f ′′‖2
L2(0,1) (43)

and, in a similar way, (42) implies

∞

∑
n=1

λ4
n f 2

2,n ≤ C1

∞

∑
n=1

〈
x f ′′(x), sin λnx

〉2
+ C2

∞

∑
n=1

〈
f ′′(x), cos λnx

〉2 (44)

≤ C1‖x f ′′(x)‖2
L2(0,1) + C2‖ f ′′(x)‖2

L2(0,1)

≤ C3‖ f ′′‖2
L2(0,1).

In this way, combining (43) and (44), the upper bound in (38) is also established.

6. Formal Spectral Expansions for the Solution

In this section, we find formal spectral expansions for the unknown functions h(x)
and u(x, t) in the inverse source problem (6)–(8). Suppose

h(x) = h1,0X1,0(x) +
∞

∑
n=1
{h1,nX1,n(x) + h2,nX2,n(x)}, (45)

u(x, t) = u1,0(t)X1,0(x) +
∞

∑
n=1
{u1,n(t)X1,n(x) + u2,n(t)X2,n(x)}. (46)

To find the unknown coefficients in (45) and (46), we insert these expansions in
Equation (6) and, by taking into account (39) and the initial condition u(x, 0) = 0, we obtain
by the uniqueness property of the spectral expansion the following system of equations

D(k)
t u1,n(t) + λ2

nu1,n(t) = h1,nq(t), u1,n(0) = 0, n ∈ N0, (47)

D(k)
t u2,n(t) + λ2

nu2,n(t) = 2λnu1,n(t) + h2,nq(t), u2,n(0) = 0, n ∈ N. (48)

We solve first relaxation equation (47) and after that (48). In this way, by applying
formula (25) we obtain

u1,n(t) = h1,n An(t), n ∈ N0, (49)

u2,n(t) = h2,n An(t) + 2λnh1,nBn(t), n ∈ N. (50)

Here the functions An(t) and Bn(t) are defined as follows

An(t) = (q ∗ Gn)(t), Bn(t) = (q ∗ Gn ∗ Gn)(t); Gn(t) = G(t; λ2
n), (51)

where G(t; λ) is defined in (26). In this way, we obtain

u(x, t) = h1,0 A0(t)X1,0(x) +
∞

∑
n=1
{h1,n An(t)X1,n(x) + (h2,n An(t) + 2λnh1,nBn(t))X2,n(x)}. (52)

Therefore, the function g(x) = u(x, T) admits the spectral expansion

g(x) = h1,0 A0(T)X1,0(x) +
∞

∑
n=1
{h1,n An(T)X1,n(x) + (h2,n An(T) + 2λnh1,nBn(T))X2,n(x)}. (53)

By the uniqueness property of the spectral expansion, from (53) we deduce

g1,n = h1,n An(T), n ∈ N0; g2,n = h2,n An(T) + 2λnh1,nBn(T), n ∈ N. (54)
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Since An(T) > 0 for all n ∈ N0 (see Proposition 3), it follows from (54)

h1,n =
1

An(T)
g1,n, n ∈ N0; h2,n =

1
An(T)

(
g2,n − 2λng1,n

Bn(T)
An(T)

)
, n ∈ N. (55)

Relations (54) and (55) define a mapping between the overdetermination function g(x)
and the source factor h(x) and our main goal is to determine the properties of this mapping.

Plugging the coefficients hj,n in (52), we derive the coefficients uj,n(t) in the spectral
expansion (46) of the solution u(x, t)

u1,n(t) = g1,n
An(t)
An(T)

, n ∈ N0; (56)

u2,n(t) = g2,n
An(t)
An(T)

+ 2λng1,n

(
Bn(t)
An(T)

− An(t)Bn(T)
A2

n(T)

)
, n ∈ N. (57)

In this way, inserting (55) in (45), and (56), (57) in (46), we obtain the formal expansions
for h(x) and u(x, t). The functions An(t) and Bn(t) in these expansions depend on the
specific memory kernel k(t) via Gn(t) and the time-dependent source factor q(t).

7. Uniqueness of Solution and Stability Estimates in Sobolev Spaces

In this section, we prove that under some assumptions on the overdetermination
function g(x) and the time-dependent source factor q(t), the formal expansions (45) with
coefficients (55) and (46) with coefficients (56) and (57) define a unique solution (h, u) to
the considered inverse source problem.

For the given time-dependent source factor q(t) we assume

q ∈ C[0, T]; q(t) ≥ 0, t ∈ [0, T]; q(T) > 0. (58)

Let us note that since q(t) is a continuous function for t ∈ (0, T], the assumption
q(T) > 0 implies that there exist q0 > 0 and T1 ∈ (0, T), such that

q(t) ≥ q0 > 0 for all t ∈ [T1, T]. (59)

First, we prove some estimates for the functions An(t) and Bn(t).

Proposition 3. Let T > 0 be arbitrarily fixed. Assume that conditions (3) and (58) for the
functions k(t) and q(t), respectively, are satisfied. Then the functions A0(t), An(t), Bn(t), n ∈ N,
are continuous and non-negative on [0, T], vanish at t = 0, and An(T) > 0 for all n ∈ N0.
Moreover, the following estimates for t ∈ [0, T] and n ∈ N are satisfied:

An(T) ≥ C1/λ2
n, (60)

An(t) ≤ C2/λ2
n, (61)

Bn(t) ≤ C2/λ4
n, (62)

where the constants Cj > 0, j = 1, 2, are independent of n.

Proof. The functions An(t) and Bn(t) are continuous and non-negative as convolutions
of functions with these properties. Fix T1 ∈ (0, T), such that (59) is satisfied. For n ≥ 0
we deduce

An(T) =
∫ T

0
q(t)Gn(T − t)dt ≥

∫ T

T1

q(t)Gn(T − t)dt ≥ q0

∫ T−T1

0
Gn(t)dt, (63)

due to the non-negativity of the functions under the integral sign and inequality (59).
Then (63) together with (31) implies An(T) > 0, n ∈ N0.
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Estimates (63) and (30) in Proposition 1 imply for n ∈ N

λ2
n An(T) ≥ q0

(
1− S

(
T − T1; λ2

1

))
> 0,

where λ2
1 = 4π2 is the smallest positive eigenvalue and the function S(t; λ) is defined

in (26). In this way, (60) is established with C1 = q0(1− S(T − T1; λ2
1)) > 0.

Next, we prove estimates (61) and (62). The representation in (51) and the estimate
from above in (30) yield

An(t) = (q ∗ Gn)(t) ≤ ‖q‖C[0,T](1 ∗ Gn)(t) ≤
C2

λ2
n

,

which implies (61) with C2 = ‖q‖C[0,T] > 0. By applying (61) and (30) we derive (62):

Bn(t) = (q ∗ Gn ∗ Gn)(t) = (An ∗ Gn)(t) ≤
C2

λ2
n
(1 ∗ Gn)(t) ≤

C2

λ4
n

.

Since (1 ∗ Gn)(0) = 0, the above two estimates also imply that An(0) = 0 and
Bn(0) = 0.

We are ready to formulate and prove the main result of this work.

Theorem 1. Let T > 0 be arbitrarily fixed. For any given g ∈ H2(0, 1), such that g(1) = 0,
g′(0) = g′(1), there exists a unique solution (h, u) to problem (6)–(8), satisfying h ∈ L2(0, 1) and
u ∈ C([0, T]; H2(0, 1)). The functions h(x) and u(x, t) are defined by the spectral expansions (45)
and (46) with coefficients given in (55), (56) and (57). Moreover, there exist constants c > 0 and
c > 0, such that

c‖g‖H2(0,1) ≤ ‖h‖L2(0,1) ≤ c‖g‖H2(0,1). (64)

Proof. Uniqueness of the solution follows from the uniqueness property of the spectral
expansions and the fact that An(T) 6= 0, for all n ≥ 0 (see Proposition 3). Indeed, if g ≡ 0,
then gj,n = 0, and therefore, (55)–(57) imply hj,n = 0, uj,n = 0, i.e., all coefficients in the
expansions (45) and (46) vanish and, therefore, h ≡ 0 and u ≡ 0.

The initial condition u(x, 0) = 0 is satisfied since An(0) = 0 and Bn(0) = 0. The two
boundary conditions (7) hold by construction, since they are satisfied by the basis functions
X1,n(x) and X2,n(x) defined in (32).

Applying estimates (60), (62), and taking into account the inequalities (a ± b)2 ≤
2(a2 + b2) and λn > 1, n ∈ N, identities (55) imply

h2
1,n ≤ C1λ4

ng2
1,n, h2

2,n ≤ C2λ4
n

(
g2

1,n + g2
2,n

)
, n ∈ N. (65)

Estimates (65) together the lower bound in (36) with f = h and the upper bound
in (37) with f = g imply the upper bound in (64). By applying similar argument, we obtain
from (54) by the use of Proposition 3 the estimates

λ4
ng2

1,n ≤ C3h2
1,n, λ4

ng2
2,n ≤ C4

(
h2

1,n + h2
2,n

)
, n ∈ N. (66)

The last estimates together with the lower bound in (37) with f = g and the upper
bound in (36) with f = h yield the lower bound in (64).

Furthermore, Proposition 3 implies for t ∈ [0, T](
An(t)
An(T)

)2

≤ C5,
(

Bn(t)
An(T)

− An(t)Bn(T)
A2

n(T)

)2

≤ 2
(

Bn(t)
An(T)

)2

+ 2C5

(
Bn(T)
An(T)

)2

≤ C6

λ2
n

. (67)
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Representations (56) and (57) for the coefficients of the solution u(x, t) yield by the
use of estimates (67)

u2
1,n(t) ≤ C7g2

1,n, u2
2,n(t) ≤ C8

(
g2

1,n + g2
2,n

)
, t ∈ [0, T], n ∈ N. (68)

Since g ∈ H2(0, 1), it follows from (68) that

‖u‖C([0,T];H2(0,1)) ≤ C9‖g‖H2(0,1) < ∞.

Therefore u ∈ C([0, T]; H2(0, 1)). The proof of the theorem is complete.

It is worth noting that if q(t) ∈ C1[0, T] then the inverse source problem under
consideration can be reduced to a Fredholm equation of second kind, by applying the
argument proposed in [17]. In general, this fact is well known for parabolic equations
(e.g., [44]). In this case, it is sufficient to prove the uniqueness for the inverse problem,
and then the stability follows by the Fredholm alternative. However, in the present work,
continuous differentiability of q(t) is not assumed, see (58), and a specialized argument
is needed.

Adopting the method of [17], the more general case q = q(x, t) can be also treated by
the use of the generalized eigenfunction expansion, provided the function q(x, t) obeys
sufficient regularity. Although no explicit series representation of the source term h(x) can
be derived in this case, the estimates (64) can be established by applying the Fredholm
alternative in L2(0, 1).

We close this section with a conditional stability result. It concerns the case when the
overdetermination function g is only square integrable, g ∈ L2(0, 1), which is relevant in
the study of stability with respect to the noise level applied to the input, see (9). In this
case, an a priori bound assumption for the unknown function h(x) is needed, see e.g., [21].
Let us assume the following a priori bound: ‖h‖H2(0,1) ≤ E. Then

‖h‖L2(0,1) ≤ CE‖g‖1/2
L2(0,1), (69)

where the constant CE depends on E and the constants appearing in the inequalities (36),
(37), (65) and (66). Estimate (69) can be derived adapting the technique in [35] to the case
of generalized eigenfunction expansions by the use of the estimates (36), (37), (65) and (66)
and the Cauchy-Schwarz inequality. Details of the proof are omitted here.

8. Concluding Remarks

This work is concerned with an inverse source problem for the one-dimensional
generalized subdiffusion equation on a bounded interval. The differences to the classical
case are as follows. First, temporal derivative in the diffusion equation is replaced by a
general convolutional derivative in time. This allows the modeling of memory effects of
the described physical process. Second, traditional Dirichlet boundary condition is applied
at the one side of the interval only and the other boundary condition is nonlocal.

The main result of the paper is Theorem 1 establishing a two-sided estimate of the
L2 norm of the spatial part h(x) of the forcing term via the Sobolev H2 norm of the final
overdetermination function g(x). The derived estimates extend earlier obtained results
on the classical diffusion problem and the anomalous diffusion problem with the Caputo
time-fractional derivative subject to Dirichlet boundary conditions. The proofs are based on
generalized eigenfunction expansions with respect to a biorthogonal pair of bases, together
with estimates of the special functions in time appearing in the expansions, which inherit
relevant properties of Mittag–Leffler functions.

It is feasible to extend the results to multidimensional cases, such as the two-dimensional
nonlocal problem in [34].

Another approach to further study of such types of inverse problems is to employ the
general theory for parabolic equations [44]. Under appropriate assumptions on the given
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functions the problem can be reduced to a Fredholm equation of the second kind and then
the Fredholm alternative can be applied.
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