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Abstract: The human epidermal growth factor receptor 2 (HER2) is a well-established oncogenic
driver and a successful therapeutic target in several malignancies, such as breast and gastric cancers.
HER2 alterations, including amplification and somatic mutations, have also been detected in a
small but not negligible subset of patients affected by advanced colorectal cancer (aCRC). However,
to date, there are no available oncotargets in this malignancy beyond RAS and BRAF that are
available. Here we present an overview on the present predictive and prognostic role of HER2
expression in aCRC, as well as on its consequent potential therapeutic implications from preclinical
investigations towards ongoing trials testing anti-HER2 agents in aCRC. While HER2′s role as a
molecular predictive biomarker for anti-EGFR therapies in CRC is recognized, HER2 prognostic value
remains controversial. Moreover, thanks to the impressive and growing body of clinical evidence,
HER2 is strongly emerging as a new potential actionable oncotarget in aCRC. In conclusion, in
the foreseeable future, HER2-targeted therapeutic strategies may integrate the algorithm of aCRC
treatment towards an increasingly tailored therapeutic approach to this disease.

Keywords: colorectal cancer; HER2; targeted therapy

1. Introduction

The treatment of patients with advanced colorectal cancer (aCRC) still relies on the
administration of systemic therapies (chemotherapy combined with either antiangiogen-
ics or anti-EGFR agents) with a mainly palliative intent [1]. Recently, clear benefits of
a multidisciplinary approach, such as combinations of surgical resection and other lo-
coregional techniques (with or without systemic treatments), have been established for a
oligometastatic disease [2,3]. Furthermore, in the recent past, immunotherapy has emerged
as a practice-changing treatment [4–8], with Pembrolizumab having received the US Food
and Drug Administration (FDA) approval as an up-front treatment for unresectable or
metastatic CRC (mCRC) with high microsatellite instability (MSI-H) or mismatched repair
deficiency (dMMR) [9].

In the complex treatment decision-making algorithm, patient-related and/or tumor-
related characteristics should be taken into account [10,11]. Among patient-related features,
clinicians should consider age, performance status, comorbidities, patients’ preferences
and values as well as life expectancy [12–14], while among tumor-related characteristics,
primary tumor sidedness (i.e., right vs. left colon) [15–18] and molecular profile (i.e.,
KRAS-mutated vs. KRAS wild-type) [19,20] play a key (and growing) role. Currently,
frontline chemotherapy regimens (i.e., the backbone of all available combinations) include
leucovorin-modulated 5-fluorouracil, oxaliplatin, and irinotecan agents, which can be
associated with monoclonal antibodies (MoAb) directed against the vascular endothelial
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growth factor (VEGF; bevacizumab) or the epidermal growth factor receptor (EGFR; pani-
tumumab and cetuximab) [2,21]. RAS and BRAF are the two main genes involved in the
EGFR intracellular signaling pathway and, to date, they are the only available biomarkers
for aCRC that are routinely used in clinical practice [22,23]. RAS mutations, most frequently
in exons 2, 3, and 4 of KRAS and NRAS as well as the mutually exclusive BRAF ones,
lead to the constitutive activation of EGFR downstream transducers and bypasses the
EGFR signaling blockade, with a consequent negative predictive role to anti-EGFR target
therapy [24–32]. Moreover, the BRAF v600E mutation, which is most commonly located
in right colon tumors, possesses a recognized unfavorable prognostic value [33–36]. As
a consequence, the use of anti-EGFR agents, although limited to KRAS and BRAF wild
type cancers, has contributed to greatly improving the outcome of patients harboring
these alterations with a median overall survival (OS) reaching around 30 months [37,38].
However, the development of primary or secondary resistance is almost ineluctable. CRC,
indeed, is a highly molecularly heterogeneous disease even in histologically comparable
tumors and additional gene alterations frequently arise and accumulate, ultimately leading
to disease progression under therapeutic pressure [39–43].

CRC biology and its genomic landscape has been extensively studied with the defi-
nition of four consensus molecular subtypes (CMSs) in 2015 [44] and the development of
next-generation sequencing (NGS) techniques has advanced our understandings of CRC
molecular profile [45]. In the commonly named PRESSING (primary resistance in RAS and
BRAF wild-type mCRC patients treated with anti-EGFR monoclonal antibodies) panel, Cre-
molini and colleagues identified several uncommon genomic alterations, including HER2
amplification/activating mutations, MET amplification, ROS1/NTRK1-3/RET rearrange-
ments, PIK3CA exon 20, PTEN, and ALK mutations. Among all of these gene alterations,
the human epithelial growth factor receptor 2 (HER2) overexpression/amplification and,
less frequently, mutations are the most common ones [46].

In this heterogeneous genomic scenario and in the era of precision medicine, despite
the low prevalence of its genetic alterations, HER2 is emerging both as a key driver in CRC,
as well as a predictor of benefits from novel targeted therapies [47]. This review aims at
providing an overview of HER2 role in aCRC ranging from its predictive and prognostic
relevance to its potential therapeutic implications as a new actionable oncotarget.

2. The HER2 Pathway in Tumorigenesis
2.1. HER2 Pathway and Its Alterations in Solid Tumors

The HER2/neu oncogene (also known as ErbB2 or p185), which is located on the long
arm of human chromosome 17 (17q12), encodes a transmembrane glycoprotein receptor
with intrinsic tyrosine kinase activity [48]. In contrast to other HER/EGFR/ERBB family
members, HER2 is defined as an orphan receptor because of the lack of an endogenous
ligand. Its activation depends on homodimerization or, most frequently, heterodimer-
ization with other EGFR family receptors, in particular HER3 and EGFR, thus resulting
in transphosphorylation of tyrosine residues within its cytoplasmic domain [49,50]. The
downstream signal transduction pathways, including MAPK and PI3K/AKT/mTOR, re-
sults in cellular proliferation and differentiation, the inhibition of apoptosis, and tumor
progression [51–55]. Notably, the HER2-HER3 heterodimers generate more potent stimula-
tor signals than homodimers and particularly in initiating the PI3K/AKT pathway, which
is one of the principal regulators of cell growth and survival [56,57] Figure 1.
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Figure 1. The HER2 pathway in tumorigenesis. Ligand binding to the extracellular domain of hu-
man epidermal growth factor receptor (HER2) stabilizes the dimerization between HER2 and an-
other member of EGFR family receptors (EGFR, HER2, HER3, and HER4). By transphosphorylation 
of tyrosine residues within the cytoplasmic domains, the active homodimers or heterodimers 
thereafter stimulate several signaling cascades, such as the PI3K/AKT, the RAS/MAPK, and 
JAK/STAT pathways. These downstream pathways result in the transcription of genes driving 
tumor cell proliferation, migration, invasion, and survival. 

The biological and clinical roles of HER2 activation have been well investigated in 
the pathogenesis of several malignancies [58,59] and it has been associated with aggres-
sive tumor behavior, poor prognosis, and resistance to chemotherapy as well as with 
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Figure 1. The HER2 pathway in tumorigenesis. Ligand binding to the extracellular domain of human
epidermal growth factor receptor (HER2) stabilizes the dimerization between HER2 and another
member of EGFR family receptors (EGFR, HER2, HER3, and HER4). By transphosphorylation of
tyrosine residues within the cytoplasmic domains, the active homodimers or heterodimers thereafter
stimulate several signaling cascades, such as the PI3K/AKT, the RAS/MAPK, and JAK/STAT
pathways. These downstream pathways result in the transcription of genes driving tumor cell
proliferation, migration, invasion, and survival.

The biological and clinical roles of HER2 activation have been well investigated in the
pathogenesis of several malignancies [58,59] and it has been associated with aggressive
tumor behavior, poor prognosis, and resistance to chemotherapy as well as with successful
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anti-HER2 targeted therapies, i.e., having both negative prognostic, as well as positive
predictive value [60–66].

HER2 protein overexpression, usually (but not always) driven by gene amplification,
was one of the earliest alterations identified in human cancers. Initially, HER2 oncogene
amplification and/or HER2 receptor overexpression were recognized in up to 30% of
breast cancers [67] and in many other tumor types, e.g., gastric, esophageal, lung, bladder,
ovarian, endometrial, uterine cervix, head and neck, and colorectal cancers. In breast and
gastroesophageal cancers, in particular, HER2 amplification distinguished a specific molec-
ular subtype, with consolidated eligibility for anti-HER2 drugs [68–72]. On the other hand,
in several tumors such as lung adenocarcinoma, urothelial, and salivary duct carcinoma,
studies evaluating HER2 prognostic and therapeutic roles are still ongoing [73–75].

Additionally, in addition to HER2 amplification, somatic activating mutations within
HER2 itself have recently been identified as drivers of tumorigenesis and had been ob-
served first in non-small-cell lung cancer and then subsequently in a wide variety of
cancers [76–82]. Heterogeneous HER2 mutations, indeed, have been discovered across all
HER2 gene exons involving extracellular, transmembrane, or tyrosine kinase cytoplasmic
domains, with the consequent activation of downstream signaling pathways even in the
presence of a normal gene copy number [83].

2.2. HER2 Alterations in aCRC

Although observed less frequently than in other malignancies and also in colorectal
adenocarcinoma, HER2 amplification or somatic mutations have been described in the past
two decades, with highly different reported rates of positivity (from <1% to >50%) [84–91].
This variability, particularly in HER2 amplification prevalence, may be due to several
factors, including cohort heterogeneity and a small study population, antibody clone se-
lection, staining platform, and different scoring systems [86]. For example, higher rates of
HER2 positivity were observed in studies assessing not only membranous but also (and
above all) cytoplasmic HER2 overexpression [89]. However, cytoplasmic evaluation has
an uncertain biological relevance in CRC as well as in breast and gastric cancers, with no
recognized role in standard scoring methodologies because of a possible overestimation
of true HER2 positivity [91]. Typically, HER2+ CRC cells present a strong lateral mem-
brane staining, while basal membrane staining is not always observed [92]. The Cancer
Genome Atlas (TCGA) project detected HER2 alterations in around 7% of patients affected
by CRC, especially in RAS and BRAF wild-type tumors [93]. Although controversial, HER2
overexpression has been observed more frequently in high tumor mutational burden and
advanced T stage [86], while some studies evidenced a significant discordance between
primary tumors and metastases, suggesting the loss of HER2 positivity during disease
progression [94,95]. Moreover, HER2 status has been related to sidedness and, more fre-
quently, HER2-amplified primary tumors have been located in the rectum, as well as in the
left colon [96–98]. As far as HER2 somatic mutations, they have been reported by TCGA
project data in about 4% of CRC and sometimes concomitantly with HER2 amplification or
alterations of other oncogenes such as RAS, BRAF, and EGFR. Recently, HER2 activating
mutations have also been associated with MSI-H tumors [99]. According to Kavuri and
colleagues, these mutations, which are often the same ones identified in breast cancer, in-
clude V842I, S3210F, L755S, V777L, and L866M [100]. Additionally, in the PRESSING panel
another single HER2 mutation, i.e., the substitution G776V on exon 20, was found [46].

3. HER2 Status Characterization in aCRC

Unlike breast and gastric cancers, a specific scoring system for defining HER2 positiv-
ity in CRC was not been completely established until the introduction of the HERACLES
(HER2 Amplification for Colorectal Cancer Enhanced Stratification) criteria. In 2016, Val-
torta and colleagues developed and validated the first diagnostic algorithm for HER2 in
CRC during the enrollment for the HERACLES study, which is a phase II trial evaluating
the combination of two anti-HER2 monoclonal antibodies (trastuzumab and lapatinib) in
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KRAS wild-type metastatic CRC patients refractory to standard treatment. These criteria,
which are similar but more stringent than the accepted and routinely used ones in breast
and gastric cancers, are based on the standard methodologies for the assessment of HER2
protein overexpression and gene amplification and are represented by immunochemistry
(IHC) and fluorescent or silver in situ hybridization (FISH or SISH), respectively.

According to Valtorta and colleagues, HER2 positivity is defined as 3+ IHC score
(intense expression) in more than 50% of tumor cells or 3+ IHC score in 10–50% of the
tumor cells and further FISH confirmation by HER2: CEP17 (chromosome enumeration
probe) ratio ≥2 in more than 50% of tumor cells or 2+ IHC score (moderate expression) in
more than 50% of tumor cells associated with a FISH positive evaluation. Notably, only
membranous HER2 expression in its lateral, basolateral, or circumferential patterns counts
toward positivity [92,101,102].

However, other studies applied the HER2 diagnostic criteria proposed by Ruschoff and
colleagues in gastroesophageal adenocarcinoma (GEA criteria) and also in CRC [87,89,103,104].
The main difference from the HERACLES criteria consists of the cutoff value for IHC
definition. In the GEA criteria, indeed, HER2 positive tumors are those possessing an IHC
score of 3+ in more than 10% of tumor cells or an IHC score of 2+ in more than 10% of
tumor cells with confirmed HER2 gene amplification by FISH.

Liu and colleagues compared these two different scoring systems in a large cohort
of Chinese CRC patients, demonstrating a very high rate of concordance between them
despite HER2′s particularly low prevalence in this population (2.9% according to the GEA
criteria versus 2.6% according to the HERACLES criteria) [105,106] (Table 1).

Table 1. The HER2-positivity definition in aCRC according two different system: the HERACLES criteria and the
GEA criteria.

HER2 Positivity in aCRC

The HERACLES Criteria The GEA Criteria

• 3+ IHC score * in more than 50% of the tumor cells; OR
• 3+ IHC score in 10~50% of the tumor cells and FISH

positive; OR
• 2+ IHC score ** in more than 50% of the tumor cells by

IHC and FISH positivity ***.

• 3+ IHC score in more than 10% of the tumor cells; OR
• 2+ IHC score in more than 10% of the tumor cells and FISH

positivity *.

HER2: Human epidermal growth factor receptor 2; HERACLES: HER2 Amplification for Colorectal Cancer Enhanced Stratification; GEA:
gastroesophageal adenocarcinoma; IHC: immunochemistry; FISH: fluorescent in situ hybridization. * 3+ IHC score is represented by an
intense and strong lateral, basolateral, or circumferential membranous HER2 expression. ** 2+ IHC score is represented by a moderate
lateral, basolateral, or circumferential membranous HER2 expression. *** FISH positivity is defined as a HER2:CEP17 (chromosome
enumeration probe) ratio ≥2.

Additional approaches to detect HER2 gene amplification, as well as its activating
mutations in CRC, include molecular techniques such as next-generation sequencing (NGS)
or comprehensive genomic sequencing (CGS). Both of these techniques, which involve
profiling the DNA extracted from formalin-fixed and paraffin-embedded (FFPE) tumor
samples, allow the identification of HER2 copy number and/or sequence alterations. The
strong concordance with gold standard methods (IHC and FISH) across different tumor
types supports their application in CRC [107,108]. In the MyPathway phase II basket trial,
the efficacy of the two anti-HER2 agents, pertuzumab and trastuzumab, in patients with
refractory metastatic HER2 positive CRC and HER2 status have been evaluated not only
by IHC and FISH but also by NGS [109].

Recently, an international project among three groups (GI-SCREEN-Japan, NCTN-
SWOG-USA, and Korea) aimed at harmonizing the diagnostic criteria for HER2 in metastatic
CRC by matching IHC, FISH, and NGS data was launched. Based on several clinical trials
testing HER2-targeted therapy, Fujii and colleagues integrated the results of HER2 assess-
ment by IHC/FISH with NGS evaluation across different platforms. After demonstrating
the accuracy of IHC/FISH scoring systems and cross-validation of NGS panels, the authors
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proposed new harmonized HER2 diagnostic criteria in CRC as follows: IHC 3+ score or
IHC2+ score associated with HER2: CEP17 ratio > or =2 by FISH in more than 10% of
tumor cells for surgically resected samples. In the balance of the risk-versus-benefit ratio,
the cutoff of 10% for tumor content had been accepted to allow patient registration in the
clinical trials of each country. However, in the efforts to distinguish patients who really
would benefit from anti-HER2 agents, they emphasized the importance of performing
HER2 assessment on surgical specimens rather than on biopsy ones in order to avoid
HER2 false positivity due to HER2 heterogeneous expression in CRC cells [110]. Although
this study needs to be validated within a prospective clinical trial, it revealed the oppor-
tunity for formulating an international and integrated HER2 diagnostic criteria in CRC,
using NGS as a bridge between the two gold methods IHC and FISH. A previous study,
conducted by Shimada and colleagues showed that CGS has the same sensitivity as IHC
and FISH for recognizing HER2 positive CRC patients who are candidates for anti-HER2
targeted therapy [108]. As a consequence, thanks to its reproducibility and ability to detect
gene mutations and copy number variations in a single assay, CGS can potentially facilitate
tailor-made treatments.

Moreover, the use of the emerging liquid biopsy even to identify HER2 status in
CRC from circulating tumor DNA (ctDNA) represents an attractive future diagnostic
tool [111–113], but it requires further investigations.

4. HER2 Predictive Role to EGFR-Targeted Therapy in aCRC

Since 2011, HER2 alterations have been proposed as a mechanism for both de novo and
acquired resistance to EGFR-targeted therapies in aCRC. The first proof of the HER2 role
as a potential negative biomarker of response to anti-EGFR agents derived from preclinical
data in colon cancer cell lines and xenograft models. In a large platform of patient-derived
tumor xenografts (PDTX), Bertotti and colleagues showed a significantly higher prevalence
of HER2 gene amplification in cetuximab-resistant RAS, BRAF, and PIK3CA wild-type
tumors [114]. Yonesaka and colleagues also investigated the predictive impact of HER2
amplification in metastatic CRC cetuximab-resistant cell lines in vitro and in vivo [115].
These authors demonstrated that HER2 activation, either through HER2 amplification or
the HER3-activating ligand heregulin upregulation, results in persistent ERK1/2 signaling
and results in anti-EGFR resistance. In addition, the subsequent inhibition of HER2
overexpression by a small interfering RNA, as well as the disruption of the HER2/HER3
heterodimerization by depletion of heregulin, restores sensitivity to cetuximab. Consistent
with preclinical observations, they extended these findings in a cohort of 233 cetuximab-
treated CRC patients, demonstrating a shorter PFS and OS in those patients with HER2-
amplified tumors and higher serum heregulin levels. Furthermore, Mohan et al. detected
HER2 amplification in tumors or ctDNA of CRC patients that are non-responding to anti-
EGFR MoAb [116]. In the effort to clinically validate HER2 negative impacts on the efficacy
of anti-EGFR therapies, other retrospective analyses confirmed the results of Yonesaka
and colleagues, evidencing a significantly worse median PFS and OS in patients with
HER2 amplification compared with the non-amplification group [117–119]. In particular,
as suggested by previous preclinical data, Sawada and colleagues revealed that the PFS of
HER2-amplificated mCRC treated with anti-EGFR targeted therapy was not only poorer
than that of the wild-type RAS/BRAF but also similar to that of patients harboring RAS
mutations [118]. In the HERACLES-A study, the OS between patients with HER2-positive
CRC and the control cohort was not significantly different. However, the authors of the
study reported a lower objective response rate (ORR) to anti-EGFR therapies in HER2-
amplified CRC patients and relied on a strong biological rationale, as HER2 overexpression
represents an alternative pathway to obviate EGFR signaling in tumorigenesis and/or in
tumor progression [101,120].

Similarly, HER2 somatic mutations have also been implicated in the resistance to anti-
EGFR agents. Within the frame of the HERACLES project as well as in the PRESSING panel



Int. J. Mol. Sci. 2021, 22, 6813 7 of 22

created by Morano and colleagues, the investigators uncovered HER2 activating mutations
as an intrinsic predictor of non-responsiveness to the anti-EGFR therapies [101,121].

In the recent past, Pietrantronio and colleagues conducted the first small prospective
study to clarify the mechanisms of acquired resistance to anti-EGFR MoAb in mCRC
patients. Analyzing both tissue and liquid biopsy samples, the authors illustrated the
complex landscape of CRC molecular heterogeneity and detected HER2 amplification
within the different and often co-occurrent mechanisms driving secondary resistance to
EGFR blockade and converging on MAPK pathway reactivation [122]. Even if currently
available data require further validation in larger prospective trials, they all strongly
suggest that HER2 represents a relevant molecular predictive biomarker for anti-EGFR
therapies in CRC.

5. HER2 Prognostic Role in aCRC

In contrast to the higher recognized predictive role for anti-EGFR targeted therapies,
HER2 prognostic significance in aCRC is still uncertain. Although early studies [123,124],
which are those that considered the cytoplasmic expression of HER2 as a criterion for
positivity, reported worse outcomes, the more recent trials [87,118,125–127] that only
evaluated membranous HER2 expression have not demonstrated a clear correlation with
prognosis. In a pooled analysis from three clinical trials (QUASAR, FOCUS, and PICCOLO),
Richman SD and colleagues did not find a statistically significant association between HER2
expression and OS [87]. However, Ingold Heppner B and colleagues, in one of the largest
cohorts of CRC (from all CRC stages), identified a trend towards a lower OS in patients with
HER2-amplified CRC [86]. Subsequently, in another study, which is the the PETACC-8 trial
that included exclusively stage III CRC patients treated with adjuvant FOLFOX, revealed
an association of HER2 alterations possessing shorter time to recurrence and OS, even after
adjustments for multiple clinical and pathological factors [128]. The potential prognostic
impact of HER2 is probably hindered by its relatively low incidence in CRC, even if a
meta-analysis of 18 studies with 2867 CRC patients confirmed HER2 as an insignificant
predictor of survival [129]. Recently, Khelwatty and colleagues evaluated how EGFR and
membranous HER2 co-expression impact the outcome of cetuximab-treated patients with
mCRC and shoed that when HER2 and EGFR are localized on the cell wall, a shorter PFS is
observed [130].

However, even in evaluating the inconsistent results to date available, the HER2
prognostic role remains controversial and its negative effect on OS in CRC, if any, is
probably less relevant, than compared with other molecular alterations, e.g., BRAF v600E.

6. Anti-HER2 Therapeutic Strategies in aCRC
6.1. Preclinical Investigations and Clinical Evidence on HER2 Therapeutic Role in aCRC

Based on the success of routinely used HER2 targeting agents in breast and gastric
malignancies, preclinical investigations tested the potential therapeutic role of HER2 in
aCRC. A proof-of-concept was derived from HER2-amplified cetuximab-resistant CRC
xenograft models where the dual EGFR/HER2 inhibition generated long-lasting tumor
regression [114]. In particular, while the anti-HER2 agent pertuzumab, when given alone
or in association with cetuximab, induced only a negligible delay in tumor growth, the
combination of lapatinib (a dual EGFR/HER2 tyrosine kinase inhibitor) and pertuzumab
or, at a lesser extent, of lapatinib and cetuximab caused a significant and durable tumor
shrinkage. Similarly, in cetuximab-resistant CRC cell lines, the synergic antiproliferative
effect of the anti-HER2 and anti-EGFR agent combinations (e.g., trastuzumab plus lapatinib
or trastuzumab plus cetuximab) was demonstrated [115,131,132]. Preclinical findings also
showed that the growth of colon cell lines harboring HER2 activating mutations could be
potently inhibited by the irreversible tyrosine kinase inhibitors (TKI) neratinib and afatinib.
Moreover, in HER2-mutated PDTXs, an anti-HER2 monotherapy (with either trastuzumab,
neratinib, or lapatinib) delayed tumor growth, whereas a dual anti-HER2 strategy (with
either trastuzumab plus neratinib or trastuzumab plus lapatinib) produced durable tumor
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regression [100]. According to Kloth and colleagues, activating HER2 mutations also
indicates the susceptibility to pan-HER2 irreversible inhibitors in Lynch and Lynch-like
HER2 mutated CRC cell lines [133].

All these preclinical data built a solid background and a strong rationale for clini-
cal trials targeting HER2 alterations in patients with aCRC and paved the way for the
HERACLES project. During the last decade, several small studies assessed HER2 as a
therapeutic target in combination with standard chemotherapies or anti-EGFR drugs. The
early clinical studies evaluating the association of anti-HER2 MoAb (i.e., trastuzumab
and pertuzumab) and cetuximab or cytotoxic agents (i.e., irinotecan, fluorouracil, and
oxaliplatin) were prematurely shut down because of the severe overlapping toxicities [134]
or poor accrual [135,136]. Subsequently, in a phase I basket trials including patients with
HER2-positive refractory solid tumors, none of six CRC patients experienced an objective
response to the combination of paclitaxel, interleukin-12, and trastuzumab [137] and only
two of the eight CRC patients had a partial response to the association of cetuximab and
lapatinib while in the absence of complete tumor regression [138]. However, the small
sample size and the design of these studies probably did not allow the recognition of the
contribution of anti-HER2 agents to tumor response.

More recently, preclinical observations [114] supported the clinical investigation of
“chemotherapy-free” regimens based on the combination of HER2-targeted drugs. The
HERACLES-A (HER2 Amplification for Colo-Rectal Cancer Enhanced Stratification) was
the first large phase II clinical trial testing weekly trastuzumab plus daily lapatinib in
HER2 positive KRAS exon 2 wild type aCRC patients who proved to be refractory to
standard-of-care therapy, including cetuximab. Sartore-Bianchi and colleagues presented
the promising results of this pivotal study after the screening of 914 patients according to
the stringent HERACLES Criteria. Enrolling 27 HER2-positive eligible patients in the study,
the authors reported an objective response rate of 30%, with a median duration of response
being 9.5 months and a median PFS of 5.2 months [101]. This response rate, together
with the good overall toxicity profile of the treatment (no grade-4 or grade-5 adverse
events), compared favorably with other treatment options in heavily pretreated mCRC
patients. In line with the HERACLES-A results, the MyPathway phase IIa basket trial, by
assessing the association of pertuzumab and trastuzumab in pretreated HER2-amplified
mCRC patients, further supports the activity of dual HER2 blockade strategy [139,140].
The updated report of the study, indeed, showed an overall response rate (ORR) of 32%
in this cohort of patients, with a median PFS and OS of 2.9 and 11.5 months, respectively.
Although, unlike HERACLES, the MyPathway study KRAS status was not evaluated as a
criterion of eligibility, the ORR was much higher in the KRAS wild-type mCRC tumors
and reached 42%, whereas the efficacy of the pertuzumab/trastuzumab combination was
not demonstrated in KRAS-mutated ones and had an ORR of 8% [60]. Interestingly, both
the HERACLES-A and MyPathway studies evidenced a significant correlation between
a high HER2 gene copy number and a longer PFS from the dual blockade. Moreover,
in an exploratory data analysis of HERACLES-A, Siravegna and colleagues proposed a
specific plasmatic HER2 copy number to select patients who would really benefit from
HER2-targeted therapies [141]. Within the HERACLES project, the HERACLES-B trial also
investigated the efficacy of pertuzumab in association with the antibody-drug conjugate
trastuzumab-emtansine (T-DM1) in the same subset of patients. Even if the study did
not reach its primary endpoint of ORR, the high disease control rate, which is about 68%,
the PFS similar to other anti-HER2 regimens, and the safety profile supports the dual
anti-HER2 blockade as a potential therapeutic resource for HER2+ mCRC [142].

6.2. Ongoing Trials on Anti-HER2 Targeted Therapies in aCRC

Thanks to the encouraging results of phase II studies including HERACLES and
MyPathway, many trials testing several anti-HER2 drugs are currently in progress and
available preliminary data show that various therapeutic approaches could be active in
HER2-positive mCRC patients. Among different new HER2-related strategies in develop-
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ment, a boosted interest is related to HER2-targeted antibody-drug conjugates (i.e., TDM-1,
DS-8201, A166, ZW25, and ZW49), novel TKIs (i.e., tucatinib, sapitinib, neratinib, pyro-
tinib and poziotinib, and Ceralasertib), and HER2-targeted immunotherapy (i.e., vaccines,
donor-derived NK cells, and CAR-T cells) (Figure 2). Moreover, preclinical investigations
suggested that combination strategies, including the concomitant inhibition of HER2 and
other oncotargets (such as PI3K and MEK), are able to induce colorectal cancer stem cell
death, leading to cancer regression in xenograft models [143].
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Recently, Siena and Coll. published the results of the DESTINY-CRC01 phase II study
which shows promising and durable activity of trastuzumab deruxtecan (DS-8201) in
patients with refractory HER2-positive mCRC; notably, this activity was evident even in
those patients who had previously received HER2-targeted therapies. In particular, in
cohort A (including HER2 IHC 3+ or IHC2+ and ISH-positive mCRC patients), the authors
documented the regression of target lesions, as well as lasting responses; this ultimately
resulted in PFS and OS benefits [144]. Table 2 describes the main features of the principal
ongoing trials on HER2 in aCRC (Table 2).
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Table 2. Ongoing currently trials in HER2-positive aCRC patients (clinicalTrials.gov Search Results 05/27/2021; key words: colorectal cancer, HER2).

Title of the Study/NCT Status/Phase Intervention Primary-Outcome Measures

1. A Study of Pyrotinib Combined with Capecitabine for
Metastatic HER-2 Positive Colorectal Cancer/NCT04227041 Not yet recruiting/Phase I-II

• Drug: Pyrotinib in combination with
capecitabine MTD; PFS

2. A Clinical Study of Pyrotinib in Patients of Advanced
Colorectal Cancer with Her2 Variation/NCT04380012 Recruiting/Phase II

• Drug: Pyrotinib
• Drug: Pyrotinib in combination with

trastuzumab
ORR

3. Study of Neratinib +Trastuzumab or Neratinib +
Cetuximab in Patients with KRAS/NRAS/BRAF/PIK3CA
Wild-Type Metastatic Colorectal Cancer by HER2
Status/NCT03457896

Recruiting/Phase II

• Drug: Trastuzumab;
• Drug: Cetuximab
• Drug: Neratinib
• Diagnostic Test: Guardant360

PFS

4. Trastuzumab Deruxtecan in Participants with
HER2-overexpressing Advanced or Metastatic Colorectal
Cancer/NCT04744831

Not yet recruiting/Phase II
• Drug: DS-8201a 5.4 mg/kg Q3W
• Drug: DS-8201a 6.4 mg/kg Q3W ORR

5. Study of Trastuzumab-emtansine in Patients with
HER2- positive Metastatic Colorectal Cancer Progressing
after Trastuzumab and Lapatinib (RESCUE)/NCT03418558

Unknown status/Phase II • Drug: Trastuzumab-emtansine ORR

6. Pyrotinib in Combination with Trastuzumab in
Treatment- Refractory, HER2-positive Metastatic
Colorectal Cancer/NCT03843749

Recruiting/Not Applicable • Drug: Pyrotinib ORR

7. Evaluation of Trastuzumab in Combination with
Lapatinib or Pertuzumab in Combination with
Trastuzumab-Emtansine to Treat Patients with
HER2-positive Metastatic Colorectal Cancer
(HERACLES)/NCT03225937

Unknown status/Phase II
• Drug: Trastuzumab, Lapatinib
• Drug: Pertuzumab, trastuzumab-emtansine ORR

8. Monoclonal Antibody Plus Chemotherapy in Treating
Patients with Advanced Colorectal Cancer That
Overexpresses HER2/NCT00003995

Completed/Phase II
• Biological: trastuzumab
• Drug: irinotecan hydrochloride ORR
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Table 2. Cont.

Title of the Study/NCT Status/Phase Intervention Primary-Outcome Measures

9. Tucatinib Plus Trastuzumab in Patients with HER2+
Colorectal Cancer (MOUNTAINEER)/NCT03043313 Recruiting/Phase II

• Drug: Trastuzumab
• Drug: Tucatinib cORR

10. A Phase 1 Study of SHR-A1811 in Patients with
Selected HER2 Expressing Tumors/NCT04513223 Not yet recruiting/Phase I • Drug: SHR-A1811 DLT; RP2D

11. S1613, Trastuzumab and Pertuzumab or Cetuximab
and Irinotecan Hydrochloride in Treating Patients with
Locally Advanced or Metastatic HER2/Neu Amplified
Colorectal Cancer That Cannot Be Removed by
Surgery/NCT03365882

Recruiting/Phase II

• Biological: Cetuximab
• Drug: Irinotecan Hydrochloride
• Other: Laboratory Biomarker Analysis
• Biological: Pertuzumab, Trastuzumab
• Device: HER-2 testing

PFS

12. Vaccine Therapy in Treating Patients with Stage IIB,
Stage III, or Stage IV Colorectal Cancer/NCT00091286 Terminated/Early Phase I

• Biological: HER-2-neu, CEA peptides, GM-
CSF, Montanide ISA-51 vaccine Safety

13. Anti-HER2 Therapy in Patients of HER2 Positive
Metastatic Carcinoma of Digestive System/NCT03185988 Recruiting/Phase II

• Drug: chemotherapy in combination with
trastuzumab for arm1, arm2, arm3, arm 4 ORR

14. A Study of Poziotinib in Patients with EGFR or HER2
Activating Mutations in Advanced
Malignancies/NCT04172597

Recruiting/Phase II • Drug: Poziotinib Hydrochloride ORR

15. Safety and Preliminary Efficacy of SNK01 in
Combination with Trastuzumab or Cetuximab in Subjects
with Advanced HER2 or EGFR Cancers/NCT04464967

Not yet recruiting/Phase I-II
• Biological: SNK01
• Drug: Trastuzumab, Cetuximab RP2D; ORR

16. A Clinical Research of CAR T Cells Targeting HER2
Positive Cancer/NCT02713984 Withdrawn/Phase I-II • Biological: Anti-HER2 CAR-T CTCAE

17. Testing the Combination of Two Anti-cancer Drugs,
DS-8201a and AZD6738, for the Treatment of Patients
With Advanced Solid Tumors Expressing the HER2
Protein or Gene, the DASH trial/NCT04704661

Not yet recruiting/Phase I
• Drug: Ceralasertib
• Biological: Trastuzumab Deruxtecan

AEs (For Escalation Phase);
RP2D
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Table 2. Cont.

Title of the Study/NCT Status/Phase Intervention Primary-Outcome Measures

18. Tucatinib Plus Trastuzumab and Oxaliplatin-based
Chemotherapy for HER2+ Gastrointestinal
Cancers/NCT04430738

Recruiting/Phase I-II

• Drug: tucatinib
• Drug: trastuzumab
• Drug: oxaliplatin
• Drug: leucovorin
• Drug: fluorouracil
• Drug: capecitabine

Renal dose-limiting toxicities;
AEs; laboratory abnormalities.

19. Binary Oncolytic Adenovirus in Combination with
HER2- Specific Autologous CAR VST, Advanced HER2
Positive Solid Tumors/NCT03740256

Recruiting/Phase I • Biological: CAdVEC DLT

20. CAR-macrophages for the Treatment of HER2
Overexpressing Solid Tumors/NCT04660929 Recruiting/Phase I • Biological: CT-0508 Safety and tolerability.

21. Study of A166 in Patients with Relapsed/Refractory
Cancers Expressing HER2 Antigen or Having Amplified
HER2 Gene/NCT03602079

Recruiting/Phase I-II • Drug: A166 MTD

22. Intravenous TAEK-VAC-HerBy Vaccine Alone and in
Combination Treatment in HER2 Cancer
Patients/NCT04246671

Recruiting/Phase I-II • Biological: TAEK-VAC-HerBy DLT

23. Phase I/II Trial of Antagonism of HER in GI
Cancer/NCT04246671 Completed/Phase I-II

• Drug: AZD8931
• Drug: Irinotecan
• Drug: Folinic Acid
• Drug: Fluorouracil

DLT

24. Lapatinib and Cetuximab in Patients with Solid
Tumors/NCT01184482 Completed/Phase I • Drug: cetuximab, lapatinib MTD

25. FATE-NK100 as Monotherapy and in Combination
with Monoclonal Antibody in Subjects with Advanced
Solid Tumors/NCT03319459

Active, not recruiting/Phase I

• Drug: FATE-NK100
• Drug: Cetuximab
• Drug: Trastuzumab

ORR
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Table 2. Cont.

Title of the Study/NCT Status/Phase Intervention Primary-Outcome Measures

26. A Study of SBT6050 Alone and in Combination with
Pembrolizumab in Patients with Advanced HER2
Expressing Solid Tumors/NCT04460456

Recruiting/Phase I
• Drug: SBT6050
• Drug: pembrolizumab DLT; AEs

27. A Dose Finding Study of ZW49 in Patients with
HER2-Positive Cancers/NCT03821233 Recruiting/Phase I • Drug: ZW49 DLT; AEs

28. ACE1702 in Subjects with Advanced or Metastatic
HER2- expressing Solid Tumors/NCT04319757 Recruiting/Phase I

• Drug: ACE1702
• Drug: Cyclophosphamide
• Drug: Fludarabine

DLT; SAEs; MTD

29. A Safety and Efficacy Study of ZW25 (Zanidatamab)
Plus Combination Chemotherapy in HER2-expressing
Gastrointestinal Cancers, Including Gastroesophageal
Adenocarcinoma, Biliary Tract Cancer, and Colorectal
Cancer/NCT03929666

Recruiting/Phase II

• Drug: ZW25 (Zanidatamab)
• Drug: Capecitabine
• Drug: Cisplatin
• Drug: Fluorouracil
• Drug: Leucovorin
• Drug: Oxaliplatin
• Drug: Bevacizumab
• Drug: Gemcitabine

DLT; CTCAE;
ORR

30. A First-in-human Study Using BDC-1001 in Advanced
HER2-Expressing Solid Tumors/NCT04278144 Recruiting/Phase I-II

• Drug: BDC-1001
• Drug: Pembrolizumab SAEs; DLT; MTD; ORR

31. Study of Bosutinib With Capecitabine In Solid Tumors
And Locally Advanced Or Metastatic Breast
Cancer/NCT00959946

Terminated/Phase I-II
• Drug: Bosutinib
• Drug: Capecitabine MTD; SAEs; ORR

32. Pembrolizumab and Monoclonal Antibody Therapy in
Advanced Cancer/NCT02318901 Terminated/Phase I-II

• Drug: Pembrolizumab
• Drug: Trastuzumab
• Drug: ado-trastuzumab emtansine
• Drug: Cetuximab

RP2D
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Table 2. Cont.

Title of the Study/NCT Status/Phase Intervention Primary-Outcome Measures

33. Targeted Agent Evaluation in Digestive Cancers in
China Based on Molecular Characteristics
(VISIONARY)/NCT04584008

Recruiting/Not Applicable

• Drug: FGFR Inhibitor, IDH1 Inhibitor, HER2
Inhibitor, PARP Inhibitor, BRAF Inhibitor,
MEK Inhibitor, ICIs, EGFR-TKIs, NTRK-
TKI, and etc.

• Drug: Other Therapy

ORR

34. A Study of T-DXd for the Treatment of Solid Tumors
Harboring HER2 Activating Mutations
(DPT01)/NCT04639219

Recruiting/Phase II • Drug: Trastuzumab deruxtecan ORR

35. A Study of BDTX-189, an Orally Available Allosteric
ErbB Inhibitor, in Patients with Advanced Solid Tumors
(MasterKey-01)/NCT04209465

Recruiting/Phase I-II • Drug: BDTX-189 RP2D; ORR

36. A Study of SGN-CD228A in Advanced Solid
Tumors/NCT04042480 Recruiting/Phase I • Drug: SGN-CD228A MTD; SAEs; ORR

AEs: adverse events; CTCAE: Common Toxicity Criteria for Adverse Effects; cORR: confirmed objective response rate; DLT: dose-limiting toxicity; MTD: maximally tolerated Dose; PFS: progression free survival;
ORR: objective response rate; RR: response rate; RP2D: recommended Phase 2 dose; SAEs: Serious Adverse Events.
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7. Future Perspectives and Conclusions

Despite the improvements in the systemic treatment of aCRC made in the past two
decades, to date CRC does not have specific oncotargets beyond RAS and BRAF. However,
because of its histological heterogeneity and its genetic dynamic evolution during disease
progression and under therapeutic pressure, CRC could represent one of the most fertile
grounds for the development of precision oncology and approach. In this context, the
identification of novel clinically actionable oncogenic drivers expresses an unsatisfied
and urgent need. Although, unlike other malignancies, HER2 alterations are observed
only in a small (but not negligible) subset of aCRC, an impressive and growing body of
evidence supports HER2 status assessment in patients also affected by CRC. In addition
to its already consolidated predictive role to anti-EGFR therapy and the more debated
prognostic significance, HER2 could, indeed, be a new targetable alteration in aCRC. The
introduction of the HERACLES diagnostic criteria for HER2-positive tumors and the initial
efforts to integrate traditional methodologies (IHC and FISH) with arising technologies
(NGS and CGS) draw a crucial step forward for the accurate characterization of HER2
status in CRC. Moreover, thanks to the growing availability of specific gene panels, the
emerging diagnostic tools (NGS and CGS) and the desirable clinical routine use of liquid
biopsy, HER2 assessment should be included in all genetic tests for each CRC patient at the
time of diagnosis of advanced disease. Although available data and ongoing clinical trials
support HER2 therapeutic role in mostly pretreated aCRC patients, similar positive effects
are expected in earlier treatment lines. Ongoing trials are required in order to validate this
hypothesis. Additional and ad hoc designed clinical studies investigating different typolo-
gies of HER2-directed agents are also required in order to define the optimal treatment
sequencing in HER2-positive CRC and the most active and efficacious agents. To date,
in absence of randomized data, the inclusion of HER2 status definition in the molecular
diagnostic workup of all aCRC patients could allow the speedy referral to clinical HER-
related trials independent of previous treatment history. However, the strong underlying
biological rationale, preclinical findings, and clinical results support consideration for the
conventional clinical approval of anti-HER2 therapies by regulatory agencies in a context
of an orphan molecular subgroup of patients. In our opinion, HER2-targeted therapies
compare favorably with emerging therapeutic strategies in aCRC, including BRAF-directed
therapy and immune checkpoint inhibitors. In the near future, anti-HER2 agents and their
combination with other drugs may integrate the algorithm of aCRC treatment towards an
increasingly tailored therapeutic approach to this disease.
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