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Abstract 

Background:  Pyrogeography is a major field of investigation in wildfire science because of its capacity to describe 
the spatial and temporal variations of fire disturbance. We propose a systematic pyrogeographic analytical approach 
to cluster regions on the basis of their pyrosimilarities. We employed the Affinity Propagation algorithm to cluster 
pyroregions using Italian landscape as a test bed and its current wildfire metrics in terms of density, seasonality and 
stand replacing fire ratio. A discussion follows on how pyrogeography varies according to differences in the human, 
biophysical, socioeconomic, and climatic spheres.

Results:  The algorithm identified seven different pyroregion clusters. Two main gradients were identified that 
partly explain the variability of wildfire metrics observed in the current pyroregions. First, a gradient characterized by 
increasing temperatures and exposure to droughts, which coincides with a decreasing latitude, and second, a human 
pressure gradient displaying increasing population density in areas at lower elevation. These drivers exerted a major 
influence on wildfire density, burnt area over available fuels and stand replacing, which were associated to warm-
dry climate and high human pressure. The study statistically highlighted the importance of a North–South gradient, 
which represents one of the most important drivers of wildfire regimes resulting from the variations in climatic condi-
tions but showing collinearity with socioeconomic aspects as well.

Conclusion:  Our fully replicable analytical approach can be applied at multiple scales and used for the entire Euro-
pean continent to uncover new and larger pyroregions. This could create a basis for the European Commission to 
promote innovative and collaborative funding programs between regions that demonstrate pyrosimilarities.
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Background
Pyrogeography is a major field of investigation in wildfire 
science because of its capacity to describe the spatial and 
temporal variations of fire disturbance (Archibald et  al. 
2013; Stambaugh et al. 2014; Chaste et al. 2018). Bowman 
et al. (2013) defined pyrogeography as the discipline that 
studies the past, current, and future projected distribu-
tion of wildfires. It offers new perspectives on landscape 
wildfire management and the link between wildfires and 

human health and livelihoods. The appropriate param-
eters used to characterize the pyrogeography of a terri-
tory depend on the specific needs of fire management in 
a given region and the responses of target ecosystem ser-
vices to wildfires (Bowman 2015). Basically, pyrogeogra-
phy can span over a wide variety of temporal and spatial 
scales, ranging from the local to global extent and from 
a few years to thousands of years (Krawchuk et al. 2009; 
Bowman et al. 2011; Roos et al. 2014).

One approach to represent such multi-scaled spatio-
temporal interactions is to employ suitable recurring 
wildfire metrics to group different regions on the basis of 
their pyrosimilarities (i.e., pyroregions) within a defined 
space–time window (Morgan et  al. 2001; Fréjaville and 
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Curt, 2015; Krebs et al. 2010; Williams et al. 2012). Clus-
tering pyroregions provides guidelines for decision mak-
ers suggesting which strategies may be most effective for 
combining wildfire risk reduction with natural resource 
protection (Syphard et al. 2020). For example, the Land-
fire project (http://​www.​landw​ildfi​re.​gov/, accessed 12 
May, 2021) mapped five pyromes as a function of wildfire 
frequency and severity. The resultant map currently plays 
a key role in planning wildfire management interventions 
in the United States (Keane et al. 2007; Keane and Karau 
2010). Clustering pyroregions may also be helpful for 
scientists to assess potential drivers altering fire occur-
rences and to assess potential future scenarios relative 
to an appropriate baseline (Keeley et al. 2019; Rodrigues 
et al. 2019).

Numerous and varied studies have attempted to cluster 
pyroregions at the global, continental and local scales and 
for past, current, and future wildfire scenarios, includ-
ing related driving factors (Conedera et al. 2009; Moreno 
and Chuvieco 2013; Archibald et  al. 2013, for a partial 
review). Each study applied different clustering meth-
ods to estimate pyrosimilarities among regions using 
historical wildfire data. For example, Archibald et  al. 
(2013) used a Bayesian clustering algorithm to identify 
global pyromes, while Conedera et  al. (2018) character-
ized the pyrogeography of the Alpine area using a hier-
archical cluster analysis based on the Bray–Curtis index 
and average-linkage method. Syphard and Keeley (2020) 
identified wildfire ecoregions using a k-means algorithm 
in California, USA. Parente et  al. (2016) identified two 
different wildfire regime regions in the Iberian Penin-
sula, using historical wildfire data and climate classifi-
cation patterns with scan statistics methods for cluster 
detection.

However, the abovementioned methods denoted some 
limitations. These methods begin with a random choice 
of centroids performing different clustering results on 
different sequences of the algorithm. Therefore, the 
results may not be repeatable and lack of consistency. In 
addition, fire management goals might to select a priori 
how many groups you want to generate, and this is not 
always possible, especially for data sets of high complex-
ity (Fiaschetti et al. 2021).

To avoid these drawbacks, we employed the Affinity 
Propagation (AP) algorithm to cluster current pyrore-
gions using wildfire metrics. As stated in the next sec-
tion this method has numerous advantages over related 
cluster analyses and the literature denoted a rare use in 
environmental-related works.

Our study presents a systematic analytical approach to 
uncover pyroregions on the basis of their pyrosimilari-
ties. The approach is applied as a case study to the entire 
Italian territory, being a complex region with highly 

variable landscape features, flammability, urbanization 
contexts and climate conditions (Ascoli et  al. 2020; Elia 
et al. 2020a). In addition, we discuss how the pyrogeogra-
phy varies due to differences in the biophysical, socioeco-
nomic, and climatic spheres.

Data and methods
Figure  1 shows the overall workflow of the methods 
developed for this study.

Study area
The Italian peninsula is located in the heart of the Medi-
terranean Basin and covers a surface area of approxi-
mately 301,330 km2. It is one of the European regions 
most affected by wildfires (San-Miguel-Ayanz et al. 2020) 
with a heterogeneous mix of vegetation and fuel types 
(Ascoli et  al. 2020), and diverse urbanization contexts 
and weather conditions (Mancini et  al. 2018). Twenty-
three percent of the peninsula consists of plains, 42% of 
rolling hills and the remaining 35% of mountain chains 
(Elia et  al. 2020a). The main mountain chains in Italy 
are represented by the Alps in the North and the Apen-
nines running throughout the peninsula. Given this par-
ticular configuration, the climate is characterized by a 
North–South gradient, ranging from temperate cool to 
Mediterranean warm. These climatic conditions and the 
surrounding Mediterranean Sea make this landscape one 
of the most important hotspots in terms of biodiversity. 
Forests cover approximately 11 million ha (RAF 2019), 
22% of which are located in the Alpine region and the 
remaining 78% along the peninsula.

Every year Italy experiences a considerable number of 
wildfire events, with a clear difference in wildfire regime 
from North to South (Valese et al. 2014; Elia et al. 2020a). 
Indeed, the Italian peninsula and islands are charac-
terized by very high temperatures and biophysical and 
socioeconomic heterogeneity, which influence landscape 
flammability and wildfire ignition patterns with cascad-
ing effects on the spatio-temporal variability and impacts 
of fire disturbance.

To identify the pyroregions in our study, we used the 
Nomenclature of Territorial Units for Statistics, level 3, 
(NUTS3) of the European Union (http://​ec.​europa.​eu/​
euros​tat/​web/​nuts/), which is a standard geocode for 
referencing the subdivisions of countries for scientific 
and statistical purposes. Level 3 is the best compromise 
between the need for homogeneity in wildfire metrics 
and the administrative unit, where data on socioeco-
nomic variables can be extracted (Conedera et al. 2018). 
Therefore, our study area included 110 NUTS3 for the 
whole Italian territory (Fig. 2).

http://www.landwildfire.gov/
http://ec.europa.eu/eurostat/web/nuts/
http://ec.europa.eu/eurostat/web/nuts/
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Historical wildfire data set and metrics
The historical wildfire data set was derived from the 
Comando Unità Forestali, Ambientali e Agroalimen-
tari (CUFA, ‘Command of the Forest, Environmental 
and Agri-food units’), Carabinieri Force, and Forestry 

Services of Autonomous Regions. This data set corre-
sponds to georeferenced polygons recorded between 
2007 and 2017. Although this 11-year data set repre-
sents a limited period for clustering regions on the basis 
of their pyrosimilarities, it is the most harmonized and 

Fig. 1  Block diagram of the proposed pyrogeographic analytical approach
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corrected database available for the entire territory. It 
consists of 82,064 wildfire events and a total burnt area of 
about 1 million ha.

To cluster the pyroregions, we extracted wildfire met-
rics from our data set accounting for density (relative 
average frequency and burnt area), seasonality (seasonal 
distribution of events) and stand replacing fire (stand 
replacing fire ratio). All the metrics were computed at the 
NUTS3 level (Table 1).

Wildfire density-related metrics were calculated as 
the ratio between the average number of wildfires (and 
burnt area) per year and the surface covered by flam-
mable land covers (i.e., CORINE land cover classes 
2012) (Table  1). Furthermore, we calculated the mean 
patch size of burnt area per wildfire event (Fernandes 
et  al. 2016). These wildfire density metrics were con-
sidered for their capacity to represent the frequency 
and incidence of wildfire events in a given landscape 

(Morgan et al. 2001; Taylor and Skinner 2003; Moreno 
and Chuvieco 2013; Jiménez-Ruano et al. 2017).

The second group of metrics relates to wildfire sea-
sonality. Indeed, seasonal peaks in fire ignition and 
burnt areas in Italy change across space, with winter 
peaks in the Northern Alpine regions and summer 
peaks in the Southern Mediterranean regions (Valese 
et  al. 2014; Elia et  al. 2020a). Analogously to Coned-
era et  al. (2018), who accounted for different climatic 
and environmental features, we calculated wildfire 
seasonality metrics by dividing Italy into two separate 
sub-regions: the Alpine region and the remaining Pen-
insular region, as shown in Fig.  2. We calculated the 
number of summer (June to September) wildfire events 
and burnt area for the Peninsular region and the num-
ber of winter (December to March) wildfire events and 
burnt area for the Alpine region. In addition, for both 

Fig. 2  The 110 Nomenclature of Territorial Units for Statistics, level 3, of the European Union, displayed in the Italian peninsula. The Alpine region 
and Peninsular region accounted for different climatic and environmental features, where wildfire seasonality metrics were calculated
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sub-regions we estimated the number of wildfires and 
burnt area in the remaining months, i.e., other seasons.

The last wildfire metric is an index estimating the 
capacity of fire to heavily damage vegetation such as 
Stand Replacing Fire. This kind of event is defined as a 
fire killing the living overstory trees in a forest generat-
ing post-fire forest succession (Halofsky et al. 2018; Ste-
vens et  al. 2017). Therefore, to estimate this metric we 
employed forest cover loss examined by Hansen et  al. 
(2013) to estimate the “stand replacing ratio”. The wildfire 
polygons were overlaid to forest cover losses (2007–2017) 
and for each fire polygon we calculated the sum of the 
pixels that were marked as “loss” in 3 years following the 
fire event. The calculated forest loss area was then used 
to calculate the “stand replacing ratio” by dividing it by 
the total fire polygon area.

Climatic and biophysical characteristics
To understand how pyrogeography varies across the Ital-
ian peninsula, a set of climatic, biophysical and socio-
economic characteristics were selected according to 
their availability and the potential relation with wild-
fire occurrence for the period of investigation (Table 2). 
Data extracted from remote sensing sensors were used 
to retrieve the climatic and biophysical characteristics. 
A set of 8-day composite products from the Moderate-
Resolution Imaging Spectrometer (MODIS) were col-
lected and further processed using Google Earth Engine 
(Gorelick et al. 2017). Average maximum and mean land 
surface temperature (Temp_max and Temp_mean) were 
derived from MOD11A2 Version (Wan et  al. 2015), a 
multiday composite providing land surface tempera-
ture at 1 km of spatial resolution. Mean evapotranspira-
tion (ET_mean) was derived from MOD16A2 (500 m of 

spatial resolution) (Running et al. 2017), while the mean 
Normalized Difference Vegetation Index (NDVI_mean) 
and Normalized Difference Water Index (NDWI_mean) 
were calculated using the MOD09A1 product (500 m of 
spatial resolution) (Vermote 2015) as described in Elia 
et al. (2020b) and Gao (1996). Regarding the validation of 
the data set, two of the three MODIS products we used 
(MOD11A2 and MOD09A1) are validated by NASA 
over a wide temporal and spatial distribution of ground 
truth measurements and one (MOD16A2) over a smaller 
number of independents measurements (Wan et  al. 
2015; Vermote 2015; Running et al. 2017). Following the 
NASA specification, all the three products are ready for 
use in scientific publications. All the images were masked 
from clouds and quality checked using the quality band 
provided with each MODIS product. ET_mean, NDVI_
mean, NDWI_mean and Temp_mean were calculated by 
averaging the masked images acquired from January 2007 
to December 2017 for each NUTS3 region. Temp_max 
was calculated by averaging the yearly maximum temper-
ature for the same time period.

Droughtness, especially after a period of above aver-
age amounts of rainfall stimulating tree and other plant 
growth, can create conditions of wildfire ignition and 
spread. A very long drought period can lead to favora-
ble conditions for wildfire occurrence, as all the dried-
out vegetation provides abundant fuel to burn (Parente 
et al. 2016; D’Este et al. 2021). Therefore, for each NUTS3 
provinces, we calculated the longest average drought 
within the period of investigation (2007–2017) using 
data derived from the SCIA (National System for the col-
lection, processing and dissemination of climate data) 
website (http://​www.​scia.​ispra​mbien​te.​it/​wwwro​otscia/​
Home_​new_​eng.​html).

Table 1  Wildfire metrics adopted to perform the cluster analysis

Main fire season = the X months with the highest burnt area (winter in Northern regions and summer in South Central regions); Land area with available flammable 
fuel = all the codes of the Corine Land Cover 2012 belonging to class 3 (except for 335 and 332) and 243 and 244 (Land principally occupied by agriculture with 
significant areas of natural vegetation and agro-forestry areas, respectively)

Wildfire metrics Definition Codes Description

Fire density Wildfire/Fuel W/F Ratio between the average number of wildfires per year and the land area with available 
flammable fuel (n × km−2 × yr−1)

Burnt area/Fuel BA/F Ratio between the average burnt area per year and the land area with available flammable 
fuel (ha × km−2 × yr−1)

Mean BA/WE BA/WE Mean burnt area per wildfire event (ha)

Fire seasonality Seasonal Wildfires SeaW Ratio between the number of wildfires during the main fire season (winter in Northern 
regions and summer in South Central regions) and the total number of wildfire events

Seasonal Burnt SeaB Ratio between burnt area (ha) during the main fire season (winter in Northern regions and 
summer in South Central regions) and total burnt area

Other seasonal wildfires OSeaW Ratio between the number of wildfires in seasons others than the main fire season and total 
number of wildfire events

Other seasonal burnt OSeaB Ratio between burnt area (ha) in seasons other than the main fire season and total burnt area

Stand-replacing fire Stand-replacing fire ratio SRF Incidence of forest cover loss caused by wildfire occurrence

http://www.scia.isprambiente.it/wwwrootscia/Home_new_eng.html
http://www.scia.isprambiente.it/wwwrootscia/Home_new_eng.html
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Other biophysical variables were retrieved from geo-
spatial data sets. The mean elevation and mean slope 
degree were derived from the NASA Shuttle Radar Topo-
graphic Mission (SRTM) digital elevation model (DEM) 
at 90  m of spatial resolution (v4.1) (Jarvis et  al. 2008). 
Latitude (Latitude) was derived from an ArcMap 10.5 
calculation using the centroid of each NUTS3 polygon. 
The density of rivers and mean distance to coast were 
calculated using the CCM2 River and Catchment Data-
base for Europe V 2.1. Data regarding the type of land 
cover, vegetation characteristics and fuel availability were 

obtained from CORINE Land Cover 2012, calculated 
as the percentage occupied by different classes within 
each NUTS3 province. Our rationale for using 2012 data 
was that they more suitably represented the scenario of 
wildfire metrics for 2007–2017, than the 2006 and 2018 
versions.

Socioeconomic characteristics
Historical fire statistics in Italy suggest that wildfires have 
a positive relationship with the human sphere, since neg-
ligence and arsons represent the major causes of wildfires 

Table 2  Summary and description of climatic, socioeconomic and biophysical variables employed in the study

NDVI Normalized Difference Vegetation Index, NDWI Normalized Difference Water Index

Variables Codes and units Description and source

Climatic

 Average max. temperature Temp_max [°C] Calculated from MOD11A2 V6, 8-day Land Surface Temperature at 1 km 
of spatial resolution. Temp_mean is the average from 2007 to 2017 and 
Temp_max is the average maximum yearly temperature within this 
period

 Average mean temperature Temp_mean [°C]

 Evapotranspiration ET_mean [kg/m2] Average for 2007–2017, calculated from MOD16A2 V6, 8-day Evapo-
transpiration composite at 500 m of spatial resolution

 Longest drought period Longest_drought_period [days] The average longest drought within the period of investigation 
(2007–2017)

Biophysical

 NDVI mean NDVI_mean Average for 2007–2017 calculated from MOD09A1 V6, 8-day Surface 
Spectral Reflectance composite at 500 m of spatial resolution NDWI mean NDWI_mean

 Elevation elev.mean [m asl] Zonal mean derived from NASA SRTM DEM at 90 m of spatial resolu-
tion, v4.1 (Jarvis et al. 2008) Slope slope.deg [degrees]

 Latitude Latitude][decimal degrees] Latitudinal location of the centroid for each NUTS3 province

 Density of rivers river.density [km/ha] Derived from the CCM2 River and Catchment Database for Europe V 
2.1. River density was calculated only considering the main rivers Mean distance to coast coast.dist.mean [km]

 Artificial surfaces Artif.surf [%] Percentage occupied by artificial surfaces (Level 1) according to Corine 
Land Cover 2012 (CLC 2012)

 Arable lands Arable.land [%] Percentage occupied by arable lands, permanent crops, pastures and 
heterogeneous agricultural areas (Level 2) according to CLC 2012 Permanent crops Perm.crop [%]

 Pastures Pastures [%]

 Heterogeneous agricultural areas Agric.areas [%]

 Broad leaved forests Broad.leaved.for [%] Percentage occupied by broad-leaved, conifer and mixed forests (Level 
3) according to CLC 2012 Conifer forests Conif.for [%]

 Mixed forest Mixed.for [%]

 Shrub/herbaceous vegetation association Shr.herb.veg [%] Percentage occupied by scrub/herbaceous vegetation associations 
and areas with little or no vegetation (Level 2) according to CLC 2012 Little or no vegetation little.no.veg [%]

Socioeconomic

 Population density pop.dens [inhab/km2] Eurostat [demo_r_d3dens] data from 2012

 Level of employment Perc.employed [%] Eurostat [nama_10r_3empers] data from 2012

 Gross Domestic Product GDP [1000 EUR/km2] Eurostat [nama_10r_3gdp] data from 2012

 Density of tourist establishments dens.tour.establ [#/km2] Includes hotels; holiday and other short-stay accommodations; 
camping grounds, recreational vehicle parks and trailer parks. Eurostat 
[tour_cap_nuts3] data from 2011

 People with basic education Perc.people.basic.educ [%] Percentage of people with basic educational level (0–2). Istat [DICA_
GRADOISTR1] data from 2011
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(Elia et al. 2019). Lack of caution and care in forestry or 
agricultural practices (e.g., burning of stubble) can lead 
to fire ignition and often to extreme wildfire events (Guo 
2021). Therefore, it is crucial to include the human sys-
tem when exploring pyrogeography in Italy as well as the 
differences between North and South or between densely 
populated and remote areas.

In light of the above, and according to previous studies 
(Lein and Stump 2009; D’Este et al. 2020; Giannico et al. 
2021), socioeconomic characteristics include population 
density, level of employment, Gross Domestic Product 
(GDP), density of tourist establishments and the per-
centage of people with basic education. These data were 
extracted from the Eurostat Database of the European 
Union and calculated at the NUTS3 level. We used data 
from 2012 or the closest date available. Table 2 reports all 
the climatic, socioeconomic and biophysical explanatory 
variables adopted in the study.

Cluster and statistical analyses
Cluster analysis is a technique employed to partition a 
set of objects according to perceived similarities. It is a 
formal study of algorithms and methods for grouping or 
classifying such objects. To obtain a consistent partition-
ing process the following must be considered: (1) objects 
extracted and used from the original database may be the 
most representative features; and (2) the selected algo-
rithm must be designed according to the characteristics 
of the problem.

In the wide panorama of cluster analyses (see Xu and 
Tian 2015 for a more comprehensive review), we opted 
to use the Affinity Propagation (AP) algorithm, devel-
oped by Frey and Dueck (2007). AP is based on the core 
idea that all data points (e.g., objects) can be candidate 
centers of potential clusters and that negative Euclidean 
distance is used to measure the affinity between pairs of 
data points. Therefore, as the sum of the affinity between 
pairs of data points increases, the probability that this 
data point is the cluster center increases. AP has numer-
ous advantages over related cluster analyses. The first and 
most important advantage is that the number of clusters 
does not need to be preset and, second, the algorithm is 
insensitive to outliers. Furthermore, AP is suitable for 
small- and medium-sized data sets, hence, it fits well 
with our data set which includes 110 NUTS3 provinces 
(Lu and Carreira-Perpinan 2008; Xu and Tian 2015). The 
analysis was performed using the “APCluster” package 
for R developed by Bodenhofer et al. (2011).

To test the significance of differences between clusters 
according to their climate, socioeconomic and biophysi-
cal characteristics, we used a one-way analysis of vari-
ance (ANOVA) followed by a Tukey’s Post-Hoc Test.

Lastly, to test for relationships between the climatic, 
biophysical, and socioeconomic characteristics and the 
uncovered pyroregions we performed a distance based 
Redundancy Analysis (RDA). The nature of this calcula-
tion is very sensitive to collinearity among the variables, 
especially when data sets have many variables as in our 
case. In these circumstances, we tried to minimize col-
linearities by not including highly correlated explanatory 
variables (Additional file 1: Figure S1).

RDA is a non-symmetric canonical correlation analy-
sis that explores the relationship between two tables of 
variables, Y and X. In our case, we considered wildfire 
metrics as the response variable (e.g., Y) and the climatic, 
biophysical, and socioeconomic characteristics as the 
explanatory variable (e.g., X).

At aims to carry on the RDA we needed to decide the 
distance measure to use. One way to do this is by look-
ing at the rank correlations between dissimilarity indices 
and gradient seperation: the higher the value the better. 
On the base of the ‘rankindex’ function of the “vegan” 
package for R (Dixon 2003) we found Euclidean to be the 
best distance measure to use. Furthermore, we provided 
as supplementary material (Additional file  1: Figure S2) 
a stepwise selection to understand more in depth what 
are the main drivers affecting spatial configuration of 
pyroregions.

The entire data set was scaled to unit variance and the 
analysis was carried out using the same abovementioned 
package for R. The significance of the model, variables, 
and RDA axes were checked using an ANOVA-like per-
mutation test with 999 iterations (α = 0.001).

Results
Current pyroregions in Italy
The AP analysis identified seven different pyroregion 
clusters across Italy (Fig. 3). According to the high envi-
ronmental heterogeneity of the Italian peninsula, we 
named the seven clusters as follows: Large summer 
wildfires (LAS) (14—NUTS3 provinces); Extreme stand-
replacing summer wildfire (EXS) (24); Medium density 
summer wildfires (MDS) (28); Subalpine low density 
wildfires (PLD) (16); Alpine high density wildfires (AHD) 
(14); Alpine High Stand-replacing wildfires (AHS) (7); 
and Reduced stand-replacing wildfires (RES) (7).

LAS was the first cluster identified by the analysis with 
14 NUTS3 provinces. It covers two important areas of 
Italy: the first is the central part of the peninsula, where 
the highest mountain in the Apennines is found, named 
Gran Sasso (Fig.  3), and includes the Parco Nazionale 
del Gran Sasso and Monti della Laga; the second is the 
northern side of two principal Italian islands. This clus-
ter exhibited the highest values of mean burnt area per 
wildfire event (BA/WE = 15.493), seasonal burnt area 
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(SeaB = 0.950), stand replacing fire ratio (SRF = 0.017) 
and burnt area/fuel ratio (BA/F = 1.55E-02) during the 
period under study (Table 3). However, LAS showed the 
lowest values of OseaB (0.050) suggesting that wildfires 
rarely occur in other seasons of the year.

EXS and MDS are the two largest pyroregions includ-
ing 24 and 28 NUTS3 provinces, respectively. The EXS 
pyroregion is represented by 13 NUTS3 belonging to 
the central part of the peninsula, while the remaining 
11 belong to the southern area and include relevant 

biodiversity hotspots, such as the Salento peninsula 
and Cilento Mounts. The EXS pyroregion is the clus-
ter with the highest ratio between the average number 
of wildfires per year and the available flammable fuel 
(W/F = 5.45E-03). It exhibited the highest value of SRF 
(0.020) and is characterized by high values of seasonal 
occurrence of fires and burnt area (SeaW and SeaB of 
0.828 and 0.914, respectively) (see Table  3). The MDS 
pyroregion includes important wildfire hot spots across 
the peninsula, such as the Gargano promontory, the 

Fig. 3  Seven pyroregions uncovered by the Affinity Propagation analysis across the entire study area: Large summer wildfires (LAS) (14—NUTS3 
provinces); Extreme stand-replacing summer wildfire (EXS) (24); Medium density summer wildfires (MDS) (28); Subalpine low density wildfires (PLD) 
(16); Alpine high density wildfires (AHD) (14); Alpine High Stand-replacing wildfires (AHS) (7); and Reduced stand-replacing wildfires (RES) (7)
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Sila mountain plateau located in  Calabria, and South-
eastern Sicily almost covered by the Etna volcano. MDS 
is characterized by medium values of fire density and 
high seasonality. For example, MDS displayed a BA/WE 
value of 5.084  ha, the highest SeaW value (0.871) and 
the second highest SeaB value (0.943).

The PLD cluster includes 16 NUTS3 provinces in 
the north-central part of the peninsula. It covers the 
principal flatland of Italy, named Pianura Padana. 
The PLD exhibited a low value of fire density metrics 
(W/F = 3.37E-04; BA/F = 4.41E-04), since the land-
scape consists mostly of agricultural lands, where few 
wildfires occur due to lack of flammable fuels prone to 
fire disturbance (Elia et al. 2020b).

Lastly, AHD, AHS, and RES represent the Alpine 
pyroregions in our study and include 14, 7 and 7 NUTS3 
provinces, respectively (Fig. 3). Although they represent 
one third of the potential flammable fuel in Italy, these 
Alpine pyroregions showed low values of wildfire den-
sity, especially the W/F and BA/F values (Table  3). For 
example, RES showed the lowest W/F value equivalent 
to 4.85E-04. Among the Alpine pyroregions, AHD is the 
largest cluster displaying the second highest fire size BA/
WE = 5.692  ha. This pyroregion covers most of NUTS3 
from west to east including many national parks, such as 
Val Grande, Gran Paradiso, Stelvio, Dolomiti Bellunesi, 
and natural ecosystems such as the Garda and Iseo lakes.

We considered AHS as a group of outliers compared 
to the other alpine pyroregion, since the values dem-
onstrate an opposite pattern in terms of fire density, 
seasonality and stand replacing fire ratio. This cluster 
exhibited the lowest fire size BA/WE = 0.808  ha, even 
if fires occur with a high SRF (0.015). Although it is 
an Alpine pyroregion, it presents a seasonality that is 
extremely different from the other two pyroregions. In 
fact, the values expressed a higher number of other sea-
sonal wildfires (OSeaW = 0.721) than of seasonal wild-
fires (SeaW = 0.279) in the main fire season (i.e., winter) 
(Table 3).

Comparison among pyroregions
The one-way ANOVA, followed by the Tukey’s Post-
Hoc Test, allowed to highlight the main differences of 
the uncovered pyroregions from the biophysical, soci-
oeconomic and climatic point of view. The differences 
among pyroregions were significant (ANOVA P < 0.05) 
for all of the variables with the exception of Arable.
land, Shr.herb.veg, Broad.leaved.for, NDVI_mean, dens.
tour.establ.N.km2 and ET_mean, where no significant 
differences were found. The distribution of values for 
each biophysical, socioeconomic and climatic variable 
is shown in Fig. 4. Post-hoc Tukey’s honestly significant 
differences (P < 0.05) among pyroregions are repre-
sented by different letters above each box, based on the 
test results from the R package multcompView (Graves 
et al. 2015).

In general, the most significant differences were 
found in latitude, mean and maximum temperature, 
percentage of people with basic education and mean 
distance to coast with 13, 13, 13, 12 and 11 significant 
differences among clusters, respectively (Fig.  4). The 
largest differences were found between the following 
pairs of clusters: MDS and AHD (14 times), MDS and 
AHS (13 times), EXS and AHD (12 times), EXS and 
AHS (12 times), and LAS and AHS (11 times). On the 
contrary, for the abovementioned variables no signifi-
cant differences were found between AHD and AHS, 
EXS and LAS, and MDS and LAS.

In terms of biophysical factors, the majority of sig-
nificant differences were found for the variables mean 
distance to coast, presence of conifer forests and mean 
elevation (Fig. 4). The MDS, LAS, PLD and EXS pyrore-
gions were found to be grouped for all variables with 
the exception of river density, where PLD was signifi-
cantly different from the MDS pyroregion. Similarly, 
the AHS, RES and AHD pyroregions were always 
grouped together except for the artificial surfaces and 
conifer forest, where RES was significantly different 
from AHD and AHS, respectively.

Table 3  Average values of the wildfire metrics used to perform the Affinity Propagation analysis grouped per cluster (see Table 1 for all 
codes and Fig. 3 for pyroregion acronyms)

Pyroregions W/F B/F BA/WE SeaW SeaB OSeaW OSeaB SRF

LAS 1.57E-03 1.55E-02 15.493 0.837 0.950 0.163 0.050 0.017

EXS 5.45E-03 9.73E-03 2.013 0.828 0.914 0.172 0.086 0.020

MDS 1.72E-03 8.35E-03 5.084 0.871 0.943 0.129 0.057 0.012

PLD 3.37E-04 4.41E-04 1.529 0.496 0.515 0.504 0.485 0.013

AHD 2.26E-04 1.15E-03 5.692 0.617 0.522 0.383 0.478 0.010

AHS 4.13E-04 3.22E-04 0.808 0.279 0.413 0.721 0.587 0.015

RES 4.85E-04 7.28E-04 1.491 0.824 0.841 0.176 0.159 0.003
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Fig. 4  Box plots showing the distribution of values for each biophysical (a), socioeconomic (b) and climatic (c) variable. For each plot, a pyroregion 
was assigned to a specific group represented by a letter above each box, in accordance to Post-hoc Tukey honestly significance difference. Clusters 
belonging to the same group were not significantly different (P < 0.05)
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According to the Post-hoc Tukey’s test, in the spectrum 
of socioeconomic factors, no differences between clus-
ters were found for the variable density of tourist estab-
lishments. Significant differences were found between 
pyroregions in all the other variables. A significant differ-
ence was found in population density between both the 
MDS and RES pyroregions. A similar pattern was found 
for the variable Gross Domestic Product (GDP), where 
the AHS cluster had significantly higher values than both 
the MDS and LAS clusters. In terms of the percentage 
of people with basic education, a significant difference 
was found between the group formed by the MDS, LAS 
and EXS pyroregions and the group formed by AHS, 
RES, AHD and PLD pyroregions. In regards of the level 
of employment, no significant differences were found 
among the MDS, LAS and EXS pyroregions, all of which 
had lower values in comparison with the AHS, RES, AHD 
and PLD pyroregions; the latter, overall, presented higher 
values for both aforementioned socioeconomic factors.

A great number of significant differences among clus-
ters were found in the climatic sphere, except for the 
variable mean evapotranspiration (ET_mean), where 
no differences were found. Considering Temp_max and 
Temp_mean, the MDS, LAS and EXS pyroregions, hav-
ing higher temperatures, were grouped together and 

found to be significantly different from the AHS, RES and 
AHD pyroregions registering lower maximum and mean 
temperatures. For both temperature variables the PLD 
pyroregion was in the middle, presenting differences with 
the MDS and LAS as well as the AHS, RES and AHD 
pyroregions. Drought periods were substantially higher 
for MDS and LAS, except for EXS, presenting significant 
differences with all of the other pyroregions, although the 
variance was very high for both clusters. The differences 
in NDWI were only found between the group composed 
by AHS and AHD and the group composed by MDS, 
LAS and EXS.

Statistical analysis performance
We tested the Pearson’s correlation coefficient to esti-
mate collinearities among the explanatory variables. The 
higher the value of the Pearson coefficient, the higher the 
correlation. We identified the maximum and minimum 
variable correlation threshold as 0.80 and − 0.80, respec-
tively. If the variable was above or below these values, it 
was omitted from subsequent analysis (Elia et al. 2020a, 
b).

The RDA in Fig.  5 shows the relationships between 
wildfire metrics and all the biophysical, socioeconomic 
and climatic characteristics of NUTS3 provinces in 

Fig. 5  Biplot relationships between wildfire metrics (red text) and biophysical, socioeconomic and climatic variables (black text) of NUTS3 
provinces in Italy. Each dot represents a NUTS3 province, and the colors denote belonging to a pyroregion: Large summer wildfires (LAS); Extreme 
stand-replacing summer wildfire (EXS); Medium density summer wildfires (MDS); Subalpine low density wildfires (PLD); Alpine high density wildfires 
(AHD); Alpine High Stand-replacing wildfires (AHS); and Reduced stand-replacing wildfires (RES). The arrow length and direction represent the 
variance that can be explained by the variables. The direction of an arrow suggests an increasing magnitude of the variable, while the perpendicular 
distance between orders and variable axes in the biplot represent their correlations (All variables are reported in Table 2.)
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Italy. Each dot represents a NUTS3 province, while the 
colors denote belonging to a pyroregion. The arrow 
length and direction represent the variance that can be 
explained by the variables. In addition, the direction of 
an arrow suggests an increasing magnitude of the vari-
able, while the perpendicular distance between wildfire 
metrics and axes in the biplot is inversely related to 
their correlation with the axes (Fig. 5).

The model displayed an adjusted R2 of 0.43. The 
first four RDA axes were significant (P < 0.001) and 
explained 40.1%, 9.7%, 3.5% and 2.1% of the model vari-
ance, respectively. The variables that highly correlated 
to RDA1 were temperature and drought, which are 
inverse to the axes scores, and distance from the coast 
and level of employment, which correlated positively to 
the axes. As regards fire metrics, fire density and burnt 
area in the main fire season correlated negatively, while 
the reciprocals in other seasons were positively corre-
lated. The variables that positively correlated to RDA2 
were mainly population density and related proxies 
(e.g., dens.tour.establ), and permanent crops, while 
slope, elevation and natural vegetation types (e.g., 
Broad.leaved.for, shrublands) were negatively corre-
lated. Fire density, burnt area, and stand replacing fire 
ratio correlated positively, while fire size correlated 
negatively. RDA1 represents a gradient of fire prone-
ness from left to right which is collinear with a North–
South gradient, as reflected by the distance from the 
coast and level of employment (Oliveira et  al. 2012; 
Fox et  al. 2018). RDA2 reflects a gradient of increas-
ing anthropization from the lower to upper quadrants, 
from more natural and remote areas at higher elevation 
to densely populated areas.

The RDA suggested a clear distinction between the 
pyroregions. The Alpine pyroregions (AHD and RES) and 
PLD are displayed in the North–East quadrant and are 
collinear with the socioeconomic variables (e.g., pop.dens 
and dens.tour.establ) and biophysical drivers (e.g., Conif.
for, Arable.land, and Pastures).

On the contrary, the RDA biplot suggested that the 
wildfire metrics of the peninsular pyroregions (LAS, EXS, 
MDS) are positively correlated almost with climatic vari-
ables, such as temperature, and drought period and three 
biophysical variables, such as agricultural areas, pres-
ence of shrubland, herbaceous vegetation and perma-
nent crops. The peninsular pyroregions (LAS, EXS and 
MDS) were mostly grouped in the South–West quadrant, 
suggesting an opposite pattern compared to the Alpine 
pyroregions. The AHS pyroregion showed a more hetero-
geneous pattern in terms of variables potentially affect-
ing wildfire metrics. Its dots, in fact, are almost located, 
where the two axes meet suggesting that in this pyrore-
gion wildfire metrics have contrasting correlations, since 

it is positively related to both fire seasonality and fire 
density.

Discussion
In this study, we highlight and classify pyrosimilarities 
by uncovering current pyroregions using the Italian ter-
ritory as a test bed. Italy displays an outstanding variety 
of landscapes and landforms due to its complex geo-
logical history, climate regimes and human impacts; this 
heterogeneity, in turn, reflects on the pyrogeography of 
the territory. From a geographical point of view, we can 
distinguish the Alpine region, which displays abrupt cli-
matic and environmental changes from the rest of the 
peninsula, as well as a peculiar anthropic influence on its 
landscapes (Conedera et al. 2017). The rest of the Italian 
peninsula is heavily influenced by the Mediterranean Sea, 
as well as by the presence of mountain chains and plains. 
In such a context, we uncovered seven current pyrore-
gions on the basis of wildfire metrics related to density, 
seasonality and stand replacing fire ratio.

The RDA analysis identified two main gradients partly 
explaining the variability of wildfire metrics observed in 
the uncovered pyroregions: (1) a fire-climatic gradient 
(i.e., RDA1), characterized by increasing temperatures 
and exposure to droughts, which coincides with a geo-
graphical gradient from North to South, as indicated by 
distance from the coast, and (2) an anthropic pressure 
gradient (i.e., RDA2) displaying increasing population 
density in areas at a lower elevation. As expected, these 
drivers had a major influence on fire density and burnt 
area over available fuels and stand replacing, which were 
associated to warm-dry climate and high anthropic pres-
sure. Our findings confirm the key role of human pres-
ence (e.g., population density) in shaping pyrography in 
Italy (Lafortezza et  al. 2015; Ferrara et  al. 2019; Ascoli 
et al. 2021). Similar results have emerged in other south-
ern European regions. Curt et  al. (2016) found that the 
88% of fires in Southern France is imputed to human 
settlements and infrastructures. Rodrigues et  al. (2019) 
identified four different cluster zones determined by 
drivers of large-fire in Spain. They found a high variability 
from zone to zone in terms of fire influence, although in 
some locations the proximity to human settlements and 
agricultural practices were relevant.

Notably, a metric such as mean size of single fire 
events was larger, where human pressure was lower, i.e., 
in remote mountain regions, where elevation and slope 
increase, fire control is less effective and continuous fuels 
are expected. Contrarily, peri-urban fringes represent hot 
spots for smaller and frequent wildfires (Elia et al. 2014; 
Lafortezza et al. 2015; Carlucci et al. 2019). Interestingly, 
our analysis showed a clear distinction between regions, 
where wildfire disturbance is concentrated in a single 
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major season, strongly correlated to high temperatures 
and drought (peninsular region), and regions, where 
wildfires are distributed over the course of several sea-
sons (most of Alpine region).

For instance, the LAS, MDS and EXS pyroregions 
in South Central Italy displayed the highest fire density 
and burnt area in a single fire season (i.e., summer). The 
pyrogeographic analysis correctly classified those prov-
inces which, though located in the North (e.g., Cremona), 
experienced a summer fire season in the period of inves-
tigation (2007–2017) and, therefore, belong to one of the 
South Central clusters (i.e., EXS). These pyroregions are 
characterized by large and stand replacing wildfires, dis-
playing the highest value of mean burnt area per wildfire 
event (e.g., LAS = 15.493 ha), and are among the regions 
with the majority of post-fire forest cover losses (Table 3). 
This is the result of a flammable landscape, mostly char-
acterized by Mediterranean sclerophyllous and pine veg-
etation which encourages crown fire behavior (Nunes 
et  al. 2005; Sebastián-López et  al. 2008), high tempera-
tures and long periods of drought in summer (Frate 
et  al. 2018; Elia et  al. 2019; D’Este et  al. 2020), as high-
lighted by Tukey’s Post-Hoc Test. Consequently, these 
regions, and particularly LAS, are prone to extreme fire 
growth in summer (Morresi et al. 2019; Di Ludovico and 
Di Lodovico 2020; Salis et al. 2021). However, during the 
rest of the year, the climate in these regions is milder and 
wetter making the vegetation less flammable, although 
some minor fires do occur.

The Alpine pyroregions (i.e., AHD, AHS and RES), on 
the other hand, showed lower values for fire density and 
burnt area over available fuels compared to the Medi-
terranean pyroregions. In these clusters, diverse social 
and biophysical factors determine a particular pyro-
geography. The reduced usage of fires in agro-pastoral 
systems, less frequent fire-prone weather, and high con-
trol of social activity partly contribute to lower wildfire 
ignitions (Bebi et  al. 2017; Vacchiano et  al. 2018). Fur-
thermore, relatively less fire-prone vegetation and fire-
conducive climate make wildfires grow generally slower 
in most parts of these regions, which increases fire con-
trol capacity with cascading effects on burnt area and 
fire size. However, large wildfires sporadically occur, 
particularly in AHD, when snow-free dry winters coin-
cide with warm-dry winds (foehn), spreading fire on 
steep slopes and inner remote valleys, where fire-fighting 
is no longer feasible (Reinhard et  al. 2005; De Angelis 
et al. 2012; Valese et al. 2014; Mofidi et al. 2015). In con-
trast to Mediterranean pyroregions, the Alpine clusters 
denoted a more balanced wildfire occurrence and burnt 
areas between the main fire season in winter and other 
seasons (see Table 3), particularly in early spring and late 
summer. This finding reflects the interaction between 

biophysical and socioeconomic factors (Lafortezza and 
Giannico 2019; Spano et  al. 2020a). Indeed, in these 
regions fire-prone vegetation and fire-conducive climate 
might align in several seasons throughout the year. For 
instance, in winter grasses are fully cured, broad-leaved 
litter accumulates, and prolonged dry-windy periods 
last until early spring, and in late summer occasional 
long droughts and heat waves dry out vegetation before 
the fall, these regions appears similar to Mediterranean 
areas, as occurred in 2003 and 2017 (Ascoli et  al. 2013; 
Valese et al. 2014). The socioeconomic sphere also plays a 
relevant role in distributing wildfires throughout the year. 
For example, wildfire ignition using silvopastoral prac-
tices may take place both in late winter and early spring 
to renew pastures (Tinner et  al. 2005; Ascoli and Bovio 
2010; Rey et al. 2013; Schwörer et al. 2014; Chergui et al. 
2018) and in late summer and early fall to manage chest-
nut forests (Ascoli and Bovio 2010; Gullino et al. 2020). 
Tourist activities in summer may also contribute to wild-
fire ignition in this season (Arndt et al. 2013).

Level of education showed a similar correlation to 
the other human variables. Many authors (Kellens et al. 
2013; Oliveira et al. 2020a, b) have well documented how 
natural and man-made disasters are related to educa-
tional level. Being well informed, people with high lev-
els of education show more awareness of and sensitivity 
towards natural risks (i.e., wildfires), confirming higher 
caution and care when dealing with them (e.g., renewal of 
pastures, burning of stubble, releasing flammable waste) 
(Crociata et  al. 2016; Dell’Olio et  al. 2017; Spano et  al. 
2020b). However, the cultural aspect of wildfires in Italy 
deserves a more in-depth discussion, since we believe 
that the wildfire issue is non-strictly linked to education 
or poverty, but to a more comprehensive North–South 
socioeconomic gradient reflected in wildfire metrics 
(Schneider 2020). Several aspects must be considered 
when debating the wildfire–education interaction. 
Michetti and Pinar (2019) highlighted that, although 
higher levels of education lead to decreases in the num-
ber of fire events and total area burnt, southern Italy rep-
resents an exception. For example, the use of fires, or the 
simple acceptance of them (e.g., prescribed fires), is quite 
different between North and South.

Prescribed fires are perceived differently going from 
South to North. In Southern Italy, despite the preven-
tion phase must be strongly improved, silvicultural inter-
ventions of prescribed fires are more endorsed (e.g., 
Campania region) than in the northern Italy (i.e., Bozen 
province), where this practice is considered harmful for 
forest resources (Ascoli and Bovio 2010). The recrea-
tional use of fires (e.g., campfires, fireworks) is allowed 
with diverse rules according to the provinces, and even 
where rules are similar the response of people changes 
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from North to South (Kovacs et  al. 2017). For instance, 
in the North Italy (e.g., Veneto region) campfires are 
considered an element of high wildfire risk compared to 
southern Italy, where many public and religious events 
use fireworks as a main tourist attraction. The above-
mentioned socioeconomic gradient is mostly reflected 
in the fire suppression system. From North to South, the 
systems of wildfire suppression differ in terms of organi-
zation, resources and control of the territory. The regions 
of Tuscany and Piedmont have more efficient and cost-
effective wildfire suppression systems compared to most 
southern regions (Fasolo 2018).

Limitations
Even if our study can seem characterized by a regional 
focus, we strongly find merit in our work. It should be 
stressed that Italy is the third most fire affected country 
of Europe (San-Miguel-Ayanz et  al. 2020). Addressing 
these kinds of studies is important for several reasons 
such as deaths, global CO2 emissions, forest and biodi-
versity loss, huge costs of firefighting and governmen-
tal money contributions to help citizens. We also think 
that examples of pyrogeography systematization are not 
common in Europe yet, but they are needed to raise the 
fire management to a broader level of analysis. In addi-
tion, the adopted clustering method has novelties in the 
context of wildfires and the entire statistical approach 
resulted rather straightforward and solid. However, there 
are some relevant limitations that need to be assessed.

First, we are aware that our study has limitations in 
terms of the time span of the analysis, given the relatively 
short period of consistent wildfire data available (2007–
2017). Currently, there are several sources to extract 
fire data sets longer than the one adopted in this study, 
such as “globalfiredata.org” or EFFIS (European Forest 
Fire Information System, https://​effis.​jrc.​ec.​europa.​eu/). 
However, the number of fires and the amount of burnt 
area omitted by these sources is remarkable. For instance, 
while our data set accounted for 82,064 fire events during 
the period of investigation (2007–2017), the abovemen-
tioned sources recorded 2615 fire events. For this reason, 
we opted to use a more detailed data sets even if rela-
tively short.

Second, we believe that the study would benefit from 
adding a metric related to wildfire severity. Nevertheless, 
Italy currently lacks a national database of wildfire sever-
ity, except for small areas that are analyzed by local and 
event-specific studies.

The last limitation concerns the stand replacing fire 
ratio derived by forest cover loss. This metric is based on 
the fundamental assumption that the cover loss within 
the wildfire perimeters was due exclusively to direct and 
indirect consequences of fire occurrence.

Conclusion
This study proposes a systematic pyrogeographic ana-
lytical approach of the Italian peninsula presenting 
a method for uncovering current pyroregions on the 
basis of their pyrosimilarities across the Italian terri-
tory at large.

Based on adopted wildfire metrics, the pyroregions 
uncovered by this approach can be implemented in 
fire management plans and civil protection strategies. 
Furthermore, understanding how pyrogeography varies 
according to biophysical, socioeconomic and climatic 
drivers can improve the prediction of alterations asso-
ciated with future fire regimes, especially in a context 
of climate change and intense human intervention on 
landscapes (Bowman et al. 2020).

Currently, many authors hastily identify wildfire 
occurrence as linked to education, employment, or 
population density. In this work we highlighted the 
importance of the North–South gradient, which rep-
resents one of the most important drivers of pyroge-
ography resulting from the variations in both climatic 
and socioeconomic conditions, which are difficult to 
disentangle. Based on these findings, decision makers 
could design efficient interventions to mitigate wildfire 
occurrence by acting not only on biophysical drivers 
(e.g., forest fuels) but also on developing new policies 
aimed at rebalancing the socioeconomic differences 
between pyroregions.

In addition to the important study results found for 
Italy, our fully replicable analytical approach can be 
applied at multiple scales and used for the entire Euro-
pean continent to uncover new and larger pyroregions. 
This could create a basis for the European Commission to 
promote innovative and collaborative funding programs 
(e.g., H2020, Life, Interreg projects) between regions that 
demonstrate pyrosimilarities.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13717-​022-​00360-6.

Additional file 1. Supplementary material.

Acknowledgements
The authors wish to thank Yole DeBellis for support in revising the manuscript.

Authors’ contributions
ME: conceptualization, methodology, formal analysis, investigation, writing 
and revising. VG: formal analysis, writing, and revising. DA and JA: data collec-
tion, writing and revising. GS (Giuseppina Spano) and MD: revising. RL: super-
vising and revising. GS (Giovanni Sanesi): supervising, revising, and funding 
acquisition. All authors read and approved the final manuscript.

Funding
Not applicable.

https://effis.jrc.ec.europa.eu/
https://doi.org/10.1186/s13717-022-00360-6
https://doi.org/10.1186/s13717-022-00360-6


Page 15 of 17Elia et al. Ecological Processes           (2022) 11:15 	

Availability of data and materials
The data sets used and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Agricultural and Environmental Sciences, University of Bari A. 
Moro, Via Amendola 165/A, 70126 Bari, Italy. 2 Department of Agricultural, For-
est and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, 
TO, Italy. 3 Mario Gulich Institute for Advanced Space Studies (CONAE-UNC), 
CONICET, Route C45, km 8, CP 5187 Falda del Cañete, Córdoba, Argentina. 
4 Department of Geography, The University of Hong Kong, Centennial Campus, 
Pokfulam Road, Hong Kong, China. 

Received: 31 August 2021   Accepted: 11 January 2022

References
Archibald S, Lehmann CER, Gómez-Dans JL, Bradstock RA (2013) Defining 

pyromes and global syndromes of fire regimes. PNAS 110:6442–6447. 
https://​doi.​org/​10.​1073/​pnas.​12114​66110

Arndt N, Vacik H, Koch V, Arpaci A, Gossow H (2013) Modeling human-caused 
forest fire ignition for assessing forest fire danger in Austria. iForest 6:315. 
https://​doi.​org/​10.​3832/​ifor0​936-​006

Ascoli D, Bovio G (2010) Tree encroachment dynamics in heathlands of north-
west Italy: the fire regime hypothesis. iForest 3:137. https://​doi.​org/​10.​
3832/​ifor0​548-​003

Ascoli D, Castagneri D, Valsecchi C, Conedera M, Bovio G (2013) Post-fire resto-
ration of beech stands in the Southern Alps by natural regeneration. Ecol 
Eng 54:210–217. https://​doi.​org/​10.​1016/j.​ecole​ng.​2013.​01.​032

Ascoli D, Vacchiano G, Scarpa C, Arca B, Barbati A, Battipaglia G, Elia M, Esposito 
A, Garfì V, Lovreglio R, Mairota P, Marchetti M, Marchi E, Meytre S, Ottavi-
ano M, Pellizzaro G, Rizzolo R, Sallustio L, Salis M, Sirca C, Valese E, Ventura 
A, Bacciu V (2020) Harmonized dataset of surface fuels under Alpine, 
temperate and Mediterranean conditions in Italy. A synthesis supporting 
fire management. iForest 13:513. https://​doi.​org/​10.​3832/​ifor3​587-​013

Ascoli D, Moris JV, Marchetti M, Sallustio L (2021) Land use change towards 
forests and wooded land correlates with large and frequent wildfires in 
Italy. Ann Silvicultural Res 46:177–188. https://​doi.​org/​10.​12899/​asr-​2264

Bebi P, Seidl R, Motta R, Fuhr M, Firm D, Krumm F, Conedera M, Ginzler C, 
Wohlgemuth T, Kulakowski D (2017) Changes of forest cover and 
disturbance regimes in the mountain forests of the Alps. For Ecol Manag 
388:43–56. https://​doi.​org/​10.​1016/j.​foreco.​2016.​10.​028

Bodenhofer U, Kothmeier A, Hochreiter S (2011) APCluster: an R package for 
affinity propagation clustering. Bioinformatics 27:2463–2464. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btr406

Bowman DM (2015) What is the relevance of pyrogeography to the anthropo-
cene? Anthropocene Rev 2:73–76. https://​doi.​org/​10.​1177/​20530​19614​
547742

Bowman DMJS, Balch J, Artaxo P, Bond WJ, Cochrane MA, D’Antonio CM, 
DeFries R, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Mack M, 
Moritz MA, Pyne S, Roos CI, Scott AC, Sodhi NS, Swetnam TW (2011) 
The human dimension of fire regimes on Earth. J Biogeogr 38:2223–
2236. https://​doi.​org/​10.​1111/j.​1365-​2699.​2011.​02595.x

Bowman DMJS, O’Brien JA, Goldammer JG (2013) Pyrogeography and 
the global quest for sustainable fire management. Annu Rev 
Environ Resour 38:57–80. https://​doi.​org/​10.​1146/​annur​ev-​envir​
on-​082212-​134049

Bowman DMJS, Kolden CA, Abatzoglou JT, Johnston FH, van der Werf GR, 
Flannigan M (2020) Vegetation fires in the anthropocene. Nat Rev Earth 
Environ 1:500–515. https://​doi.​org/​10.​1038/​s43017-​020-​0085-3

Carlucci M, Zambon I, Colantoni A, Salvati L (2019) Socioeconomic develop-
ment, demographic dynamics and forest fires in Italy, 1961–2017: a 
time-series analysis. Sustainability 11:1305. https://​doi.​org/​10.​3390/​
su110​51305

Chaste E, Girardin MP, Kaplan JO, Portier J, Bergeron Y, Hély C (2018) The 
pyrogeography of eastern boreal Canada from 1901 to 2012 simulated 
with the LPJ-LMfire model. Biogeosciences 15:1273–1292. https://​doi.​
org/​10.​5194/​bg-​15-​1273-​2018

Chergui B, Fahd S, Santos X, Pausas JG (2018) Socioeconomic factors 
drive fire-regime variability in the Mediterranean basin. Ecosystems 
21:619–628. https://​doi.​org/​10.​1007/​s10021-​017-​0172-6

Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Recon-
structing past fire regimes: methods, applications, and relevance to fire 
management and conservation. Quatern Sci Rev 28:555–576. https://​
doi.​org/​10.​1016/j.​quasc​irev.​2008.​11.​005

Conedera M, Colombaroli D, Tinner W, Krebs P, Whitlock C (2017) Insights 
about past forest dynamics as a tool for present and future forest 
management in Switzerland. For Ecol Manag 388:100–112. https://​doi.​
org/​10.​1016/j.​foreco.​2016.​10.​027

Conedera M, Krebs P, Valese E, Cocca G, Schunk C, Menzel A, Vacik H, Cane 
D, Japelj A, Muri B, Ricotta C, Oliveri S, Pezzatti GB (2018) Character-
izing Alpine pyrogeography from fire statistics. Appl Geogr 98:87–99. 
https://​doi.​org/​10.​1016/j.​apgeog.​2018.​07.​011

Crociata A, Agovino M, Sacco PL (2016) Neighborhood effects and pro-
environmental behavior: the case of Italian separate waste collection. J 
Clean Prod 135:80–89. https://​doi.​org/​10.​1016/j.​jclep​ro.​2016.​06.​083

Curt T, Fréjaville T, Lahaye S, Curt T, Fréjaville T, Lahaye S (2016) Modelling 
the spatial patterns of ignition causes and fire regime features in 
southern France: implications for fire prevention policy. Int J Wildland 
Fire 25:785–796. https://​doi.​org/​10.​1071/​WF152​05

D’Este M, Ganga A, Elia M, Lovreglio R, Giannico V, Spano G, Colangelo G, 
Lafortezza R, Sanesi G (2020) Modeling fire ignition probability and 
frequency using Hurdle models: a cross-regional study in Southern 
Europe. Ecol Process 9:54. https://​doi.​org/​10.​1186/​s13717-​020-​00263-4

D’Este M, Elia M, Giannico V, Spano G, Lafortezza R, Sanesi G (2021) Machine 
learning techniques for fine dead fuel load estimation using multi-
source remote sensing data. Remote Sens 13:1658. https://​doi.​org/​10.​
3390/​rs130​91658

De Angelis A, Bajocco S, Ricotta C (2012) Modelling the phenological 
niche of large fires with remotely sensed NDVI profiles. Ecol Model 
228:106–111. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2012.​01.​003

Dell’Olio M, Hassink J, Vaandrager L (2017) The development of social 
farming in Italy: a qualitative inquiry across four regions. J Rural Stud 
56:65–75. https://​doi.​org/​10.​1016/j.​jrurs​tud.​2017.​09.​006

Di Ludovico D, Di Lodovico L (2020) The regional management risk plan. 
Knowledge, scenarios and prevention projects in a regional context. 
Int J Disaster Risk Reduction 45:101465. https://​doi.​org/​10.​1016/j.​ijdrr.​
2019.​101465

Dixon P (2003) VEGAN, a package of R functions for community ecology. J 
Veg Sci 14:927–930. https://​doi.​org/​10.​1111/j.​1654-​1103.​2003.​tb022​
28.x

Elia M, Lafortezza R, Colangelo G, Sanesi G (2014) A streamlined approach 
for the spatial allocation of fuel removals in wildland–urban interfaces. 
Landsc Ecol 29:1771–1784. https://​doi.​org/​10.​1007/​s10980-​014-​0070-7

Elia M, Giannico V, Lafortezza R, Sanesi G (2019) Modeling fire ignition pat-
terns in Mediterranean urban interfaces. Stoch Environ Res Risk Assess 
33:169–181. https://​doi.​org/​10.​1007/​s00477-​018-​1558-5

Elia M, D’Este M, Ascoli D, Giannico V, Spano G, Ganga A, Colangelo G, 
Lafortezza R, Sanesi G (2020a) Estimating the probability of wildfire 
occurrence in Mediterranean landscapes using Artificial Neural Networks. 
Environ Impact Assess Rev 85:106474. https://​doi.​org/​10.​1016/j.​eiar.​2020.​
106474

Elia M, Giannico V, Spano G, Lafortezza R, Sanesi G (2020b) Likelihood and 
frequency of recurrent fire ignitions in highly urbanised Mediterranean 
landscapes. Int J Wildland Fire 29:120–131. https://​doi.​org/​10.​1071/​
WF190​70

Fasolo M (2018) Tecnologie geospaziali per l’ottimizzazione della distribuzi-
one di risorse (squadre a terra e Dos) per la lotta agli incendi boschivi 

https://doi.org/10.1073/pnas.1211466110
https://doi.org/10.3832/ifor0936-006
https://doi.org/10.3832/ifor0548-003
https://doi.org/10.3832/ifor0548-003
https://doi.org/10.1016/j.ecoleng.2013.01.032
https://doi.org/10.3832/ifor3587-013
https://doi.org/10.12899/asr-2264
https://doi.org/10.1016/j.foreco.2016.10.028
https://doi.org/10.1093/bioinformatics/btr406
https://doi.org/10.1093/bioinformatics/btr406
https://doi.org/10.1177/2053019614547742
https://doi.org/10.1177/2053019614547742
https://doi.org/10.1111/j.1365-2699.2011.02595.x
https://doi.org/10.1146/annurev-environ-082212-134049
https://doi.org/10.1146/annurev-environ-082212-134049
https://doi.org/10.1038/s43017-020-0085-3
https://doi.org/10.3390/su11051305
https://doi.org/10.3390/su11051305
https://doi.org/10.5194/bg-15-1273-2018
https://doi.org/10.5194/bg-15-1273-2018
https://doi.org/10.1007/s10021-017-0172-6
https://doi.org/10.1016/j.quascirev.2008.11.005
https://doi.org/10.1016/j.quascirev.2008.11.005
https://doi.org/10.1016/j.foreco.2016.10.027
https://doi.org/10.1016/j.foreco.2016.10.027
https://doi.org/10.1016/j.apgeog.2018.07.011
https://doi.org/10.1016/j.jclepro.2016.06.083
https://doi.org/10.1071/WF15205
https://doi.org/10.1186/s13717-020-00263-4
https://doi.org/10.3390/rs13091658
https://doi.org/10.3390/rs13091658
https://doi.org/10.1016/j.ecolmodel.2012.01.003
https://doi.org/10.1016/j.jrurstud.2017.09.006
https://doi.org/10.1016/j.ijdrr.2019.101465
https://doi.org/10.1016/j.ijdrr.2019.101465
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1007/s10980-014-0070-7
https://doi.org/10.1007/s00477-018-1558-5
https://doi.org/10.1016/j.eiar.2020.106474
https://doi.org/10.1016/j.eiar.2020.106474
https://doi.org/10.1071/WF19070
https://doi.org/10.1071/WF19070


Page 16 of 17Elia et al. Ecological Processes           (2022) 11:15 

nella rete delle sedi del Corpo Nazionale dei Vigili del Fuoco. Geomedia 
22(5):10

Fernandes PM, Monteiro-Henriques T, Guiomar N, Loureiro C, Barros AMG 
(2016) Bottom-up variables govern large-fire size in Portugal. Ecosystems 
19:1362–1375. https://​doi.​org/​10.​1007/​s10021-​016-​0010-2

Ferrara C, Salvati L, Corona P, Romano R, Marchi M (2019) The background 
context matters: local-scale socioeconomic conditions and the spatial 
distribution of wildfires in Italy. Sci Total Environ 654:43–52. https://​doi.​
org/​10.​1016/j.​scito​tenv.​2018.​11.​049

Fiaschetti M, Graziano M, Heumann BW (2021) A data-based approach to iden-
tifying regional typologies and exemplars across the urban–rural gradient 
in Europe using affinity propagation. Reg Stud 55:1939–1954. https://​doi.​
org/​10.​1080/​00343​404.​2021.​18715​98

Fox DM, Carrega P, Ren Y, Caillouet P, Bouillon C, Robert S (2018) How wildfire 
risk is related to urban planning and Fire Weather Index in SE France 
(1990–2013). Sci Total Environ 621:120–129. https://​doi.​org/​10.​1016/j.​
scito​tenv.​2017.​11.​174

Frate L, Carranza ML, Evangelista A, Stinca A, Schaminée JHJ, Stanisci A (2018) 
Climate and land use change impacts on Mediterranean high-mountain 
vegetation in the Apennines since the 1950s. Plant Ecol Divers 11:85–96. 
https://​doi.​org/​10.​1080/​17550​874.​2018.​14735​21

Fréjaville T, Curt T (2015) Spatiotemporal patterns of changes in fire regime 
and climate: defining the pyroclimates of south-eastern France (Medi-
terranean Basin). Clim Change 129:239–251. https://​doi.​org/​10.​1007/​
s10584-​015-​1332-3

Frey BJ, Dueck D (2007) Clustering by passing messages between data points. 
Science 315:972–976. https://​doi.​org/​10.​1126/​scien​ce.​11368​00

Gao B (1996) NDWI—a normalized difference water index for remote sensing 
of vegetation liquid water from space. Remote Sens Environ 58:257–266. 
https://​doi.​org/​10.​1016/​S0034-​4257(96)​00067-3

Giannico V, Spano G, Elia M, D’Este M, Sanesi G, Lafortezza R (2021) Green 
spaces, quality of life, and citizen perception in European cities. Environ 
Res 196:110922. https://​doi.​org/​10.​1016/j.​envres.​2021.​110922

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R (2017) 
Google earth engine: planetary-scale geospatial analysis for everyone. 
Remote Sens Environ 202:18–27. https://​doi.​org/​10.​1016/j.​rse.​2017.​06.​031

Graves S, Piepho H-P, Selzer L, Dorai-Raj S (2015) multcompView: visualizations 
of paired comparisons. R package version 0.1-7.

Gullino P, Mellano MG, Beccaro GL, Devecchi M, Larcher F (2020) Strategies 
for the management of traditional chestnut landscapes in Pesio Valley, 
Italy: a participatory approach. Land 9:536. https://​doi.​org/​10.​3390/​land9​
120536

Guo Q (2021) Using “management mosaics” to mitigate the impacts 
from extreme wildfires. Ecol Process 10:43. https://​doi.​org/​10.​1186/​
s13717-​021-​00320-6

Halofsky JS, Donato DC, Franklin JF, Halofsky JE, Peterson DL, Harvey BJ (2018) 
The nature of the beast: examining climate adaptation options in forests 
with stand-replacing fire regimes. Ecosphere 9:e02140. https://​doi.​org/​10.​
1002/​ecs2.​2140

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, 
Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, 
Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps 
of 21st-century forest cover change. Science 342:850–853. https://​doi.​
org/​10.​1126/​scien​ce.​12446​93

Jarvis A, Guevara E, Reuter HI, Nelson AD (2008) Hole-filled SRTM for the globe: 
version 4: data grid

Jiménez-Ruano A, Rodrigues Mimbrero M, de la Riva Fernández J (2017) 
Exploring spatial–temporal dynamics of fire regime features in 
mainland Spain. Nat Hazard 17:1697–1711. https://​doi.​org/​10.​5194/​
nhess-​17-​1697-​2017

Keane RE, Karau E (2010) Evaluating the ecological benefits of wildfire by inte-
grating fire and ecosystem simulation models. Ecol Model 221:1162–
1172. https://​doi.​org/​10.​1016/j.​ecolm​odel.​2010.​01.​008

Keane RE, Rollins M, Zhu Z-L (2007) Using simulated historical time series to 
prioritize fuel treatments on landscapes across the United States: the 
LANDFIRE prototype project. Ecol Model 204:485–502. https://​doi.​org/​10.​
1016/j.​ecolm​odel.​2007.​02.​005

Keeley JE, Pausas JG, Keeley JE, Pausas JG (2019) Distinguishing distur-
bance from perturbations in fire-prone ecosystems. Int J Wildland Fire 
28:282–287. https://​doi.​org/​10.​1071/​WF182​03

Kellens W, Terpstra T, De Maeyer P (2013) Perception and communication of 
flood risks: a systematic review of empirical research. Risk Anal 33:24–49. 
https://​doi.​org/​10.​1111/j.​1539-​6924.​2012.​01844.x

Kovacs A, Ştefănie H, Botezan C, Crăciun I, Ozunu A (2017) Assessment of 
natural hazards in European countries with impact on young people. Int 
Multidiscip Sci GeoConference SGEM 17:73–80

Krawchuk MA, Moritz MA, Parisien M-A, Dorn JV, Hayhoe K (2009) Global 
pyrogeography: the current and future distribution of wildfire. PLoS ONE 
4:e5102. https://​doi.​org/​10.​1371/​journ​al.​pone.​00051​02

Krebs P, Pezzatti GB, Mazzoleni S, Talbot LM, Conedera M (2010) Fire regime: 
history and definition of a key concept in disturbance ecology. Theory 
Biosci 129:53–69. https://​doi.​org/​10.​1007/​s12064-​010-​0082-z

Lafortezza R, Giannico V (2019) Combining high-resolution images and LiDAR 
data to model ecosystem services perception in compact urban systems. 
Ecol Indic 96:87–98. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2017.​05.​014

Lafortezza R, Tanentzap AJ, Elia M, John R, Sanesi G, Chen J (2015) Prioritizing 
fuel management in urban interfaces threatened by wildfires. Ecol Indic 
48:342–347. https://​doi.​org/​10.​1016/j.​ecoli​nd.​2014.​08.​034

Lein JK, Stump NI (2009) Assessing wildfire potential within the wildland–
urban interface: a southeastern Ohio example. Appl Geogr 29:21–34. 
https://​doi.​org/​10.​1016/j.​apgeog.​2008.​06.​002

Lu Z, Carreira-Perpinan MA (2008) Constrained spectral clustering through 
affinity propagation. In: 2008 IEEE Conference on Computer Vision and 
Pattern Recognition. pp. 1–8. https://​doi.​org/​10.​1109/​CVPR.​2008.​45874​51

Mancini LD, Elia M, Barbati A, Salvati L, Corona P, Lafortezza R, Sanesi G (2018) 
Are wildfires knocking on the built-up areas door? Forests 9:234. https://​
doi.​org/​10.​3390/​f9050​234

Michetti M, Pinar M (2019) Forest fires across Italian regions and implica-
tions for climate change: a panel data analysis. Environ Resour Econ 
72:207–246. https://​doi.​org/​10.​1007/​s10640-​018-​0279-z

Mofidi A, Soltanzadeh I, Yousefi Y, Zarrin A, Soltani M, Masoompour Samakosh 
J, Azizi G, Miller STK (2015) Modeling the exceptional south Foehn event 
(Garmij) over the Alborz Mountains during the extreme forest fire of 
December 2005. Nat Hazards 75:2489–2518. https://​doi.​org/​10.​1007/​
s11069-​014-​1440-9

Moreno MV, Chuvieco E (2013) Characterising fire regimes in Spain from fire 
statistics. Int J Wildland Fire 22:296–305. https://​doi.​org/​10.​1071/​WF120​61

Morgan P, Hardy CC, Swetnam TW, Rollins MG, Long DG (2001) Mapping fire 
regimes across time and space: understanding coarse and fine-scale fire 
patterns. Int J Wildland Fire 10:329–342. https://​doi.​org/​10.​1071/​wf010​32

Morresi D, Vitali A, Urbinati C, Garbarino M (2019) Forest spectral recovery and 
regeneration dynamics in stand-replacing wildfires of central Apennines 
derived from Landsat time series. Remote Sens 11:308. https://​doi.​org/​10.​
3390/​rs110​30308

Nunes MCS, Vasconcelos MJ, Pereira JMC, Dasgupta N, Alldredge RJ, Rego 
FC (2005) Land cover type and fire in Portugal: do fires burn land 
cover selectively? Landsc Ecol 20:661–673. https://​doi.​org/​10.​1007/​
s10980-​005-​0070-8

Oliveira S, Oehler F, San-Miguel-Ayanz J, Camia A, Pereira JMC (2012) Modeling 
spatial patterns of fire occurrence in Mediterranean Europe using 
Multiple Regression and Random Forest. For Ecol Manage 275:117–129. 
https://​doi.​org/​10.​1016/j.​foreco.​2012.​03.​003

Oliveira R, Oliveira S, Zêzere JL, Viegas DX (2020a) Uncovering the perception 
regarding wildfires of residents with different characteristics. Int J Disaster 
Risk Reduction 43:101370. https://​doi.​org/​10.​1016/j.​ijdrr.​2019.​101370

Oliveira S, Gonçalves A, Benali A, Sá A, Zêzere JL, Pereira JM (2020b) Assessing 
risk and prioritizing safety interventions in human settlements affected 
by large wildfires. Forests 11:859. https://​doi.​org/​10.​3390/​f1108​0859

Parente J, Pereira MG, Tonini M (2016) Space-time clustering analysis of 
wildfires: the influence of dataset characteristics, fire prevention policy 
decisions, weather and climate. Sci Total Environ 559:151–165. https://​doi.​
org/​10.​1016/j.​scito​tenv.​2016.​03.​129

RAF RR (2019) Rapporto sullo stato delle foreste e del settore forestale in Ita-
lia—RaF [WWW Document]. https://​www.​reter​urale.​it. https://​www.​reter​
urale.​it/​flex/​cm/​pages/​Serve​BLOB.​php/L/​IT/​IDPag​ina/​19231. (accessed 
7.29.20)

Reinhard M, Rebetez M, Schlaepfer R (2005) Recent climate change: rethink-
ing drought in the context of Forest Fire Research in Ticino, South of 
Switzerland. Theor Appl Climatol 82:17–25. https://​doi.​org/​10.​1007/​
s00704-​005-​0123-6

https://doi.org/10.1007/s10021-016-0010-2
https://doi.org/10.1016/j.scitotenv.2018.11.049
https://doi.org/10.1016/j.scitotenv.2018.11.049
https://doi.org/10.1080/00343404.2021.1871598
https://doi.org/10.1080/00343404.2021.1871598
https://doi.org/10.1016/j.scitotenv.2017.11.174
https://doi.org/10.1016/j.scitotenv.2017.11.174
https://doi.org/10.1080/17550874.2018.1473521
https://doi.org/10.1007/s10584-015-1332-3
https://doi.org/10.1007/s10584-015-1332-3
https://doi.org/10.1126/science.1136800
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/j.envres.2021.110922
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.3390/land9120536
https://doi.org/10.3390/land9120536
https://doi.org/10.1186/s13717-021-00320-6
https://doi.org/10.1186/s13717-021-00320-6
https://doi.org/10.1002/ecs2.2140
https://doi.org/10.1002/ecs2.2140
https://doi.org/10.1126/science.1244693
https://doi.org/10.1126/science.1244693
https://doi.org/10.5194/nhess-17-1697-2017
https://doi.org/10.5194/nhess-17-1697-2017
https://doi.org/10.1016/j.ecolmodel.2010.01.008
https://doi.org/10.1016/j.ecolmodel.2007.02.005
https://doi.org/10.1016/j.ecolmodel.2007.02.005
https://doi.org/10.1071/WF18203
https://doi.org/10.1111/j.1539-6924.2012.01844.x
https://doi.org/10.1371/journal.pone.0005102
https://doi.org/10.1007/s12064-010-0082-z
https://doi.org/10.1016/j.ecolind.2017.05.014
https://doi.org/10.1016/j.ecolind.2014.08.034
https://doi.org/10.1016/j.apgeog.2008.06.002
https://doi.org/10.1109/CVPR.2008.4587451
https://doi.org/10.3390/f9050234
https://doi.org/10.3390/f9050234
https://doi.org/10.1007/s10640-018-0279-z
https://doi.org/10.1007/s11069-014-1440-9
https://doi.org/10.1007/s11069-014-1440-9
https://doi.org/10.1071/WF12061
https://doi.org/10.1071/wf01032
https://doi.org/10.3390/rs11030308
https://doi.org/10.3390/rs11030308
https://doi.org/10.1007/s10980-005-0070-8
https://doi.org/10.1007/s10980-005-0070-8
https://doi.org/10.1016/j.foreco.2012.03.003
https://doi.org/10.1016/j.ijdrr.2019.101370
https://doi.org/10.3390/f11080859
https://doi.org/10.1016/j.scitotenv.2016.03.129
https://doi.org/10.1016/j.scitotenv.2016.03.129
https://www.reterurale.it
https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/19231
https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/19231
https://doi.org/10.1007/s00704-005-0123-6
https://doi.org/10.1007/s00704-005-0123-6


Page 17 of 17Elia et al. Ecological Processes           (2022) 11:15 	

Rey F, Schwörer C, Gobet E, Colombaroli D, van Leeuwen JF, Schleiss S, Tin-
ner W (2013) Climatic and human impacts on mountain vegetation at 
Lauenensee (Bernese Alps, Switzerland) during the last 14,000 years. The 
Holocene 23:1415–1427. https://​doi.​org/​10.​1177/​09596​83613​489585

Rodrigues M, Costafreda-Aumedes S, Comas C, Vega-García C (2019) Spatial 
stratification of wildfire drivers towards enhanced definition of large-fire 
regime zoning and fire seasons. Sci Total Environ 689:634–644. https://​
doi.​org/​10.​1016/j.​scito​tenv.​2019.​06.​467

Roos CI, Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Cochrane M, D’Antonio 
CM, DeFries R, Mack M, Johnston FH, Krawchuk MA, Kull CA, Moritz MA, 
Pyne S, Scott AC, Swetnam TW (2014) Pyrogeography, historical ecology, 
and the human dimensions of fire regimes. J Biogeogr 41:833–836. 
https://​doi.​org/​10.​1111/​jbi.​12285

Running S, Mu Q, Zhao M (2017) MOD16A2 MODIS/Terra Net Evapotranspira-
tion 8-Day L4 Global 500m SIN Grid V006

Salis M, Arca B, Del Giudice L, Palaiologou P, Alcasena-Urdiroz F, Ager A, Fiori 
M, Pellizzaro G, Scarpa C, Schirru M, Ventura A, Casula M, Duce P (2021) 
Application of simulation modeling for wildfire exposure and transmis-
sion assessment in Sardinia, Italy. Int J Disaster Risk Reduction 58:102189. 
https://​doi.​org/​10.​1016/j.​ijdrr.​2021.​102189

San-Miguel-Ayanz F et al (2020) Forest fires in Europe, Middle East and North 
Africa 2019 [WWW Document]. EU Science Hub—European Commission. 
https://​ec.​europa.​eu/​jrc/​en/​publi​cation/​forest-​fires-​europe-​middle-​east-​
and-​north-​africa-​2019. (accessed 4.21.21)

Schwörer C, Kaltenrieder P, Glur L, Berlinger M, Elbert J, Frei S, Gilli A, Hafner 
A, Anselmetti FS, Grosjean M, Tinner W (2014) Holocene climate, fire 
and vegetation dynamics at the treeline in the Northwestern Swiss 
Alps. Veget Hist Archaeobot 23:479–496. https://​doi.​org/​10.​1007/​
s00334-​013-​0411-5

Sebastián-López A, Salvador-Civil R, Gonzalo-Jiménez J, SanMiguel-Ayanz J 
(2008) Integration of socio-economic and environmental variables for 
modelling long-term fire danger in Southern Europe. Eur J Forest Res 
127:149–163. https://​doi.​org/​10.​1007/​s10342-​007-​0191-5

Spano G, D’Este M, Giannico V, Carrus G, Elia M, Lafortezza R, Panno A, Sanesi 
G (2020a) Are community gardening and horticultural interventions 
beneficial for psychosocial well-being? A meta-analysis. Int J Environ Res 
Public Health 17:3584. https://​doi.​org/​10.​3390/​ijerp​h1710​3584

Spano G, Giannico V, Elia M, Bosco A, Lafortezza R, Sanesi G (2020b) Human 
health-environment interaction science: an emerging research paradigm. 
Sci Total Environ 704:135358. https://​doi.​org/​10.​1016/j.​scito​tenv.​2019.​
135358

Stambaugh MC, Sparks JC, Abadir ER (2014) Historical pyrogeography of Texas, 
USA. Fire Ecol 10:72–89. https://​doi.​org/​10.​4996/​firee​cology.​10030​72

Stevens JT, Collins BM, Miller JD, North MP, Stephens SL (2017) Changing spa-
tial patterns of stand-replacing fire in California conifer forests. For Ecol 
Manage 406:28–36. https://​doi.​org/​10.​1016/j.​foreco.​2017.​08.​051

Syphard AD, Keeley JE, Syphard AD, Keeley JE (2020) Mapping fire regime 
ecoregions in California. Int J Wildland Fire 29:595–601. https://​doi.​org/​10.​
1071/​WF191​36

Taylor AH, Skinner CN (2003) Spatial patterns and controls on historical fire 
regimes and forest structure in the Klamath Mountains. Ecol Appl 13:704–
719. https://​doi.​org/​10.​1890/​1051-​0761(2003)​013[0704:​SPACOH]​2.0.​CO;2

Tinner W, Conedera M, Ammann B, Lotter AF (2005) Fire ecology north and 
south of the Alps since the last ice age. The Holocene 15:1214–1226. 
https://​doi.​org/​10.​1191/​09596​83605​hl892​rp

Vacchiano G, Foderi C, Berretti R, Marchi E, Motta R (2018) Modeling anthro-
pogenic and natural fire ignitions in an inner-alpine valley. Nat Hazard 
18:935–948. https://​doi.​org/​10.​5194/​nhess-​18-​935-​2018

Valese E, Conedera M, Held AC, Ascoli D (2014) Fire, humans and landscape in 
the European Alpine region during the Holocene. Anthropocene 6:63–74. 
https://​doi.​org/​10.​1016/j.​ancene.​2014.​06.​006

Vermote E (2015) MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 
500m SIN Grid V006

Wan Z, Hook S, Hulley G (2015) MOD11A2 MODIS/Terra Land Surface Tempera-
ture/Emissivity 8-Day L3 Global 1km SIN Grid V006

Williams RJ, Gill AM, Bradstock RA (2012) Flammable Australia: fire regimes, bio-
diversity and ecosystems in a changing world. CSIRO Publishing

Xu D, Tian Y (2015) A comprehensive survey of clustering algorithms. Ann Data 
Sci 2:165–193. https://​doi.​org/​10.​1007/​s40745-​015-​0040-1

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1177/0959683613489585
https://doi.org/10.1016/j.scitotenv.2019.06.467
https://doi.org/10.1016/j.scitotenv.2019.06.467
https://doi.org/10.1111/jbi.12285
https://doi.org/10.1016/j.ijdrr.2021.102189
https://ec.europa.eu/jrc/en/publication/forest-fires-europe-middle-east-and-north-africa-2019
https://ec.europa.eu/jrc/en/publication/forest-fires-europe-middle-east-and-north-africa-2019
https://doi.org/10.1007/s00334-013-0411-5
https://doi.org/10.1007/s00334-013-0411-5
https://doi.org/10.1007/s10342-007-0191-5
https://doi.org/10.3390/ijerph17103584
https://doi.org/10.1016/j.scitotenv.2019.135358
https://doi.org/10.1016/j.scitotenv.2019.135358
https://doi.org/10.4996/fireecology.1003072
https://doi.org/10.1016/j.foreco.2017.08.051
https://doi.org/10.1071/WF19136
https://doi.org/10.1071/WF19136
https://doi.org/10.1890/1051-0761(2003)013[0704:SPACOH]2.0.CO;2
https://doi.org/10.1191/0959683605hl892rp
https://doi.org/10.5194/nhess-18-935-2018
https://doi.org/10.1016/j.ancene.2014.06.006
https://doi.org/10.1007/s40745-015-0040-1

	Uncovering current pyroregions in Italy using wildfire metrics
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Data and methods
	Study area
	Historical wildfire data set and metrics
	Climatic and biophysical characteristics
	Socioeconomic characteristics
	Cluster and statistical analyses

	Results
	Current pyroregions in Italy
	Comparison among pyroregions
	Statistical analysis performance

	Discussion
	Limitations

	Conclusion
	Acknowledgements
	References


