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Received 27 May 2021 Although it is well known that tumor site- or bone marrow-infiltrating regulatory T cells (Tregs) might be corre-

Accepted 5 August 2021 lated with worse outcomes in solid tumors and acute leukemias by promoting immune surveillance escape, their
contribution to the immediate post-allogeneic transplantation phase by peripheral blood (PB) allografts remains

Key Words: unclear. Moreover, the Treg content in stem cells harvested from PB has been suggested to be correlated with

Tregs acute graft versus-host-disease (aGVHD) and immunologic recovery after allogeneic PB stem cell transplantation

aGVHD (allo-PBSCT). This study aimed to investigate the impact of the graft content of Tregs, as graft CD3"/Tregs ratio

(gCD3/TregsR), on acute GVHD and post-allo-PBSCT outcomes. We prospectively enrolled 94 consecutive patients
at 9 Italian centers of the Gruppo Italiano Trapianto di Midollo Osseo (GITMO) with acute myelogenous (n = 71;
75%) or lymphoblastic (n = 23; 25%) leukemia in complete remission who underwent matched related donor
(n =35; 37%) or unrelated donor (n = 59; 63%) allo-PBSCT. The median graft CD3" cell, Treg, and gCD3/TregsR val-
ues were 196 x 10%/kg body weight (range, 17 to 666 x 10%/kg), 3 x 10%/kg (range, 0.1 to 35 x 10°/kg), and 71
(range, 1 to 1883), respectively. The discriminatory power of the gCD3/TregsR value to predict grade >I aGVHD
was assessed by estimating the area under the receiver operating characteristic (ROC) curve (AUC). Any grade and
grade >II aGVHD occurred in 24 (26%) and 17 (18%) allo-PBSCT recipients, respectively. By ROC analysis, AUC
(0.74; 95% confidence interval [CI], 0.608 to 0.866; P = .002) identified 70 as the optimal gCD3/TregsR cutoff value
predicting the appearance of grade >II aGVHD with 76% sensitivity and 71% specificity. Patients were subdivided
into a high (ROC curve value >70) gCD3/TregsR group (HR; n = 48) and a low (ROC curve value <70) gCD3/TregsR
group (LR; n = 46). The incidence of grade II-IV aGVHD was lower in the LR group compared with the HR group
(9% [4 of 46] versus 27% [13 of 48]) in both univariate analysis (odds ratio [OR], 4.8; 95% CI, 1.44 to 16.17; P=.015)
and multivariate analysis (OR, 5.0; 95% CI, 1.34 to 18.93; P =.017), whereas no differences were documented tak-
ing into account aGVHD of any grade. The overall survival, disease-free survival, nonrelapse mortality, and relapse
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rates at 2 and 3 years were 61% and 54%, 62% and 55%, 15% and 23%, and 27% and 30%, respectively. Of note, gCD3/
TregsR did not significantly correlate with relapse (P =.135). Taken together, our data from this prospective multi-
center study confirm the value of Tregs in preventing aGVHD while maintaining the graft-versus-leukemia effect.
© 2021 American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc.

© 2021 The American Society for Transplantation and Cellular Therapy. Published by Elsevier Inc. All rights

reserved.

INTRODUCTION

Regulatory T cells (Tregs) are the major regulators of
immune responses in the periphery and maintain a state of
self-tolerance free from autoimmune diseases [1]. Because of
their inherent suppressive function [2-3], Tregs are being
explored for their therapeutic potential in preventing autoim-
munity [4] and improving survival of allografts [5]. In this
regard, as already reviewed in the human setting [6], alloge-
neic hematopoietic stem cell transplantation (allo-HSCT)
might serve as a model for studying how the allogeneic
peripheral blood (PB) graft content of Tregs potentially
impacts both immunologic reconstitution promoting tolerance
against nonself (ie, protection from graft-versus-host disease
[GVHD]) and, consequently, post-allo-HSCT survival outcomes.

In fact, given their impact on T cell immunity [7], Tregs are
able to modulate GVHD while preserving the graft-versus-leu-
kemia (GVL) effect in mouse models [8,9]. In particular, acute
GVHD (aGVHD) is triggered by alloreactive mature donor CD3
T cells [10,11] and antagonized by Tregs [12,13]. As a result,
different murine experimental models [14,15] have shown sig-
nificant inhibition of rapidly lethal GVHD after infusion of
grafts with an enriched Treg content. Moreover, T cell deple-
tion of the graft is associated with prolonged immunosuppres-
sion [16], major risk of graft failure [17], and a higher rate of
leukemia relapse [18]. Conversely, unmanipulated allografts,
although causing aGVHD, are often associated with the eradi-
cation of residual disease and, consequently, a low frequency
of relapse due to the GVL effect [18]. Despite this evidence,
however, the impact of graft Tregs, as in the ratio of CD3" cells
to Tregs (gCD3/TregsR), on aGVHD incidence and post-allo-
HSCT outcomes (ie, overall survival [OS], nonrelapse mortality
[NRM], disease-free survival [DFS], and relapse) remains
incompletely understood.

In this study, we expanded our previous single-center eval-
uation of the contribution of the gCD3/TregsR on both aGVHD
[19] and survival [20] with the aim of confirming our pub-
lished conclusions in a prospective multicenter study of
patients with acute leukemia in complete remission (CR)
undergoing allogeneic PB stem cell transplantation (PBSCT),
with a myeloablative conditioning regimen.

METHODS
Patients

From 9 Italian centers of the Gruppo Italiano Trapianto Midollo Osseo
(GITMO), we prospectively enrolled patients (age 18 to 65 years) with acute
myelogenous leukemia or acute lymphoblastic leukemia in CR who under-
went matched related donor or matched unrelated donor (MUD) PBSCT. We
calculated the Treg (CD4*/CD45RA~/CD127'°%/CD25M#") content in the PB
harvest together with the CD3, CD4, CD8, and NK populations. All patients
provided written informed consent for the collection of personal data in
accordance with the Declaration of Helsinki and Italian law. The study enroll-
ment period extended from May 2015 to December 2018, with 18 months of
follow-up from the last enrolled patient.

DNA-based HLA typing of donor and recipient was done using high-reso-
lution (4 digits) for HLA-A, -B, -C, -DRB1, and -DQBI1. All patients received a
myeloablative conditioning regimen according to the current guidelines [21],
with busulfan (Bu) + cyclophosphamide (Cy), Bu + fludarabine (Flu),
thiotepa + Bu + Flu, or total body irradiation + Cy. Antithymocyte globulin
(ATG) use and dosage and GVHD prophylaxis varied according to the local
center policy.

Graft Content Evaluation by Flow Cytometry

The numbers of total nucleated, CD3, CD4, CD8, natural killer (NK), Treg,
and CD34 cells in the donor grafts were assessed at each center (samples
were not centralized) before PBSCT.

CD3, CD4, CD8, and NK Cells

To determine the percentages and absolute counts of CD3 and CD4 T cell
subsets, 50 L of the whole PB stem cell harvest were stained with CD45
PerCP-Cy5.5, CD3 FITC, CD4 PE-Cy7, CD8 APC-Cy7, CD16 PE, and CD56 PE in a
calibrated number of fluorescent beads (Trucount; BD Biosciences, San Diego,
CA). The absolute number of positive cells (cells/uL) was calculated by com-
paring cellular events to bead events using BD FACSCanto clinical software
version 3 (BD Biosciences).

Tregs

There is no generally accepted method for defining CD4*CD25Me" Tregs
using flow cytometry, and FoxP3 is considered one of the most specific
markers of Tregs [22]. Nevertheless, Tregs consistently express lower levels
of IL-7R (CD127) than the majority of other CD4" T cells, and CD127 expres-
sion is inversely correlated with FoxP3 levels in Tregs [23-24]. Thus, CD127
might be a suitable alternative to FoxP3 in identifying Tregs. As a result, our
Treg study population has been defined as CD4*/CD45RA7/ CD25"eh|
CD127"°". Consequently, for Treg identification, 100 xL of the whole PBSC
harvest were incubated with a lyophilized pellet of CD45RA FITC, CD25 PE,
CD127 PerCP-Cy5.5, HLA-DR PE-CY7, CD39 APC, or CD4 APC-H7 monoclonal
antibody (BD Biosciences). Samples were processed according to the manu-
facturer’s guidelines, and data were acquired on a FACS Canto II flow cytome-
ter (BD Biosciences). The absolute number (cells/uL) of positive cells was
calculated as described above.

CD34

Absolute counts of viable total nucleated cells and CD34 cells were per-
formed using FlowCount bead solution on a Cytomics FC500 flow cytometer
(Beckman Coulter, Brea, CA) according to the International Society of Hema-
totherapy and Graft Engineering protocol.

aGVHD and gCD3/TregsR

aGVHD was graded using standard criteria [25]. Receiver operating char-
acteristic (ROC) curve analysis was performed to define the gCD3/TregsR
value associated with the appearance of aGVHD >II. The cohort was also
divided into two groups based on gCD3/TregsR value: low gCD3/TregR (LR)
and high gCD3/TregsR (HR) group. All patients with aGVHD grade II or greater
were treated with methylprednisolone at an initial dose of 1 to 2 mg/kg body
weight and then at adjusted doses according to the clinical response.

Statistical Methods

Patient characteristics were compared using the chi-square or Fisher
exact test (as appropriate) in the case of discrete variables and the t-test or
Mann-Whitney test in the case of continuous variables. OS was defined as
the time from transplant to death from any cause, and surviving patients
were censored at last follow-up. DFS from transplantation was calculated
using death and disease progression and/or relapse as events. NRM was
defined as death from any cause other than disease progression or relapse.
The discriminatory power of the gCD3/TregsR value to predict grade >II
aGVHD was assessed by estimating the area under the ROC curve (AUC) using
the trapezoidal method. The optimal cutoff was determined by maximizing
both sensitivity and specificity, computed at the optimal cutoff, as reported
along with 95% confidence interval (CI).

Cumulative incidence curves were used in a competing-risk setting, with
relapse, death due to causes independent of disease, and death due to causes
independent of disease and/or aGVHD each treated as a competing event to
calculate the probability of NRM, relapse, and aGVHD, respectively. The
groups were compared using Gray’s k-sample test. OS was estimated by the
Kaplan-Meier method. The differences in OS and DFS between groups were
calculated using the log-rank test. Multivariate analyses of variables with an
impact on aGVHD and on OS, DFS, and NRM were carried out with binary
logistic and Cox regression models, respectively. The critical level of signifi-
cance was set at .05.
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RESULTS
Pretransplantation Patient Characteristics

Patient characteristics are summarized in Table 1. All
patients received a PBSC graft from an HLA-identical sibling
donor (n = 35; 37%) or an unrelated HLA-identical donor
(n = 59; 63%). DNA-based HLA typing of donor and recipient
was done using high- resolution (4 digits) for HLA-A, -B, -C,
-DRB1, and -DQB1; in unrelated transplantations (n = 59; 63%),
an antigenic (9 out of 10) mismatch was documented in 8
(16%) donor-patient pairs and an allelic mismatch was docu-
mented in 4 (7%) donor-patient pairs. Sixty-five percent of the
patients underwent transplantation in first CR (CR1), and 35%
did so in second or greater CR (CR>2). Myeloablative condi-
tioning was BuCy-based in 15 patients (16%), BuFlu-based in
31 (33%), thiotepa + BuFlu-based in 31 (33%), and total body
irradiation-based in 10 (10%). The donor/recipient

Table 1
Patient Characteristics
Numbers (n) of patients

Number of patients 94
Age, yr, median (range) 49 (18-68)
Sex, male/female, n (%) 41 (44)/53 (56)
Karnofsky Performance Status <80, n (%) 11(12)
Time from diagnosis to allo-PBSCT, d, 226 (86-8134)
median (range)
Disease status at allo-PBSCT, n (%)
CR1 61 (65)
CR2 21(22)
CR>2 12(13)
Disease, n (%)
AML 71(75)
ALL 23(25)
Myeloablative conditioning regimen, n (%)
BuCy 15(16)
BuFlu 31(33)
TBF 31(33)
TBI-based 10(10)
Other 7(8)
CMV risk, n (%)
Low 27 (29)
High 54 (57)
Very high 13(14)
Sex match, n (%)
Female donor/male recipient 11(12)
Other combinations 83 (88)
Donor type, n (%)
MRD 35(37)
MUD 59 (63)
GVHD prophylaxis strategy, n (%)
ATG-based 75 (80)
Not ATG-based 19(20)
Associated immunosuppressive agents, n (%)
Cy alone 0(0)
Cy + methotrexate 89 (95)
Cy + mycophenolate mofetil 5(5)
HLA disparity: antigenic mismatch, n (%)
10/10 85 (90)
Not 10/10 9(10)
gCD3/TregsR, median (range) 71(1-1883)

AML indicates acute myelogenous leukemia; ALL, acute lymphoblastic leuke-
mia; TBI, total body irradiation; TBF, thiotepa + busulfan + fludarabine; MRD,
matched related donor.

cytomegalovirus (CMV) serostatus was high-risk in 54 (57%)
pairs, and donor/recipient sex match was female/male in 11
(12%) pairs. The median graft CD3*, Treg, and CD3/TregsR val-
ues were 196 x 10%/kg of body weight (range, 17 to 666 x 106/
kg), 3 x 10%/kg (range, 0.1 to 35 x 105/kg), and 71 (range, 1 to
1883), respectively. The GVHD prophylaxis strategy was
mostly ATG-based (80%), and Cy + methotrexate was used in
95% of the study population.

ROC Analysis

By ROC analysis, the AUC (0.74; 95% CI, 0.608 to 0.866;
P =.002) identified 70 as the optimal gCD3/TregsR cutoff value
predicting the appearance of grade >II-IV aGVHD, with 76%
sensitivity and 71% specificity. The same value has been con-
firmed in the whole study population (n = 94) and after
excluding patients who did not receive ATG (n = 75).

No optimal cutoff value predicting the appearance of
aGVHD grade II-IV was obtained for absolute counts of either
CD3 cells (AUC, 0.61; 95% CI, 0.480 to 0.741; P = .154) or Tregs
(AUC, 0.32; 95% CI, 0.191 to 0.453; P = .07). No cases of grade
[I-IV aGVHD were reported for gCD3/TregsR <30.

LR Group versus HR Group

As specified above, patients were subdivided according to
the gCD3/TregsR associated with the appearance of grade >II
aGVHD. Therefore, the cohort was subdivided into 2 groups:
LR (gCD3/TregsR <70; n = 46 patients, 49%) and HR (gCD3/
TregsR >70; n = 48 patients, 51%).

The differences in terms of age (P = not significant [ns]),
time from diagnosis to transplantation (P = ns), HLA disparity
(P = ns), sex mismatch (P = ns), donor type (P = ns), ATG use
(P =ns), CMV risk (P = ns), disease status at allo-PBSCT (P = ns),
type of myeloablative regimen (P = ns), type of donor
(P = .022), and incidence of grade >II aGVHD (P = .015)
between the HR and LR groups are summarized in Table 2.

Cumulative Incidence of aGVHD at 100 Days

The overall grading and the target organ staging of the
aGVHD case series are reported in Table 3. The cumulative
incidence of any grade aGVHD (24 events) and grade >II
aGVHD (17 events) was 26% and 18%, respectively (Figure 1A).

The cumulative incidence of aGVHD of any grade was 25%
for the LR group and 26% for the HR group (P = ns) (Figure 1B).
When considering grade >II aGVHD events, a statistically sig-
nificant difference was found between the LR and HR groups
(9% versus 25%; P = .028) (Figure 1C). This statistically signifi-
cant difference between the LR and HR groups remains unaf-
fected when eliminating the patients not receiving ATG (6%
versus 26%; P=.014) (Supplementary Figure S1).

The cumulative incidence of grade III-IV aGVHD (8 events)
was 8% for the entire cohort. No difference in cumulative inci-
dence was documented between the LR and HR groups (9%
versus 8%; P = ns) (Supplementary Figure S2A), whereas a sta-
tistically significant difference was seen between the HLA-
matched and HLA-mismatched pairs (5% versus 31%; P = .001)
(Supplementary Figure S2B).

Univariate and Multivariate Analyses of Factors Affecting
aGVHD

HLA mismatch (antigenic and/or allelic) and HR group were
correlated with the incidence of grade >II aGVHD in both uni-
variate analysis (HLA mismatch: odds ratio [OR], 5.5; 95% ClI,
1.54 to 19.27; P = .012; HR group: OR, 4.8; 95% CI, 1.44 to
16.17; P =.015) and multivariate analysis (HLA mismatch: OR,
7.4; 95% CI, 1.8% to 30.12%; P = .005; HR group: OR, 5; 95% (I,
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Table 2
Characteristics of the LR and HR Groups
Characteristic LR (gCD3/TregsR <70) (N = 46) HR (gCD3/TregsR >70) (N = 48) P
aGVHD (grade >II), n (%) 4(9) 13(27) .015*
gCD3/TregsR, median, range 33(1-70) 140 (71-1883) <.002'
Age, yr, median, range 50 (22-68) 47 (18-65) 38!
Time from diagnosis to allo-PBSCT, d, median (range) 199 (86-8134) 249 (128-4483) 121
Female donor/male recipient, n (%) 6(13) 5(10) 94"
MUD, n (%) 23 (50) 36 (75) .022*
HLA disparity, n (%)
Antigenic, not 10/10 4(9) 5(10) 99!
Allelic mismatch 3(6) 1(2) 36!
Antigenic and/or allelic mismatch 7(15) 6(12) .93*
CR1 at allo-PBSCT, n (%) 32(69) 29 (60) AT*
CMV risk, n (%) 93"
Low 14(31) 13(27)
High 26 (56) 28(58)
Very high 6(13) 7(15)
ATG-based GVHD prophylaxis, n (%) 39(85) 36(75) 36"
Associated immunosuppressive agents: Cy + methotrexate, n (%) 44 (96) 45 (94) .99
Myeloablative conditioning regimen, n (%) 23"
BuCy 6(13) 9(19)
BuFlu 18(39) 13(27)
TBF 17 (37) 14 (30)
TBI-based 4(9) 6(12)
Other 1(2) 6(12)

* Chi-square test.
f Mann-Whitney U test.
* Fisher's exact test.

Table 3
Overall Grading and Target Organ Staging of aGVHD Case Series-Study

1.34 to 18.93; P = .017). No correlation was reported for the
other factors: CR1, low CMV risk, female donor/male recipient,

Case aGVHD Grade Stage ATG use, type of donor, and recipient age (data summarized in
Skin Gastrointestinal Liver Table 4).

1 I 1 0 0 HLA mismatch (antigenic and/or allelic) was the sole vari-

5 I 1 0 0 able correlated with grade IlI-IV aGVHD. HLA mismatch was

3 I 2 o 0 reported in 4 of 8 (50%) grade III-IV aGVHD events versus 9 of

4 . p 0 0 86 (10%) no grade IlI-IV aGVHD events (OR, 8.56; 95% CI, 1.82
to 40.24; P=.012).

5 I 2 0 0

S i 1 g g Chronic .GVHD ( cGVHD) o

. I 3 o o . Grading of chrpmc GVHD (cGVHD) was mlld in 1, moderate
in 10, and severe in 6 of the 17 reported episodes. The cumula-

9 It 3 0 0 tive incidence of cGVHD was 39% for the whole cohort, 34% for

10 i 3 0 0 the LR group, and 33% for the HR group (P = not significant)

11 I 3 0 0 (Supplementary Figure S3).

12 1l 3 0 0

13 I 2 1, upper tract 0 Clinical Outcomes

14 1 3 0 0 Response to Steroid Therapy

15 I 2 1, upper tract 0 According to local policy, all 17 patients with grade >II-IV

16 1l 3 0 0 aGVHD were treated with >1 mg of methylprednisolone (9

17 11 1 3, lower tract 0 with 1 mg/kg and 8 with 2 mg/kg). gCD3/TregsR did not corre-

18 1 2 1, upper tract 3 late with response rate; response was documented for 4 of 13

19 111 2 2, upper tract 0 treated patients in the HR group and in 1 of 4 treated patients

20 111 2 0 2 in the LR group (31% versus 25%; P = ns). In addition, no corre-

21 1l 0 3, lower tract 0 lation with cGVHD was demonstrated.

22 11 3 2, lower tract 0

23 \% 4 0 0 OS, DFS, NRM, and Relapse According to gCD3/TregsR Group

24 v 2 0 4 Overall OS was 61% at 2 years and 54% at 3 years

(Figure 2A). OS was not significantly different between the HR
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Figure 1. Cumulative incidence (CI) of aGVHD in the whole study group (A) and in the high gCD3/Tregs ratio (HR) and low gCD3/Tregs ratio (LR) groups for any grade

aGVHD (B) and grade II-IV aGVHD (C).

Table 4
Variables with Impact on Grade II-IV aGVHD
Variable With Grade II-IV Without Grade II-IV Univariate Analysis® Multivariate Analysis'
aGVHD(N=17) | aGVHD(N=77) Unadjusted OR | 95%Cl P Adjusted OR | 95%Cl P
Female donor/male recipient 0(0) 11(14) 0 0-0 20
ATG use 12(71) 63(82) 0.5 0.16-1.76 32
gCD3/TregsR >70 13(76) 35 (45) 48 144-1617 | 015 | 5.0 1.34-1893 | .017
Recipient age >50 yr 12(71) 52 (67) 1.1 0.37-3.63 97
Low CMV risk 8(47) 19(25) 2.7 0.92-8.02 08
CR1 11 (65) 50(65) 1 0.33-2.97 79
HLA mismatch 6 (35) 7(9) 5.5 1.54-19.27 012 74 1.80-30.12 .005
MUD 11(65) 48 (62) 12 0.37-3.31 92
AML 12(71) 59(77) 0.7 0.23-2.36 .76

Significant values are in bold type.
* Chi-square or Fisher exact test as appropriate.
' Binary logistic regression.
# Antigenic and/or allelic.

and LR groups (P = .35) (Figure 2B). DFS was 62% at 2 years and
55% at 3 years (Figure 2C) and was not significantly different
between the HR and LR groups (P =.17) (Figure 2D). The cumu-
lative incidence of NRM was 15% at 2 years and 23% at 3 years
(Figure 3A) and was not significantly different between the HR
and LR groups (P = .77) (Figure 3B). The cumulative incidence
of relapse was 27% at 2 years and 30% at 3 years (Figure 3C)
and was not significantly different between the 2 groups
(P=.135) (Figure 3D).

0S, DFS, and NRM Risk Factors

The results of univariate and multivariate analyses of risk fac-
tors (ATG use, disease status at transplantation, type of donor, HLA
mismatch, recipient age, sex match, CMV risk, disease, gCD3/
TregsR) associated with OS, DFS, and NRM are presented in Table 5.
Recipient age was confirmed as a factor impacting OS (HR, 0.27;
95% (I, 0.12 to 0.67; P =.004), DFS (HR, 0.50; 95% CI, 0.24 to 0.99;
P=.05),and NRM (HR, 0.17; 95% CI, 0.04 to 0.65; P = .01).

DISCUSSION
It is widely accepted that Tregs in murine models of allo-
HSCT may promote immune reconstitution [7] and prevent

GVHD, while maintaining a graft-versus-tumor (GVT) response
[8,9]. In particular, early recognition of disparate host antigens
by donor T cells is critical for GVHD pathogenesis [26]. Conse-
quently, it is crucial to study Tregs when they act proximal to
the transplantation, as we did in allogeneic grafts at time of
infusion. Moreover, Tregs actively traffic to the inflammation
site and suppress activation, an action that is mainly cell-to-
cell dependent [27]. Therefore, Tregs actively search for
inflamed tissue and suppress only when inflammation occurs,
and their activity is limited to the inflammation site. As a
result, in the context of myeloablative conditioning, which is
characterized by the most inflamed postconditioning phase,
Tregs are expected to be useful against inflammation and con-
sequently protective against aGVHD [28,29]. In our study
cohort, homogenously composed of patients undergoing mye-
loablative conditioning and receiving PBSC grafts, the cumula-
tive incidence of aGVHD grade >II was statistically correlated
with HLA mismatch (Table 4) and HR group (Figure 1C,
Table 4).

Moreover, it has been demonstrated that decreases in both
PB Tregs [30-33] and Tregs infiltrating the sites of GVHD (eg,
skin, intestinal mucosa) [33,34] were correlated with the onset
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Table 5

Univariate and Multivariate Analyses of Risk Factors for OS, DFS, and NRM
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and severity of aGVHD. Consequently, in our study cohort, the
contribution of Tregs to protection from graft-related inflam-
mation was not observed when considering aGVHD of all
grades (Figure 1B), despite confirmation in grade >II cases
(Figure 1C).

One-half of all grade III-IV aGVHD cases are HLA-mismatched,
thus justifying the lack of association with gCD3/TregsR (Supplemen-
tary Figure S2A). In fact, although Tregs are crucial for recognition of
host antigens as self, imposing anergy in fully HLA-matched donor-
recipient pairs [35,36], and might be theoretically advantageous
when some mismatches are present [37], the power of HLA mis-
match in determining aGVHD remains to be proven (Table 4, Supple-
mentary Figure S2B). Moreover, the lack of association between HLA
disparity and grade >II aGVHD was demonstrated in the haploidenti-
cal setting [38], whereas HLA mismatch remains a risk factor for
aGVHD in the myeloablative conditioning setting [39]. In addition, as
expected, male recipients with female donors had no increased risk
of aGVHD. In fact, this correlation has not been observed in the mye-
loablative conditioning setting, although it appears to be present in
reduced-intensity conditioning allo-HSCT [40].

How the addition of in vivo T cell depletion (ie, ATG use) has
led to a reduced incidence of cGVHD has been clearly established,
particularly in patients receiving PBSCs as the stem cell source in
both sibling donor [41] and MUD [42] grafts. Consequently, no
impact on aGVHD due to ATG use was expected in our study
cohort (Table 4). Of note, although there is in vitro evidence that
the addition of ATG also induces the generation of Tregs [43], the
correlation between Tregs and the incidence of aGVHD remained
unaffected when excluding patients not receiving ATG (Supple-
mentary Figure S1), thus confirming how graft Tregs might finally
attenuate the risk of aGVHD, irrespective of ATG-based lymphode-
pletion or Treg promotion.

Tregs might be expected to increase the risk of disease
recurrence by decreasing the GVT effect. Conversely, they pre-
serve it while inhibiting GVHD, as demonstrated in murine
models [8,9]. Of interest, in our human setting, Tregs did not
seem to favor relapse (Figure 3D), thus confirming what has
been observed and reviewed previously [6].

Given that aGVHD remains the leading cause of mortality in
allo-HSCT [39], the correlation between gCD3/TregsR and
aGVHD and the lack of correlation between Tregs and NRM
demonstrated in our study (Figure 3B, Table 5) might appear
contradictory. However, lower gastrointestinal tract aGVHD is
the major driver of NRM [44], and in our cohort, lower gastro-
intestinal grade >II aGVHD occurred in only 3 of 17 cases
(18%) (Table 3). Moreover, our study population was free of
many factors known to impact NRM; all the enrolled patients
were in CR and most had a good Karnofsky Performance Status
(88%), and it is known that the type of donor (MUD; 59% of our
study cohort) does not clearly impact NRM in myeloablative
conditioning [45]. Furthermore, it has been reported that CMV
risk preferentially correlates with survival outcome in T cell-
depleted allo-HSCT [46]. Accordingly, patient age was the sole
factor impacting OS, DFS, and NRM (Table 5).

Our study has several limitations of note. First were the
heterogeneity of myeloablative conditioning and lack of longi-
tudinal follow-up of Tregs, which could have supplied original
data on their PB pharmacokinetics. In particular, the lack of
association between the LR group and cGVHD (Supplementary
Figure S3) might reflect these limitations, although the sup-
posed protection from cGVHD by Tregs has been called into
question by some reports [47,48]. Furthermore, T cell deple-
tion with ATG has an inevitable impact on gCD3/TregsR that is
difficult to decipher. Finally, the Treg phenotyping was neither
centralized nor FoxP3-based.
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Despite these complicating factors, the LR group seems to be
protective against grade >II aGVHD without any impact on relapse
and NRM. In the post-transplantation phase, these simultaneous
effects might be further enhanced with additional drugs, such as
rapamycin [49] and/or azacitidine [50,51], which are believed to
induce Tregs, especially in those patients for whom a very low
gCD3/TregsR might theoretically exclude severe aGVHD episodes.
Moreover, in future clinical trials, it remains to be determined at
what time after transplantation these agents might be used with-
out penalizing the immune reconstitution that, conversely, Tregs
are known to promote.
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