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Abstract

For a subalgebra of a generic CCR algebra, we consider the relative entropy between a general (not
necessarily pure) quasifree state and a coherent excitation thereof. We give a unified formula for this
entropy in terms of single-particle modular data. Further, we investigate changes of the relative entropy
along subalgebras arising from an increasing family of symplectic subspaces; here convexity of the entropy
(as usually considered for the Quantum Null Energy Condition) is replaced with lower estimates for the
second derivative, composed of “bulk terms” and “boundary terms”. Our main assumption is that the
subspaces are in differential modular position, a regularity condition that generalizes the usual notion of
half-sided modular inclusions. We illustrate our results in relevant examples, including thermal states
for the conformal U(1)-current.

1 Introduction

Entropy and related correlation measures are of fundamental importance in quantum physics; not only in
information theory, but also in thermodynamics and quantum field theory.

Mathematically, the most appropriate generalization of the classical notion of (relative) entropy to quan-
tum systems, or noncommutative probability spaces, is formulated in terms of normal states on von Neumann
algebras [Ara76] (see also [OP04, BFS16]). However, while the formalism is quite easy to handle for type I
factors, where normal states are described by positive trace-class operators and the entropy can be com-
puted by means of traces, applications to the type III1 factors occurring generically in quantum field theory
[BDF87] require working with (relative) Tomita-Takesaki modular objects, which are difficult to decribe
explicitly in examples.

Recent work in quantum field theory [LX18, Lon20] has focussed on entropy measures for algebras
associated with certain subregions of spacetime, and the dependence of the entropy of a given state depending
on the spacetime region. Specifically, one considers the relative entropy between a ground state and a coherent
excitation in the setting of linear fields [CGP19, CLR19] or related situations in chiral conformal quantum
field theories [Hol20, Pan20, Pan21]; in some geometric situations, specific information about the (relative)
modular operator is available here and allows for explicit results.

Let us illustrate the situation in an example, following [CLR19]. Consider a massive free field in 3+1-
dimensional Minkowski space, given in terms of the well-known symplectic space (K, σ) and real subspaces
L(O) ⊂ K associated with space-time regions O, and the corresponding Weyl (CCR) algebras A(O). Further
let ω be the vacuum state on these algebras, and consider a coherent state ωg = ω(W (g)∗ ·W (g)), where
g ∈ K and W (g) is the corresponding Weyl operator. Consider the standard left wedge W = {x : x1 <
0, |x0| < |x1|} ⊂ R4 , and for t ∈ R the shifted region1 Wt = W + (t, t, 0, 0). Then the relative entropy
between ωg and ω with respect to the algebra A(Wt) can be computed as [CLR19]

SA(Wt)(ωg‖ω) = 2π

∫

x1<t

dx (t− x1) T 00
g (t,x), (1.1)
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where T µνg is the single-particle stress-energy tensor of the wave function g. Consequently, with v = (1, 1, 0, 0),

d

dt
SA(Wt)(ωg‖ω) = 2π

∫

x1<t

dx vµT
0µ
g (t,x) ≥ 0, (1.2)

d2

dt2
SA(Wt)(ωg‖ω) = 2π

∫

x1=t

dx vµvνT
µν
g (t,x) ≥ 0. (1.3)

The second derivative is nonnegative, and hence the relative entropy is a convex function of t; this can be
regarded [CF18] as a variant of the Quantum Null Energy Condition (QNEC). More generally, the QNEC is
understood as a relation between certain expectation value of the energy density and the second derivative
of the relative entropy [BFK+16], which is also suggested by Eq. (1.3). In this paper, we will only investigate
derivatives of the entropy along a family of regions or subspaces, but will not comment on the relation with
the energy density.

Apart from convexity, one may observe that the first derivative (1.2) is given by a “bulk term” (an integral
over a Cauchy surface for the wedge region) while the second derivative (1.3) is given by a “boundary term”
(an integral over the edge of the wedge at x1 = x0 = t).

This motivates the question which of these observations are a coincidence of the specific system chosen,
and which of them generalize to a wider context.

In this paper, we ask such questions in a generic setting. We remain within the context of CCR algebras,
i.e., the algebras in question are still generated by the “second quantization functor” from a symplectic space
K and certain real subspaces L ⊂ K; and our states will be of the quasifree type. However, we abstract from
the specifics of the above example.

As a first point, we investigate the connection between the symplectic (single-particle) structure and the
relative entropy on the CCR algebras. Essentially, the methods of [CLR19] apply whenever the symplectic
subspace L ⊂ K above is standard and factorial, and the state ω is quasifree and pure. (These notions will be
recalled in Sec. 2.) However, in applications in physics, also non-pure quasifree states are of importance, for
example thermal states [RST70, BR81] or Hadamard states in quantum field theory on curved spacetimes
[KW91, Rad96]. Moreover, while factorial subspaces are usual in quantum field theory, they are certainly
not the most general case (cf. [Ver97]).

We aim to prove a unified formula for the relative entropy between a quasifree state ω and an associated
“coherent excitation” ωg in the general case. Our approach is as follows. We start with a generic symplectic
space and consider the CCR algebra over it, equipped with a quasifree state. The state is not assumed to be
pure; rather, using the well-known purification construction [Wor72, KW91], we extend it to a pure state on
a larger algebra. Now given a closed subspace L, we decompose the extended space (and the corresponding
CCR algebra) into factorial, abelian and nonseparating parts, and compute the relative entropy for these.
We give a unified formula for the relative entropy between coherent states with respect to A(L), where L is
a generic subspace, in terms of the modular data associated with L.

Second, we consider a family of subspaces {Lt}, depending on a real parameter t, in particular when Lt
increases with t; we ask how the relative entropy St(g) = SA(Lt)(ωg‖ω) for given g ∈ K changes with t.

To this end, the following technical insight is important. With each subspace Ls one obtains, as in
[CLR19], a projector Qs which projects onto the “Ls-entropy relevant part” of K (in the factorial case,
onto Ls itself) and annihilates the symplectic complement L′

s. However, this projector is unbounded in the
usual topology of the symplectic space K; even more, its domain will usually depend on the parameter s,
which makes it particularly challenging to analyze a change in the parameter. However, let us equip the
space with an (indefinite) scalar product arising from the semipositive quadratic form St(g), where t 6= s in
general. With respect to this Hilbert space structure, it turns out in relevant cases that the projector Qs
is orthogonal, in particular bounded. We say in this case that the spaces Ls, Lt are in differential modular
position, a condition that underlies our analysis, and resembles the concept of geometric modular action (see
[Bor00]).

This structure then allows for the desired analysis of bulk vs. boundary terms: For fixed g ∈ K, let us
consider the function Tg(s, t) = St(Qsg), which equals the entropy on the diagonal t = s. A change in s
near the diagonal then corresponds to an abstract “boundary change” while a change in t corresponds to
a “bulk change”. Analyzing the monotonicity properties of Tg, we establish estimates between the partial
derivatives of Tg (at s = t− 0) and the desired derivatives of the entropy.

We note that convexity of St cannot be expected in such a general setting; it is already not preserved under
a smooth reparametrization of the family of spaces, which our definition admits. However, we establish lower
estimates on the second derivative (in the sense of distributions) that replace convexity. Also, the observation
from above that the first derivative contains only bulk terms, while the second derivative contains only
boundary terms, does not hold up in general, and is replaced by a more nuanced picture.
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We verify the regularity condition of “differential modular position” in a number of examples, mainly but
not exclusively from quantum field theory. In particular, it turns out that in half-sided modular inclusions of
symplectic subspaces (cf. [Bor00, Lon07]), our condition is always fulfilled. Also, we treat relative entropies
for halfline algebras in the conformal U(1)-current in thermal states, which to our knowledge have not
appeared in the literature.

The paper is organized as follows: Sec. 2 defines our setting, recalls the purification and decomposition
construction for symplectic spaces, and establishes the unified formula for relative entropies in terms of
single-particle objects. In Sec. 3, we investigate the relative positions of several subspaces, in particular
one-parameter families of inclusions; we formulate our main condition (differential modular position) and
derive estimates for the second derivative of the relative entropy. Then we show that all half-sided modular
inclusions fit into our framework (Sec. 4). In Sec. 5 we give examples from quantum mechanics, quantum
field theory and classical probability theory in which our framework is applicable, illustrating various cases
that can occur with respect to the derivative estimates we established. We end with a conclusion and outlook
in Sec. 6. The appendix recalls definition and fundamental properties of the relative entropy on C∗- and von
Neumann algebras.

2 Entropies in nonpure states

We first introduce our setting of symplectic spaces, purification and the decomposition of subspaces in
Sec. 2.1. Then (Sec. 2.2) we pass to the associated CCR algebras and their decomposition, and express the
relative entropy between coherent states in terms of the single-particle modular data. Sec. 2.3 establishes
some approximation properties needed in later sections.

2.1 Single-particle structure

The basic object we work with is as follows:

Definition 2.1. Let K be a vector space over R and τ, σ two bilinear forms on K. The triple (K, τ, σ) is
called a symplectic Hilbert space if (K, τ) is a separable Hilbert space, (K, σ) is a symplectic space, and if

∀f, g ∈ K : σ(f, g)2 ≤ τ(f, f)τ(g, g). (2.1)

Here σ is allowed to be degenerate as a symplectic form; we can (and will) assume without loss of
generality that the dimension of its kernel is either even or infinite. (Otherwise consider the direct sum of K
with a one-dimensional space, on which σ is set to vanish.) Note that K is assumed a priori to be complete
with respect to τ -convergence; in applications one often starts with a pre-Hilbert space in the first step, and
then takes its completion, but note that e.g. a non-degenerate form σ on the non-completed space might be
degenerate on the completion (cf. [Ver97]).

If K is a Hilbert space over C with complex scalar product 〈 · , · 〉, then a standard example for Defini-
tion 2.1 is τ(f, g) = Re〈f, g〉 and σ(f, g) = Im〈f, g〉. In fact, this is exactly the case when the quasifree state
induced by τ on the CCR algebra over (K, σ) (see Sec. 2.2 below) is a pure state [MV68]; hence we will call
(K, τ, σ) pure in this case. In general, it is always possible to embed (K, τ, σ) into a pure symplectic Hilbert
space (K⊕, τ⊕, σ⊕), i.e., such that τ⊕, σ⊕ are extensions of τ , σ. This construction is known as purification,
and we will present it here in the form of [Pet90, Ch. 4]; see also [KW91, Appendix A].

Due to (2.1), we can write σ = τ( · , D · ) with an operator D, where ‖D‖ ≤ 1. Using the polar decompo-
sition of D on the orthogonal complement of kerD, and a suitable choice2 on kerD, we obtain two bounded
operators C, |D| such that

C|D| = D = |D|C, |D| ≥ 0, C2 = −1, D† = −D, C† = −C. (2.2)

(We denote the adjoint with respect to τ by †, whereas we will denote adjoints on complex Hilbert spaces
by ∗ later on.)

We now define the space K⊕ := K ⊕ K, which is a vector space over C with respect to the complex
structure given by the operator

ı⊕ =

(
−D C

√
1 +D2

C
√
1 +D2 D

)

. (2.3)

2At this point, our assumption enters that the dimension of kerD is either even or infinite.
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In fact, defining the bilinear forms (f, g ∈ K⊕)

τ⊕ := τ ⊕ τ, (2.4)

σ⊕(f, g) := τ⊕(f,−ı⊕g), (2.5)

〈f, g〉⊕ := τ⊕(f, g) + iσ⊕(f, g), (2.6)

K becomes a complex Hilbert space with the scalar product 〈 · , · 〉⊕, and a nondegenerate symplectic space
with symplectic form σ⊕. Identifying K with K ⊕ 0, the restrictions of τ⊕ and σ⊕ to K × K are τ and σ
respectively, as the notation suggests.

Now let L ⊂ K be a closed subspace. (Note that closure in K-norm is crucial for the following.) We
decompose L in a standard way (cf. [Hal69]) as follows: We set

L⊕
0 := (L+ ı⊕L)⊥, (2.7)

L⊕
∞ := L ∩ ı⊕L ≡ L∞, (2.8)

La := L ∩ L′, (2.9)

L⊕
a := La + ı⊕La, (2.10)

L⊕
f
:= (L⊕

0 ⊕ L⊕
a ⊕ L⊕

∞)⊥, (2.11)

Lf := L⊕
f
∩ L, (2.12)

where L′ denotes the symplectic complement of L. The spaces Lf , La, and L∞ are called the factorial,
abelian and nonseparating parts of L, respectively, for reasons that will become clear below. We then have:

Lemma 2.2. K⊕ is isomorphic to the orthogonal direct sum

K⊕ ∼= L⊕
0 ⊕ L⊕

a
⊕ L⊕

f
⊕ L⊕

∞ (2.13)

and under this isomorphism
L ∼= 0⊕ La ⊕ Lf ⊕ L∞. (2.14)

Proof. One shows by direct computation that La is complex-orthogonal to L∞; also, La is real-orthogonal
to ı⊕La, hence L⊕

a
is closed. The other parts follow directly from the definitions (2.7)–(2.12).

All three components of L may be present in general: in quantum field theory, one usually considers
purely factorial subspaces, i.e., L = Lf (see Examples 5.3 and 5.11); but in other situations, L may be purely
abelian (L = La, Example 5.12), or one may have L = L∞ (part of Example 5.1), and of course direct sums
of these can be formed. We note some special cases:

Remark 2.3. If (K, τ, σ) is a pure symplectic Hilbert space, then D = −i, hence ı⊕ acts by the diagonal
matrix

(
i 0
0 −i

)
. In the decomposition of Lemma 2.2, this leads to 0 ⊕ K ⊂ L⊕

0 , and all other spaces Lf , La,
L∞ etc. being contained in K ⊕ 0. In this sense, if (K, τ, σ) is already pure, we can ignore the purification
construction.

Remark 2.4. If specifically K = L in Remark 2.3, then L∞ = K ⊕ 0, Lf = La = {0}, L⊕
0 = 0⊕K.

Remark 2.5. For a symplectic Hilbert space (K, τ, 0) (i.e., for σ = 0), even- or infinite-dimensional, we
obtain i⊕ = ( 0 C

C 0 ). The map (f, g) 7→ f − iCg then identifies K⊕ with the usual complexification of K. For
L ⊂ K, we have L = La, Lf = L∞ = {0}, L⊕

0 = L⊥+ iL⊥ where ⊥ denotes the orthogonal complement in K.

In the following, we shall denote the complex-linear orthogonal projectors onto L⊕
f

etc. as P⊕
f

etc. We
also denote by Pa the real-orthogonal projector onto La, and by Pf the real-linear projector with image Lf

and kernel L′
f
. Note that Pf is not bounded (or orthogonal) in general, but closed on its domain Lf + L′

f

[CLR19].
We also consider the subspaces Ls := La ⊕ Lf , L⊕

s := L⊕
a ⊕ L⊕

f
; here Ls ⊂ L⊕

s is standard in the sense
that Ls ∩ ı⊕Ls = {0} and Ls + ı⊕Ls is dense in L⊕

s . Hence [RvD77] we obtain Tomita-Takesaki objects
JL, ∆L with respect to this subspace. We set KL := − log∆L, then extend this operator KL by 0 to L⊕

0

and consider it as undefined on L⊕
∞\{0}. We denote the modular group by UL(x) = exp(−ı⊕xKL), again

defined on L⊕
0 ⊕ L⊕

s
. It is important in the following that the projector Pf can be written as a function of

the modular objects:

Lemma 2.6. ([CLR19, Theorem 2.2]) Let a(λ) = (1− λ)−1, b(λ) = λ1/2a(λ). Then

Pf =
(
a(∆f) + JLb(∆f)

)−
where ∆f = ∆L ↾ L⊕

f
. (2.15)
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For use in future sections, we also consider the closed, real-linear projector

QL = 0⊕ (1− Pa)⊕ Pf ⊕ 1

with domain domQL = L⊕
0 ⊕ L⊕

a ⊕ (Lf + L′
f)⊕ L⊕

∞.
(2.16)

Note that imgQL = L in the purely factorial case (L = Lf), but in general imgQL 6= L; rather, as will become
clear in the next subsection, QL projects onto the “entropy-relevant part” of the space. (See Lemma 2.12(v)
and Theorem 2.13 in particular.) However, we always have kerQL = L′. In other words, imgQL 6= (kerQL)

′

in general. We also note:

Lemma 2.7. For 0 < ǫ < 1, let Q(ǫ) be the spectral projector of log∆L for the set (−ǫ−1,−ǫ)∪(ǫ, ǫ−1)∪{0},
extended by 1 to L⊕

0 and L⊕
∞. Let D(0) := ∪0<ǫ<1Q

(ǫ)K⊕. Then D(0) is a core for QL, and D(0) ∩ L⊕
s a

common core for ∆L and log∆L.

Proof. We can suppose without loss of generality that we are in the factorial case, i.e., L = Lf , since on L⊕
a

we have that ∆L ↾ L⊕
a = 1, log∆L ↾ L⊕

a = 0, and QL ↾ L⊕
a is bounded, while on L⊕

0 and L⊕
∞ the statement

is clearly trivial. That D(0) ∩ L⊕
s is a common core for ∆L and log∆L is immediate by functional calculus.

That D(0) is a core for QL in the factorial case follows by the expression of QL in terms of ∆L and JL given
in Lemma 2.6.

2.2 CCR algebras and relative entropy

We now pass to the CCR algebras on the symplectic space (K, σ); see, e.g., the monographs [Pet90, DG13].
We denote by AK := CCR(K, σ) the C∗ algebra generated by elements W (f), f ∈ K, with the relations

W (f)W (g) = e−iσ(f,g)W (f + g), W (f)∗ =W (−f). (2.17)

Similarly, for a closed subspace L ⊂ K, we define AL := CCR(L, σ) ⊂ AK, A⊕
K := CCR(K⊕, σ⊕) ⊃ AK, and

write the relevant subalgebras as A∞ := CCR(L∞, σ
⊕) etc.

On AK, the bilinear form τ induces the quasifree state3 ω by

ω(W (f)) = e−τ(f,f)/2; (2.18)

we use the same notation for its extension by τ⊕ to A⊕
K and the restrictions to subalgebras, suppressing the

dependence on τ where no confusion can arise. Related to ω, for each g ∈ K we consider the coherent state4

ωg = ω(W (g)∗ · W (g)); (2.19)

note that ω0 = ω.
We are interested in the relative entropy between the ωg (for different g) as states on the C∗-algebra

AL; see Appendix A for a brief review of this concept. As a first step, we remark that the relative entropy
respects the decomposition of L:

Proposition 2.8. Let (K, τ, σ) be a symplectic Hilbert space. For any closed subspace L ⊂ K, we have

SAL
(ωg‖ω) = SAa

(ωP⊕
a g

‖ω) + SAf
(ωP⊕

f
g‖ω) + SA∞

(ωP⊕
∞g‖ω). (2.20)

Proof. Due to Lemma 2.2, and noting that the pure quasifree states are faithful on the respective subalgebras,
we know that A⊕

K is isomorphic to the (spatial) tensor product of C∗-algebras

A⊕
K
∼= A⊕

0 ⊗A⊕
a ⊗A⊕

f
⊗A⊕

∞ (2.21)

and under this isomorphism
AL

∼= C1⊗Aa ⊗Af ⊗A∞ (2.22)

and
ωg ∼= ωP⊕

0 g
⊗ ωP⊕

a g
⊗ ωP⊕

f
g ⊗ ωP⊕

∞g
; (2.23)

ω decomposes in the same way. This decomposition holds analogously for the induced von Neumann algebras
in the GNS representation of A⊕

K associated with ω. Thus, due to additivity of the relative entropy in this
situation (see Lemma A.2 in the appendix), we obtain (2.20). (This includes the obvious observation that
the summand with respect to L⊕

0 vanishes.)

3also known in the literature as a quasifree state with vanishing one-point function
4An alternative nomenclature is quasifree state with nonvanishing one-point function.
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We will now compute the three terms in (2.20) individually. We start with the abelian part, following
standard methods (cf. [VS11]).

Proposition 2.9. For any g ∈ L⊕
a
,

SAa
(ωg‖ω) = 2(‖(1− Pa)g‖⊕)2 (2.24)

where Pa is the (real-linear) projector onto La.

Proof. Since K is separable, the von Neumann envelope of AL is generated by the algebras for finite-
dimensional subspaces of L. Lemma A.1 in the appendix shows that SAa

(ωg‖ω) is determined by the
supremum of the entropy for these subalgebras; hence it suffices to prove the statement for the case of
finite-dimensional L⊕

a . Also, on the algebra Aa, the state ωg coincides with ωĝ where ĝ = (1 − Pa)g; hence
we can assume without loss that g ∈ (1 − Pa)L⊕

a = ı⊕La.
In this case, after a suitable choice of basis, L⊕

a with the scalar product 〈·, ·〉⊕ can be identified with Cn

and its standard scalar product, with the real subspace Rn corresponding to La. The GNS representation π
for (Aa, ω) acts on L2(Rn, dµ) where dµ = (2π)−n/2 exp(−‖x‖2/2)dnx, with π(W (f)) being multiplication
with exp i〈f, · 〉, and π(Aa)

′′ = L∞(Rn, dµ). The states ω and ωg are vector states with vectors Ω(x) = 1,
Ωg(x) = exp(〈ı⊕g, x〉 − (‖g‖⊕)2). The relative modular group turns out to act by multiplication with
exp(−2it〈ı⊕g, x〉 + 2it(‖g‖⊕)2). The relative entropy can then be computed from the general definition
(A.1), which yields the result (2.24).

Of course, this relative entropy coincides with the usual Kullback-Leibler divergence of Gaussian distri-
butions (cf. [OP04, p. 81]). In the proof, we have used our simplifying assumption that K is separable, but
by methods of the theory of Gaussian fields [VS11], we expect that this assumption is actually dispensable.

Next, we consider the factorial part, for which the relative entropy is known from [CLR19].

Proposition 2.10. For any g ∈ L⊕
f
∩ domKL, one has ı⊕KLg ∈ domPf and

SAf
(ωg‖ω) = σ⊕(g, Pf ı

⊕KLg). (2.25)

Proof. We sketch the relevant techniques from [CLR19]. Since (L⊕
f
, τ⊕, σ⊕) is pure, the GNS representation

π of (Af , ω) acts on the Fock space over L⊕
f
, and in that representation both ω and ωg are vector states: ω

corresponds to the Fock vacuum vector Ω, and ωg to the vector Ωg := π(W (g))Ω. The vector Ω is cyclic
and separating for π(Af)

′′, and the associated Tomita-Takesaki modular group is ∆it
Ω = Γ(∆it

L), the “second
quantization” of the unitary ∆it

L ↾ L⊕
f
.

Now first let g ∈ Lf ∩ domKL. Using that W (g) ∈ Af , one finds ∆it
Ω,Ωg

= ∆it
Ω, and consequently

SAf
(ωg‖ω) = i

d

dt
〈Ωg,∆it

Ω,Ωg
Ωg〉

∣
∣
∣
t=0

= i
d

dt
〈Ω, π(W (g))∗∆it

Ω π(W (g))Ω〉
∣
∣
∣
t=0

= i
d

dt
〈Ω, π(W (g))∗∆it

Ω π(W (g))∆−it
Ω Ω〉

∣
∣
∣
t=0

.

(2.26)

With the Weyl relations (2.17) and ∆it
Ω = Γ(∆it

L),

π(W (g))∗∆it
Ω π(W (g))∆−it

Ω = π(W (g))∗π(W (∆it
Lg)) = π(W (∆it

Lg − g))eiσ
⊕(g,∆it

Lg). (2.27)

Therefore the relative entropy is

SAf
(ωg‖ω) = i

d

dt
e−(‖∆it

Lg−g‖
⊕)2/2eiσ

⊕(g,∆it
L g)

∣
∣
∣
t=0

= σ⊕(g, ı⊕KLg). (2.28)

Hence (2.25) holds for g ∈ Lf ∩ domKL. It also holds for g ∈ L′
f
∩ domKL, since in that case both sides of

the equation vanish. The result for general g ∈ L⊕
f
∩ domKL follows by a density argument that employs

Lemma 2.6; see [CLR19, Sec. 4.4].

On the nonseparating part, one finds the relative entropy as follows:

Proposition 2.11. For any g ∈ L⊕
∞,

SA∞
(ωg‖ω) =

{

0 if g = 0,

∞ otherwise.
(2.29)
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Proof. Since (L∞, τ
⊕, σ⊕) is pure, the GNS representation π of (A∞, ω) is irreducible [Pet90, Ch. 4] and ω

and ωg are given by vector states Ω and Ψ := π(W (g))Ω there. The support projections of these states are
hence the projectors PΩ and PΨ respectively; and PΩ ≤ PΨ if and only if they are equal, i.e., for g = 0. The
statement then follows from the definition of the relative entropy, see the appendix.

Our goal is now to establish a unified formula that applies to all these cases, linking the relative entropy
on the CCR algebras to a quadratic form at single-particle level. To that end:

Lemma 2.12. (cf. [CLR19, Prop. 2.5]) Consider the real-linear operator on D(0) ∩ L⊕
s
,

RL := c(KL)(1 − JL)c(KL), where c(λ) =

√

λ

1− e−λ
, (2.30)

extended by zero to L⊕
0 and undefined on L⊕

∞\{0}. (The function c is extended by continuity to λ = 0.)
Then:

(i) There is a unique closed real-linear quadratic form SL associated with RL, which is positive;

(ii) one has ‖RL − c(KL)
2‖ ≤ 1 as operators on L⊕

0 ⊕ L⊕
s
;

(iii) domSL = L⊕
0 ⊕ L⊕

a
⊕ dom(E+|KL|1/2) ⊕ {0}, where E+ denotes the spectral projector of KL for the

interval (0,∞);

(iv) kerSL = L′;

(v) SL(QLf,QLf) = SL(f, f) for all f ∈ domQL ∩ domSL.

Proof. Since (1− JL)/2 is a real-orthogonal projector, it is clear that RL is positive. Thus RL has a unique
positive closed quadratic form associated with it, showing (i). Further, one computes on L⊕

s ,

RL − c(KL)
2 = −JLc(KL)c(−KL), (2.31)

and since λ 7→ c(λ)c(−λ) is bounded by 1, (ii) follows, also on L⊕
0 . Consequently, the form domain of SL is

the same as the operator domain of c(KL); since c(λ) → 0 as λ → −∞ and c(λ) ∼ λ1/2 as λ → ∞, it can
be written as in (iii). We prove (iv) separately for the restrictions to L⊕

a
and L⊕

f
; it is trivial on L⊕

0 . Now
on L⊕

a , the statement follows from c(0) = 1, while on L⊕
f
, one computes kerSL = kerPf by Lemma 2.6, and

kerPf = L′ ∩ L⊕
f
. Finally for (v), let f ∈ domQL. Then f = g + g′ with g ∈ imgQL and g′ ∈ kerQL =

L′ = kerSL. If additionally f ∈ domSL, then also g ∈ domSL, and SL(f, f) = SL(g, g) = SL(QLf,QLf)
follows.

We will sometimes write SL(f) as shorthand for SL(f, f). We are now ready to state the main result of
the section:

Theorem 2.13. For any f, g ∈ K⊕, we have

SAL
(ωg‖ωf) = SL(g − f); (2.32)

in particular, the left-hand side is finite if and only if g − f ∈ domSL.

Proof. The automorphism α = adW (−f) of AL fulfills ωf ◦α = ω and ωg ◦α = ωg−f ; hence we can assume
f = 0 without loss of generality.

First let g ∈ L⊕
f
∩ D(0). From Lemma 2.6, spectral calculus shows Pf ı

⊕ log∆L = −ı⊕RL on D(0) ∩ L⊕
f
,

thus
σ⊕(g, Pf ı

⊕ log∆L g) = Im〈g, Pf ı
⊕ log∆L g〉⊕ = Re〈g,RLg〉⊕ = 〈g,RLg〉⊕, (2.33)

and (2.32) follows for all g ∈ L⊕
f
∩ D(0) from Proposition 2.10. Using approximation techniques [CLR19,

Theorem 4.5], the relation can be extended to all g ∈ L⊕
f
, including the case where the two sides of (2.32)

are infinite.
Now consider g ∈ L⊕

a . We note that L⊕
a = ker log∆L and c(0) = 1, hence RL acts as 1− JL = 2(1− Pa)

on L⊕
a
. Thus the proposed result (2.32) holds for g ∈ L⊕

a
, see Proposition 2.9.

Likewise, Proposition 2.11 shows that (2.32) holds for g ∈ L⊕
∞, with both sides being infinite unless g = 0.

Applying Proposition 2.8 now concludes the proof.
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2.3 Approximation properties

For the following, we establish some approximation properties for the entropy form and the modular group.
Apart from the Hilbert space norm given by τ on K (and extended to ‖ · ‖⊕ on K⊕), we consider the following
norms on K⊕ or subsets of it:

• the KL-graph norm, ‖f‖K,L := ‖KLf‖⊕ + ‖f‖⊕,

• the SL-graph norm, ‖f‖2S,L := SL(f) + τ⊕(f, f),

• the seminorm ‖ · ‖L defined by ‖f‖2L := SL(f).

It is clear that the KL-graph norm is stronger than the SL-graph norm, which is in turn stronger than the
seminorm ‖ · ‖L. We denote the closure of domSL in ‖ · ‖L, modulo the kernel L′ of the seminorm, as XL;
for formal reasons we explicitly denote the isometric inclusion of (domSL, SL) into XL as ϕL. Then XL

becomes a Hilbert space with the (continuous extension of) the scalar product 〈ϕLf, ϕLg〉L = SL(f, g).

Lemma 2.14. The modular group UL maps domSL into domSL, and this action is strongly continuous in
the SL-graph norm.

Proof. From Lemma 2.12(iii), it is clear that UL = exp(−ı⊕KL) preserves domSL. Further, for f ∈ domSL

and fs := UL(s)f , we have

SL(fs − f, fs − f) ≤ 〈fs − f, c(KL)
2(fs − f)〉⊕ + (‖fs − f‖⊕)2

= 2Re
〈
c(KL)f, (1− UL(s)) c(KL)f

〉⊕
+ (‖fs − f‖⊕)2,

(2.34)

where Lemma 2.12(ii) was used. This vanishes as s→ 0 due to strong continuity of UL in the K⊕-norm.

The following lemmas for a fixed closed subspace L ⊂ K will allow us to identify XL with a “concrete”
Hilbert space in examples.

Lemma 2.15. ϕL(imgQL ∩ domKL) is dense in XL with respect to ‖ · ‖L. In particular, if L = Lf , then
ϕL(L ∩ domKL) is dense in XL with respect to ‖ · ‖L.

Proof. Let ε > 0 and Q(ε) be as in Lemma 2.7. Then for any v ∈ K⊕, by Lemma 2.7 we have Q(ε)v ∈
domQL. Also, for any v ∈ dom(SL), by the expression for the relative entropy in Theorem 2.13, we
have Q(ε)v → v in SL-graph norm as ε → 0. Furthermore for v ∈ dom(SL), by functional calculus,
QLQ

(ε)v ∈ imgQL ∩ dom(KL). Thus

‖ϕL(v −QLQ
(ε)v)‖L ≤ SL

(
v −Q(ε)v

)
+ SL

(
Q(ε)v −QLQ

(ε)v
)
= SL(v −Q(ε)v) → 0 (2.35)

as ε→ 0.—If here L = Lf , one has imgQL = L and the second statement follows.

Lemma 2.16. Let D ⊂ L be a core for the generator of the strongly continuous (with respect to the norm
of K) one-parameter group s→ UL(s) ↾ L, i.e., ı⊕KL ↾ L. Then D is dense in L∩ domKL in the SL-graph
norm.

Proof. In this proof, we drop the index L on KL. Note that by functional calculus, the norm induced by
the positive self-adjoint operator c(K)2 + c(−K)2, where λ→ c(λ) is as in Lemma 2.12, is equivalent to the
norm induced by 1 + |K|, while the graph norm of ı⊕K ↾ L is induced by 1 +K2 and thus stronger. Hence
since D is a core for ı⊕K ↾ L, it is also dense in L ∩ domK in the norm induced by c(K)2 + c(−K)2 and
consequently, by Lemma 2.12(i)–(ii), dense in the SL-graph norm.

3 Entropies for subspaces

We will now consider several subspaces Lt ⊂ K, and relations between the entropies related to them. To
simplify notation, we will usually denote the related objects as St, ∆t, etc. rather than SLt

, ∆Lt
etc.
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3.1 Two subspaces

We begin with the relation between two subspaces, say, L0 and L1, and their associated entropy forms. Let
us first mention:

Lemma 3.1. If L0 ⊂ L1, then S0(f, f) ≤ S1(f, f) for any f ∈ K.

Proof. This follows from Theorem 2.13, since the relative entropy is known to increase with the algebra
considered (Lemma A.3).

We now investigate the relation between the projector Q0 (on the “entropy relevant part” for S0) and
the entropy S1. Heuristically, we expect in relevant cases that

S1(Q0f, g) = S1(f,Q0g), (3.1)

in other words, that the projector Q0 is “orthogonal” with respect to the bilinear form S1. However, the
relation (3.1) needs to be read with care, as in general neither domain nor image of Q0 will consist only of
vectors of finite entropy S1. The precise version of our condition is given as:

Definition 3.2. Let L0 and L1 be closed subspaces of a symplectic Hilbert space (K, τ , σ). Define

D+
01 := imgQ0 ∩ domS1, D−

01 := kerQ0 ∩ domS1, D01 := D+
01 +D−

01. (3.2)

We say that the pair (L0,L1) is in differential modular position if

(i) ϕ1D01 is dense in X1;

(ii) For all f± ∈ D±
01, one has S1(f

+, f−) = 0.

This condition may seem restrictive, but it is in fact fulfilled in many relevant examples: in the conformal
U(1)-current for half-line algebras, both in the vacuum (Example 5.3) and in KMS states (Example 5.11),
for lightlike translated wedge algebras in the free massive field as in [CLR19], as well as in certain abelian
(Example 5.12) and finite-dimensional (Example 5.1) situations. Nevertheless, it is a nonempty condition
(Example 5.2). It may be seen as reminiscent of geometric modular action, as we shall see in Lemma 3.3
below.

If (L0,L1) is in differential modular position, then we can define a projector Q̄0 on (a dense set of) X1

by
〈ϕ1f, Q̄0ϕ1g〉1 = S1(f,Q0g), f, g ∈ D01. (3.3)

Because of item (ii) in the definition, this projector is actually real-orthogonal, and hence extends uniquely
to a bounded operator on all of X1.

The spaces D±
01 are somewhat difficult to explicitly describe in examples, we therefore give more directly

applicable sufficient criteria for Def. 3.2.

Lemma 3.3. Suppose that ϕ1D01 is dense in X1. Further suppose either

(a) L0 ⊂ L1, and the closure i⊕R̄1 of i⊕R1 restricts to an S1-graph-densely defined operator from D+
01 to

L0; or

(b) L0 ⊂ L1, both L0 and L1 are purely factorial, and i⊕K1 restricts to an S1-graph-densely defined operator
from D+

01 to L0; or

(c) L0 ⊂ L1, both L0 and L1 are purely factorial, and U1(x)L0 ⊂ L0 for all x ≥ 0 [or all x ≤ 0]; or

(d) L0 ⊂ L1, and both L0 and L1 are purely abelian; or

(e) L0 ⊃ L1.

Then the pair (L0,L1) is in differential modular position. In case (e), the associated projector Q̄0 is the
identity.

Part (b) motivates the wording “differential modular”, since it refers to the generator of the modular
group only.
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Proof. For (a), it suffices to show (by the assumed S1-graph density) that S1(f
−, f+) = 0 for all f+ ∈

dom R̄1 ∩ D+
01 and all f− ∈ D−

01. But for these, we can write

S1(f
−, f+) = τ⊕(f−, R̄1f

+) = σ⊕(f−, ı⊕R̄1f
+) = 0, (3.4)

since ı⊕R̄1f
+ ∈ L0 by assumption, and f− ∈ kerQ0 = L′

0.
Items (b) and (d) are special cases of (a): If L0 and L1 are purely factorial, then for f+ ∈ domK1 ∩

D+
01 ⊂ (L0)f ⊂ (L1)f we have ı⊕R̄1f

+ = P1,f ı
⊕K1f

+. By assumption, ı⊕K1f
+ ∈ L0 ∩ (L1)f and hence

P1,f ı
⊕K1f

+ = ı⊕K1f
+ ∈ L0. Likewise, if L0 and L1 are purely abelian, then for f+ ∈ imgQ0 = ı⊕(L0)a ⊂

ı⊕(L1)a we have ı⊕R1f
+ = ı⊕(1− P1,a)f

+ = ı⊕f+ ∈ L0.
For (c), we consider the case x ≥ 0, the other case being analogous; that is, U1 is a strongly continous

semigroup on imgQ0 = (L0)f with respect to the K-norm, and on D+
01 with respect to the S1-graph norm.

Now for f+ ∈ D+
01 and ǫ > 0, consider

f+
ǫ = ǫ−1

∫ ǫ

0

U1(x)f
+ dx ∈ L0; (3.5)

then f+
ǫ → f+ in S1-graph norm as ǫ→ 0 (Lemma 2.14). But also f+

ǫ ∈ domK1 [EN00, Ch. II Lemma 1.3]
and i⊕K1f

+
ǫ ∈ L0. Since vectors of the form (3.5) are a core for the generator on D+

01, we can apply part (b).
For (e), we use monotonicity of the entropy (Lemma 3.1) to show for f− ∈ D−

01 ⊂ L′
0,

0 ≤ S1(f
−, f−) ≤ S0(f

−, f−) = 0; (3.6)

hence by the Cauchy-Schwarz inequality for S1, we have S1(f
−, f+) = 0 for all f± ∈ D±

01. Thus (L0,L1) is
in differential modular position, but also 1− Q̄0 = 0, i.e., Q̄0 = 1.

3.2 Families of subspaces

Closer to the applications we have in mind, we now proceed to a family of subspaces, labelled by a real
parameter t; in particular, we are interested in the situation where the subspaces increase with the parameter.

Definition 3.4. A family of differential modular inclusions is a family (Lt)t∈R of closed subspaces of K
which is increasing5 (i.e., Ls ⊂ Lt for each s ≤ t) and where each pair (Ls,Lt) (s, t ∈ R) is in differential
modular position (Definition 3.2).

We will show later (Sec. 4) that the usual notion of (single-particle) half-sided modular inclusions [Bor00,
Lon07] is a special case of Def. 3.4. However, the notion of differential modular inclusions is more general:
It also applies to other situations where the modular group acts geometrically (Example 5.11) or where
the space Lt takes discrete steps (Example 5.1). Also, notice that Def. 3.4 is invariant under monotonous
reparametrizations of the parameter t, whereas half-sided modular inclusions are not.

We note that for t ≤ t̂, Lemma 3.1 gives us a canonical map ρtt̂ : Xt̂ → Xt which fulfills ϕt = ρtt̂ ◦ ϕt̂,
and ‖ρtt̂‖ ≤ 1. With respect to this inclusion map, we can now formulate some compatibility properties for
the projectors Q̄s on Xt.

Lemma 3.5. If (Lt)t∈R is a family of differential modular inclusions, then:

(a) For s ≤ ŝ and any t, the projectors Q̄s and Q̄ŝ on Xt fulfil Q̄s ≤ Q̄ŝ.

(b) For any s and t ≤ t̂, let Q̄s be the extension of Qs to Xt and Q̂s the corresponding extension to Xt̂. We

have Q̄s ◦ ρtt̂ = ρtt̂ ◦ Q̂s.

(Because of the last property, we will not indicate the dependence of Q̄s on the extension space Xt beyond
the proof of this lemma.)

Proof. For (a), note first that kerQs = L′
s and similarly for ŝ. Since Ls ⊂ Lŝ, this yields

D−
ŝ,t ⊂ D−

s,t , and (1−Qs)f
− = f− for all f− ∈ D−

ŝt. (3.7)

Now for any f = f+ + f− ∈ Dŝt, compute

(1− Q̄ŝ)ϕtf = ϕt(1−Qŝ)f = ϕtf
− = ϕt(1−Qs)f

− = (1− Q̄s)ϕtf
−

= (1− Q̄s)ϕt(1 −Qŝ)f = (1 − Q̄s)(1− Q̄ŝ)ϕtf.
(3.8)

5We do not demand that it is strictly increasing.
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By density of ϕtDŝt in Xt, we obtain (using orthogonality of the projectors),

(1 − Q̄s)(1− Q̄ŝ) = (1 − Q̄ŝ) ⇒ Qs ≤ Qŝ. (3.9)

Regarding (b): For f ∈ Dst̂ ⊂ Dst, we compute

Q̄sρtt̂ϕt̂f = Q̄sϕtf = ϕtQsf = ρtt̂ϕt̂Qsf = ρtt̂Q̂sϕt̂f. (3.10)

By density of ϕt̂Dst̂ in Xt̂, we conclude Q̄s ◦ ρtt̂ = ρtt̂ ◦ Q̂s.

3.3 Derivatives of the entropy

For a family of differential modular inclusions, we now investigate how the entropy St(f, f) of a given vector
f depends on the parameter t; here we take f ∈ D̄ := ∩t∈R domSt. Actually, in order to study the “bulk”
vs. “boundary” terms mentioned in the introduction, we consider the function Tf : R2 → R given by

Tf(s, t) := 〈ϕtf, Q̄sϕtf〉t = ‖Q̄sϕtf‖2t ; (3.11)

we have Tf(t, t) = St(f), and we aim at estimates for d2St/dt
2 in terms of the partial derivatives of Tf ,

which will in general exist only in the sense of distributions.
Crucial to this analysis are certain monotonicity properties of Tf , in particular on the cones C± :=

{(s, t) ∈ R2 : ±(s− t) ≥ 0}.
Lemma 3.6. For any f ∈ D̄, the function Tf enjoys the following properties:

(a) It is increasing in t everywhere;

(b) It is increasing in s everywhere, and constant in s on C+;
(c) Along the diagonal, it is increasing, i.e., Tf(t, t) is increasing in t.

(d) One has the “mixed monotonicity” estimate

∀s < ŝ, t < t̂ : Tf (ŝ, t̂)− Tf (ŝ, t)− Tf(s, t̂) + Tf (s, t) ≥ 0. (3.12)

Proof. For item (a), observe for t ≤ t̂ that

Tf (s, t) = ‖Q̄sϕtf‖2t = ‖ρtt̂Q̄sϕt̂f‖2t ≤ ‖Q̄sϕt̂f‖2t̂ ≤ Tf(s, t̂), (3.13)

where Lemma 3.5(b) and ‖ρtt̂‖ ≤ 1 have been used. Item (b) follows similarly from Lemma 3.5(a), along
with Q̄s = Q̄t = 1 for s ≥ t (Lemma 3.3 (e)). Item (c) is a consequence of (a) and (b). For item (d), one
rewrites using Lemma 3.5,

Tf (ŝ, t̂)− Tf(ŝ, t)− Tf (s, t̂) + Tf (s, t) = ‖(Q̄ŝ − Q̄s)ϕt̂f‖2t̂ − ‖ρtt̂(Q̄ŝ − Q̄s)ϕt̂f‖2t , (3.14)

which is nonnegative since ‖ρtt̂‖ ≤ 1.

Item (c) above implies dSt(f)/dt ≥ 0, at least in the sense of distributions. For d2St(f)/dt
2, we will

derive estimates stemming from item (d). For simplicity, let us first assume that Tf is smooth outside the
diagonal s = t, and at least C1 at the diagonal. (Smoothness overall does not even occur in otherwise
well-behaved examples, such as Example 5.3).

Proposition 3.7. Let f ∈ D̄. Suppose that Tf is of class C1, and that there are functions T̂± ∈ C2(R2)

such that Tf ↾ C± = T̂± ↾ C±. Then

lim
ǫց0

∂2Tf
∂t2

(t− ǫ, t) ≤ d2St(f)

dt2
= lim

ǫց0

∂2Tf
∂t2

(t+ ǫ, t). (3.15)

Proof. Since Tf is C1, Lemma 3.6(b) implies ∂Tf/∂s|s=t = 0, and we can differentiate this relation along
the diagonal to yield

∂2T̂±
∂s2

∣
∣
∣
s=t

+
∂2T̂±
∂s∂t

∣
∣
∣
s=t

= 0. (3.16)

On the other hand, St = T̂±(t, t), which yields together with (3.16),

d2St
dt2

=
∂2T̂±
∂t2

∣
∣
∣
s=t

+
∂2T̂±
∂s∂t

∣
∣
∣
s=t

= lim
ǫց0

(∂2Tf
∂t2

(t± ǫ, t) +
∂2Tf
∂s∂t

(t± ǫ, t)
)

. (3.17)

Now ∂2Tf/∂s∂t vanishes on C+ by Lemma 3.6(b), and is nonnegative on C− by Lemma 3.6(d); hence the
result follows.
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In other words, d2Sf/dt
2 is bounded above und below by a “bulk term” (determined by the change of

modular data in Rt), but the lower bound may allow for a positive “boundary term” (involving also a change
in Q̄s).

It is instructive to look at estimate (3.15) in specific examples. In certain situations, in particular in the
conformal U(1)-current in the vacuum (Example 5.3), one has ∂2Tf/∂t

2 = 0 on C−, and the only contribution
to d2S/dt2 is the “boundary term” ∂2Tf/∂s∂t ≥ 0. Thus (3.15) implies convexity of the entropy in t in this
case. However, in other situation, such as thermal states on the conformal U(1)-current (Example 5.11),
or even when just reparametrizing a half-sided modular inclusion (Example 5.4), the “bulk term” ∂2Tf/∂t

2

need not vanish, and indeed can take any sign. Thus St(f) need not be convex in t, while the estimate (3.15)
still holds.

We now want to establish a generalization of Prop. 3.7 without smoothness assumptions on Tf . In
preparation, we first prove:

Lemma 3.8. For almost every t ∈ R, the function Tf is continuous at the point (t, t).

Proof. The map t 7→ Tf (t, t) is monotonic, hence continuous almost everywhere; we fix a point t of continuity.
Consider a sequence (sn, tn) which converges to (t, t), and set un := min{sn, tn}, vn := max{sn, tn}. Since
Tf is increasing in both variables by Lemma 3.6(a),(b), we have

Tf(un, un) ≤ Tf(sn, tn) ≤ Tf(vn, vn). (3.18)

As n→ ∞, both sides of this inequality tend to Tf (t, t), showing that Tf is continuous (in two variables) at
(t, t).

Further, we note that St and Tf are locally integrable (due to their monotonicity properties) and hence
can be understood as distributions in C∞

c (R)′ and C∞
c (R2)′ respectively. Regarding test functions, we fix—

for all what follows—a nonnegative function h ∈ C∞
c (R+) with

∫
h = 1, and for any g ∈ C∞

c (R) and ǫ > 0,
we define g±ǫ ∈ C∞

c (R2) by

g±ǫ (s, t) :=
1

ǫ
g(t)h

(

± s− t

ǫ

)

, (3.19)

which has support in the interior of C±. The dual pairing between distributions and test functions will be
denoted as 〈 · , · 〉. With this notation, our generalisation of Prop. 3.7 to the non-smooth case is:

Theorem 3.9. Let f ∈ D̄. For any nonnegative g ∈ C∞
c (R), one has

lim sup
ǫց0

〈
∂2Tf
∂t2

+
∂2Tf
∂s2

, g−ǫ

〉

≤
〈
d2St(f)

dt2
, g

〉

= lim
ǫց0

〈
∂2Tf
∂t2

, g+ǫ

〉

. (3.20)

Proof. Due to local boundedness of Tf , we have

∫

dt g′′(t)Tf (t, t) = lim
ǫց0

∫

du dt g′′(t)
1

ǫ
h
(
± u

ǫ

)
Tf (t+ u, t) (3.21)

by dominated convergence together with Lemma 3.8. After a change of coordinates (s = t+u), this equality
reads 〈

d2St(f)

dt2
, g

〉

= lim
ǫց0

〈
∂2Tf
∂s2

+
∂2Tf
∂t2

+ 2
∂Tf
∂s∂t

, g±ǫ

〉

. (3.22)

Now by Lemma 3.6, the partial derivatives by s vanish in the interior of C+, and ∂Tf/∂s∂t ≥ 0 in the interior
of C−, yielding the proposed result.

Note the extra boundary term ∂2Tf/∂s
2 on the left-hand side of (3.20), which may have any sign. This

term indeed occurs in Examples 5.1 and 5.13 and saturates the inequality there, hence cannot be omitted.
Thus convexity (d2S/dt2 ≥ 0) can fail or a number of reasons. This is already apparent from our

definitions: our notion of a “family of differential modular inclusions” in Definition 3.4 is invariant under
monotonous reparametrizations of the parameter t, while convexity of St is clearly not preserved under such
reparametrizations in general. In fact, under mild conditions (e.g., if St is strictly monotonous and at least
continuous, but without restrictions on the second derivative), there exists a monotonous reparametrization
of the family such that the resulting entropy function is convex (in fact, linear).
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4 Half-sided modular inclusions

In this section, we show that the usual notion of half-sided modular inclusions of algebras [Bor00], via its
analogue on the level of symplectic Hilbert spaces [Lon07], fits into the framework of this paper; more
specifically, every half-sided modular inclusion yields a family of differential modular inclusions in the sense
of Def. 3.4.

To that end, we first analyze an explicit example of half-sided modular inclusions (in a sense, the smallest
nontrivial one), namely, the symplectic spaces of the conformal U(1)-current in the vacuum state (Sec. 4.1).
For this model, convexity of the entropy was shown to hold in [Lon20]; we show that it fits within our
framework of family of differential modular inclusions. Then, we decompose a general half-sided modular
inclusion of symplectic Hilbert spaces into direct summands equivalent to the U(1)-current or to a trivial
inclusion, thus lifting our results to the general case.

However, let us first note that our structures are indeed preserved under taking direct sums.

Lemma 4.1. Let I ⊆ Z+. For every n ∈ I, let (Kn, τn, σn) be a symplectic Hilbert space (Def. 2.1).

(a) (K, τ, σ) := (⊕n∈IKn,⊕n∈Iτn,⊕n∈Iσn) is a symplectic Hilbert space.

(b) If Ln ⊂ Kn are closed subspaces, and L := ⊕n∈ILn, then we have for f =
∑

n∈I fn ∈ K,

SL(f, f) =
∑

n∈I

SLn
(fn, fn). (4.1)

(c) Suppose that, for each n ∈ I, {Lnt }t∈R, with Lnt ⊂ Kn, is a family of differential modular inclusions for
(Kn, τn, σn). Then

{Lt}t∈R := {⊕n∈ILnt }t∈R

is a family of differential modular inclusions for (K, τ, σ); and for f =
∑

n∈I fn ∈ ∩t domSLt
, we have

Tf(s, t) =
∑

n∈I

T nfn(s, t), (4.2)

where T nfn is the function (3.11) associated with the family {Lnt }.

Proof. (a) is immediate, and (b) follows from the expression for the relative entropy SLt
(f, f) in Theorem

2.13. For (c), note that condition (ii) of Definition 3.2 is implied by Eq. (4.1), noting that also the projectors
Qt decompose along the direct sum. To show that, for every s, t ∈ R, condition (i) of Definition 3.2 holds for
the pair of subspaces (Lt,Ls), let Dn

st be the subspace defined in (3.2) corresponding to the pair of subspaces
(Lnt ,Lns ). Consider

D̄st := {f ∈ H : fn 6= 0 for finitely many n ∈ I, fn ∈ Dn
st} ⊆ Dst,

where Dst is the subspace defined in (3.2) relative to the pair of subspaces (Lt,Ls) in K. Since the family of
subspaces {Lnt }t∈R is by hypothesis a differential modular inclusion, we can find for every f ∈ dom(SLt

) a
sequence {gk}k∈Z+ ⊂ D̄st, defined as (gk)n := 0 if n > k, and such that

SLn
t
((gk)n − fn, (gk)n − fn) ≤

1

k

1

2n

for n ≤ k. We thus have by (4.1)

SLt
(gk − f, gk − f) =

∑

n∈I

SLn
t
((gk)n − fn, (gk)n − fn)

=
∑

0≤n≤k

SLn
t
((gk)n − fn, (gk)n − fn) +

∑

n>k

SLn
t
(fn, fn) ≤

1

k

∑

n≥0

1

2n
+

∑

n>k

SLn
t
(fn, fn),

(4.3)

which converges to 0 as k → ∞ since f has finite entropy.—Finally, one verifies that also the projectors Q̄t
and domSLt

decompose along the direct sum, hence Eq. (4.2) follows from (4.1).
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4.1 The U(1)-current in the vacuum

We consider the symplectic space for the U(1)-current, namely (in “configuration space” representation)
C∞
c (R) equipped with the symplectic form

σ(f, g) =

∫

f(x)g′(x)dx. (4.4)

for f, g ∈ C∞
c (R).

The vacuum state is the pure quasifree state induced by the bilinear form

τ(f, g) = Re

∫ ∞

0

dp p f̃(−p)g̃(p), (4.5)

where f̃ denotes the Fourier transform

f̃(p) =
1

2π

∫

R

e−ipxf(x)dx. (4.6)

The closure of C∞
c (R) in the topology induced by τ is K = L2

C
(R+, p dp). This is a complex Hilbert space

with complex scalar product 〈·, ·〉 and indeed,

〈f, g〉 =
∫ ∞

0

dp p f̃(p)g̃(p) = τ(f, g) + iσ(f, g), f, g ∈ C∞
c (R). (4.7)

Thus, (K, τ, σ) is a pure symplectic Hilbert space (see Remark 2.3).
Let I be the set of open, proper (bounded or unbounded) intervals of R. For an interval I ∈ I, let LU(1)(I)

be the closure of C∞
c (I) in K. The net {LU(1)(I)}I∈I is a local net of standard and factorial6 subspaces

of K, the well known U(1)-current net at single-particle level (restricted to the real line R). Its extension
to the circle S1 is covariant with respect to the action of the lowest weight 1 positive energy irreducible
representation of the Möbius group, V . The latter, restricted to the subgroup P generated by translations
and dilations (denoted by t 7→ ϑ(t) and s 7→ δ(s) respectively), is given explicitly on K = L2(R+, p dp) by

(V (ϑ(t))f)(p) = eitpf(p), (4.8)

(V (δ(s))f)(p) = e−2πsf(e−2πsp). (4.9)

This yields the unique irreducible, strictly positive energy representation of the group P; see, e.g., [Fol94,
Section 6.7].

For brevity, for t ∈ R, we denote by LU(1)
t := LU(1)((−∞, t)), ∆t := ∆

L
U(1)
t

, Kt := − log(∆t) and

with mild abuse of notation we omit the identification between the configuration space representation and
L2
C
(R+, p dp). By the Bisognano-Wichmann theorem for Möbius covariant local nets of standard subspaces

[Lon07, Theorem 3.3.1] we have that
∆−is

0 = V (δ(−2πs)), (4.10)

and ∆t for other t is then determined by translation covariance; in particular we get (“in configuration
space”)

Kt = − log∆t = 2πi(x− t)∂x. (4.11)

Let Qt denote the projection (2.16) relative to the subspace LU(1)
t ; since the space is factorial, it acts by

Qt : LU(1)
t + LU(1)′

t → LU(1)
t ,

h+ h′ 7→ h.
(4.12)

Proposition 4.2. For f ∈ C∞
c (R) ⊂ K we have

QtKtf(x) = Θ(t− x)Ktf(x)

for almost all x ∈ R, where Θ denotes the Heaviside function.

Proof. Let g± := Θ(±(t− · ))Ktf . Since g± are continuous and piecewise differentiable functions, they are

elements of K. Also, g+ ∈ LU(1)
t , since clearly σ(g+, ϕ) = 0 for all ϕ ∈ LU(1)′

t , and similarly g− ∈ LU(1)′
t . By

(4.12), we now have QtKtf = Qt(g+ + g−) = g+ as claimed.

6That is, LU(1)(I) = LU(1)(I)f ; see, e.g., [Lon07, Section 4.2].
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One then immediately finds for the relative entropy by applying formula (2.25):

Proposition 4.3. Let f ∈ C∞
c (R) ⊂ K. We have

S
L

U(1)
t

(f, f) = 2π

∫ t

−∞

(t− x)f ′(x)2dx. (4.13)

Further, the spaces fit into our framework of differential modular inclusions (Definition 3.4):

Proposition 4.4. {LU(1)
t }t∈R is a family of differential modular inclusions.

Proof. We must prove that, for every s, t ∈ R, conditions (i) and (ii) in Definition 3.2 hold for the pair of

subspaces (LU(1)
s ,LU(1)

t ). In fact, once (i) is shown, (ii) is obtained immediately from points (c) and (e) of
Lemma 3.3, which apply since the modular group acts geometrically by Eq. (4.10).

Now for condition (i) in Definition 3.2, note that C∞
c ((−∞, t)) ⊂ LU(1)

t is a core for the generator

ı⊕Kt ↾ LU(1)
t of the K-strongly continuous one-parameter group s → ∆is

t ↾ LU(1)
t , as it is a dense invariant

subset of dom ı⊕Kt ↾ LU(1)
t [EN00, Proposition 1.7, Chapter 2]. Using Lemmas 2.15 and 2.16, we find that

ϕ
L

U(1)
t

(C∞
c ((−∞, t))) is dense in X

L
U(1)
t

. Thus to conclude the proof we only have to show that vectors in

C∞
c ((−∞, t)) ⊂ LU(1)

t can be approximated by vectors in LU(1)
t ∩Dst in ‖ · ‖t, where Dst is defined in (3.2).

Suppose s ≤ t; the proof for s > t is very similar.
Note that

D̂st := {f ∈ C∞
c (R) : supp(f) ⊂ (−∞, t) \ {s}} ⊂ Dst ∩ LU(1)

t (4.14)

and D̂st ⊂ C∞
c ((−∞, t)). Consider the map

ϕ : C∞
c ((−∞, t)) → L2((−∞, t), (t− x)dx),

f 7→ f ′,
(4.15)

which, by (4.13), is an isometry if C∞
c ((−∞, t)) is equipped with the norm ‖ · ‖t. To get the claim we show

that the closure of ϕ(D̂st) is the whole space L2((−∞, t), (t− x)dx).
To that end, we check that the orthogonal complement of ϕ(D̂st) in L2((−∞, t), (t− x)dx) is trivial:

0 =

∫ t

−∞

(t− x)f ′(x)g(x)dx (4.16)

for all f ∈ D̂st implies that g(x) = c
t−x for Lebesgue-almost all −∞ < x < s with some constant c. But such

g is not in L2((−∞, s), (t − x)dx) unless c = 0. Thus g must vanish almost everywhere in (−∞, s), and by
a similar argument, also in (s, t).

As a byproduct of the proof above, we see that the space Xt can be identifed with L2((−∞, t), (t−x)dx)
via the map (4.15), with the projectors Q̄s being multiplication with the characteristic function of (−∞, s).

Note that the inclusion
LU(1)((1,∞)) ⊂ LU(1)((0,∞)) (4.17)

is a +half-sided modular inclusion (see Definition 4.5 below). It is indeed the unique nontrivial irreducible
+half-sided modular inclusion up to unitary equivalence [Lon07, Corollary 4.3.2]. Similarly

LU(1)
−1 ⊂ LU(1)

0 (4.18)

is the unique nontrivial irreducible −half-sided modular inclusion up to unitary equivalence.

4.2 Decomposition

In this section we show that the family of standard subspaces induced by a half-sided modular inclusion
yields a family of differential modular inclusions (Definition 3.4). We start by recalling the notion of (single-
particle) half-sided modular inclusion and some of its relevant consequences following [Lon07].

Definition 4.5. Let K ⊂ H be real standard subspaces of a complex Hilbert space H. If

∆−it
H K ⊂ K for every ± t ≥ 0,

the inclusion K ⊂ H is called a ±half-sided modular inclusion of standard subspaces.
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In our context, we will work with −half-sided modular inclusions only.
As above, let P denote the group generated by translations and dilations on the real line R, which we
denote respectively with ϑ and δ, i.e. ϑ(t)(x) = x + t, δ(s)(x) = esx for t, s, x ∈ R. We denote by δ1 the
one-parameter subgroup of P of dilations of the interval (1,∞), i.e. δ1(s) = ϑ(−1)δ(s)ϑ(1).

A unitary representation V of the group P is said to have positive energy if the generator of the subgroup
of translations, t→ V (ϑ(t)), is a positive operator. It is said to be nonsingular if the kernel of the generator
of translations is trivial.

The following is the single-particle version of Wiesbrock’s theorem for half-sided modular inclusions
[Wie93], see [Lon07, Theorem 2.4.1].

Theorem 4.6. Let K ⊂ H be a −half-sided modular inclusion of standard subspaces in a Hilbert space H.
There exists a positive energy unitary representation V of P on H determined by

V (δ(2πs)) = ∆+is
H , V (δ1(2πs)) = JH∆+is

K JH .

The translation unitaries V (ϑ(t)) are defined by

V (ϑ(e2πt − 1)) = ∆+it
H JH∆−it

K JH

and satisfy V (ϑ(s))H ⊂ H, s ≤ 0, and K = V (ϑ(−1))H.

Definition 4.7. Let K ⊂ H be a −half-sided modular inclusion and V be its induced representation of P
from Theorem 4.6. K ⊂ H is said to be

(i) irreducible if V is irreducible;

(ii) nondegenerate if V is nonsingular;

(iii) trivial if K = H.

The following statement is the content of [Lon07, Corollary 4.3.2] which is obtained by decomposing the
representation V into irreducibles.

Proposition 4.8. Let K ⊂ H be a −half-sided modular inclusion. Then it is canonically a direct sum of
a nondegenerate −half-sided modular inclusion and a trivial −half-sided modular inclusion. If K ⊂ H is
a nondegenerate −half-sided modular inclusion then it is a countable direct sum of irreducible −half-sided

modular inclusions unitary equivalent to LU(1)
−1 ⊂ LU(1)

0 in (4.18).

From the latter decomposition, we easily derive our desired result.

Proposition 4.9. Let K ⊂ H be a −half-sided modular inclusion of standard subspaces in a Hilbert space
H. Then {V (ϑ(t))H}t∈R is a family of differential modular inclusions.

Proof. Combining Propositions 4.8 and 4.4 we have that {V (ϑ(t))H}t∈R decomposes into a direct sum of
families of differential modular inclusions, thus the conclusion follows by Lemma 4.1.

Of course a similar statement can be obtained starting from a +half-sided modular inclusion.

5 Examples

5.1 Quantum mechanics

As the simplest, but instructive example, let us consider a finite-dimensional symplectic Hilbert space; for
concreteness, K = Cn with σ(f, g) = Im(f, g), where (f, g) denotes the standard scalar product on Cn, and
τ(f, g) = Re(f,Mg) with some matrix M ≥ 1. (If M has no eigenvalue of 1, this may be interpreted as
a thermal state on n independent harmonic oscillators, cf. [NT93], and M = 1 corresponds to the ground
state of the oscillators.)

Example 5.1. Let E be a ( · , · )-orthogonal projector that commutes with M , and set L = EK. Then

SL(f) = 2(f, E arcoth(M)f) (5.1)

where we read arcoth(M) as ∞ on eigenspaces of M for eigenvalue 1. If Et := E(−∞, t) is the spectral
family of M , then Lt = EtK is a family of differential modular inclusions with

Tf(s, t) = 2(f, EsEt arcoth(M)f). (5.2)
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Proof. For the first statement, by choosing a basis in which both M and E are diagonal and applying
Lemma 4.1, it is sufficient to prove the statement for n = 1. In this case, either E = 0 (in which case the
statement is trivial) or E = 1 (assumed in the following). Hence L = K and M = m1 with some m ≥ 1.
Assume first m = 1. In that case, (K, τ, σ) is pure, and as in Remark 2.4, one has L∞ = K⊕ 0, L0 = 0⊕K.
From Proposition 2.11, one sees that both sides of (5.1) are infinite (unless f = 0, in which case both are 0).

Now let m > 1. In that case, one has D = −im−1 and

ı⊕ =

(
im−1 i

√
1−m−2

i
√
1−m−2 −im−1

)

. (5.3)

One then computes the modular operator ∆L of the spaces L = K ⊕ 0 and ı⊕L to be

∆ =

(
1 −2(m2 − 1)−1/2

−2(m2 − 1)−1/2 (m2 + 3)/(m2 − 1)

)

, (5.4)

so that log∆L has the eigenvalues±2 arcoth(m), and the projectorQL is obtained (for example by Lemma 2.6)
as

QL =

(
1

√
m2 − 1

0 0

)

. (5.5)

From Proposition 2.10, one then obtains (5.1).
For the differential modular inclusion, again by Lemma 4.1 it suffices to consider only the case n = 1. If

Et = 0, then St = 0 and (Ls,Lt) is trivially in differential modular position; both sides of (5.2) vanish. If
instead Et = Es = 1, i.e., Ls = Lt, differential modular position is clear and Tf (s, t) = St(f) in agreement
wih (5.2). Hence let Et = 1 and Es = 0. If m = 1, then f ∈ domSt = {0} must vanish, and (5.2) holds
trivially. If m > 1, then Qs = 0, D+

st = {0}, D−
st = K, one has Q̄s = 0, and both sides of (5.2) vanish.

Of course, the same results for the entropy are obtained in the usual formalism representing thermal states
of the harmonic oscillator as density matrices. It is interesting to note how our inequalities for d2St/dt

2

work out in this example. Writing M =
∑

jmjEj in spectral decomposition, the terms in Theorem 3.9 are
(in suggestive notation)

∂2Tf
∂s2

(t− 0, t) =
d2St(f)

dt2
= 2

∑

j

δ′(t−mj) arcoth(mj) (f, Ejf),
∂2Tf
∂t2

(t− 0, t) = 0, (5.6)

so that the inequality (3.20) turns into an equality; note that the distribution δ′ does not have a definite
sign, hence finding nontrivial lower estimates would not be possible.

In the above example, our condition of differential modular position was satisfied because M leaves each
subspace Lt invariant. Clearly, this will not be true for more general subspaces. We provide an explicit
counterexample:

Example 5.2. In the above setting, let n = 2, M = diag(2, 3), let L0 ⊂ K be the subspace spanned over R

by the vectors (1, 1) and (i, 0), and let L1 = K. Then (L0,L1) is not in differential modular position.

Proof. By explicit matrix computation, one can find the modular operators related to L0 and L1, and hence
an explicit formula for Q0 and S1. For f ∈ K, consider

δ := S1(f, f)− S1(Q0f,Q0f); (5.7)

one finds that if f = (a, b) with a, b ∈ R, then

δ = (b2 − a2) log 2. (5.8)

This is in general not positive, hence Q0 cannot be orthogonal with respect to S1.

In the same situation, one finds that S1(f, f) − S1(f,Q0f) = b(b − a) log 2; hence Tf(s, t) defined as in
(3.11) may be decreasing in s, and the conclusion of Lemma 3.6 fails.
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5.2 Conformal U(1)-current, vacuum state

As an example from quantum field theory, we can take the conformal U(1)-current in the vacuum state,
as already treated in Sec. 4.1. We briefly summarize the results here, and comment how the estimates on
derivatives of the entropy work out in this case.

Example 5.3. Let (K, τ, σ) be the pure symplectic Hilbert space defined in Sec. 4.1 and let Lt = LU(1)
t ⊂ K.

Then (Lt)t∈R is a family of differential modular inclusions, the space Xt is isomorphic to L2((−∞, t), (t −
x)dx) via ϕt : f 7→ f ′, and we have for f ∈ C∞

c (R) ⊂ K,

Tf (s, t) = 2π

∫ min{s,t}

−∞

(t− x)f ′(x)2 dx, St(f, f) = 2π

∫ t

−∞

(t− x)f ′(x)2dx. (5.9)

We note here that Tf is C1, as well as the restriction of smooth functions to the cones C±; one has

d2

dt2
St(f) =

∂2

∂s∂t
Tf

∣
∣
∣
s=t−0

= 2πf ′(t)2 ≥ 0,
∂2

∂t2
Tf

∣
∣
∣
s=t−0

= 0, (5.10)

so that the second derivative of St is positive and given by a boundary term only.
By the results of Sec. 4, a similar behaviour is exhibited by general half-sided modular inclusions. Namely,

in the notation of Section 4.2, let K ⊂ H be a −half-sided modular inclusion in the complex Hilbert space H,
Kt := V (ϑ(t))H and f ∈ H. By using Lemma 4.1, we have that St(f, f) and Tf (s, t) decompose along the
direct sum provided by Proposition 4.8. Precisely, if f =

∑

n>0 fn + f0 is the corresponding decomposition
of f , with f0 being the component relative to the trivial modular inclusion,

St(f, f) =
∑

n≥0

St(fn, fn), Tf (s, t) =
∑

n≥0

Tfn(s, t),

where St(fn, fn) and Tfn(s, t) with n > 0 are given by (5.9). The behaviour of the derivatives of St(f, f),
at least when taking the fn to have suitably fast decay, is analogous to (5.10), noticing also that St(f0, f0),
i.e., the contribution to the relative entropy given by the trivial half-sided inclusion component, is constant
in t. As a particular example, this applies to the subspaces associated with lightlike shifted wedges in the
real scalar free field, as in [CLR19].

The above situation is compatible with Proposition 3.7; however, the vanishing of ∂2

∂t2Tf is clearly a
special feature of this particular family of subspaces. Even a reparametrization will remove it:

Example 5.4. In Example 5.3, consider instead Lt = LU(1)
h(t) where h is a smooth, strictly increasing function.

Then (Lt)t∈R is still a family of differential modular inclusions, but

d2

dt2
St(f) = 2πh′(t)2f ′(t)2

︸ ︷︷ ︸

∂2Tf
∂s∂t

(t−0,t)

+2πh′′(t)

∫ t

−∞

f ′(x)2 dx

︸ ︷︷ ︸

∂2Tf

∂t2
(t−0,0)

. (5.11)

Of course, this is still compatible with Proposition 3.7, but while the first term (the “boundary term”)
is still positive, the second derivative of St will not be positive in general.

5.3 Conformal U(1)-current, thermal states

Let us now consider thermal (KMS) states on the conformal U(1)-current, as described in [BY99]. This
examples illustrates, in particular, that different scalar products τ can be chosen with respect to the same
symplectic form σ, and that this leads to different relative entropies.

Specifically, fixing β > 0, we choose on the non-completed space C∞
c (R) the bilinear form

τβ(f, g) := Re

∫ ∞

0

f̃(−p)g̃(p)
1− e−βp

p dp. (5.12)

The associated quasifree state fulfills the KMS condition with respect to translations [BY99].
The completion of the symplectic space C∞

c (R) with respect to τβ is Kβ := L2
C
(R+,

p
1−exp(−βp) dp) as a real

vector space; as before, we do not always denote the Forier transform explicitly. We apply the purification
procedure described in Section 2.1: it is easy to see that

σ(f, g) = τβ(f,Dg), f, g ∈ Kβ , (5.13)
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where D is the multiplication operator by i (1 − e−βp) on Kβ . In the polar decomposition D = C|D|, the
operators |D| and C act by multiplication with (1 − e−βp) and i, respectively. This induces a complex
structure ı⊕ on K⊕

β := Kβ ⊕Kβ by (2.3); let us denote the complex scalar product as 〈·, ·〉β .
For t ∈ R, we define Lβt := C∞

c ((−∞, t))) ⊂ Kβ where the bar indicates norm closure in Kβ . The bilinear
form τβ is translation invariant, thus we have the following immediate proposition.

Proposition 5.5. The symplectic action of translations (ϑ(t)⋆f)(x) = f(x − t), f ∈ C∞
c (R), extends to a

unitary representation of the group of translations ϑ on K⊕
β by

V (ϑ(t))
(
(f ⊕ 0) + ı⊕(g ⊕ 0)

)
= ϑ(t)⋆f ⊕ 0 + ı⊕(ϑ(t)⋆g ⊕ 0), (5.14)

f, g ∈ C∞
c (R). Furthermore it acts covariantly on the subspaces Lβt , namely

V (ϑ(t))Lβs = Lβs+t (5.15)

for every s, t ∈ R.

Regarding the decomposion of K⊕
β with respect to Lβt , we find:

Proposition 5.6. For each t, the subspace Lβt ⊕ 0 ⊂ K⊕
β is standard and factorial, i.e., in the notation of

Section 2.1 we have Lβt = (Lβt )f and K⊕
β = (Lβt )⊕f .

Proof. We first show (Lβt )∞ ≡ Lβt ∩ ı⊕Lβt = {0}. A generic element in this intersection is of the form

f ⊕ 0 = ı⊕(g⊕ 0) for some f, g ∈ Lβt . Since ı⊕(g⊕ 0) = −Dg⊕C
√
1 +D2g, we have C

√
1 +D2g = 0, which

implies that g = 0, since C
√
1 +D2 has trivial kernel.

For establishing (Lβt )0 ≡ Lβ⊥t = {0}, where ⊥ indicates the orthogonal complement in K⊕
β , we use a

modified Reeh-Schlieder argument as follows. Let f ∈ Lβ⊥t , and let ϕ = ϕa ⊕ 0 + ı⊕(ϕb ⊕ 0) with arbitrary
ϕa,b ∈ C∞

c (R). Denoting ϕs = V (ϑ(s))(ϕ) (see Proposition 5.5), we notice that 〈f, ϕs〉β is analytic in
s ∈ R+ iR+ (indeed, we can differentiate under the integral sign by use of dominated convergence). But for

large negative s, we have ϕs ∈ Lβt + ı⊕Lβt , and hence 〈f, ϕs〉β = 0. Due to analyticity, the same then holds
for all s, in particular 〈f, ϕ〉β = 0. Therefore, writing f = f1 ⊕ f2,

0 = Re〈f, ϕ〉β = τβ(f1, ϕa)− σ(f1, ϕb)− τβ(C
√

1 +D2f2, ϕb). (5.16)

In particular, choosing ϕb = 0 and varying ϕa ∈ C∞
c (R) yields f1 = 0; then also f2 = 0 since C

√
1 +D2 has

trivial kernel. Hence f = 0.
Finally, we show (Lβt )a ≡ Lβt ∩ Lβ′t = {0}. Any f ∈ Lβt is of the form f = τβ-limn→∞ ϕn for some

ϕn ∈ C∞
c ((−∞, t)). Since the τβ-norm is stronger than the L2-norm, this implies f ∈ L2(R) and supp f ⊂

(−∞, t]. If now also f ∈ Lβ′t , one has σ(f, ϕ) = 0 for all ϕ ∈ C∞
c ((−∞, t)). This means

∫
f(x)ϕ′(x) dx = 0

for all these ϕ, which by standard argument implies that f is constant on (−∞, t). Hence f = 0.

Following [BY99], one can determine the modular group associated with Lβ0 :

Proposition 5.7. The modular group U0(u) := ∆iu
Lβ

0

of Lβ0 as a standard subspace w.r.t. K⊕
β is given by

U0(u)
(
ψ ⊕ 0 + ı⊕(ϕ⊕ 0)

)
= δuψ ⊕ 0 + ı⊕(δuϕ⊕ 0) (5.17)

for u ∈ R, ϕ, ψ ∈ C∞
c ((−∞, 0)), and

δuf(x) := f
(

− β

2π
log

(
1 + e2πu(e−2πx/β − 1)

))

(5.18)

for f ∈ C∞
c ((−∞, 0)).

Proof. δu fulfils the following properties [BY99, p. 620]:

(i) It preserves the subspace C∞
c ((−∞, 0));

(ii) it satisfies the group property, i.e., δu ◦ δu′ = δu+u′ ;

(iii) there holds τβ(δuf, δug) = τβ(f, g) and σ(δuf, δug) = σ(f, g);
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(iv) setting ω2(f, g) := τβ(f, g)+ iσ(f, g), for every f, g ∈ C∞
c ((−∞, 0)) the function u 7→ ω2(f, δug) has an

analytic continuation into the strip S(−1, 0) and

ω2(f, δu−ig) = ω2(δug, f). (5.19)

Thus item (i) and item (iii) show that (5.17) is a well-defined and unitary mapping, and by item (ii) U0 is a
unitary group. Using complex linearity of the scalar product 〈·, ·〉β , item (iv) implies the KMS property in
the form

〈f, U0(u − i)g〉β = 〈U0(u)g, f〉β for all f, g ∈ Lβ0 , (5.20)

which characterizes U0 as the modular group of Lβ0 .

We can thus compute − log∆0, the generator of the modular group action of Lβ0 : for f ∈ C∞
c ((0,∞)) ⊂

Lβ0 we have

(− log∆0)f ⊕ 0 := ı⊕
d

du
U0(u)(f ⊕ 0)

∣
∣
u=0

= ı⊕
d

du
δuf ⊕ 0

∣
∣
u=0

= ı⊕
d

du
f
(

− β

2π
log

(
1 + e2πu(e−2π·/β − 1)

))
∣
∣
∣
u=0

⊕ 0

= −ı⊕
(
f ′(·)β(1 − e2π·/β)⊕ 0

)
.

(5.21)

As an immediate consequence of Proposition 2.10, we now obtain:

Proposition 5.8. For f ∈ (C∞
c ((−∞, t))⊕ 0) ⊂ Lβt we have

SLβ
t
(f, f) =

∫ t

−∞

(f ′(x))2β(1 − e2π(x−t)/β) dx. (5.22)

Further, analogous to the vacuum case in Sec. 4.1, we can show:

Proposition 5.9. {Lβt }t∈R is a family of modular differential inclusions (Definition 3.4).

Proof. The proof of condition (i) is very similar to Proposition 4.4. Condition (ii) follows immediately by
Lemma 3.3(c).

The entropy for general f ∈ C∞
c (R) is less directly accessible, since the action of the modular group on

f ∈ C∞
c ((t,∞)) is not explicitly known. Nevertheless, we can show:

Proposition 5.10. For f ∈ C∞
c (R)⊕ 0,

SLβ
t
(f, f) =

∫ t

−∞

dx(f ′(x))2β(1 − e2π(x−t)/β) dx. (5.23)

Proof. Similarly to the proof of Proposition 4.4, given f ∈ C∞
c (R) and chosen t ≤ s ∈ R such that supp(f) ⊂

(−∞, s), we have a sequence {fn}n≥0 in

D̂ts := {g ∈ C∞
c (R) : supp(g) ⊂ (−∞, s) \ {t}} ⊂ Dts (5.24)

such that ‖f − fn‖s → 0 and thus ‖f − fn‖t → 0 since s ≥ t. If Qt denotes the projection (2.16) of

the subspace Lβt , we further have that ‖f − Qtfn‖t ≤ ‖f − fn‖t + ‖fn − Qtfn‖t = ‖f − fn‖t → 0, thus
SLβ

t
(f, f) = ‖f‖2t = limn ‖Qtfn‖2t . If ϕs is the extension to Xs of the isometric mapping

ϕs : C
∞
c ((−∞, s)) → L2((−∞, s), β(1 − e2π(x−s)/β) dx)

f 7→ f ′,
(5.25)

(where C∞
c ((−∞, s)) is equipped with norm ‖ · ‖s), then ϕs(Qtfn) = Θ(t − · )ϕs(fn). Multiplication by

Θ(t − · ) is continuous in L2((−∞, s), β(1 − e2π(x−s)/β) dx), thus Θ(t − · )ϕs(fn) → Θ(t − · )ϕs(f). This
implies that

Θ(t− · )f ′
n = Θ(t− · )ϕs(fn) → Θ(t− · )ϕs(f) = Θ(t− · )f ′ (5.26)

in L2((−∞, t), β(1 − e2π(x−t)/β) dx), which yields the statement using Proposition 5.8.

Let us summarize the results:
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Example 5.11. In the symplectic Hilbert space (Kβ , τβ , σ) of the conformal U(1)-current with KMS state

induced by τβ, consider Lβt = C∞
c (−∞, t). Then {Lβt }t∈R is a family of differential modular inclusions, and

for f ∈ C∞
c (R),

Tf(s, t) = ‖Q̄sϕtf‖2t =
∫ min{s,t}

−∞

dx(f ′(x))2β(1 − e2π(x−t)/β) dx. (5.27)

Computing the second derivative of the relative entropy, we have

d2SLβ
t
(f)

dt2
= 2π(f ′(t))2

︸ ︷︷ ︸

∂2Tf
∂s∂t

(t−0,0)≥0

− (2π)2

β

∫ t

−∞

dx (f ′(x))2e−2π(x−t)/β

︸ ︷︷ ︸

∂2Tf

∂t2
(t−0,0)≤0

. (5.28)

Thus in the present case, the estimate in Proposition 3.7 bounds the second derivative of the entropy from
below by its negative bulk term, i.e., the second term in (5.28).

5.4 Commutative algebras

It is instructive to consider also the case of abelian CCR algebras, i.e., subspaces L with L ⊂ L′.

Example 5.12. Let (X,M, µ) be a measure space such that K := L2
R
(X, dµ) is separable. For measurable

subsets Y ⊂ X, set LY := L2
R
(Y ) ⊂ K. For (K, τ, 0) with τ the L2 scalar product, identify K⊕ with L2

C
(X, dµ)

as in Remark 2.5. Then XY can be identified with L2
R
(Y, dµ) via ϕY : f 7→ Im f ↾ Y , and

SY (f, f) = 2

∫

Y

(Im f)2dµ. (5.29)

For any two such subsets Y, Z, the pair (LZ ,LY ) is in differential modular position, and Q̄Z acts on XY by
multiplication with the characteristic function of Y ∩ Z.

Proof. By Remark 2.5, we have L⊕
0 = L2

C
(Y c, dµ), La = LY , Lf = L∞ = 0. The formula (5.29), and with it

the proposed form of ϕY , then follows directly from Proposition 2.9; note that SY is bounded and defined
on all of K⊕. Also, noting that the projector QZ (which acts by QZf = χZ Im f) is already orthogonal, we
have D+

ZY = iL2
R
(Z ∩ Y ), D−

ZY = {f ∈ K : Im f ↾ Z = 0}, and one sees that Q̄Z multiplies with χZ∩Y in
XY .

As a special case, let us consider:

Example 5.13. Let K = L2
R
(R), K⊕ = L2

C
(R) with subspaces Lt = L2

R
(−∞, t). Then Lt is a family of differ-

ential modular inclusions, and we have St(f, f) = 2
∫ t

−∞
(Im f(x))2dx and Tf (s, t) = 2

∫min(s,t)

−∞
(Im f(x))2dx.

We note that in this example, the function Tf is not C1. Clearly

d2St
dt2

= 2
d

dt
(Im f(t))2, (5.30)

thus St will not be convex in general. Note that ∂2Tf/∂
2s = 2 d

ds (Im f(s))2 and ∂2Tf/∂t
2 = 0 for s < t, so

that the estimate in Theorem 3.9 is saturated.

6 Conclusions

In this paper, we have analyzed the relative entropy between coherent excitations of a general quasifree state
on a CCR algebra, with respect to the algebra generated by a generic closed subspace. We gave an explicit
description of the relative entropy in terms of single-particle modular data.

Also, we analyzed the change of the relative entropy along an increasing one-parameter family of sub-
spaces, establishing an abstract notion of bulk and boundary changes. Convexity of the entropy (or the
QNEC) is in general replaced by certain lower estimates of the second derivative, where both bulk and
boundary terms can contribute.

An instrumental part of this analysis was the notion of differential modular position of two subspaces,
meaning that the projector onto one subspace is orthogonal with respect to the scalar product induced by
the entropy form of the other. While this is a nontrivial condition, we showed that it is fulfilled in a number
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of relevant examples; in particular it includes, but generalizes, the well-known notion of half-sided modular
inclusions.

As the condition of differential modular position seems a fruitful tool, it would certainly be of interest
to investigate whether it holds, possibly in a generalization, in a wider context than discussed here, both
in other models of (linear) quantum fields and with respect to more general positions of subalgebras than
treated in examples here. In particular, one would expect that it can be formulated employing notions of
category theory, akin to the “locally covariant” setting of quantum field theory [BFV03]. We hope to report
on this issue elsewhere.

Also, it would be of interest to generalize our framework beyond CCR algebras to general inclusions of von
Neumann algebras; in the context of quantum field theory, this would correspond to models beyond linear
fields. Clearly, a challenge is the limited availability of concrete examples beyond CCR algebras, in particular
with sufficiently explicit descriptions of the relative modular operator. Possibly integrable models in low
space-time dimensions, which are (fully or partially) known to fulfill quantum inequalities [BCF13, BC16],
can provide some test cases in this respect.

A Relative entropy on C
∗ and von Neumann algebras

The notion of relative entropy for states on general von Neumann algebras was first introduced by Araki
[Ara76, Ara77]. We recall its definition and relevant properties, following [OP04].

Let M be a von Neumann algebra on a Hilbert space H, let ω = 〈ξ, · ξ〉 a vector state (with some ξ ∈ H),
and ϕ another state on M. The relative entropy between ω and ϕ (with respect to M) is defined as

SM(ω‖ϕ) =
{

−〈ξ, log∆(ϕ/ω′
ξ)ξ〉 if ξ ∈ suppϕ,

∞ otherwise.
(A.1)

Here ω′
ξ is the state 〈ξ, · ξ〉 restricted to M′, and ∆(ϕ/ω′

ξ) denotes the spatial derivative.
In the case where both ω and ϕ are given by cyclic and separating vectors ξ, ψ, the relative modular ∆ψ,ξ

is defined and we have (see [OP04, Theorem 5.7], [CLR19, Proposition 4.1])

SM(ω‖ϕ) = i
d

dt
〈ξ,∆it

ψ,ξξ〉
∣
∣
∣
t=0

. (A.2)

If A is a C∗-algebra and ω, ϕ are positive linear functionals on A, then SA(ω‖ϕ) is defined as

SA(ω‖ϕ) := SA∗∗(ω̄‖ϕ̄),

where the right-hand-side denotes the relative entropy with respect to the universal enveloping von Neumann
algebra A∗∗ of A and ω̄, ϕ̄ are the normal extensions of ω, ϕ to A∗∗.

Suppose there is a representation π of A, π : A → B(H), where ω is a vector state, i.e., there is ξ ∈ H
with

ω̃(π(a)) := 〈ξ, π(a)ξ〉 = ω(a), a ∈ A,
and for which there is a normal state ϕ̃ on π(A)′′ such that

ϕ(a) = ϕ̃(π(a)), a ∈ A.

Then by applying Kosaki’s formula for the relative entropy [OP04, Theorem 5.11], we have

SA(ω‖ϕ) = Sπ(A)′′(ω̃‖ϕ̃). (A.3)

We recall the following properties of the relative entropy:

Lemma A.1. [OP04, Corollary 5.12, iv] Let Mi be an increasing net of von Neumann subalgebras of M
with the property (∪iMi)

′′ = M. Then SMi
(ω1 ↾ Mi, ω2 ↾ Mi) converges to SM(ω1, ω2), where ω1, ω2 are

two positive normal linear functionals on M.

Lemma A.2. [OP04, follows from Corollary 5.20] Let M1 and M2 be von Neumann algebras, let ω1, ϕ1 be
normal states on M1 and let ω2, ϕ2 be normal states on M2. Then

SM1⊗M2(ω1 ⊗ ω2‖ϕ1 ⊗ ϕ2) = SM1(ω1‖ϕ1) + SM2(ω2‖ϕ2). (A.4)

Lemma A.3. [OP04, follows from Theorem 5.3] Let ω and ϕ be two normal states on a von Neumann
algebra M, and denote by ω1 and ϕ1 the restrictions of ω and ϕ to a von Neumann subalgebra M1 ⊂ M
respectively. Then SM1(ω1‖ϕ1) ≤ SM(ω‖ϕ).
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