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GALOIS CORRESPONDENCE AND FOURIER ANALYSIS ON LOCAL

DISCRETE SUBFACTORS

MARCEL BISCHOFF, SIMONE DEL VECCHIO, AND LUCA GIORGETTI

Abstract. Discrete subfactors include a particular class of infinite index subfactors and all finite
index ones. A discrete subfactor is called local when it is braided and it fulfills a commutativity
condition motivated by the study of inclusion of Quantum Field Theories in the algebraic Haag–
Kastler setting. In [BDVG21], we proved that every irreducible local discrete subfactor arises as the
fixed point subfactor under the action of a canonical compact hypergroup. In this work, we prove
a Galois correspondence between intermediate von Neumann algebras and closed subhypergroups,
and we study the subfactor theoretical Fourier transform in this context. Along the way, we extend
the main results concerning α-induction and σ-restriction for braided subfactors previously known
in the finite index case.
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1. Introduction

The first surprising result which came out of the theory of subfactors is that the Jones index
[Jon83], a number which measures the relative size of an infinite dimensional “continuous” tracial
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factor (a von Neumann algebra endowed with a non-zero tracial state and whose center consists only
of the scalar multiples of the identity) inside another factor of the same type can only take discrete
values between 1 and 4, and every value above 4. Another unexpected fact which appeared soon
after, and which gives an intuition on the previously mentioned breakthrough, is that all possible
inclusions of such factors can be described by some kind of symmetry “group-like” object (finite when
the index is finite) of the bigger factor, solely determined by the relative position of the smaller
factor.

This point of view has been adopted by Ocneanu [Ocn88], who introduced an invariant for
finite index finite depth II1 subfactors, which he called paragroup and which he used to give a
list (later proven to be a complete list as a consequence of Popa’s classification theorem [Pop90])
of all possible subfactors with index less than 4. An abstract paragroup, see also [EK98], is a
generalization of a (finite) group together with its unitary representations, where the underlying
sets are replaced by a pair of graphs and the group composition law is replaced by the concatenation
of paths. In the subfactor context, the paragroup is designed to describe the collection of higher
relative commutants of the subfactor arsing from the iterated Jones basic construction. The higher
relative commutants can also be equivalently described in the language of Popa’s standard λ-lattices
[Pop95a] and Jones’ planar algebras [Jon99], or categorically as hom spaces in the 2-C∗-category
(with two objects N and M) of M-M, M-N , N -M and N -N bimodules generated by the standard
M-N bimodule ML2MN of the subfactor N ⊂ M. Throughout this paper we mainly deal with
irreducible subfactors, namely with those having trivial relative commutant N ′ ∩M = C1.

As already mentioned by Ocneanu [Ocn88] in the finite index finite depth setting, the two easiest
non-group families of examples of paragroups are given by quantum groups and by quotients of
groups by non-normal subgroups.

The first family corresponds to subfactors with depth 2, namely those such that the 3-steps
relative commutant N ′ ∩M2 is a factor, where N ⊂ M ⊂ M1 ⊂ M2 is the beginning of the Jones
tower. More precisely, assuming irreducibility and depth 2, there is a finite dimensional Kac algebra
(a Hopf *-algebra) in the finite index case [Lon94], [Szy94], [Dav96], or a Woronowicz compact
quantum group (in the von Neumann algebraic sense [Vae01], [KV03]) in the infinite index case
(assuming the existence of a normal faithful conditional expectation) [HO89], [EN96], acting on
M such that N is the fixed point subalgebra. For depth 2 subfactors, the intermediate algebras
P sitting in N ⊂ P ⊂ M are also known to correspond to “subgroups” of the quantum group
associated with N ⊂ M, via a Galois-type correspondence [NT60], [ILP98], [Tom09].

In this paper, continuing the analysis of [Bis17], [BDVG21], we consider subfactors which are
somehow orthogonal to those with depth 2, and which include the second family of examples of
paragroups mentioned above (quotients of groups by non-normal subgroups are in fact double coset
hypergroups). These subfactors are called local and they appear naturally in the algebraic formu-
lation of Quantum Field Theory [Haa96]. They are orthogonal to depth 2 subfactors in the sense
that a subfactor which is both local and depth 2 is necessarily a classical compact group fixed point.
Roughly speaking, a subfactor is local if the tensor C∗-category generated by the N -N bimod-
ule NL

2MN is braided and if an additional commutativity constraint involving the Pimsner–Popa
bases [Pop95b] and the braiding holds. Assuming irreducibility and locality, in the finite index case
there is a finite hypergroup (in the sense of [SW03]) acting on M and having N as the fixed point
subalgebra [Bis17]. In the infinite index case (assuming a regularity condition called discreteness in
[ILP98]) the same holds for a compact hypergroup [BDVG21]. The subfactor theoretical hypergroup
is easy to define. As a set, it consists of all extreme (in the sense of convex sets) N -bimodular unital
completely positive maps on M. By definition, it contains the N -fixing *-automorphisms of M,
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hence it can be regarded as a collection of “generalized gauge symmetries” of N ⊂ M acting on M
by ucp maps. We denote it by K(N ⊂ M). 1

The purpose of this paper is twofold. On the one hand, we prove a Galois-type correspondence
between the intermediate subalgebras P sitting in N ⊂ P ⊂ M and the closed subhypergroups H
of K(N ⊂ M). On the other hand, we study the subfactor theoretical Fourier transform (mainly
in the case of local discrete subfactors), we relate it to the hypergroup theoretical Fourier transform
and we prove classical inequalities and uncertainty principles.

In Section 2, we review some basics of subfactor theory with emphasis on irreducible type III
subfactors. We also recall the results from [BDVG21] which we need in the following sections. In
particular in Section 2.5, assuming that N ⊂ M is discrete and local, we recall the identification
of the 2-steps relative commutant M′ ∩M2 with the abelian von Neumann algebra of essentially
bounded functions on K(N ⊂ M) with respect to the Haar measure (Proposition 2.19). We also
recall the identification of the convex set of N -bimodular ucp maps on M, denoted by UCPN (M),
with the probability Radon measures on K(N ⊂ M) (Theorem 2.17).

In Section 3, we extend the definitions of α-induction and σ-restriction, introduced in [LR95],
[BE98] based on an idea of Roberts [Rob76], [Rob], from finite to infinite index discrete subfactors.
For later use, we prove the “main formula” for α-induction (Theorem 3.6) and the ασ-reciprocity
theorem (Theorem 3.7) for local discrete subfactors. These results should be compared with those
contained in [Xu05] for subfactors arsing from strongly additive pairs of conformal nets.

In Section 4, we show that if N ⊂ M is discrete and local and P sits in between N ⊂ P ⊂ M,
then P ⊂ M is also discrete and local (Theorem 4.5). Note that the intermediate inclusion P ⊂ M
is harder to treat than N ⊂ P, in the sense that it does not even admit in general (in the absence
of discreteness and locality) a normal faithful conditional expectation. See [ILP98], [Tom09] and
references therein.

In Section 5, we show the Galois-type correspondence between intermediate algebras P and
closed subhypergroups H of K(N ⊂ M). Given H, the associated P is given by the H-fixed point
subalgebra MH . Given P, the associated H is the set of extreme P-fixing ucp maps on M. The
two maps are each other’s inverse and H = K(P ⊂ M) (Theorem 5.2).

In Section 6, we study the Fourier transform for local discrete subfactors, possibly with infinite
index, and for the associated compact hypergroups. The Fourier transform for subfactors (and for
the associated paragroups) has been introduced by Ocneanu [Ocn91] in the finite index finite depth
II1 subfactor setting. Since then, it has been a cornerstone in the analysis of subfactors. More
recently, is has been extensively studied for finite index subfactors and planar algebras [JLW16], for
Kac algebras [LW17] and locally compact quantum groups [JLW18], proving a number of inequalities
and uncertainty principles which generalize classical results from the Fourier analysis on groups. See
[JJL+20] for a concise description of the program. In the type III setting, the Fourier transform
can be naturally defined for infinite index subfactors as well. It is a linear map running between the
2-steps relative commutants M′ ∩M2 and N ′ ∩M1. We denote it by F : M′ ∩M2 → N ′ ∩M1.

In Section 6.1, we extend the subfactor theoretical Fourier transform to the complex vector space
generated by all N -bimodular ucp maps on M (Proposition 6.10), denoted by SpanC(UCPN (M)),
in which the natural domain of definition of the Fourier transform M′∩M2 embeds. We regard this
vector space as a noncommutative analogue of the complex bounded Radon measures associated
with the subfactor. The composition and a notion of adjoint in SpanC(UCPN (M)) [AC82] provide
natural candidates for a convolution and an adjoint of “noncommutative measures”.

In the subsequent sections, we assume in addition that N ⊂ M is discrete and local. In Sec-
tion 6.2, we identify the Fourier transform on N ⊂ M with the ordinary hypergroup theoretical
Fourier transform on K(N ⊂ M). In Section 6.3, we show Parseval’s identity (Proposition 6.24)

1In the finite index case, the hypergroup structure of K(N ⊂ M) is completely determined by the 2-steps relative
commutants N ′ ∩M1 and M′ ∩M2 together with the subfactor theoretical Fourier transform, cf. Section 6.
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and Hausdorff–Young’s inequality (Proposition 6.29). In Section 6.4, we introduce an additional
multiplication (called convolution and denoted by x ∗ y) and an involution operation (denoted by
x♯) on the von Neumann algebra M′ ∩ M2. These operations are mapped by the Fourier trans-
form to the ordinary product and adjoint of bounded linear operators, F(x ∗ y) = F(x)F(y) and
F(x♯) = F(x)∗, but they are not defined by these relations, namely x ∗ y := F−1(F(x)F(y)) and
x♯ := F−1(F(x)∗), as it is usually done for finite index subfactors / planar algebras. Indeed, the
inverse Fourier transform F−1 is globally defined on N ′ ∩ M1 if and only if the index is finite.
Instead, they are defined by means of the embedding of M′ ∩M2 into SpanC(UCPN (M)) which
corresponds to the embedding of L∞(K(N ⊂ M), µK) into the Radon measures on K(N ⊂ M)
given by f 7→ f dµK (Remark 6.9), where µK is the Haar measure. In Section 6.5, we show Young’s
inequality for the convolution (Proposition 6.46). In Section 6.6, we show the inversion formula
(Proposition 6.50) and a Donoho–Stark uncertainty principle (Proposition 6.52) for the Fourier
transform.

2. Preliminaries

Here we recall some basics of subfactor theory [GdlHJ89], [JS97], [Kos98]. We shall focus on
inclusion of infinite factors, mainly type III, with finite or infinite index.

2.1. The canonical endomorphism

Let N ⊂ M be a subfactor acting on a separable Hilbert space H. Denote by B(H) the set of
bounded linear operators on H. Throughout this paper we shall mainly be interested in irreducible
subfactors, i.e. N ′ ∩ M = C1. Here N ′ is the commutant of N in B(H) and 1 is the identity
operator on H sitting in both N and M. If M acts standardly on H, i.e. if it admits a cyclic and
separating vector, and if N and M are infinite factors, by a result of Dixmier–Maréchal [DM71]
there are jointly cyclic and separating vectors for N and M in H. We recall below the definition of
Longo’s [Lon87] canonical and dual canonical endomorphism:

Definition 2.1. Let ξ ∈ H be jointly cyclic and separating for N and M. Denote by JN ,ξ, JM,ξ,
or simply JN , JM, the respective modular conjugations. Denote by jN := Ad JN ,ξ, jM := Ad JM,ξ

the adjoint actions on B(H). Let

γ(x) := jN (jM(x)), x ∈ M.

Let also θ := γ↾N .

It is easy to see that γ ∈ End(M) and θ ∈ End(N ). They depend on the choice of ξ only up to
conjugation with a unitary in N , thus their unitary equivalence class is canonical for the subfactor.
γ is called the canonical endomorphism and θ the dual canonical endomorphism.

The canonical endomorphism gives a convenient way of describing the Jones tower/tunnel [Jon83]
in the infinite factor setting. Let M1 := jM(N ′) be the Jones extension of M given by N . Then
jN (jM(M1)) = N . The chosen vector ξ is cyclic and separating for M1 as well and JM1

=
JMJNJM, as JN = JN ′ , hence JMJM1

= JNJM. Setting γ1(x) := jM(jM1
(x)) for every x ∈ M1,

we have that γ1 ∈ End(M1), γ = γ1↾M, and

θ(N ) ⊂ γ(M) ⊂ γ1(M1) = N ⊂ M ⊂ M1

is the beginning of the Jones tower/tunnel. Moreover, θ(x) = jγ(M)(jN (x)) for every x ∈ N .
In the following we shall often distinguish between N and its embedded image into M.

Definition 2.2. Let ι : N → M be the inclusion morphism of N into M. Denote by ῑ : M → N
the morphism defined by ῑ := ι−1γ. The definition is well posed since γ(M) is contained in ι(N ).
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With this notation,

γ = ιῑ, θ = ι−1 ◦ γ ◦ ι = ῑι.

The morphism ῑ is called a conjugate of the inclusion morphism ι [Lon90], [Lon18, Sec. 2.2]. Note
that ῑ is not a conjugate in the 2-categorical sense of the conjugate equations [LR97], [GL19], unless
the index of N ⊂ M (to be defined below) is finite. Note also that if N = M, then ῑ = ι−1.

2.2. Conditional expectations

We recall the definition of conditional expectation, see [Stø97] and references therein. A con-
ditional expectation from M onto N is a linear map E : M → M such that E(M) ⊂ ι(N )
and

(i) E(1) = 1. (unitality)
(ii) E(M+) ⊂ M+, where M+ is the positive cone of M. (positivity)
(iii) E(ι(y)xι(z)) = ι(y)E(x)ι(z) for every x ∈ M and y, z ∈ N . (N -bimodularity)

It follows that E2 = E and E(M) = ι(N ). Moreover, ‖E‖ = 1, where ‖E‖ is the bounded linear
operator norm of E on M as a Banach space, E is *-preserving and completely positive.

We shall also use the notation E : M → N ⊂ M and denote by E(M,N ) the set of normal
(continuous in the ultraweak operator topology) faithful (E(x∗x) = 0 for x ∈ M implies x = 0)
conditional expectations from M onto N . The following terminology is due to [FI99].

Definition 2.3. A subfactor N ⊂ M is called semidiscrete if E(M,N ) is not empty.

If M is a II1 factor, then every subfactor is semidiscrete. Our motivation for studying semidiscrete
subfactors in the type III setting is given by the analysis of nets of local observables [LR95].

Let E ∈ E(M,N ). Choose a unit vector Ω ∈ H which is cyclic and separating for M and such
that the associated state is E-invariant, i.e. (Ω, xΩ) = (Ω, E(x)Ω) for every x ∈ M. The Jones
projection, defined by eNxΩ := E(x)Ω for every x ∈ M, depends only on E and on the positive
cone of Ω [Kos89, Lem. A]. If Ω is chosen in the same positive cone with respect to M of the jointly
cyclic and separating vector ξ, then JM,Ω = JM,ξ and

M1 = jM(N ′) = 〈M, eN 〉.

We recall the following crucial representation result for conditional expectations in the infinite
factor setting [Lon89, Prop. 5.1]. Let γ and θ be the canonical and dual canonical endomorphism.

Proposition 2.4. Every E ∈ E(M,N ) admits a Connes–Stinespring representation in H

E = ι(w)∗γ( · )ι(w)

where w ∈ N is an isometry in Hom(idN , θ) := {y ∈ N : yx = θ(x)y for every x ∈ N}, thus
ww∗ ∈ Hom(θ, θ) = θ(N )′ ∩ N , and γ−1

1 (ww∗) ∈ N ′ ∩M1 is a Jones projection for E.

Remark 2.5. Assuming irreducibility of N ⊂ M, namely N ′ ∩ M = C1, then E(M,N ) is either
empty or it consists of a single element E. If the factors are infinite, the isometry w ∈ Hom(idN , θ)
associated with E is also unique (up to a phase factor).

For every E ∈ E(M,N ), there is an associated operator-valued weight E−1 : N ′ → M′ ⊂ N ′

in the sense of [Haa79a], [Haa79b] (a possibly unbounded analogue of a conditional expectation),
characterized by Kosaki [Kos86] using the spatial derivative [Con80]. E−1 is normal faithful and
semifinite. It is basically never unital, unless N = M.

Definition 2.6. E is said to have finite index if E−1 is finite (bounded and everywhere defined).
The subfactor N ⊂ M has finite index if for some (hence for all) E ∈ E(M,N ), E−1 is finite.
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Its value on the identity operator, denoted by Ind(E) := E−1(1) [Kos86, Thm. 2.2]. Moreover,
Ind(E) = λ1 with λ ∈ [1,∞] and with the same quantization behaviour below the value 4 as the
Jones index with respect to the trace [Kos86, Thm. 5.4], [Jon83].

Let Ê := jME−1jM : M1 → M ⊂ M1 be the operator-valued weight dual to E, in general only
normal faithful and semifinite. Discreteness [ILP98], which is equivalent to Popa’s quasi-regularity

[Pop99] e.g. when N is type II1 [JP19, Prop. 3.22], amounts to a further regularity condition on Ê.
This regularity condition is always fulfilled when the index is finite.

Definition 2.7. A subfactor N ⊂ M is called discrete if it is semidiscrete and if some (hence all)

E ∈ E(M,N ) are such that the restriction of Ê to N ′ ∩M1 is semifinite.

The following characterization of discreteness is a consequence of [DVG18, Prop. 5.2, 5.5], cf.
[BDVG21, Prop. 2.5]. We recall it in the special case of irreducible subfactors.

Proposition 2.8. Let N ⊂ M be an irreducible semidiscrete subfactor, with N , M infinite factors.
Then N ⊂ M is discrete if and only if there is a family {ψi}i ⊂ M fulfilling the following two
conditions:

(i) ψ∗
i eNψi are non-zero mutually orthogonal projections,

∑
i ψ

∗
i eNψi = 1 in the strong operator

topology, and E(ψiψ
∗
i ) = 1. (Pimsner–Popa basis condition)

(ii) ψi ∈ Hom(ι, ιρi) := {y ∈ M : yι(x) = ι(ρi(x))y for every x ∈ N}, where ρi ∈ End(N ).
(charged fields condition)

Remark 2.9. Condition (i) means that {ψi}i is a Pimsner–Popa basis for N ⊂ M with respect to
the unique expectation E [PP86], [Pop95b]. The condition E(ψiψ

∗
i ) = 1 is in general not included in

the definition of Pimsner–Popa basis. It guarantees the uniqueness of the Pimsner–Popa expansion.
Condition (ii) is an intertwining condition. The terminology charged field comes from the analysis
of DHR (after Doplicher–Haag–Roberts) superselection sectors in algebraic Quantum Field Theory
[DHR71], [DR72].

Note that each ρi is a subendomorphism of θ, in symbols ρi ≺ θ, as wi := ῑ(ψ∗
i )w is an isometry

in Hom(ρi, θ) := {y ∈ N : yρi(x) = θ(x)y for every x ∈ N}. Moreover, θ =
⊕

i ρi, namely
θ =

∑
i wiρi( · )w

∗
i , as

∑
i wiw

∗
i = 1. The ρi in the above proposition can be chosen to be irreducible,

namely Hom(ρi, ρi) = C1, and with finite tensor C∗-categorical dimension [LR97].
In fact by [ILP98, Sec. 3], assuming discreteness and irreducibility of N ⊂ M, every irreducible

subendomorphism ρ ≺ θ has finite dimension d(ρ). The multiplicity nρ of ρ in θ (the number of
subendomorphisms in a direct sum decomposition of θ unitarily equivalent to the same ρ) is also
finite and bounded above by the square of the dimension, nρ ≤ d(ρ)2.

Notation 2.10. Let α, β : N → M be two unital *-homomorphisms between the von Neumann
algebras N and M. Let Hom(α, β) := {y ∈ M : yα(x) = β(x)y for every x ∈ N} be the vector
space of intertwiners between α and β. We shall also write Hρ := Hom(ι, ιρ) for the spaces of
charged fields associated with ρ ≺ θ.

Of particular importance in this paper are the hom spaces Hom(γ, γ) = γ(M)′ ∩ M and
Hom(θ, θ) = θ(N )′ ∩ N . They are respectively isomorphic (via the canonical endomorphisms)
to M′ ∩M2 and N ′ ∩M1, where N ⊂ M ⊂ M1 ⊂ M2 is the beginning of the Jones tower.

2.3. Braided and local subfactors

Being braided is additional structure on a subfactor. The study of this structure is motivated for
instance by the applications to algebraic Quantum Field Theory [Lon92], [Reh95], [BE98], [Xu98],
[EP03], [CKL10], [BKLR16], where the braiding is the DHR braiding [DHR71], [FRS89], [GR18].

Let N ⊂ M be an irreducible discrete subfactor, with N , M type III. Denote by C ⊂ End(N )
the rigid C∗-tensor category with finite direct sums and subobjects generated by the irreducible
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(hence finite dimensional) components of θ. See e.g. [EGNO15] for the notion of tensor category and
[BKLR15], [BCE+20] for the unitary/C∗ case. A unitary braiding on C is a family of unitaries {ερ,σ ∈
Hom(ρσ, σρ)}ρ,σ∈C which is natural (it fulfills ερ′,σ′sρ(t) = tσ(s)ερ,σ for every s ∈ Hom(ρ, ρ′), t ∈
Hom(σ, σ′)) and compatible with the tensor structure (it fulfills the so-called hexagonal diagrams).
We also write ε+ρ,σ := ερ,σ and ε−ρ,σ := ε∗σ,ρ for the braiding and its opposite.

Definition 2.11. The subfactor N ⊂ M is called braided if C admits a unitary braiding.

Locality for discrete subfactors [BDVG21, Def. 2.16], in the finite index setting also called chiral
locality [BE98], [BEK99] or commutativity of the associated Q-system [BKLR15, Def. 4.20], amounts
to a relation between the given braiding on C and the algebraic structure of the subfactor. By
[BDVG21, Lem. 2.17], locality for discrete subfactors can be formulated as follows:

Definition 2.12. The subfactor N ⊂ M is called local if it is braided (with braiding {ερ,σ}ρ,σ∈C)
and if

ι(ε±σ,ρ)ψ
′ψ = ψψ′

for every ψ ∈ Hρ, ψ
′ ∈ Hσ and ρ, σ ≺ θ irreducible. One can equivalently choose ε+σ,ρ or ε−σ,ρ.

2.4. Compact hypergroups

In [Bis17], [BDVG21], we associated to an irreducible local discrete subfactor N ⊂ M a canonical
compact hypergroup K(N ⊂ M) acting on M by unital completely positive maps. The fixed point
subalgebra MK coincides with N [Bis17, Thm. 4.11], [BDVG21, Thm. 5.7]. When the subfactor
has in addition depth 2, the hypergroup turns out to be a classical compact group [Bis17, Cor. 1.2],
[BDVG21, Thm. 7.5]. Thus one can say that K(N ⊂ M) describes the subfactor by means of its
“generalized gauge symmetries”.

We now recall the definition of abstract compact hypergroup adopted in [BDVG21, Def. 3.2]. For
finite sets it boils down to the purely algebraic notion of finite hypergroup [SW03], [Bis17, Def. 2.3].

Definition 2.13. Let K be a compact Hausdorff space. Denote by P (K) the convex space of
probability Radon measures on K, by C(K) the algebra of continuous functions on K and by δx the
normalized Dirac measure concentrated in x. K is called a compact hypergroup if it is equipped
with a biaffine operation, called convolution,

P (K)× P (K) → P (K), (µ, ν) 7→ µ ∗ ν,

with an involution K → K,x 7→ x♯, and with an identity element e ∈ K fulfilling the following:

(i) P (K) is a monoid with involution with respect to ∗, ♯, δe, where the involution is defined on
probability measures by µ♯(E) := µ(E♯) for every Borel set E ⊂ K.

(ii) The involution x 7→ x♯ is continuous and the map

(x, y) ∈ K ×K 7→ δx ∗ δy ∈ P (K)

is jointly continuous with respect to the weak* topology on measures.
(iii) There exists a (unique) faithful probability measure µK , called a Haar measure on K,

such that for every f, g ∈ C(K) and y ∈ K it holds
∫

K
f(y ∗ x)g(x) dµK(x) =

∫

K
f(x)g(y♯ ∗ x) dµK(x),

∫

K
f(x ∗ y)g(x) dµK(x) =

∫

K
f(x)g(x ∗ y♯) dµK(x),

where

f(x ∗ y) := (δx ∗ δy)(f) =

∫

K
f(z) d(δx ∗ δy)(z).
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Remark 2.14. A compact hypergroup in the sense of the previous definition is also a locally compact
hypergroup in the sense of [KPC10, Def. 2.1] with K compact. When K is metrizable, it is a com-
pact quantum hypergroup in the sense of [CV99, Def. 4.1] with C(K) commutative. Furthermore,
this definition sits in between the widely studied notions of DJS hypergroup (after Dunkl–Jewett–
Spector) [BH95] and of hypercomplex system [BK98].

The subfactor theoretical hypergroup [BDVG21, Def. 4.48, Thm. 4.51] is defined as follows:

Definition 2.15. Let N ⊂ M be an irreducible local discrete type III subfactor. Let UCPN (M)
be the convex set of N -bimodular (automatically normal and faithful) unital completely positive
maps on M. The subfactor theoretical hypergroup as a set is defined by

K(N ⊂ M) := Extr(UCPN (M))

where Extr denotes the subset of extreme points.

Without entering much into details, which will be explained where due in the following sections
of the paper, we only mention that the convolution corresponds to the composition of ucp maps
(see Section 2.5), the involution is given by a notion of adjoint of ucp maps with respect to an
E-invariant state on M (see Section 6), the identity in K(N ⊂ M) is the trivial automorphisms of
M. The Haar measure on K(N ⊂ M), denoted by µE, corresponds to the unique normal faithful
conditional expectation E in E(M,N ).

2.5. Duality theorem and dominated UCP maps

The first nontrivial part of [BDVG21, Thm. 4.51], which states that K(N ⊂ M) fulfills the
requirements of Definition 2.13, is to show that the extreme points are closed (hence compact). This
follows as a consequence of the duality theorem [BDVG21, Thm. 4.34], which implies in particular
that K(N ⊂ M) is homeomorphic to the Gelfand spectrum of a commutative unital separable
C∗-algebra, denoted by C∗

red(N ⊂ M) [BDVG21, Def. 4.19] 2 and canonically associated with the
subfactor. Thus K(N ⊂ M) is compact metrizable and

C∗
red(N ⊂ M) ∼= C(K(N ⊂ M)). (2.1)

From now on we shall denote K(N ⊂ M) simply by K.

Notation 2.16. Denote by B(K) the Borel σ-algebra in K. Let M(K,B(K)) be the vector space
of complex bounded Radon measures on K. In this notation, the probability measures P (K)
considered in the previous section can be denoted by P (K,B(K)). Let L∞(K,µE) be the algebra
of essentially bounded measurable functions on K with respect to the Haar measure. 3

Recall the duality theorem [BDVG21, Thm. 4.34], which is the main technical result in [BDVG21]
and from which (2.1) follows by restricting to the extreme points:

Theorem 2.17. Let N ⊂ M be an irreducible local discrete type III subfactor. There is an affine
homeomorphism denoted by

φ 7→ µφ

between UCPN (M) equipped with the pointwise weak operator topology and the state space of
C∗
red(N ⊂ M), denoted by S(C∗

red(N ⊂ M)), equipped with the weak∗ topology.

We shall not need in this paper the exact definition of µφ, nor of C∗
red(N ⊂ M). We will need

instead the following two propositions proven in [BDVG21, Prop. 4.42] and [BDVG21, Prop. 4.44]:

2C∗
red(N ⊂ M) is obtained as a norm closure of a *-algebra Trig(N ⊂ M) defined in the type III setting [BDVG21]

analogously to a corner of the Popa–Shlyakhtenko–Vaes generalized tube *-algebra [PSV18] in the type II1 setting.
3In Section 6, we shall use the notation P (K), M(K), L∞(K) respectively for UCPN (M), Span

C
(UCPN (M)) and

Hom(γ, γ). The reason is explained in the remainder of this section.
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Proposition 2.18. The map φ 7→ µφ extends to a linear bijection

SpanC(UCPN (M)) → (C∗
red(N ⊂ M))∗

onto the continuous dual of C∗
red(N ⊂ M).

By the Riesz–Markov theorem,

UCPN (M) ∼= P (K,B(K)), SpanC(UCPN (M)) ∼=M(K,B(K)). (2.2)

As we recall in more detail in Section 6, there is a Radon–Nikodym theorem for completely
positive maps [Arv69], see also [Pas73], [Bis17]. It implies that every φ ∈ UCPN (M) dominated by
E (in the sense that dE − φ is completely positive for some d > 0) is of the form

φ = ι(w)∗xγ( · )ι(w) (2.3)

for some positive operator x ∈ Hom(γ, γ) = γ(M)′ ∩ M. Recall that E = ι(w)∗γ( · )ι(w) by
Proposition 2.4.

Thus Hom(γ, γ) can be viewed as the algebra of bounded densities associated with N -bimodular
ucp maps on M which are dominated by E. The following proposition states that Hom(γ, γ) is
identified with the von Neumann algebra L∞(K,µE) via (2.2) and (2.3).

Proposition 2.19. Let f 7→ xf be the map defined on positive functions f ∈ L∞(K,µE) such that∫
K f dµE = 1 by considering the unique positive operator xf ∈ Hom(γ, γ) such that ι(w)∗xf ι(w) = 1

and

f dµE = µφxf

where φxf
:= ι(w)∗xfγ( · )ι(w).

Then f 7→ xf extends to a normal *-isomorphism from L∞(K,µE) onto Hom(γ, γ). In particular,
Hom(γ, γ) is a commutative von Neumann algebra, isometrically isomorphic to L∞(K,µE).

Under this identification,

µE(g) =

∫

K
g dµE = E(xg)

for every g ∈ L∞(K,µE).

3. α-induction for discrete subfactors

The operations of α-induction and σ-restriction have been introduced in [LR95] and further
studied in [BE98], [BE99a], [BE99b], [BEK99], [BEK00], [CDR01]. The idea comes from Roberts’
cohomological description of superselection sectors in algebraic Quantum Field Theory [Rob76],
[Rob]. If N ⊂ M is a braided type III subfactor with finite index, α-induction and σ-restriction
provide a way of defining endomorphisms of M starting from endomorphisms of N and vice versa.
We refer to [BEK99, Sec. 3.3] for the definitions in the finite index subfactor context. In the possibly
infinite index setting, they have been studied in [Xu05] in the context of subfactors coming from
strongly additive pairs of conformal nets, and used in [CC01a], [CC05], [CHK+15] to investigate
structural properties of inclusions of nets of local observables. We refer to [CC01b, Sec. 2] for the
definition of α-induction using cocycles.

In this section, we define α-induction and σ-restriction for braided discrete subfactors and study
their properties and mutual relations in the local case.

Definition 3.1. Let N ⊂ M be a braided discrete type III subfactor. Let C ⊂ End(N ) and
{ε±ρ,σ}ρ,σ∈C be as in Section 2.3. For every ρ ∈ C, define its α-induction by

α±,N⊂M
ρ := ῑ−1 ◦ Ad ε±ρ,θ ◦ ρ ◦ ῑ
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where ῑ is the conjugate of the inclusion, θ is the dual canonical endomorphism and ε±ρ,θ is defined by

ε±ρ,θ :=
∑

iwiε
±
ρ,ρiρ(wi)

∗. The sum converges in the strong operator topology and θ =
∑

iwiρi( · )w
∗
i

is a direct sum decomposition of θ into irreducible subendomorphisms ρi ∈ C with wi isometries.
For every ρ ∈ End(M), define its σ-restriction by

σN⊂M
ρ := ῑ ◦ ρ ◦ ι.

We shall omit the apices N ⊂ M and simply write α±
ρ and σρ, when no confusion arises.

Clearly σρ ∈ End(N ) and t ∈ Hom(ρ1, ρ2), ρ1, ρ2 ∈ End(M), implies ῑ(t) ∈ Hom(σρ1 , σρ2). The
following properties of α-induction are well known in the finite index case [BE98], [BEK99]. First,
note that Ad ε±ρ,θ ◦ ρ ◦ ῑ(M) ⊂ ῑ(M), hence α±

ρ are well defined [DVFR21, Lem. 7.3].

Lemma 3.2. Let ρ ∈ C, then

(1) α±
ρ ∈ End(M).

(2) α±
ρ both extend ρ, namely α±

ρ ι = ιρ.

(3) ρ 7→ α±
ρ is functorial, namely t ∈ Hom(ρ1, ρ2), ρ1, ρ2 ∈ C, implies ι(t) ∈ Hom(α±

ρ1 , α
±
ρ2).

Proof. Observe first that ε±ρ,θ ∈ Hom(ρθ, θρ). Thus (2) follows as in the finite index case. To show

(1) and (3), recall that by discreteness of N ⊂ M [ILP98, Lem. 3.8], M is generated as a von
Neumann algebra by ι(N ) and by the charged fields ψ′ ∈ Hτ associated with the irreducibles τ ≺ θ.
By (2), α±

ρ preserves ι(N ). By naturality of the braiding, α±
ρ (ψ

′) = ι(ε∓τ,ρ)ψ
′. Thus (1) follows by

normality of α±
ρ and (3) follows by observing in addition that

ι(t)ι(ε∓τ,ρ1)ψ
′ = ι(tε∓τ,ρ1)ψ

′

= ι(ε∓τ,ρ2)ι(τ(t))ψ
′

= ι(ε∓τ,ρ2)ψ
′ι(t).

�

Remark 3.3. Other properties of α-induction such as α±
ρσ = α±

ρ α
±
σ , α±

ρ⊕σ = α±
ρ ⊕α±

σ , α±
ρ̄ = α±

ρ and

d(α±
ρ ) = d(ρ) now follow as in the finite index case, cf. [BE98, Sec. 3], [BKLR15, Sec. 4.6].

For the remainder of this section, assume that the subfactor is in addition local.

Lemma 3.4. Let N ⊂ M be an irreducible local discrete type III subfactor. For every irreducible
ρ ≺ θ, the space of charged fields Hρ coincides with Hom(idM, α±

ρ ) and the linear map

Hom(α±
ρ , idM) → Hom(ρ, θ)

t 7→ ῑ(t)w

is a bijection.

Proof. The map sends Hom(α±
ρ , idM) to Hom(ρ, θ) and it is injective because ῑ(t)w = 0 implies

ι(w∗ῑ(t∗t)w) = E(t∗t) = 0, hence t = 0 by faithfulness of E. We only have to show surjectivity. Let
s ∈ Hom(ρ, θ). By [DVG18, Lem. 6.15], which relies only on discreteness, there is a charged field
ψ ∈ Hρ such that

ῑ(ψ∗)w = s.

Since ψ∗ ∈ H∗
ρ = Hom(ιρ, ι) and ιρ = α±

ρ ι by the extension property of α-induction, ψ∗ has the

desired intertwining property on ι(N ). By naturality of the braiding, α±
ρ (ψ

′) = ι(ε∓τ,ρ)ψ
′ for every

other ψ′ ∈ Hτ , τ ≺ θ. By locality, we get

ψ∗α±
ρ (ψ

′)∗ = ψ∗ψ′∗ι(ε±ρ,τ ) = ψ′∗ψ∗. (3.1)

By discreteness, ι(N ) and the charged fields ψ′ generate M as a von Neumann algebra, hence we
conclude that ψ∗ ∈ Hom(α±

ρ , idM). This shows that Hρ = Hom(idM, α±
ρ ) and surjectivity. �
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Remark 3.5. A version of the equality Hρ = Hom(idM, α±
ρ ) appears also in [Xu05, Cor. 3.9 (2)] in

the context of DHR endomorphisms and strongly additive pairs of conformal nets [Xu05, Sec. 3].

The following is a generalization of the “main formula” for α-induction [BE98, Thm. 3.9] to local
discrete subfactors. Note that the proof is different from the original one when the index is infinite.
The same statement is proven in [Xu05, Thm. 3.8] in the context of possibly infinite index subfactors
coming from strongly additive pairs of conformal nets.

Theorem 3.6. Let N ⊂ M be an irreducible local discrete type III subfactor. For every ρ, σ ∈ C,
the linear map

Hom(α±
ρ , α

±
σ ) → Hom(ρ, θσ)

t 7→ ῑ(t)w

is a bijection.

Proof. Observe first that Lemma 3.4 holds also with ρ ∈ C replacing ρ ≺ θ irreducible. Indeed, every
ρ ∈ C can be written as a finite direct sum of irreducibles ρi ≺ θ, i = 1, . . . , n, i.e. ρ =

∑
iwiρi( · )w

∗
i ,

where the wi form a Cuntz algebra of isometries. ThusHρ =
⊕

iHρi and Hom(ρ, θ) =
⊕

iHom(ρi, θ)
as vector spaces, namely every ψ ∈ Hρ and v ∈ Hom(ρ, θ) can be written uniquely as ψ =

∑
i ι(wi)ψi

and v =
∑
viw

∗
i , with ψi ∈ Hρi and vi ∈ Hom(ρi, θ). The analogous of (3.1) holds, namely

ψ∗α±
ρ (ψ

′)∗ =
∑

i

ψ∗
i ι(w

∗
i )ψ

′∗ι(ε±ρ,τ )

=
∑

i

ψ∗
i ψ

′∗ι(τ(w∗
i )ε

±
ρ,τ )

=
∑

i

ψ∗
i ψ

′∗ι(ε±ρi,τw
∗
i )

=
∑

i

ψ′∗ψ∗
i ι(w

∗
i ) = ψ′∗ψ∗

for every ψ′ ∈ Hτ , τ ≺ θ, by locality and naturality of the braiding. Thus ψ ∈ Hom(idM, α±
ρ ).

Moreover, the map t 7→ ῑ(t)w respects the direct sum decompositions, namely

ῑ(ψ∗)w = ῑ(
∑

i

ψ∗
i ι(w

∗
i ))w

=
∑

i

ῑ(ψ∗
i )θ(w

∗
i )w

=
∑

i

ῑ(ψ∗
i )ww

∗
i .

The map sends Hom(α±
ρ , α

±
σ ) to Hom(ρ, θσ). Injectivity follows as in the proof of Lemma 3.4. To

show surjectivity, we consider the following diagram

Hom(α±
ρσ̄ , idM) Hom(ρσ̄, θ)

Hom(α±
ρ , α

±
σ ) Hom(ρ, θσ).

The vertical arrows are the isomorphisms given by Frobenius reciprocity, as α±
ρσ̄ = α±

ρ α
±
σ̄ and α±

σ̄ is a

conjugate of α±
σ . Let s ∈ Hom(ρ, θσ) and choose a solution rσ ∈ Hom(idN , σ̄σ), r̄σ ∈ Hom(idN , σσ̄)

of the conjugate equations for σ and σ̄. Then θ(r̄∗σ)s ∈ Hom(ρσ̄, θ) with ρσ̄ ∈ C. By the argument
11



above generalizing Lemma 3.4, there is an element t ∈ Hom(α±
ρσ̄, idM) such that ῑ(t)w = θ(r̄∗σ)s.

By α±
ρ ι = ιρ, we have that tι(ρ(rσ)) ∈ Hom(α±

ρ , α
±
σ ). To complete the proof, we show that

ῑ(tι(ρ(rσ)))w = ῑ(t)θ(ρ(rσ))w

= ῑ(t)wρ(rσ)

= θ(r̄∗σ)sρ(rσ)

= θ(r̄∗σσ(rσ))s = s

by the conjugate equation r̄∗σσ(rσ) = 1, hence the diagram commutes and surjectivity is proven. �

We conclude this section by showing a version of ασ-reciprocity [BE98, Thm. 3.21], [BE99b,
Prop. 3.3] for local discrete subfactors.

Theorem 3.7. Let C ⊂ End(N ) be as in Theorem 3.6. For every ρ, σ ∈ C and β ∈ End(M) such
that β ≺ α±

σ , the linear map

Hom(α±
ρ , β) → Hom(ρ, σβ)

t 7→ ῑ(t)w

is a bijection.

Proof. The map sends Hom(α±
ρ , β) to Hom(ρ, σβ) and it is injective as in the proof of Lemma 3.4.

To show surjectivity, choose an isometry v ∈ Hom(β, α±
σ ) and observe that ῑ(v) ∈ Hom(σβ , θσ)

where we used the fact that σα±
σ
= θσ. Let s ∈ Hom(ρ, σβ), thus ῑ(v)s ∈ Hom(ρ, θσ), and consider

the following diagram

Hom(α±
ρ , α

±
σ ) Hom(ρ, θσ)

Hom(α±
ρ , β) Hom(ρ, σβ).

v∗ · ῑ(v) ·

By Theorem 3.6, there is an element t ∈ Hom(α±
ρ , α

±
σ ) such that ῑ(t)w = ῑ(v)s. Thus v∗t ∈

Hom(α±
ρ , β) and it fulfills ῑ(v∗t)w = ῑ(v∗)ῑ(v)s = s, which shows surjectivity. �

4. Intermediate inclusions

In this section, let N ⊂ M be an irreducible local discrete type III subfactor and let P be an
intermediate von Neumann algebra, namely N ⊂ P ⊂ M. We show that N ⊂ P and P ⊂ M are
both discrete and local. Note that in general, without assuming locality of N ⊂ M, the intermediate
inclusion P ⊂ M is not even semidiscrete in general [ILP98], [Tom09].

Denote by ιN⊂M, ιN⊂P and ιP⊂M respectively the inclusion morphisms of N ⊂ M, N ⊂ P and
P ⊂ M. Similarly for the conjugate morphism ῑ, for the canonical and dual canonical endomorphism
γ and θ, for the conditional expectation E and the associated isometry w.

Lemma 4.1. The inclusions N ⊂ P and P ⊂ M are semidiscrete, i.e. they admit a normal faithful
conditional expectation. Moreover, they are both irreducible and P is a type III factor.

Proof. The restriction of EN⊂M to P, denoted by EN⊂P : P → N ⊂ P, is clearly a normal
faithful conditional expectation onto N . The existence of a normal faithful conditional expectation
EP⊂M : M → P ⊂ M follows by combining a deep result of Izumi–Longo–Popa [ILP98, Thm. 3.9]
with a consequence of locality [BDVG21, Prop. 2.19]. The rest is immediate. �

Remark 4.2. The intermediate conditional expectation EN⊂P is just the restriction of EN⊂M

to P. The other intermediate conditional expectation EP⊂M is absorbed by EN⊂M, namely
EN⊂MEP⊂M = EN⊂M, because EN⊂M = EN⊂PEP⊂M by uniqueness, as N ⊂ M is irreducible,
and E2

P⊂M = EP⊂M.
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Lemma 4.3. The subfactor N ⊂ P is discrete and local.

Proof. It follows from [Tom09, Thm. 2.7], where it is shown that θN⊂P ≺ θN⊂M. Thus the rigid
C∗-tensor category generated by the irreducible components of θN⊂P is a subcategory of C. In
particular, it is unitarily braided with the same braiding. By choosing ψ′ ∈ Hom(ιN⊂P , ιN⊂Pτ) for
every τ ≺ θN⊂P , we get a complete system of charged fields. �

Proposition 4.4. Let N ⊂ M and P as before. For every ρ ≺ θN⊂M and β ≺ θP⊂M, the linear
map

Hom(α±,N⊂P
ρ , β) → Hom(ρ, σN⊂P

β )

t 7→ ῑN⊂P(t)wN⊂P

is a bijection.

Proof. The map t 7→ ῑN⊂P(t)wN⊂P sends Hom(α±,N⊂P
ρ , β) to Hom(ρ, σN⊂P

β ). It is injective because

the expectation EN⊂P is faithful. To show surjectivity, let s ∈ Hom(ρ, σN⊂P
β ) and choose an

isometry v ∈ Hom(β, θP⊂M). Then ῑN⊂P(v)s ∈ Hom(ρ, θN⊂M), where we used the fact that

σN⊂P
θP⊂M

= θN⊂M. By Lemma 3.4, there is a charged field ψ ∈ Hom(idM, α±,N⊂M
ρ ) such that

ῑN⊂M(ψ∗)wN⊂M = ῑN⊂P(v)s.
By Lemma 4.1, the intermediate inclusion P ⊂ M is semidiscrete. Let wP⊂M be the unique

isometry in Hom(idP , θP⊂M) associated via the Connes–Stinespring representation with the unique

expectation EP⊂M. To conclude the proof, we show that ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P
ρ , θP⊂M)

and that v∗ ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P
ρ , β) is sent to s by the map t 7→ ῑN⊂P(t)wN⊂P .

Consider the following diagram:

Hom(α±,N⊂M
ρ , idM) Hom(ρ, θN⊂M)

Hom(α±,N⊂P
ρ , θP⊂M)

Hom(α±,N⊂P
ρ , β) Hom(ρ, σN⊂P

β ).

v∗ ·

ῑN⊂P (v) ·

For every p ∈ P, compute

ῑP⊂M(ψ∗)wP⊂M α±,N⊂P
ρ (p) = ῑP⊂M(ψ∗ιP⊂M(α±,N⊂P

ρ (p)))wP⊂M

= ῑP⊂M(ψ∗α±,N⊂M
ρ (ιP⊂M(p)))wP⊂M

= ῑP⊂M(ιP⊂M(p)ψ∗)wP⊂M

= θP⊂M(p) ῑP⊂M(ψ∗)wP⊂M

provided we show that ιP⊂Mα±,N⊂P
ρ = α±,N⊂M

ρ ιP⊂M. The latter equality is readily proven by
first taking p ∈ ιN⊂P(N ), namely p = ιN⊂P(n) for some n ∈ N , and computing

α±,N⊂M
ρ (ιP⊂M(p)) = α±,N⊂M

ρ (ιN⊂M(n))

= ιN⊂M(ρ(n))

= ιP⊂M(ιN⊂P(ρ(n)))

= ιP⊂M(α±,N⊂P
ρ (p)).
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Secondly, take p = ψ′ ∈ Hom(ιN⊂P , ιN⊂Pτ) for τ ≺ θN⊂P and observe that ιP⊂M(ψ′) belongs to
Hom(ιN⊂M, ιN⊂Mτ). By naturality of the braiding,

α±,N⊂M
ρ (ιP⊂M(ψ′)) = ιN⊂M(ε∓τ,ρ) ιP⊂M(ψ′)

= ιP⊂M(ιN⊂P(ε
∓
τ,ρ)ψ

′)

= ιP⊂M(α±,N⊂P
ρ (ψ′)).

The subfactor N ⊂ P is discrete [Tom09, Thm. 2.7], thus ιN⊂P(N ) and the charged fields ψ′

generate P as a von Neumann algebra. Hence ιP⊂Mα±,N⊂P
ρ = α±,N⊂M

ρ ιP⊂M as desired.

To conclude the proof, set t := v∗ ῑP⊂M(ψ∗)wP⊂M ∈ Hom(α±,N⊂P
ρ , β) and compute

ῑN⊂P(t)wN⊂P = ῑN⊂P(v
∗ ῑP⊂M(ψ∗)wP⊂M)wN⊂P

= ῑN⊂P(v
∗) ῑN⊂M(ψ∗) ῑN⊂P (wP⊂M)wN⊂P

= ῑN⊂P(v
∗) ῑN⊂M(ψ∗)wN⊂M

= ῑN⊂P(v
∗) ῑN⊂P(v) s = s

by observing that ῑN⊂P(wP⊂M)wN⊂P ∈ N , that it is an isometry and it belongs to Hom(idN , θN⊂M),
and by uniqueness of the conditional expectation EN⊂M and of its associated isometry wN⊂M. �

Theorem 4.5. Let N ⊂ M be an irreducible local discrete type III subfactor. For every intermediate
von Neumann algebra N ⊂ P ⊂ M, the subfactors N ⊂ P and P ⊂ M are type III irreducible
discrete and local.

Proof. By Lemma 4.1 and Lemma 4.3, it remains only to show that P ⊂ M is discrete and local.
To show discreteness of P ⊂ M, observe first that θP⊂M admits a direct sum decomposition into

irreducibles. This is because Hom(θP⊂M, θP⊂M) ∼= P ′ ∩MP
1 , where MP

1 := JMP ′JM is the Jones
extension of M given by P, and P ′∩MP

1 ⊂ N ′∩MN
1 , where MN

1 := JMN ′JM, and N ′∩MN
1 is a

direct sum of finite matrix algebras by irreducibility and discreteness of N ⊂ M [ILP98, Thm. 3.3].
We have to show that the irreducible components β ≺ θP⊂M have finite dimension. By applying
Proposition 4.4 to β ≺ θP⊂M, and ρ ≺ σN⊂P

β ≺ σN⊂P
θP⊂M

= θN⊂M irreducible, hence d(ρ) < ∞, we

have that the linear bijection

Hom(α±,N⊂P
ρ , β) → Hom(ρ, σN⊂P

β )

guarantees the existence of isometries in Hom(β, α±,N⊂P
ρ ). Thus β ≺ α±,N⊂P

ρ and

d(β) ≤ d(α±,N⊂P
ρ ) = d(ρ) <∞.

To show locality of P ⊂ M, take ψ1 ∈ Hom(ιP⊂M, ιP⊂Mβ1), ψ2 ∈ Hom(ιP⊂M, ιP⊂Mβ2) for

β1, β2 ≺ θP⊂M irreducible, together with the previously mentioned isometries t1 ∈ Hom(β1, α
±,N⊂P
ρ1 ),

t2 ∈ Hom(β2, α
±,N⊂P
ρ2 ) for ρ1 ≺ σN⊂P

β1
, ρ2 ≺ σN⊂P

β2
irreducible. Recall that both ρ1, ρ2 ≺ θN⊂M.

Consider the relative braiding between β1 and β2 introduced in [BE99b, Lem. 3.11], namely

ε±,rel
β1,β2

:= t∗2 α
∓,N⊂P
ρ2 (t∗1) ιN⊂P(ε

±
ρ1,ρ2)α

±,N⊂P
ρ1 (t2) t1

which is independent of the choice of ρ1, ρ2 and t1, t2. The finite index assumption made in [BE99b]
is in fact not needed, only discreteness is needed, cf. [BEK00, Sec. 2]. By Corollary [BE99b, Cor.

3.13], the family {ε±,rel
β1,β2

∈ Hom(β1β2, β2β1), β1, β2 ≺ θP⊂M} extends to a unitary braiding on the

rigid C∗-tensor category generated by the irreducible components of θP⊂M. We have to show that

ιP⊂M(ε±,rel
β1,β2

)ψ1ψ2 = ψ2ψ1
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for every ψ1, ψ2 as above. Denote for short ιP⊂M by ι and compute

ι(ε±,rel
β1,β2

)ψ1ψ2 = ι(t∗2 α
∓,N⊂P
ρ2 (t∗1) ιN⊂P(ε

±
ρ1,ρ2)α

±,N⊂P
ρ1 (t2) t1)ψ1ψ2

= ι(β2(t1))
∗ι(t2)

∗ιN⊂M(ε±ρ1,ρ2) ι(t1)ψ1 ι(t2)ψ2

= ι(β2(t1))
∗ι(t2)

∗ι(t2)ψ2 ι(t1)ψ1

= ψ2ψ1

where we used the fact that ι(t1)ψ1 ∈ Hom(ιN⊂M, ιN⊂Mρ1), ι(t2)ψ2 ∈ Hom(ιN⊂M, ιN⊂Mρ2),
locality of N ⊂ M and t∗1t1 = 1, t∗2t2 = 1. Thus the proof is complete. �

5. Galois correspondence

Combining Theorem 4.5 with [BDVG21, Thm. 4.51], we give a Galois-type correspondence be-
tween intermediate von Neumann algebras N ⊂ P ⊂ M and closed subhypergroups of K(N ⊂ M)
considered in Definition 2.15. The following definition should be compared with [BH95, Def. 1.5.1]
in the DJS hypergroup setting.

Definition 5.1. Let K be a compact hypergroup in the sense of Definition 2.13. A closed sub-

hypergroup of K is a closed subset H ⊂ K which is closed under the operations of K, namely
δx ∗ δy ∈ P (H), x♯ ∈ H for every x, y ∈ H, e ∈ H, and which admits a Haar measure in P (H)
fulfilling (iii) in Definition 2.13.

Recall that K(N ⊂ M) acts faithfully and minimally on M [BDVG21, Def. 5.1, Thm. 5.7] and

that the fixed point subalgebra MK(N⊂M) coincides with N .

Theorem 5.2. Let N ⊂ M be an irreducible local discrete type III subfactor. Denote K(N ⊂ M)
simply by K. There is a bijective correspondence between the intermediate von Neumann algebras
N ⊂ P ⊂ M and the closed subhypergroups H ⊂ K given by

H 7→ MH , P 7→ {φ ∈ K : φ↾ι(P) = idP}

such that H = K(P ⊂ M).

Proof. Given an intermediate von Neumann algebra P, by Theorem 4.5, P ⊂ M is discrete and
local. Let H := {φ ∈ K : φ↾ι(P) = idP}. Then H = K(P ⊂ M). Indeed, every φ ∈ H is an
extreme point of UCPP(M), thus φ ∈ K(P ⊂ M). Vice versa, every φ ∈ K(P ⊂ M) is extreme in
UCP(M) by [BDVG21, Lem. 4.49], thus in UCPN (M), and φ ∈ H. It follows that H is a closed
subhypergroup of K with the same convolution and involution on probability measures and with the
same identity element. Indeed, δφ1

∗ δφ2
∈ P (H) for every φ1, φ2 ∈ H, as the convolution is defined

by the composition of ucp maps, and φ1 ◦ φ2 ∈ UCPP(M) if φ1, φ2 ∈ K(P ⊂ M). Moreover, every
EN⊂M-invariant state on M is also EP⊂M-invariant by Remark 4.2, thus φ♯ ∈ H for every φ ∈ H.

Vice versa, given a closed subhypergroup H, by definition it acts faithfully and minimally on M.
Let P := MH . Again by Theorem 4.5 and by the uniqueness statement for compact hypergroup
actions [BDVG21, Prop. 5.4], we conclude that H = K(P ⊂ M) �

Remark 5.3. The previous theorem generalizes the Galois correspondence established in [Bis17,
Prop. 4.13] from finite to infinite index subfactors.

It generalizes also [ILP98, Thm. 3.15] from minimal actions of compact groups to hypergroups,
as every compact group fixed point irreducible subfactor MG ⊂ M is local with respect to the
symmetric braiding coming from Rep(G) [BDVG21, Prop. 9.3].
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6. Fourier transform

Let ξ ∈ H be a jointly cyclic and separating unit vector for N and M. Denote by γ ∈ End(M),
θ ∈ End(N ) and γ1 ∈ End(M1) the associated canonical endomorphisms as in Section 2.1.

Recall that the beginning of the Jones tower/tunnel in the infinite factor setting reads:

θ(N ) ⊂ γ(M) ⊂ γ1(M1) = N ⊂ M ⊂ M1.

The subfactor theoretical Fourier transform has been introduced in the finite index type II1 setting
by Ocneanu [Ocn88], [Ocn91, Sec. II.7]. It can be defined using Jones projections and conditional
expectations in the tower [Bis97, Def. 2.16], [Sat97, Sec. 3], or graphically in the language of planar
algebras as a map running between n-box spaces [BJ00, Sec. 3]. We shall be interested in the
case n = 2. We recall below the description of 2-box spaces (and in the next section of the Fourier
transform) in terms of the canonical endomorphisms. Note that the Fourier transform in the infinite
factor setting is defined naturally for semidiscrete subfactors, not necessarily discrete nor with finite
index.

Let H := ML2MN be the standard M-N bimodule associated with N ⊂ M. Let H̄ be the
conjugate N -M bimodule. Denote by ⊠ the Connes fusion relative tensor product [Sau83]. Then
H̄ ⊠MH ∼= NL

2MN
∼= N θL

2NN in the notation of [Lon18, Sec. 2.2] and H ⊠N H̄ ∼= ML2M1M
∼=

MγL
2MM. Cf. [Bis97, Prop. 3.1, 3.2] and [JP11, Thm. 2.50], [DGG14, Thm. 5.4] in the type II1

setting. The bimodule intertwiner algebras are then identified with the higher (in this case 2-step)
relative commutants:

HomN -N (H̄ ⊠M H, H̄ ⊠M H) ∼= Hom(θ, θ)

HomM-M(H ⊠N H̄,H ⊠N H̄) ∼= Hom(γ, γ)

where Hom(γ, γ) = γ(M)′ ∩M and Hom(θ, θ) = θ(N )′ ∩ N by definition.

6.1. Extension of the Fourier transform to UCP maps

In this section, let N ⊂ M be an irreducible semidiscrete (E(M,N ) 6= ∅) type III subfactor.
Denote by E the unique element in E(M,N ). Recall the notation UCPN (M) for the N -bimodular
ucp maps on M.

Notation 6.1. For ease of notation, we omit ι symbols and write either just γ(= ιῑ) or θ(= ῑι) in
place of ῑ when applied either to elements in M or in ι(N ), identified with N .

Definition 6.2. The subfactor theoretical Fourier transform 4 is defined by

F : Hom(γ,γ) → Hom(θ, θ)

x 7→ θ(w)∗γ(x)w.

As observed in [NW95, Sec. 3] for irreducible semidiscrete and not necessarily depth 2 subfactors:

Proposition 6.3. The subfactor theoretical Fourier transform F is injective.

For every φ ∈ UCPN (M), define Vφ as the closure of the operator

VφyΩ = φ(y)Ω, y ∈ M (6.1)

where Ω ∈ H is a cyclic and separating unit vector for M such that the associated state ω = (Ω, ·Ω)
on M is E-invariant. In particular, VE is the Jones projection eN for N ⊂ M with respect to E.
As in [NSZ03, Sec. 2], [BDVG21, Sec. 2.5], it follows that Vφ ∈ B(H), ‖Vφ‖ = 1 and VφΩ = Ω.

Lemma 6.4. The operator Vφ depends only on φ and on the positive cone of Ω. 5

4It is graphically described by a 90◦-rotation: x ∈ Hom(ιῑ, ιῑ) 7→ ῑι(w∗)ῑ(x)w ∈ Hom(ῑι, ῑι) as w ∈ Hom(idN , ῑι).
5From now on the vectors Ω and ξ will be chosen in the same positive cone with respect to M.
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Proof. The proof of [Kos89, Lem. A], which shows that the Jones projection of E depends only on
the positive cone, adapts to an arbitrary N -bimodular φ. �

Assume for the moment that N ⊂ M is in addition discrete and local, see Remark 6.6 below. Then
Vφ ∈ N ′ ∩ M1. Indeed, φ is N -bimodular by assumption, thus Vφ ∈ N ′, and Vφ = JM,ΩVφJM,Ω

holds because φ is automatically Ω-adjointable [BDVG21, Lem. 4.22], thus Vφ ∈ M1. In fact,
JM,ΩVφ = VφJM,Ω is equivalent to Ω-adjointability [AC82, Sec. 6], [BDVG21, Sec. 2.5].

Definition 6.5. The Ω-adjoint of φ, denoted by φ♯, is the unique (when it exists) ucp map on M
such that

(xΩ, φ(y)Ω) = (φ♯(x)Ω, yΩ) (6.2)

for every x, y ∈ M.

Note that φ♯ is N -bimodular when φ is N -bimodular. Moreover,

Vφ1◦φ2
= Vφ1

Vφ2
, Vφ♯ = V ∗

φ . (6.3)

Remark 6.6. As observed in [BDVG21, Lem. 4.22], every N -bimodular ucp map φ is Ω-adjointable
under the weaker condition aρ = 1Hρ for every irreducible ρ ≺ θ, where the operators aρ are
introduced in [ILP98, Sec. 3]. This condition is implied e.g. by discreteness and locality [BDVG21,
Prop. 2.19] and by finiteness of the index [ILP98, Sec. 3]. In these cases Vφ ∈ N ′ ∩M1.

If φ ∈ SpanC(UCPN (M)), namely if φ =
∑

j αjφj with αj ∈ C, φj ∈ UCPN (M), then Vφ
defined as in (6.1) is bounded and it belongs to N ′ ∩M1. It holds Vφ =

∑
j αjVφj

, the Ω-adjoint

operation (6.2) extends antilinearly, and the properties stated in (6.3) continue to hold.

Definition 6.7. We define the Fourier transform on the complex span of N -bimodular ucp maps
on M as follows:

F̂ : SpanC(UCPN (M)) → Hom(θ, θ)

φ 7→ γ1(Vφ)

as γ1(N
′ ∩M1) = θ(N )′ ∩ N = Hom(θ, θ).

Proposition 6.8. The map F̂ is injective.

Proof. The vector Ω is separating for M, and Vφ = Vφ′ implies φ(y)Ω = φ′(y)Ω for every y ∈ M. �

For every x ∈ Hom(γ, γ) positive and such that w∗xw = 1, let φx := w∗xγ(·)w ∈ UCPN (M).
Note that w∗xw is a multiple of 1 whenever x ∈ Hom(γ, γ). Then φx is dominated by E, namely
dE − φx is completely positive with d := ‖x‖ > 0. Moreover, every φ ∈ UCPN (M) dominated
by E is of the form φ = φx by an L∞ version of the Radon–Nikodym theorem for completely
positive maps [Arv69, Prop. 1.4.2], [Pas73, Prop. 5.4], [Bis17, Prop. A.5]. More generally, every
x ∈ Hom(γ, γ) can be written as x =

∑
k αkxk with αk ∈ C, xk positive and w∗xkw = 1. Then

φx := w∗xγ(·)w ∈ SpanC(UCPN (M)).

Remark 6.9. If N ⊂ M is discrete and local, by Proposition 2.19, Hom(γ, γ) ∼= L∞(K,µE) and

x ∈ Hom(γ, γ) 7→ φx

corresponds to the embedding of functions f ∈ L∞(K,µE) into measures dominated by µE, namely
to f 7→ f dµE. Positive operators are mapped to positive measures, the condition w∗xw = 1
corresponds to

∫
K f dµE = 1.

The following proposition states that F̂ extends the subfactor theoretical Fourier transform:
17



Proposition 6.10. F̂ extends F from Hom(γ, γ) to SpanC(UCPN (M)):

F̂(φx) = F(x).

Proof. Let v1 ∈ M1 be as in [LR95, Sec. 2.5], namely v′ : nξ → nΩ, n ∈ N and v1 := AdJM,ξ
(v′).

We have v1v
∗
1 = eN , v1 ∈ Hom(idM1

, γ1) and γ1(v1) = w. We have to show that

γ1(Vφx) = θ(w)∗γ(x)w

or equivalently

Vφx = w∗xv1.

Note that v1Ω = wΩ since w∗v1Ω = γ1(v
∗
1)v1Ω = v1v

∗
1Ω = eNΩ = Ω. For every y ∈ M, we have

w∗xv1yΩ = w∗xγ(y)v1Ω = w∗xγ(y)wΩ = φx(y)Ω

from which we get the claim. �

Remark 6.11. The proposition above holds for arbitrary semidiscrete subfactors. The proof shows
that Vφx ∈ N ′ ∩M1 for every x ∈ Hom(γ, γ), without the conditions mentioned in Remark 6.6.

6.2. The local discrete case: Fourier transform on measures

The subfactor theoretical Fourier transform F and its extension F̂ can be defined for semidiscrete
subfactors. Assume that N ⊂ M is discrete and local. Then by Proposition 2.18, SpanC(UCPN (M))
can be identified with the set of complex bounded Radon measures M(K,B(K)) on the subfactor

theoretical hypergroup K. In this section, we check that F̂ defined on SpanC(UCPN (M)) agrees
with the classical Fourier transform F defined on M(K,B(K)).

The hypergroup theoretical convolution and involution on probability measures can be extended
to M(K,B(K)), endowing it with the structure of an involutive algebra, cf. [BDVG21, Rmk. 3.3].

Definition 6.12. A representation of a compact hypergroup K on a Hilbert space Hπ (cf. [BH95,
Def. 2.1.1]) is a unital involutive algebra homomorphism

π :M(K,B(K)) → B(Hπ).

The representation is called continuous if its restriction to positive measures is continuous from
the weak* topology on M(K,B(K)) to the weak operator topology on B(Hπ).

Definition 6.13. Let F be the hypergroup theoretical Fourier transform (cf. [Vre79, Sec. 3]):

F :M(K,B(K)) →
⊕

π

B(Hπ)

µ 7→
⊕

π

∫

K
π(k) dµ(k)

where the direct sum is over all unitary equivalence classes [π] of continuous irreducible representa-
tions of K and π(k) := π(δk), k ∈ K.

Note that F depends on the choice of representative in each unitary equivalence class and that
different choices yield unitarily equivalent Fourier transforms.

Remark 6.14. If Γ is a finite abelian group with an outer action on N , the subfactor theoretical
Fourier transform considered in Definition 6.2 for the crossed product N ⊂ N ⋊Γ = M corresponds
in fact to the inverse of the ordinary group theoretical Fourier transform. Namely to the map which

associates to a function f on the Pontryagin dual Γ̂ = G, the function χ ∈ Γ 7→
∫
G f(g)χ(g) dg

instead of
∫
G f(g)χ(g) dg. Hence we may have used the symbol F−1 in Definition 6.2 instead of F .
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By [BDVG21, Thm. 6.4], each [π] admits a representative πρ on the space of charged fields Hρ

(whose dimension is finite and equal to the multiplicity nρ of ρ ≺ θ) defined by

πρ :M(K,B(K)) → B(Hρ)

πρ(µ)ψ := φµ(ψ)

where µ 7→ φµ is the identification of M(K,B(K)) with SpanC(UCPN (M)), the inverse of the map
φ 7→ µφ of Proposition 2.18.

Proposition 6.15. Let Hρ be endowed with the inner product (ψ1, ψ2) := E(ψ2ψ
∗
1) and let Hom(ρ̄, θ)

be endowed with the inner product (w1, w2) := w∗
1w2. For every ψ ∈ Hρ, let ψ• := ψ∗r̄ρ ∈ Hρ̄ where

r̄ρ ∈ Hom(idN , ρρ̄) is part of a standard solution of the conjugate equations for ρ and ρ̄.
Then the linear map

ψ ∈ Hρ 7→ γ(ψ•∗)w ∈ Hom(ρ̄, θ)

is a unitary intertwiner between the representation πρ acting on Hρ as above and the representation
Uρ acting on Hom(ρ̄, θ) as follows

Uρ(µ)γ(ψ
•∗)w := γ(φµ(ψ

•∗))w.

Proof. The map preserves the inner products on Hρ and Hom(ρ̄, θ) respectively:

(γ(ψ•∗
1 )w, γ(ψ•∗

2 )w) = w∗γ(ψ•
1ψ

•∗
2 )w

= E(ψ•
1ψ

•∗
2 )

= E(ψ2ψ
∗
1) = (ψ1, ψ2)

where for the third equality we refer to [ILP98, Sec. 3] and [BDVG21, Prop. 2.19].
It is surjective by [DVG18, Lem. 6.15] and it intertwines the representations πρ and Uρ, since

γ((πρ(µ)ψ)
•∗)w = γ(φµ(ψ)

•∗)w

= γ(φµ(ψ
•∗))w

= Uρ(µ)γ(ψ
•∗)w

where the second equality holds by N -bimodularity of φµ. �

Below, we choose the representatives of the unitary equivalence classes of continuous irreducible
representations of K to be the Uρ considered above and we take the corresponding F.

Proposition 6.16.

F̂(φµ) = F(µ).

Proof. On the one hand, for every φ ∈ SpanC(UCPN (M)), ψ ∈ Hρ, m ∈ M, and v1, Ω as in the
proof of Proposition 6.10, we have

Vφψ
∗v1mΩ = Vφψ

∗γ(m)v1Ω

= Vφψ
∗γ(m)wΩ

= φ(ψ∗)γ(m)wΩ

= φ(ψ∗)v1mΩ

from which Vφψ
∗v1 = φ(ψ∗)v1, as Ω is cyclic for M. Thus

F̂(φ)γ(ψ•∗)w = γ1(Vφ)γ(ψ
•∗)w

= γ1(Vφψ
•∗v1)

= γ(φ(ψ•∗))w.
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On the other hand, by Proposition 6.15 and [BDVG21, Prop. 5.5], for every µ ∈M(K,B(K))

F(µ)γ(ψ•∗)w =

∫

K
Uρ(k)γ(ψ

•∗)w dµ(k)

=

∫

K
γ(φδk(ψ

•∗))w dµ(k)

= γ(φµ(ψ
•∗))w

concluding the proof. �

6.3. Lp spaces and Fourier inequalities

For the remaining part of the paper, we assume that N ⊂ M is in addition discrete and local.
By Proposition 2.19, Hom(γ, γ) is commutative and *-isomorphic to L∞(K,µE).

Lemma 6.17. The functional x 7→ w∗xw on Hom(γ, γ) coincides with the restriction of E to
Hom(γ, γ), in particular it is a normal faithful state.

Proof. This observation is due to [NW95, Cor. 3]. Notice first that w∗xw and E(x) are both numbers
(scalar multiples of 1) for every x ∈ Hom(γ, γ). Thus w∗xw = w∗γ(x)w = E(x) follows. �

Notation 6.18. Denote L∞(K) := Hom(γ, γ) and M(K) := SpanC(UCPN (M)). Denote also
P (K) := UCPN (M).

Definition 6.19. Let L1(K), L2(K) and more generally Lp(K), 1 ≤ p < ∞, be the completion

of Hom(γ, γ) in the norm ‖x‖p := (w∗|x|pw)1/p = E(|x|p)1/p, with |x| = (x∗x)1/2 ∈ Hom(γ, γ)
the modulus of x. Let ‖x‖∞ := ‖x‖ be the operator norm on Hom(γ, γ), or equivalently ‖x‖∞ :=
‖x‖B(L2(K)).

Recall that if N ⊂ M is irreducible and discrete, by [ILP98, Thm. 3.3], Hom(θ, θ) is *-isomorphic
to a von Neumann algebraic direct sum of matrix algebras:

Hom(θ, θ) ∼=
⊕

[ρ]

Mnρ(C)

where ρ runs over the inequivalent irreducible (hence with finite dimension d(ρ)) subendomorphisms
of θ =

⊕
ρ and nρ is the multiplicity of ρ in θ. The index of the subfactor is finite if and only if

the decomposition θ =
⊕
ρ has finitely many summands.

Denote by Tr the canonical tracial weight on Hom(θ, θ) normalized such that Tr(1Mnρ (C)
) =

nρd(ρ). Then Tr is normal faithful and semifinite. Denote by mTr its domain.

Definition 6.20. Let Lp(K̂), 1 ≤ p <∞, be the completion of mTr in the norm ‖x‖p := Tr(|x|p)1/p,

where |x| = (x∗x)1/2 ∈ mTr. Let L∞(K̂) := Hom(θ, θ) with the operator norm in the GNS
representation with respect to Tr, i.e. ‖x‖∞ := ‖x‖B(L2(K̂)), or equivalently ‖x‖∞ := ‖x‖ because

Tr is normal faithful and semifinite.

For the classical (tracial) theory of noncommutative integration we refer to [Nel74], [Ter81].

Remark 6.21. By the proof of [BDVG21, Lem. 7.3], if N ⊂ M is irreducible discrete and local
(or finite index, or if it fulfills the condition aρ = 1Hρ where the operators aρ are introduced in

[ILP98, Sec. 3]), then Tr on Hom(θ, θ) coincides with γ ◦ Ê ◦ γ−1
1 where Ê : M1 → M ⊂ M1 is the

dual operator-valued weight of E, here restricted to N ′ ∩M1.

By [BDVG21, Prop. 4.15] the Fourier transform gives a one to one correspondence between
“trigonometric polynomials” ψ∗

ρ,rψ̄ρ,s in Hom(γ, γ) and “matrix units” wρ,rw
∗
ρ,s in Hom(θ, θ). Namely,

F(ψ∗
ρ,rψ̄ρ,s) = wρ,rw

∗
ρ,s.
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Trigonometric polynomials and matrix units are defined as follows:

Notation 6.22. Choose a Pimsner–Popa basis of charged fields {ψρ,r} for N ⊂ M (see Section 2.2)
labelled by the inequivalent irreducible subendomorphisms ρ ≺ θ and by a multiplicity counting
index r = 1, . . . , nρ.

Matrix units are then defined by wρ,rw
∗
ρ,s where wρ,r := γ(ψ∗

ρ,r)w is an isometry in Hom(ρ, θ).
They have been exploited in [BDVG21, Sec. 4.1].

Trigonometric polynomials are defined by ψ∗
ρ,rψ̄ρ,s where ψ̄ρ,s is a so-called “dual field”. Namely,

ψ̄ρ,s := w∗
ρ,sm = w∗ῑ(ψρ,s)m where m :=

∑
ρ,r θ(wρ,r)γ(ψρ,r) is only a formal sum when θ =

⊕
ρ is

an infinite direct sum. In [BDVG21, Sec. 2.4], it is shown that ψ̄ρ,s is a well defined operator in N
and it belongs to Hom(ῑ, ρῑ).

The matrix units are dense in Hom(θ, θ) ∼=
⊕

[ρ]Mnρ(C) in the weak operator topology, hence:

Proposition 6.23. The subfactor theoretical Fourier transform F has dense range, i.e., in the

previous notation, F(L∞(K)) is dense in L∞(K̂) in the weak operator topology.

Proposition 6.24 (Parseval’s identity). The Hilbert spaces L2(K) with inner product defined by

completion of (x|y)L2(K) := w∗x∗yw = E(x∗y), x, y ∈ Hom(γ, γ), and the Hilbert space L2(K̂) with
inner product defined by completion of (x|y)L2(K̂) := Tr(x∗y), x, y ∈ mTr, are isomorphic via the

Fourier transform:

(x|y)L2(K) = (F(x)|F(y))L2(K̂).

In particular,

‖x‖2 = ‖F(x)‖2.

Proof. By density, it is enough to check the equality of the two inner products on trigonometric
polynomials ψ∗

ρ,rψ̄ρ,s and matrix units F(ψ∗
ρ,rψ̄ρ,s) = wρ,rw

∗
ρ,s.

The inner product on trigonometric polynomials in L2(K) reads:

w∗ψ̄∗
ρ,sψρ,rψ

∗
ρ′,r′ψ̄ρ′,s′w = w∗ψ̄∗

ρ,sE(ψρ,rψ
∗
ρ′,r′)ψ̄ρ′,s′w

= δρ,ρ′δr,r′w
∗m∗wρ,sw

∗
ρ,s′mw

= δρ,ρ′δr,r′w
∗
∑

σ′,t′

γ(ψ∗
σ′,t′)θ(w

∗
σ′,t′)wρ,sw

∗
ρ,s′

∑

σ′′,t′′

θ(wσ′′,t′′)γ(ψσ′′,t′′)w

= δρ,ρ′δr,r′
∑

σ,t

E(ψ∗
σ,tψ

∗
ρ,s)E(ψρ,s′ψσ,t)

= δρ,ρ′δr,r′
∑

σ,t

E(ψ∗
ρ,sψ

∗
σ,t)E(ψσ,tψρ,s′)

= δρ,ρ′δr,r′
∑

σ′,σ′′,t′,t′′

E(E(ψ∗
ρ,sψ

∗
σ′,t′)ψσ′,t′ψ

∗
σ′′,t′′E(ψσ′′,t′′ψρ,s′))

= δρ,ρ′δr,r′E(ψ∗
ρ,sψρ,s′)

= δρ,ρ′δr,r′δs,s′d(ρ)

where we used the definition of the dual fields ψ̄ρ,s = w∗
ρ,sm with m =

∑
σ,t θ(wσ,t)γ(ψσ,t), the

intertwining and orthonormality properties wσ,r ∈ Hom(σ, θ), w∗
σ,rwσ′,r′ = δσ,σ′δr,r′1, the locality

commutation relations ψρ,rψσ,t = εσ,ρψσ,tψρ,r, the Pimsner–Popa expansion [BDVG21, Sec. 2.2] and
the normalization ψ∗

ρ,sψρ,s′ = δs,s′d(ρ)1 [BDVG21, Sec. 2.3].
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The inner product on matrix units in L2(K̂) also reads:

Tr((wρ,rw
∗
ρ,s)

∗(wρ′,r′w
∗
ρ′,s′)) = Tr(wρ,sw

∗
ρ,rwρ′,r′w

∗
ρ′,s′)

= δρ,ρ′δr,r′ Tr(wρ,sw
∗
ρ,s′)

= δρ,ρ′δr,r′δs,s′d(ρ)

by the choice of normalization of Tr on Mnρ(C). �

Remark 6.25. For irreducible discrete depth 2 subfactors, the statements of the two previous propo-
sitions appear in [NW95, Thm. 17].

Proposition 6.26.

‖F(x)‖∞ ≤ ‖x‖1.

Proof. For positive elements x in Hom(γ, γ) normalized such that w∗xw = 1, we have

‖F(x)‖∞ = ‖F̂(φx)‖∞ = ‖γ1(Vx)‖ = ‖Vx‖ = 1

by Proposition 6.10, and ‖x‖1 = 1 by definition. Thus on positive elements ‖F(x)‖∞ = ‖x‖1,
6. For

an arbitrary element x in Hom(γ, γ) we need its identification with a function f in L∞(K,µE) and
a modification of the Hahn-Jordan decomposition theorem adapted to complex bounded measures.
Let f = ν|f | be the polar decomposition of f with ν ∈ L∞(K,µE), |ν| = 1. Let νn ∈ L∞(K,µE),
be a uniform (by boundedness) approximation of ν by simple measurable functions [Rud74, Thm.
1.17]. As |νn| → |ν| = 1, n→ ∞, we can divide and assume |νn| = 1 for every n. Define fn := νn|f |
or equivalently fn :=

∑
m ν

m
n χKm

n
|f | where νmn runs over the finitely many different values of each

νn and χKm
n

is the characteristic function of Km
n := {k ∈ K : νn(k) = νmn }. Fixed n, the sets Km

n

are pairwise disjoint and |f | = |fn| =
∑

m χKm
n
|f |. Then

‖F(fn)‖∞ = ‖
∑

m

νmn F(χKm
n
|f |)‖∞ ≤

∑

m

‖χKm
n
|f |‖1 = ‖f‖1

and by ‖F(fn − f)‖∞ ≤ ‖fn − f‖∞, 7, where the L∞-norms both coincide with the operator norm
in B(H), together with fn → f in L∞(K,µE) we get the statement. �

Remark 6.27. The previous proposition is also a consequence of the identification of the subfactor
theoretical Fourier transform with the classical Fourier transform on subfactor theoretical compact
hypergroups, see Section 6.2. Note that in the previous proof we only need the fact that Hom(γ, γ)
is commutative, thus identified with functions on a probability space, not its hypergroup structure.

Remark 6.28. The weaker bound ‖F(x)‖∞ ≤ ‖x‖2 can be proven without the identification of
Hom(γ, γ) with L∞(K,µE) as follows. By the C∗-identity, for every x ∈ Hom(γ, γ) it holds

‖F(x)‖∞ = ‖F(x)F(x)∗‖1/2

= ‖θ(w)∗γ(x)ww∗γ(x)∗θ(w)‖1/2

≤ ‖θ(w)∗γ(xx∗)θ(w)‖1/2

= ‖γ(w∗xx∗w)‖1/2

= (w∗x∗xw)1/2 = ‖x‖2

because ww∗ is a projection, thus ww∗ ≤ 1, and 0 ≤ a ≤ b implies ‖a‖ ≤ ‖b‖, because γ is
isometric (unital is enough) and xx∗ = x∗x by commutativity. The same proof holds for finite index

6In the case of the classical Fourier transform this holds as ‖f‖1 =
∫
f(x) dx = f̂(0) ≤ ‖f̂‖∞ ≤ ‖f‖1 for positive f .

7The inequality ‖f̂‖∞ ≤ ‖f‖∞ holds in the case of the classical Fourier transform because we are integrating with
respect to a probability measure.
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irreducible subfactors, not necessarily local. Indeed, by [LR97, Lem. 3.7], [BKLR15, Prop. 2.4],
[GL19, Prop. 8.33], x 7→ w∗xw is a trace on Hom(γ, γ), which needs no longer be commutative.
See also [JLW16, Prop. 4.7] for a proof of ‖F(x)‖∞ ≤ ‖x‖1 for arbitrary finite index irreducible
subfactors.

Thanks to the alternative description of Lp(K) and Lp(K̂) as complex interpolation spaces
[Kos84], [Ter82], in the special case of tracial states and weights, by [Kos84, Thm. 1.2, Rmk. 3.4]
(see references therein) and by Proposition 6.24 and Proposition 6.26 we get:

Proposition 6.29 (Hausdorff–Young inequality).

‖F(x)‖p ≤ ‖x‖q

for 2 ≤ p ≤ ∞, 1 ≤ q ≤ 2 and 1/p + 1/q = 1.

Remark 6.30. The Hausdorff–Young inequality is a classical result for the Fourier analysis on groups.
Recent proofs of the inequality for DJS hypergroups appear in [DS13] for commutative hypergroups
and in [KS20], [KR20].

6.4. Involutions, convolutions and products

On the von Neumann algebra L∞(K)(= Hom(γ, γ)) we have the ordinary unital *-algebra struc-
ture given by (1, ·, ∗), namely the unit operator, the multiplication and adjoint operations in B(H).

Likewise on L∞(K̂)(= Hom(θ, θ)). In the absence of a globally defined inverse subfactor theoretical
Fourier transform F−1 : Hom(θ, θ) → Hom(γ, γ) for infinite index subfactors, see Remark 6.40, we
use the embedding x ∈ L∞(K) 7→ φx := w∗xγ( · )w ∈M(K)(= SpanC(UCPN (M))) to give L∞(K)
a second *-algebra structure. In Proposition 6.38, we show that this second *-algebra structure has
the right properties with respect to F .

Definition 6.31. For φ1, φ2 ∈M(K), let φ1 ∗φ2 ∈M(K) and φ♯1 ∈M(K) be the convolution and
the involution of measures, defined respectively by the composition of ucp maps φ1 ◦ φ2 and by the
Ω-adjoint of φ1 considered in Definition 6.5.

Lemma 6.32. The involution φ ∈M(K) 7→ φ♯ ∈M(K) does not depend on the choice of Ω.

Proof. It follows from [BDVG21, Prop. 3.8, Thm. 4.51]. �

Remark 6.33. The independence on Ω of φ♯ for N -bimodular ucp maps can also be checked directly,
in full generality and without using the uniqueness of the hypergroup theoretical involution.

Definition 6.34. For x, y ∈ L∞(K), let x ∗ y := w∗xγ(y)w = w∗γ(y)xw ∈ L∞(K), namely the

operator corresponding to φx ∗ φy, and let x♯ ∈ L∞(K) be the operator corresponding to φ♯x.

We call x ∗ y convolution and x♯ involution in L∞(K).

Inside L∞(K̂) ∼=
⊕

[ρ]Mnρ(C) one can consider the *-subalgebra of finite rank operators denoted

by Trig(N ⊂ M) in [BDVG21, Sec. 4.1]. Note that Trig(N ⊂ M) ⊂ mTr.

Remark 6.35. Recall the Pimsner–Popa basis of charged fields {ψρ,r} from Notation 6.22. Let
mρ,r ∈ Hom(θ, θ2) be defined by mρ,r := θ(wρ,r)γ(ψρ,r). The formal sum m =

∑
ρ,rmρ,r (infinite

when the index of the subfactor is infinite) together with its formal adjoint m∗ play the role of
comultiplication and multiplication for the algebra object θ describing the extension N ⊂ M.

In [BDVG21, Thm. 4.13], it is shown that Trig(N ⊂ M) is an associative unital (commutative
by locality) *-algebra with the following operations:
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Definition 6.36. For x, y ∈ Trig(N ⊂ M) ⊂ L∞(K̂), let x ∗ y := m∗aθ(b)m ∈ Trig(N ⊂ M) and
x• := θ(w∗m∗)θ(a∗)mw = w∗m∗θ(a∗)θ(mw) ∈ Trig(N ⊂ M) be respectively the multiplication
and the involution in Trig(N ⊂ M). The unit is given by the Jones projection e := ww∗.

We call x∗y convolution and x• involution when x and y are thought of as elements in L∞(K̂).

Definition 6.37. Denote by Trig(K) the set of x ∈ L∞(K) such that F(x) ∈ Trig(N ⊂ M).

Trig(K) is dense in L∞(K) in the weak operator topology and in L2(K) in the L2-norm topology.
Moreover, Trig(K) = L∞(K) if and only if the subfactor has finite index.

Proposition 6.38. For x, y ∈ Trig(K), we have

F(xy) = F(y) ∗ F(x), F(x∗) = F(x)•, F(1) = e

where note that xy = yx and F(y) ∗ F(x) = F(x) ∗ F(y).
For x, y ∈ L∞(K), we have

F(x ∗ y) = F(x)F(y), F(x♯) = F(x)∗.

Proof. For the first two equalities we refer to [BDVG21, Sec. 4.3]. The remaining equalities follow
by observing that

F(x ∗ y) = F̂(φx ∗ φy) = γ1(VφxVφy) = γ1(Vφx)γ1(Vφy) = F(x)F(y)

and
F(x♯) = F̂(φ♯x) = γ1(V

∗
φx
) = γ1(Vφx)

∗ = F(x)∗

by Proposition 6.10. Moreover, F(1) = F̂(E) = γ1(v1v
∗
1) = ww∗ = e, where v1 is the isometry in

M1 splitting the Jones projection v1v
∗
1 = eN as in the proof of Proposition 6.10. �

Note that the equalities F(x∗y) = F(x)F(y) and F(1) = e can also be checked directly, without
passing to M(K), whereas the involution x♯ cannot even be defined without it, to our knowledge.

Remark 6.39. Note that 1 ∈ Trig(K). Instead, the convolution unit for L∞(K) is not always an
operator in Hom(γ, γ). It is the Dirac measure id ∈ P (K)(= UCPN (M)) whose Fourier transform

F̂(id) = 1 sits in L∞(K̂) but not in Trig(N ⊂ M), unless the subfactor has finite index.

Remark 6.40. If x ∈ Trig(K), the equality F(x♯) = F(x)∗ can be promoted to a definition of
involution by means of the inverse subfactor theoretical Fourier transform, x♯ := F−1(F(x)∗), 8.
Similarly for the convolution x ∗ y := F−1(F(x)F(y)). However, for infinite index subfactors, F−1

is only partially defined on Hom(θ, θ) by the formal expression y 7→ F−1(y) := M∗yγ(M), where
M := γ−1(m) and m is as above.

6.5. Convolution inequalities

In this section, we investigate analytic properties of the convolution and involution operators in
L∞(K): positivity and norm inequalities.

Lemma 6.41. If x, y ∈ L∞(K) are positive, then x ∗ y is positive.

Proof. It follows immediately from the definition x ∗ y = w∗xγ(y)w. Alternatively, one can observe
that if φz = w∗zγ( · )w, z ∈ L∞(K), is (completely) positive on M, then z is positive. Indeed, if
w∗zγ(t∗t)w is positive for every t ∈ M, then (γ(t)wξ, zγ(t)wξ) ≥ 0 for every ξ ∈ H, and vectors of
the form γ(t)wξ are total in H by minimality of the Connes–Stinespring representation of E. Thus
φx∗y = φx ∗ φy entails positivity of x ∗ y. �

Lemma 6.42. It holds w∗x♯w = w∗x∗w = w∗xw for every x ∈ L∞(K).

8For finite index subfactors, it coincides with the 180◦-rotation of the diagram for x∗.
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Proof. Observe that w∗x♯w = w∗x♯γ(1)w = φx♯(1) = φ♯x(1) = φx(1) where the last equality follows

from the definition of Ω-adjoint (Ω, φ♯x(1)Ω) = (φx(1)Ω,Ω). �

Lemma 6.43. The involution x 7→ x♯ in L∞(K) is an antilinear *-isomorphism.

Proof. If x, y ∈ Trig(K), the equalities (xy)♯ = x♯y♯ and (x∗)♯ = (x♯)∗ follow from Proposition 6.38,
by observing that (F(y)∗F(x))∗ = F(y)∗∗F(x)∗ and (F(x)•)∗ = (F(x)∗)•, and by injectivity of the

Fourier transform. 1♯ = 1 holds because id♯ = id. If x ∈ L∞(K), let xn ∈ Trig(K) such that xn → x
in the weak operator topology and ‖xn‖ ≤ ‖x‖ by Kaplansky’s density theorem. Then φxn → φx
in the pointwise weak operator topology, and by the same argument as in [BDVG21, Rmk. 4.27],

using ‖Vφxn
‖ ≤ ‖xn‖1 ≤ ‖xn‖, it follows that φ♯xn → φ♯x in the pointwise weak operator topology.

Thus (γ(t)wξ, x♯nγ(s)wη) → (γ(t)wξ, x♯γ(s)wη) for every t, s ∈ M, ξ, η ∈ H. As observed above,

vectors of the form γ(t)wξ are total in H. Moreover, ‖x♯n‖ = ‖xn‖ for xn ∈ Trig(K) because

‖x♯n‖ = ‖x♯n‖B(L2(K))

= sup
ξ∈L2(K)

‖x♯nξ‖2‖ξ‖
−1
2

= sup
ξ∈Trig(K)

‖x♯nξ
♯‖2‖ξ

♯‖−1
2

= sup
ξ∈Trig(K)

‖(xnξ)
♯‖2‖ξ

♯‖−1
2

= sup
ξ∈Trig(K)

‖xnξ‖2‖ξ‖
−1
2 = ‖xn‖

by using that Trig(K) = Trig(K)♯ is dense in L2(K) and Lemma 6.42. We conclude that x♯n → x♯

in the weak operator topology and (xy)♯ = x♯y♯ and (x∗)♯ = (x♯)∗ hold for every x, y ∈ L∞(K). �

By Lemma 6.43, we have that

|x♯|2 = (x♯)∗x♯ = (x∗x)♯ = (|x|2)♯ = |x|♯|x|♯ (6.4)

and thus |x♯| = |x|♯, as |x|♯ is positive by the proof of Lemma 6.41.

Lemma 6.44. It holds ‖x♯‖p = ‖x‖p for every x ∈ L∞(K), 1 ≤ p ≤ ∞.

Proof. The statement for p = ∞ follows by Lemma 6.43 and by the spectral properties of the C∗-
norm. For p = 2, we compute ‖x♯‖2 = (w∗(x♯)∗x♯w)1/2 = (w∗(x∗x)♯w)1/2 = ‖x‖2 by Lemma 6.42.
For p = 1, one can use (6.4). For 1 ≤ p <∞, it follows by observing that (|x♯|)p = (|x|♯)p = (|x|p)♯.
Indeed, x∗x is positive, thus the involution commutes with the real continuous functional calculus
of x∗x, in this case with the function y 7→ yp/2, again by Lemma 6.43. �

Lemma 6.45. For positive elements x ∈ L∞(K), it holds ‖x‖1 = φx(1) = ‖φx‖, where ‖φx‖ is the
norm of φx as a bounded linear operator on M.

More generally, if x ∈ L∞(K), it holds (‖x‖p)
p = φ|x|p(1) = ‖φ|x|p‖ for every 1 ≤ p < ∞ and

‖x‖∞ = inf{λ > 0 : E − λ−1φ|x| is completely positive}.

Proof. The statements for 1 ≤ p <∞ follow immediately from the definitions and from the positivity
of φx and φ|x|p. For the last statement, it is enough to observe that E−λ−1φ|x| = w∗(1−λ−1|x|)γ(·)w

is (completely) positive if and only if 1 − λ−1|x| is positive, where the only if part follows by the
proof of Lemma 6.41. This is achieved for every λ > ‖|x|‖∞ = ‖x‖∞. �

Proposition 6.46 (Young inequality). If x, y ∈ L∞(K), then

‖x ∗ y‖r ≤ ‖x‖p‖x‖q

for 1 ≤ p, q, r ≤ ∞ such that 1/p+ 1/q = 1/r + 1.
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Proof. Let r = 1, p = 1, q = 1. Assume first that x and y are positive in L∞(K), then by Lemma
6.41 and Lemma 6.45 we have

‖x ∗ y‖1 = ‖φx∗y‖

= ‖φx ∗ φy‖

≤ ‖φx‖‖φy‖ = ‖x‖1‖y‖1.

For general x, y ∈ L∞(K), as in the proof of Proposition 6.26, let xn → x and yk → y in the L∞-norm
topology such that xn =

∑
m ν

m
n x

m
n , |x| = |xn| =

∑
m x

m
n and yk =

∑
h µ

h
ky

h
k , |y| = |yk| =

∑
h y

h
k ,

the sums over m and h are finite, νmn , µhk are complex phases and xmn , yhk are positive in L∞(K).
Then

‖xn ∗ yk‖1 = ‖
∑

m,h

νmn µ
h
k(x

m
n ∗ yhk)‖1 ≤

∑

m

‖xmn ‖1
∑

h

‖yhk‖1 = ‖x‖1‖y‖1

by the Minkowski inequality and the previous step. Moreover, xn ∗ yn = w∗xnγ(yn)w → x ∗ y in
the L∞-norm topology, hence in the L1-norm topology, thus ‖x ∗ y‖1 ≤ ‖x‖1‖y‖1.

Let r = ∞, p = 1, q = ∞. By e.g. [Nel74, eq. (25)], Proposition 6.24, Proposition 6.38 and
Lemma 6.44, we get

‖x ∗ y‖∞ = sup
z∈L∞(K),‖z‖1≤1

|w∗(z∗(x ∗ y))w|

= sup
z∈L∞(K),‖z‖1≤1

|Tr(F(z)∗F(x ∗ y))|

= sup
z∈L∞(K),‖z‖1≤1

|Tr((F(x)∗F(z))∗F(y))|

= sup
z∈L∞(K),‖z‖1≤1

|Tr(F(x♯ ∗ z)∗F(y))|

= sup
z∈L∞(K),‖z‖1≤1

|w∗((x♯ ∗ z)∗y)w|

≤ sup
z∈L∞(K),‖z‖1≤1

‖x♯ ∗ z‖1‖y‖∞ ≤ ‖x‖1‖y‖∞

where in the last line we used the Hölder inequality and ‖x♯ ∗ z‖1 ≤ ‖x♯‖1‖z‖1. By a symmetric
argument, it follows also ‖x ∗ y‖∞ ≤ ‖x‖∞‖y‖1.

By complex interpolation [Kos84, Thm. 1.2, Def. 3.1] among the two previous cases, we get
‖x ∗ y‖p ≤ ‖x‖1‖y‖p and ‖x ∗ y‖p ≤ ‖x‖p‖y‖1 for 1 ≤ p ≤ ∞.

Let r = ∞ and p, q such that 1/p + 1/q = 1. As before, we get

‖x ∗ y‖∞ = sup
z∈L∞(K),‖z‖1≤1

|w∗((x♯ ∗ z)∗y)w|

≤ sup
z∈L∞(K),‖z‖1≤1

‖x♯ ∗ z‖p‖y‖q ≤ ‖x‖p‖y‖q

where we used again the Hölder inequality and the previously derived ‖x♯ ∗ z‖p ≤ ‖x♯‖p‖z‖1. Thus
we have shown ‖x ∗ y‖∞ ≤ ‖x‖p‖y‖q for p, q such that 1/p + 1/q = 1.

Again by complex interpolation [Kos84, Thm. 1.2, Def. 3.1] among the cases r = ∞, 1/p+1/q = 1,
and r = p, q = 1, or r = q, p = 1, we get the general statement. �

Remark 6.47. For x and y positive in L∞(K), it also holds

‖x ∗ y‖1 = (φx ∗ φy)(1)

= φx(1)φy(1) = ‖x‖1‖y‖1.

Corollary 6.48. The space L1(K) is a complex Banach algebra with involution.
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Remark 6.49. This fact is known for locally compact KPC hypergroups [KPC10, Sec. 5], thus for
subfactor theoretical compact hypergroups [BDVG21, Sec. 3], which are contained in this class.

6.6. Inversion formula and uncertainty principles

In this section, we prove the inversion formula for the subfactor theoretical Fourier transform and
an uncertainty principle relating the size of the support of x ∈ Hom(γ, γ) and of F(x) ∈ Hom(θ, θ).

Recall the notation L∞(K) = Hom(γ, γ) and L∞(K̂) = Hom(θ, θ). Recall also that Hom(θ, θ) ∼=⊕
[ρ]Mnρ(C), where the sum runs over inequivalent irreducible ρ ≺ θ. For x ∈ L∞(K), let

(F(x))(ρ) :=
∑

r,s=1,...,nρ

wρ,rw
∗
ρ,rF(x)wρ,sw

∗
ρ,s

=
∑

r,s=1,...,nρ

(w∗
ρ,rF(x)wρ,s)wρ,rw

∗
ρ,s

and ((F(x))(ρ))r,s := w∗
ρ,rF(x)wρ,s ∈ Hom(ρ, ρ) = C1. Thus (F(x))(ρ) ∈ Mnρ(C) for every ρ ≺ θ.

The support of F(x), not to be confused with the support projection of F(x) and denoted below by
suppF(x), can be considered to be the set of inequivalent irreducible ρ ≺ θ such that (F(x))(ρ) 6= 0.
Let also χρ,r,s := ψ∗

ρ,rψ̄ρ,s ∈ L∞(K) be the trigonometric polynomials considered in the proof of
Proposition 6.24. By [BDVG21, Prop. 4.15] and Proposition 6.24,

(χρ,r,s|x)L2(K) = (wρ,rw
∗
ρ,s|F(x))

L2(K̂)

= Tr(wρ,sw
∗
ρ,rF(x))

= w∗
ρ,rF(x)wρ,sTr(wρ,sw

∗
ρ,s)

= ((F(x))(ρ))r,sd(ρ)

Moreover, {d(ρ)−1/2χρ,r,s}ρ,r,s is an orthonormal basis of L2(K). Thus we get the following:

Proposition 6.50 (Inversion formula). If x ∈ L2(K), then

x =
∑

ρ,r,s

((F(x))(ρ))r,sχρ,r,s

where the sum converges in the L2-norm topology.

In the case of compact groups [CN05, Thm. 2.4] and compact DJS hypergroups [AA17, Thm. 4.1],
from the inversion formula for the Fourier transform and from Parseval’s identity one can derive
the Donoho–Stark uncertainty principle:

1 ≤ µK(supp(f))
∑

ρ∈supp f̂

nρkρ (6.5)

where f 6= 0 is a function in L2(K,µK) and f̂ is its Fourier transform, µK is the Haar measure on
the compact group or DJS hypergroup, nρ is the dimension of the irreducible representation ρ and
kρ is its hyperdimension [Vre79], [AM14]. Note that for compact groups nρ = kρ, and for subfactor
theoretical compact hypergroups nρ ≤ kρ = d(ρ) [BDVG21, Cor. 2.21, Thm. 6.5].

We prove a stronger version of the uncertainty principle (6.5) for local discrete subfactors, similar
to the stronger version proved in [AR08, Thm. 2] for compact groups. The dimension of the
representation nρ gets replaced with the rank of the matrix (F(x))(ρ) ∈Mnρ(C). Using Proposition
6.24 and Proposition 6.26, we reformulate and prove the stronger uncertainty principle following the
same argument used in [JLW16, Thm. 5.2], [LW17, Prop. 3.3] and [LPW19, Thm. 4.8] respectively
for finite index subfactors, fusion bialgebras and Kac type compact quantum groups. For an element
x in a von Neumann algebra A ⊂ B(H), denote by [x] its support projection, i.e. the smallest
projection in B(H) such that x[x] = x. Then [x] ∈ A and [x] = [|x|].
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Proposition 6.51. Denote by τ either the state x 7→ w∗xw on L∞(K), i.e. the restriction of E to

Hom(γ, γ), or the tracial weight Tr on L∞(K̂). For every x ∈ L∞(K), x 6= 0, it holds

1 ≤ τ([x])τ([F(x)]).

Proof. Compute

‖F(x)‖∞ ≤ ‖x‖1

= τ(|x|[x])

≤ ‖x‖2‖[x]‖2

= ‖F(x)‖2‖[x]‖2

= τ([F(x)]F(x)∗F(x)[F(x)])1/2‖[x]‖2

≤ ‖F(x)‖∞τ([F(x)])1/2‖[x]‖2

= ‖F(x)‖∞τ([F(x)])1/2τ([x])1/2

where we used Proposition 6.26, the Cauchy–Schwarz inequality, Proposition 6.24 and the positivity
of Tr. If x 6= 0, i.e. if F(x) 6= 0, dividing by ‖F(x)‖∞ we get the statement. �

In our case at hand, τ([x]) = E([x]) by Lemma 6.17, hence also τ([x]) = µE([x]), and

τ([F(x)]) =
∑

ρ

d(ρ) rank((F(x))(ρ))

by our choice of normalization of Tr. As a consequence, we obtain the following stronger version of
the uncertainty principle (6.5):

Corollary 6.52 (Donoho–Stark uncertainty principle). For every x ∈ L∞(K), x 6= 0, it holds

1 ≤ µE([x])
∑

ρ∈suppF(x)

d(ρ) rank((F(x))(ρ)).
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