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Abstract

We show that any positive energy projective unitary representation of Diff+(S
1) extends

to a strongly continuous projective unitary representation of the fractional Sobolev diffeo-
morphisms Ds(S1) for any real s > 3, and in particular to Ck-diffeomorphisms Diffk

+(S
1)

with k ≥ 4. A similar result holds for the universal covering groups provided that the
representation is assumed to be a direct sum of irreducibles.

As an application we show that a conformal net of von Neumann algebras on S1 is covari-
ant with respect to Ds(S1), s > 3. Moreover every direct sum of irreducible representations
of a conformal net is also Ds(S1)-covariant.

1 Introduction

The group of (smooth) diffeomorphisms of a manifold has been extensively studied and there
have been many interesting results concerning its algebraic and topological properties, see e.g.
[Mil84]. Among them, the group Diff+(S

1) of orientation preserving diffeomorphisms of the cir-
cle S1 is of particular interest in connection with conformal field theory. In (1 + 1)-dimensional
conformal field theory, the symmetry group of the chiral components is Diff+(R) and often this
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can be extended to Diff+(S
1). As this group contains spacetime translations, the relevant repre-

sentations must be positive energy representations and they act on the space of local observables.
The representation theory of positive energy representations has been exploited for construction
and classification of a certain subclass of conformal field theories, see e.g. [KL04].

Non-trivial positive energy representations of Diff+(S
1) are necessarily projective. Any ir-

reducible unitary positive energy representation of the Virasoro algebra extends to a projective
representation of the Lie algebra Vect(S1), the Lie algebra of vector fields on S1, and it integrates
to a positive energy projective unitary representation of Diff+(S

1) [Ner83, GW85, TL99]. It fol-
lows from [Car04, Theorem A.2], see also [CKLW18, Section 3.2], that all irreducible positive
energy unitary projective representations of Diff+(S

1) arise in this way. Accordingly they are
completely classified by the central charge c and the lowest conformal energy h [KR87]. Related
results including reducible representations have been recently obtained in [NS15, Zel17].

These representations of Vect(S1) extend to certain non-smooth vector fields as linear maps
[CW05]. Apart from that this fact had many applications (e.g. the uniqueness of conformal
covariance in conformal nets [CW05], positivity of energy in DHR sectors [Wei06], split property
in conformal nets [MTW18] and covariance of soliton representations [Hen19, DIT19]), it leads
naturally to the question whether the group representations extend to suitable groups of non-
smooth diffeomorphisms. In contrast to the wide range of results and applications concerning
the algebraic, analytic and topological properties of the group Diffk

+(M) of Ck diffeomorphisms
and Ds(M) of Sobolev class diffeomorphisms (see e.g. [EM70, Mis97, Ban97, KW09, Fig10]) and
some results on (true) representations [KL02, AM06, Kuz07, Mal08], there appears to be only
few results in the literature on positive energy representations of these groups. Indeed, Ds(M) is
an infinite-dimensional manifold modelled on the space Hs(M) of Hs-vector fields, which is not
a Lie algebra with the usual Lie bracket for Vect∞(M). This makes the study of representations
of Ds(M) rather subtle.

In this paper, we show that any positive energy (projective) representation of the diffeomor-
phism group extends to Ds(S1) for s > 3. We do this first in the irreducible case by considering
the action of Ds(S1) on vector fields, and therefore, by exploiting the representation theory of
the Virasoro algebra. To obtain the result for the general (reducible) case, we show that the
irreducible projective representations which have the same central charge c can be made locally
into multiplier representations with the same cocycle and this allows us to take the direct sum
of these projective representations. It turns out that conformal nets are covariant with respect
to this extended action.

For some special representations appearing in Fock space, further extensions have been done
first to C3-diffeomorphisms [Vro13], then to Ds(S1), s > 2 [DIT19]. The arguments depend on
realizing these representations in some specific conformal field theory, and it is open whether
the results are valid for general central charge c. In contrast, by our argument, representations
extend to Ds(S1) for any real s > 3 and for any c. While the extensions to Ds(S1) do not
necessarily act nicely on the Lie algebra representations when 2 < s ≤ 3, they do so and are
differentiable when s > 3.

Indeed, our proof follows in part the strategy in [GW85] for the integrability of the repre-
sentations of the Virasoro algebra. The extension to non-smooth diffeomorphisms then follows
from the above mentioned extension to non-smooth vector fields of the corresponding projective
representation of Vect(S1) given in [CW05]. Actually, our argument can be used to give a simpler
proof of the results in [GW85], see Remark 3.8.

This paper is organized as follows. In Section 2, we recall the relevant groups and algebras,
their topologies and representations. In Section 3, we first extend the irreducible projective
representations of Diff+(S

1) to Ds(S1) with s > 3. Then we lift them locally to multiplier repre-
sentations, and show that the direct sum can make sense as projective representations. Section 4
demonstrates that two-dimensional chiral conformal field theories described by conformal nets of
von Neumann algebras have this extended symmetry of Ds(S1). We summarize possible further
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continuation of this work in Section 5.

2 Preliminaries

2.1 Diff+(S
1) and the Virasoro algebra

The diffeomorphism group. Let us denote by Diff+(S
1) the group of orientation preserving,

smooth diffeomorphisms of the circle S1 := {z ∈ C : |z| = 1} and Vect(S1) denote the set of
smooth real vector fields on S1. Diff+(S

1) is an infinite dimensional Lie group whose Lie algebra
is identified with the real topological vector space Vect(S1) of smooth vector fields on S1 with C∞

topology [Mil84]. In the following we identify Vect(S1) with C∞(S1,R) and for f ∈ C∞(S1,R)
we denote by f ′ the derivative of f with respect to the angle θ,

f ′(z) =
d

dθ
f(eiθ)

∣
∣
∣
∣
eiθ=z

.

We consider a diffeomorphism γ ∈ Diff+(S
1) as a map from S1 to S1 ⊂ C. With this convention,

its action on f ∈ Vect(S1) is

(γ∗f)(e
iθ) = −ie−iθ

(
d

dϕ
γ(eiϕ)

) ∣
∣
∣
∣
eiϕ=γ−1(eiθ)

f(γ−1(eiθ)). (2.1)

We denote by Diffk
+(S

1) the group of Ck-diffeomorphisms of S1. Note that this is not a Lie
group, and indeed, the corresponding linear space Vectk(S1) of Ck-vector fields is not closed
under the natural Lie bracket (see below).

The universal covering group of Diff+(S
1) (resp. Diffk

+(S
1)), ˜Diff+(S1) (resp. ˜Diffk

+(S
1)), can

be identified1 with the group of C∞-diffeomorphisms (resp. Ck-diffeomorphisms) γ of R which
satisfy

γ(θ + 2π) = γ(θ) + 2π.

If γ ∈ ˜Diff+(S1), its image under the covering map is in the following denoted by γ̊ ∈ Diff+(S
1),

where γ̊(eiθ) = eiγ(θ). Conversely, if γ ∈ Diff+(S
1), there is an element γ̃ ∈ ˜Diff+(S1) whose

image under the covering map is γ. Such a γ̃ is unique up to 2π and called a lift of γ.
The group Diff+(S

1) admits the Bott-Virasoro cocycle B : Diff+(S
1)× Diff+(S

1) → R (see
e.g. [FH05]). The Bott-Virasoro group is then defined as the group with elements

(γ, t) ∈ Diff+(S
1)× R

and with multiplication

(γ1, t1) · (γ2, t2) = (γ1γ2, t1 + t2 +B(γ1, γ2)).

Note that, given a true (not projective) unitary irreducible representation V of the univer-
sal covering of the Bott-Virasoro group, one can obtain a unitary multiplier representation2

V (γ) := V (γ, 0) of ˜Diff+(S1) (with respect to the Bott-Virasoro cocycle B). Then the map

V : ˜Diff+(S1) → U(H) satisfies

V (γ1)V (γ2) = eicB(γ̊1,γ̊2)V (γ1γ2),

where c ∈ R by irreducibility.

1The realization of ˜Diffk
+(S1) works in the same way as ˜Diff+(S1) as in [TL99, Section 6.1], see also [Ham82,

Example 4.2.6].
2for the definition of unitary multiplier representation see Section 2.4.
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The Lie algebra. The space Vect(S1) is endowed with the Lie algebra structure with the Lie
bracket given by

[f, g] = f ′g − fg′.

As a Lie algebra, Vect(S1) admits the Gelfand–Fuchs two-cocycle

ω(f, g) =
1

48π

∫

S1

(f(eiθ)g′′′(eiθ)− f ′′′(eiθ)g(eiθ))dθ. (2.2)

The Virasoro algebra Vir is the central extension of the complexification of the algebra
generated by the trigonometric polynomials in Vect(S1) defined by the two-cocycle ω. It can be
explicitly described as the complex Lie algebra generated by Ln, n ∈ Z, and the central element
κ, with brackets

[Ln, Lm] = (n−m)Ln+m + δn+m,0
n3 − n

12
κ.

Consider a representation ρ : Vir → End(V ) of Vir on a complex vector space V endowed with
a scalar product 〈·, ·〉. We call ρ a unitary positive energy representation if the following
hold

1. Unitarity: 〈v, ρ(Ln)w〉 = 〈ρ(L−n)v,w〉 for every v,w ∈ V and n ∈ Z;

2. Positivity of the energy: V =
⊕

λ∈R+∪{0} Vλ, where Vλ := ker(ρ(L0) − λ1V ). The lowest
eigenvalue of ρ(L0) is called lowest weight;

3. Central charge: ρ(κ) = c1V ;

There exists an irreducible unitary positive energy representation with central charge c and
lowest weight h if and only if c ≥ 1 and h ≥ 0 (continuous series representation) or (c, h) =

(c(m), hp,q(m)), where c(m) = 1 − 6
(m+2)(m+3) , hp,q(m) = (p(m+1)−qm)2−1

4m(m+1) , m = 3, 4, · · · , p =

1, 2, · · · ,m − 1, q = 1, 2, · · · , p, (discrete series representation) [KR87][DMS97]. In this case
the representation space V is denoted by Hfin(c, h). We denote by H(c, h) the Hilbert space
completion of the vector space Hfin(c, h) associated with the unique irreducible unitary positive
energy representation of Vir with central charge c and lowest weight h.

In these representations, the conformal Hamiltonian ρ(L0) is diagonalized, and on the linear
span of its eigenvectors Hfin(c, h) (the space of finite energy vectors), the Virasoro algebra acts
algebraically as unbounded operators.

The stress-energy tensor. Let H(c, h) as above and, with abuse of notation, we denote by
Ln the elements of Vir represented in H(c, h). For a smooth complex-valued function f on S1

with finitely many non-zero Fourier components, the (chiral) stress-energy tensor associated with
f is the operator

T (f) =
∑

n∈Z

Lnf̂n

acting on H(c, h), where

f̂n =

∫ 2π

0

dθ

2π
e−inθf(eiθ).

The stress-energy tensor T can be extended to a particular linear space of functions strictly
containing the set of all smooth functions, and when f is a real-valued function, T (f) is essentially
self-adjoint on Hfin(c, h) [CW05]. This fact will be used in this article and will be thus resumed
in some detail in Section 2.2.

It is a crucial fact that the irreducible representations H(c, h) of Vir integrate to irreducible
unitary strongly continuous representations of the universal covering of the Bott-Virasoro group
[FH05]. In other words, denoting by q the quotient map q : U(H(c, h)) → U(H(c, h))/C (we
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denote by U(K) the group of unitary operators on K), there is an irreducible, unitary, strongly

continuous multiplier representation U of ˜Diff+(S1), the universal covering of Diff+(S
1), such

that
q(U(Exp(f))) = q(eiT (f))

for all f ∈ Vect(S1), where Exp is the Lie-theoretic exponential map of Diff+(S
1) (see [Mil84]).

For the stress-energy tensor T , we have the following covariance [FH05, Proposition 5.1,
Proposition 3.1].

Proposition 2.1. The stress-energy tensor T on H(c, h) transforms according to

U(γ)T (f)U(γ)∗ = T (̊γ∗(f)) +
c

24π

∫ 2π

0
{̊γ, z}

∣
∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

on vectors in Hfin(c, h), for f ∈ Vect(S1) and γ ∈ ˜Diff+(S1). Furthermore the commutation
relations

i[T (g), T (f)] = T (g′f − f ′g) + cω(g, f),

where ω is the Gelfand–Fuchs two-cocycle (2.2), hold for arbitrary f, g ∈ C∞(S1), on vectors
ψ ∈ Hfin(c, h).

Here

{̊γ, z} =
d3

dz3
γ̊(z)

d
dz
γ̊(z)

−
3

2

(
d2

dz2
γ̊(z)

d
dz
γ̊(z)

)2

is the Schwarzian derivative of γ̊ and d
dz
γ̊(z) = −iz̄ d

dθ
γ̊(eiθ)

∣
∣
∣
∣
eiθ=z

. Note that

β(γ, f) :=
c

24π

∫

S1

{̊γ, z}izf(z)dz

and ω(·, ·) are related by

d

dt
β(Exp(tf), g)

∣
∣
∣
∣
t=0

= −cω(f, g). (2.3)

2.2 The stress-energy tensor on non-smooth vector fields

Let T be the stress-energy tensor on H(c, h). Given a not necessarily smooth real function f of
S1 it is possible to evaluate the stress-energy tensor on f [CW05, Proposition 4.5]. First of all
we define for a real-valued function f of the circle

‖f‖ 3

2

:=
∑

n∈Z

|f̂n|(1 + |n|
3

2 ).

We denote3 with S 3

2

(S1) the class of functions f ∈ L1(S1,R) such that ‖f‖ 3

2

is finite, endowed

with the topology induced by the norm ‖ · ‖ 3

2

.

The following is [CW05, Proposition 4.2, Theorem 4.4, Proposition 4.5].

Proposition 2.2. If f : S1 → C is continuous and such that
∑

n∈Z |f̂n|(1 + |n|
3

2 ) <∞ then

(1) the operator T (f) =
∑

n∈Z Lnf̂n on the domain Hfin(c, h) is well defined, (i.e. the sum is
strongly convergent on the domain).

3We consider S 3

2

(S1) and Hs(S1) below as the spaces of nonsmooth vector fields on S1, and accordingly,

without specification, they are the spaces of real functions.
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(2) T (f)∗ is an extension of the operator T (f)+ :=
∑

n∈Z Ln
¯̂
f−n (this is again understood as an

operator on the domain Hfin(c, h)).

(3) T (f) is closable and T (f) = (T (f)+)∗, where T (f) and T (f)+ are considered as operators

on the domain Hfin(c, h). In particular, if f̂n =
¯̂
f−n for all n ∈ Z (i.e. if f is a real-valued

function), then T (f) is essentially self-adjoint on Hfin(c, h).

(4) For every ξ ∈ D(L0) we have the following energy bounds

‖T (f)ξ‖ ≤ r‖f‖ 3

2

‖(1 + L0)ξ‖,

where r is a function of the central charge c only. Consequently, D(L0) ⊂ D(T (f)).

(5) If {fn} (n ∈ N) is a sequence4 of continuous real functions on S1 in S 3

2

(S1) and ‖f − fn‖ 3

2

converges to 0 as n tends to ∞, then

T (fn) → T (f)

in the strong resolvent sense.

Hereafter, we denote the closure by the same symbol T (f) as long as this does not cause
confusions.

The class S 3

2

(S1) contains many non-smooth functions which are useful in applications, e.g.

differentiable functions which are piecewise smooth [Wei06, Lemma 2.2],[CW05, Lemma 5.3]:

Proposition 2.3. If a real-valued function f on the circle is piecewise smooth and once contin-
uously differentiable on the whole S1, then f ∈ S 3

2

(S1).

2.3 Groups of diffeomorphisms of Sobolev class Hs(S1)

We introduce (see [EK14, Section 2] and [EK14, Definition 2.2], respectively)

• for s ∈ R, s ≥ 0,

Hs(S1) := {f ∈ L2(S1,R) : ‖f‖Hs <∞}, where ‖f‖Hs :=

(
∑

n∈Z

(1 + n2)s|f̂n|
2

) 1

2

,

Hs(S1,C) := {f ∈ L2(S1,C) : ‖f‖Hs <∞}, where ‖f‖Hs :=

(
∑

n∈Z

(1 + n2)s|f̂n|
2

) 1

2

,

which we consider as a Banach space (in fact a Hilbert space) with norm ‖ · ‖Hs ;

• for s ∈ R, s > 3
2 ,

Ds(S1) := {γ ∈ Diff1
+(S

1) : γ̃ − ι ∈ Hs(S1)},

where γ̃ is a lift of γ to R and ι : R → R is the identity map. Here we are identifying the 2π-
periodic functions γ̃ − ι with real valued functions on S1 ≃ R/2πZ.

Ds(S1) has the structure of a Hilbert manifold modelled on Hs(S1), see [EK14, EM70]. It
turns out to be a topological group, see Lemma 2.5 below (but not a Lie group).

Actually, in the literature there are various definitions of these Sobolev spaces/manifolds and
their topologies. Although it is well-known that they coincide, for the convenience of the reader
we recall them and show their equivalence in Appendix.

4This should be distinguished from the Fourier coefficients f̂n of a single function f .
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If s > 1
2 , the space Hs(S1) is a subspace of C(S1,R). Furthermore, from these definitions,

it is immediate that Diffk
+(S

1) is continuously embedded in Dk(S1) for any positive integer k.
Conversely, by the Sobolev-Morrey embedding [IKT13, Proposition 2.2], it holds that Ds(S1) →֒
Diffk

+(S
1) if s > k + 1

2 .
The first statement of the following is a straightforward adaptation of [IKT13, Lemma 2.3].

One can also find various different elementary proofs, for example [tim, Smy]. The second
statement is an adaptation of [IKT13, Lemma B.4].

Lemma 2.4. Let s > 1
2 . Then Hs(S1) is an algebra and ‖fg‖Hs ≤ Cs‖f‖Hs‖g‖Hs . If g ∈

Hs(S1) and infθ(1 + g(θ)) > 0, then 1
1+g

∈ Hs(S1).

The following is a special case of [IKT13, Theorem B.2] and an analogue of [IKT13, Propo-
sition B.7], see also the Appendix. According to [Kol13, P.12], Lemma 2.5(a) for integer s has
been first established in [Ebi68].

Lemma 2.5. Let s > 3
2 . Then

(a) (γ, f) 7→ f ◦ γ, Ds(S1)×Hs(S1) → Hs(S1) is continuous.

(b) γ 7→ γ−1, Ds(S1) → Ds(S1) is continuous.

(c) Ds(S1) is a topological group.

By applying these results, we get:

Lemma 2.6. The following hold.

(a) For s > 3
2 , the map

Ds+1(S1)×Hs(S1) → Hs(S1)

(γ, f) 7→ γ∗(f),

where γ∗(f) is as in (2.1), is continuous.

(b) For s > 2, the embedding Hs(S1) →֒ S 3

2

(S1) is continuous.

(c) For s > 3, β(γ, f) extends continuously to γ ∈ Ds(S1), f ∈ L2(S1,R).

Proof. (a) follows from Lemmas 2.5 and 2.4 and (2.1).
(b) is obtained from the following inequality

∑

k 6=0

|f̂k||k|
3

2 =
∑

k 6=0

|f̂k||k|
2+ǫ 1

|k|
1

2
+ǫ

≤

√
∑

k 6=0

1

k1+2ǫ

√
∑

k 6=0

|f̂k|2|k|4+2ǫ.

for any ǫ > 0.
(c) Note that, with s > 3, Ds(S1) ∋ γ 7→ {̊γ, z} ∈ L2(S1,C) is continuous. To see it, in the

definition

{̊γ, z} =
d3

dz3
γ̊(z)

d
dz
γ̊(z)

−
3

2

(
d2

dz2
γ̊(z)

d
dz
γ̊(z)

)2

,

the maps γ 7→ d3

dz3
γ̊(z) ∈ L2(S1,C) and γ 7→ 1

d
dz

γ̊(z)
∈ Hs−1(S1,C) ⊂ L∞(S1,C) are contin-

uous, hence their product is continuous in L2(S1,C). The second derivative γ 7→ d2

dz2
γ̊(z) ∈

Hs−2(S1,C) is continuous hence so is γ 7→

(
d2

dz2
γ̊(z)

d
dz

γ̊(z)

)2

∈ Hs−2(S1,C) (by the complexification

of Lemma 2.4), hence we obtain the continuity of γ 7→ {̊γ, z} by the complexification of Lemma
2.4. Now the claim is immediate because β(γ, f) = c

24π

∫

S1 {̊γ, z}izf(z)dz.

The universal covering group D̃s(S1) of Ds(S1) is algebraically a subgroup of ˜Diff1
+(S

1),
namely the space of the maps γ : R → R satisfying γ(θ + 2π) = γ(θ) + 2π and locally Hs (see
Appendix), and this can be identified with an open convex subset of Hs(S1).
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2.4 Projective and multiplier representations

A unitary multiplier representation of a topological group G is a pair (U,H) where U : G→
U(H) is a map such that U(g1)U(g2) = σ(g1, g2)U(g1g2) with σ : G × G → T. The map σ
automatically satisfies the equality

σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3).

A unitary multiplier representation U of G is continuous in the strong operator topology (SOT)
if U(g)v tends to U(g0)v for all v ∈ H if g tends to g0.

A SOT continuous unitary projective representation of a topological group G is a pair (U,H)
where H is a Hilbert space and U is a continuous group homomorphism from G to U(H)/T,
where U(H) is equipped with the SOT and U(H)/T with the quotient topology by the quotient
map q.

Now let P (H) = H/T be the projective space associated to the Hilbert space H endowed
with quotient topology. Then U(H)/T acts on P (H) in a natural way and, as a consequence of
[Bar54, Theorem 1.1], the quotient topology on U(H)/T coincides with SOT on U(H)/T induced
by this action. Note that every SOT continuous multiplier representation of G on H gives
rise to a SOT continuous projective representation of G. Conversely, by [Bar54, Theorem 1.1],
every SOT continuous projective representation of G gives rise to a continuous local multiplier
representation of G defined on a suitable neighborhood of the identity. It is well known that a
projective unitary representation U is SOT continuous if its action on B(H) is pointwise SOT
continuous, i.e. g 7→ U(g)xU(g)∗ξ is a continuous map for all x ∈ B(H) and all ξ ∈ H. We
outline an argument here for the convenience of the reader. It is clear from the above discussion
that if U is SOT continuous then it acts pointwise SOT continuously on B(H). Let gλ be a net in
G converging to the identity, ξ be a unit vector in H and let pξ be the corresponding projection.
Then, since U(gλ)pξU(gλ)

∗ converges in the SOT to pξ, ‖(U(γλ)ξ, ξ)‖ converges to 1. Since ξ
was arbitrary, it follows by [Bar54, Theorem 1.1] that U acts continuously on P (H) and hence
it is SOT continuous.

3 Extension of the Diff+(S
1) representations to Sobolev diffeomor-

phisms

3.1 Irreducible case

The purpose of this section is to extend the (positive energy projective) representation U on
H(c, h) of Diff+(S

1) to Ds(S1) with s > 3. In the following s > 3 will always be assumed.
An element γ ∈ Ds(S1) acts on f ∈ Vect(S1) via (2.1). If T is the energy-momentum operator

associated with a positive energy unitary representation of the Virasoro algebra Vir with central
charge c and lowest weight h, we define a new class of operators

T γ(f) := T (γ∗f)− β(γ, f),

where f ∈ Vect(S1) and β(γ, f) = c
24π

∫

S1{γ, z}izf(z)dz, which makes sense for γ ∈ Ds(S1) by
Lemma 2.6 and Proposition 2.2(1). The fact that γ∗f is in S 3

2

(S1) ensures that T (γ∗f) is an

essentially self-adjoint operator on Hfin(c, h) and so is T γ(f) by Proposition 2.2(3). We denote
its closure by the same symbol T γ(f), so long as no confusion arises.

Note that, if γ ∈ Diff+(S
1), then we have

T γ(f) = AdU(γ)(T (f)). (3.1)

Indeed, by definition T γ(f) = T (γ∗f)−β(γ, f) and by Proposition 2.1, (3.1) holds on D(L0), and
both operators are essentially self-adjoint there, hence they must coincide. Since in the smooth
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case the transformation T → T γ is unitarily implemented, the energy bound holds as well:

‖T γ(f)ξ‖ ≤ r‖f‖ 3

2

· ‖(1 + Lγ
0)ξ‖, (3.2)

where Lγ
0 := T γ(1).

We define for γ1, γ2 ∈ Ds(S1)

(T γ1)γ2(f) := T γ1((γ2)∗f)− β(γ2, f).

Proposition 3.1. Let γ1, γ2 ∈ Ds(S1), s > 3, and f ∈ Vect(S1). Then (T γ1)γ2(f) = T γ1γ2(f).

Proof. Using the properties of the Schwarzian derivative [OT05]

{γ1γ2, z} = {γ1, γ2(z)}

(
d

dz
γ2(z)

)2

+ {γ2, z} ,

where y = γ2(z), we infer that

β(γ1γ2, f) = −
c

24π

∫ 2π

0
{γ1γ2, z}

∣
∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

= −
c

24π

∫ 2π

0
{γ1, y}

∣
∣
∣
∣
y=γ2(eiθ)

(
d

dz
γ2(z)

)2 ∣∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

−
c

24π

∫ 2π

0
{γ2, z}

∣
∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

= −
c

24π

∫ 2π

0
{γ1, y}

∣
∣
∣
∣
y=eiϕ

· (−i)
d

dθ

(

γ2(e
iθ)
)
∣
∣
∣
∣
eiθ=γ−1

2
(eiϕ)

f(γ−1
2 (eiϕ))eiϕdϕ

−
c

24π

∫ 2π

0
{γ2, z}

∣
∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

= −
c

24π

∫ 2π

0
{γ1, y}

∣
∣
∣
∣
y=eiϕ

· (−i)e−iϕ d

dθ

(

γ2(e
iθ)
)
∣
∣
∣
∣
eiθ=γ−1

2
(eiϕ)

f(γ−1
2 (eiϕ))ei2ϕdϕ

−
c

24π

∫ 2π

0
{γ2, z}

∣
∣
∣
∣
z=eiθ

f(eiθ)ei2θdθ

= β(γ1, γ2∗(f)) + β(γ2, f),

where we used the change of variables eiϕ = γ2(e
iθ), hence eiθ dθ

dϕ
dγ2
dz

(eiθ)|γ2(eiθ)=eiϕ = eiϕ,
dγ2
dz

(eiθ) = −ie−iθ d
dθ
γ2(e

iθ) and (2.1).
So (T γ1)γ2(f) = T ((γ1)∗((γ2)∗f)) − β(γ1, γ2∗f) − β(γ2, f) = T ((γ1γ2)∗f) − β(γ1γ2, f) =

T γ1γ2(f).

Lemma 3.2. Let s > 3. D(L0) = D(Lγ
0) for every γ ∈ Ds(S1).

Proof. By Lemma A.4 we can take a sequence {γn} in Diff+(S
1) convergent to γ in the topology

of Ds(S1). We observe that 1 = limn γn∗(γ
−1
∗ (1)) in the topology of S 3

2

(S1) by Lemma 2.6. For

ξ ∈ D(L0) we know from Proposition 2.2(5) and (3.2) that

‖L0ξ‖ = lim
n→∞

‖
(
T γn((γ−1

∗ )(1)) + β(γn, γ
−1
∗ (1))

)
ξ‖

≤
(

lim
n→∞

r‖γ−1
∗ (1)‖ 3

2

· ‖(1 + Lγn
0 )ξ‖+ |β(γn, γ

−1
∗ (1))|‖ξ‖

)

= r‖γ−1
∗ (1)‖ 3

2

· ‖(1 + Lγ
0)ξ‖+ |β(γ, γ−1

∗ (1))|‖ξ‖,

where the last equality follows again from Lemma 2.6. Recall that we know that D(L0) ⊂ D(Lγ
0)

from Proposition 2.2(4) and Lγ
0 is essentially self-adjoint on D(L0). From the above inequality,

we infer that any sequence ξn ∈ D(L0) converging to ξ ∈ D(Lγ
0) in the graph norm of Lγ

0 is also
convergent in the graph norm of L0, and therefore, we have D(Lγ

0) = D(L0).
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Proposition 3.3 (energy bounds for T γ). Let γ ∈ Ds(S1), s > 3. Then

‖T γ(f)ξ‖ ≤ r‖f‖ 3

2

‖(1 + Lγ
0)ξ‖

for all ξ ∈ D(L0).

Proof. Let {γn} a sequence of elements in Diff+(S
1) converging to γ ∈ Ds(S1) as in Lemma A.4.

By Proposition 2.2(5) and (3.2),

‖T γ(f)ξ‖ = lim
n→∞

‖T γn(f)ξ‖ ≤ lim
n→∞

r‖f‖ 3

2

‖(1 + Lγn
0 )ξ‖ =

= r‖f‖ 3

2

‖(1 + Lγ
0)ξ‖,

which is the desired inequality.

Theorem 3.4. Let γ ∈ Ds(S1), s > 3. T γ yields an irreducible unitary positive energy repre-
sentation of Vir with central charge c and lowest weight h on H(c, h).

Proof. We are going to prove the Virasoro relations on C∞(Lγ
0). For this purpose, we have to

take under control the action of various exponentiated operators.

Computations on D(L0). Let f and g be real smooth functions. We start by noting that
eiT

γ(g)D(L0) ⊂ D(L0). Indeed, using [FH05, Proposition 3.1] we have, for ξ ∈ D(L0) and
γn ∈ Diff+(S

1) as in Lemma A.4,

L0e
iT γn (g)ξ = eiT

γn (g)(T ((γnExp(−g)γ
−1
n )∗(1)) − β(γnExp(−g)γ

−1
n , 1))ξ,

and the right-hand side converges as n → ∞ by Proposition 2.2(5). Therefore, since both
eiT

γn (g)ξ and L0e
iT γn (g)ξ are convergent, it follows that eiT

γ (g)ξ ∈ D(L0) and

L0e
iT γ(g)ξ = eiT

γ(g)(T ((γExp(−g)γ−1)∗(1)) − β(γExp(−g)γ−1, 1))ξ.

For γn ∈ Diff+(S
1), by Proposition 2.1 we have the operator equality

eiT
γn (g)T γn(f)e−iT γn (g) = T γn(Exp(g)∗(f))−

c

24π

∫

S1

{Exp(g), z}izf(z)dz.

Now, for any positive integer k, we consider the function hk : R → R defined by

hk(s) = se−
s2

k .

Using functional calculus we apply the function hk to the self-adjoint operators appearing in
the two sides of the previous operator equality and we obtain

eiT
γn (g)hk (T

γn(f)) e−iT γn (g) = hk

(

T γn(Exp(g)∗(f))−
c

24π

∫

S1

{Exp(g), z}izf(z)dz

)

. (3.3)

The left-hand side of (3.3) converges strongly to eiT
γ(g)hk(T

γ(f))e−iT γ (g) as n→ ∞, because
we have convergence of T γn(f) to T γ(f) and T γn(g) to T γ(g) in the strong resolvent sense
and hence, eiT

γn (g), hk(T
γn(f)) converge to eiT

γ(g), hk(T
γ(f)), respectively, by [RS80, Theorem

VIII.20(b)]. Similarly, from the convergence of T γn(Exp(g)∗(f)) to T γ(Exp(g)∗(f)) in the strong
resolvent sense it follows that the right-hand side of (3.3) converges strongly to

hk

(

T γ(Exp(g)∗(f))−
c

24π

∫

S1

{Exp(g), z}izf(z)dz

)

.
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Thus

eiT
γ(g)hk(T

γ(f))e−iT γ(g) = hk

(

T γ(Exp(g)∗(f))−
c

24π

∫

S1

{Exp(g), z}izf(z)dz

)

so that, if ξ is in D(L0)

eiT
γ(g)hk(T

γ(f))e−iT γ (g)ξ = hk

(

T γ(Exp(g)∗(f))−
c

24π

∫

S1

{Exp(g), z}izf(z)dz

)

ξ .

By taking the limit for k → ∞, we get for every ξ ∈ D(L0)

eiT
γ(g)T γ(f)e−iT γ(g)ξ = T γ(Exp(g)∗(f))ξ −

(
c

24π

∫

S1

{Exp(g), z}izf(z)dz

)

ξ. (3.4)

Recall that D(L0) = D(Lγ
0). We get in particular

eitL
γ
0T γ(f)e−itL

γ
0 ξ = T γ(ft)ξ, (3.5)

where ft(e
iθ) = f(ei(θ−t)).

Computations on C∞(Lγ
0). The right-hand side of (3.5) is differentiable with respect to t

when ξ ∈ D(L0) since for the right hand side we get

lim
t→0

1

t
(T γ(ft)− T γ(f))ξ = lim

t→0
T γ(1

t
(ft − f))ξ = T γ(−f ′)ξ = −T γ(f ′)ξ,

by the continuity of T γ in the topology of S 3

2

(S1) (Proposition 3.3). Let us specialize it to

ξ ∈ C∞(Lγ
0) :=

⋂

n D((Lγ
0)

n). For the left-hand side of (3.5), we have

d

dt

∣
∣
∣
∣
t=0

eitL
γ
0T γ(f)e−itL

γ
0 ξ

= lim
t→∞

(
1

t

(

eitL
γ
0T γ(f)e−itL

γ
0 − eitL

γ
0T γ(f)

)

ξ +
1

t

(

eitL
γ
0T γ(f)− T γ(f)

)

ξ

)

. (3.6)

The first term converges to −iT γ(f)L0ξ. Indeed, by Proposition 3.3,

∥
∥
∥
∥

1

t

(

eitL
γ
0T γ(f)e−itL

γ
0 − eitL

γ
0T γ(f)

)

ξ + ieitL
γ
0T γ(f)Lγ

0ξ

∥
∥
∥
∥

=

∥
∥
∥
∥

1

t

(

T γ(f)e−itL
γ
0 − T γ(f)

)

ξ + iT γ(f)Lγ
0ξ

∥
∥
∥
∥

≤ r‖f‖ 3

2

∥
∥
∥
∥
∥
(1 + Lγ

0)

(

e−itL
γ
0 − 1

t
+ iLγ

0

)

ξ

∥
∥
∥
∥
∥

= r‖f‖ 3

2

∥
∥
∥
∥
∥

(

e−itL
γ
0 − 1

t
+ iLγ

0

)

(1 + Lγ
0)ξ

∥
∥
∥
∥
∥
.

Since ξ ∈ C∞(Lγ
0), by Stone’s theorem [RS80, Theorem VIII.7(c)] the above converges to 0 as

t→ 0. Thus the limit exists also for the second term of (3.6), and by applying Stone’s theorem
[RS80, Theorem VIII.7(d)], we get T γ(f)ξ ∈ D(Lγ

0), and the second term converges to iLγ
0T

γ(f)ξ.
or in other words, T γ(f)C∞(L0) ⊂ D(Lγ

0) (actually, we proved T γ(f)D((Lγ
0)

2) ⊂ D(Lγ
0)). Thus

we have established the following commutation relation on C∞(Lγ
0):

[Lγ
0 , T

γ(f)]ξ = iT γ(f ′)ξ. (3.7)
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It follows that C∞(Lγ
0) is an invariant domain for every T γ(f) with f ∈ C∞(S1,R). Indeed,

for T γ(f)ξ, with ξ ∈ C∞(Lγ
0) and f ∈ C∞(S1,R), (3.7) is equivalent to

Lγ
0T

γ(f)ξ = [Lγ
0 , T

γ(f)]ξ + T γ(f)Lγ
0ξ = iT γ(f ′)ξ + T γ(f)Lγ

0ξ. (3.8)

We now show that T γ(f)ξ ∈ D((Lγ
0)

k) for every positive integer k, using induction on k. Assume
that T γ(f)ξ ∈ D((Lγ

0)
k) and all f ∈ C∞(S1,R). It then follows from (3.8) that Lγ

0T
γ(f)ξ ∈

D((Lγ
0)

k), i.e. T γ(f)ξ ∈ D((Lγ
0)

k+1). We thus get the desired claim T γ(f)C∞(Lγ
0) ⊂ C∞(Lγ

0).

The Virasoro relations. Finally we show that the stress-energy tensor T γ indeed yields a
representation of Vect(S1). For ξ ∈ C∞(Lγ

0),

d

dt

∣
∣
∣
∣
t=0

eitT
γ (g)T γ(f)e−itT γ(g)ξ

= lim
t→0

(
1

t

(

eitT
γ (g)T γ(f)e−itT γ(g) − eitT

γ (g)T γ(f)
)

+
1

t

(

eitT
γ (g)T γ(f)− T γ(f)

))

ξ. (3.9)

As for the left-hand side, from (3.4), we obtain (T γ(g′f − gf ′) + cω(g, f))ξ by (2.3).
Let us see the right-hand side of (3.9) term by term. As for the first term, we have

∥
∥
∥
∥

1

t

(

eitT
γ (g)T γ(f)e−itT γ(g) − eitT

γ (g)T γ(f)
)

ξ + eitT
γ(g) · iT γ(f)T γ(g)ξ

∥
∥
∥
∥

=

∥
∥
∥
∥

1

t

(

T γ(f)e−itT γ (g) − T γ(f)
)

ξ + iT γ(f)T γ(g)ξ

∥
∥
∥
∥

≤ r‖f‖ 3

2

∥
∥
∥
∥
(1 + Lγ

0)
1

t

(

e−itT γ(g) − 1
)

ξ + (1 + Lγ
0) · iT

γ(g)ξ

∥
∥
∥
∥

≤ r‖f‖ 3

2

(∥
∥
∥
∥

(
1

t

(

e−itT γ (g) − 1
)

+ iT γ(g)

)

ξ

∥
∥
∥
∥
+

∥
∥
∥
∥

(
1

t
Lγ
0

(

e−itT γ(g) − 1
)

+ iLγ
0T

γ(g)

)

ξ

∥
∥
∥
∥

)

.

(3.10)

The first term of (3.10) goes to 0 by Stone’s theorem [RS80, Theorem VIII.7(c)]. The second
term can be treated by (3.4) and (3.7) as follows:

∥
∥
∥
∥

1

t
Lγ
0(e

−itT γ (g) − 1)ξ + iLγ
0T

γ(g)ξ

∥
∥
∥
∥

=

∥
∥
∥
∥

1

t

(

e−itT γ(g)(T γ(Exp(tg)∗(1)) − β(Exp(tg), 1)) − Lγ
0

)

ξ + i(iT γ(g′) + T γ(g)Lγ
0 )ξ

∥
∥
∥
∥

≤

∥
∥
∥
∥

1

t
(e−itT γ (g)T γ(Exp(tg)∗(1)) − e−itT γ (g)Lγ

0)ξ − T γ(g′)ξ

∥
∥
∥
∥

+

∥
∥
∥
∥

1

t
(e−itT γ(g)Lγ

0 − Lγ
0)ξ + iT γ(g)Lγ

0ξ

∥
∥
∥
∥
+

∣
∣
∣
∣

1

t
β(Exp(tg), 1)

∣
∣
∣
∣
‖ξ‖.

Each term can be seen to converge to 0: the first term is done by noting that Lγ
0 = T γ(1),

continuity of T γ (Proposition 3.3), [g, 1] = g′ and unitarity of e−itT γ(g). The second term
vanishes by using Stone’s theorem. The last term also converges to zero by (2.3) and using the
fact that ω(g, 1) = 0. To summarize, the first term of the right-hand side of (3.9) tends to
−iT γ(f)T γ(g).

The second term of (3.9) is equal to iT γ(g)T γ(f). Indeed, since C∞(Lγ
0) is invariant under

the action of T γ(f), this follows by Stone’s theorem.
Altogether, we obtained the equality i[T γ(g), T γ(f)] = T γ(g′f − gf ′) + cω(g, f) on C∞(Lγ

0),
which is the Virasoro commutation relation.
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Note that until here we have only used that T is a positive energy representation of the
Virasoro algebra with central charge c with diagonalizable L0, but not irreducibility. Therefore,
one can iterate our construction for another element in Ds(S1). In particular, by taking γ−1, we
obtain by Proposition 3.1

(T γ)γ
−1

(f) = T (f). (3.11)

We claim that the new representation T γ is irreducible and has the same lowest weight
h. Indeed, by (3.11), one can approximate T (f) by T γ(γ−1

n∗ f) + β(γ, (γ−1
n )∗(f)) in the strong

resolvent sense, where {γn} ⊂ Diff+(S
1) and γn → γ in the topology of Ds(S1). As {eiT (f) : f ∈

Vect(S1)} generates B(H(c, h)), so does {eiT
γ (f) : f ∈ Vect(S1)}, and this shows that T γ is an

irreducible representation of the Virasoro algebra. Furthermore, the new conformal Hamiltonian
Lγ
0 = T γ(1) has spectrum which is a subset of the spectrum of the old conformal Hamiltonian

L0 since it is obtained as a limit in the strong resolvent sense of {AdU(γn)(L0)} with the same
spectrum [RS80, Theorem VIII.24(a)]. Again by iteration, we have

spL0 = sp (T γ)γ
−1

(1) ⊂ spLγ
0 = spT γ(1) ⊂ spL0,

therefore, all these sets must coincide. In particular, h is the lowest eigenvalue of Lγ
0 .

As T and T γ are equivalent as irreducible representations of Vect(S1) and thus of the Virasoro
algebra, there is a unitary intertwiner U(γ), defined up to a scalar such that U(γ)T (f) =
T γ(f)U(γ).

Corollary 3.5. The map γ 7→ U(γ) where γ ∈ Ds(S1), s > 3, is a unitary projective represen-
tation of Ds(S1), i.e. U(γ1γ2) = U(γ1)U(γ2) up to a phase factor.

Proof. We know that for every γ ∈ Ds(S1)

U(γ)T (f) = T γ(f)U(γ)

holds for every f ∈ Vect(S1). So

U(γ1)U(γ2)T (f) = U(γ1)T
γ2(f)U(γ2) = U(γ1)(T (γ2∗f)− β(γ2, f))U(γ2) =

= (T γ1(γ2∗f)− β(γ2, f))U(γ1)U(γ2) =

= (T ((γ1γ2)∗f)− β(γ1, γ2∗f)− β(γ2, f))U(γ1)U(γ2).

Consequently by the computations of Proposition 3.1

U(γ1)U(γ2)T (f) = T γ1γ2(f)U(γ1)U(γ2),

therefore U(γ1γ2) = U(γ1)U(γ2) up to a phase because we are dealing with irreducible represen-
tations of the Virasoro algebra.

Corollary 3.6. Let U = U(c,h) be the irreducible unitary projective representation of Diff+(S
1)

with central charge c and lowest weight h. Then U extends to a strongly continuous irreducible
unitary projective representation of Ds(S1), s > 3.

Proof. The only thing that remains to be proven is continuity, namely that the action α :
Ds(S1) → Aut(B(H(c, h))), γ 7→ AdU(γ) is pointwise continuous in the strong operator topology
of B(H(c, h)).

Let {γn} ⊂ Diff+(S
1), γ ∈ Ds(S1) with γn → γ in the topology of Ds(S1). Then

lim
n→∞

U(γn)e
itT (f)U(γn)

∗ = lim
n→∞

eitT
γn (f) = eitT

γ (f)

where the limit is meant in the strong operator topology. By taking f = 1, we obtain the
convergence of Lγn

0 to Lγ
0 in the strong resolvent sense. As they are in the (c, h)-representation of
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the Virasoro algebra, the lowest eigenprojections E0, E
γ
0 are one-dimensional, and it holds that

limn→∞ AdU(γn)(E0) = Eγ
0 . Let Ω,Ωγ be the lowest eigenvectors. By fixing the scalars, we

may assume that Ωγn := U(γn)Ω → Ωγ .
With this U(γn) with fixed phase, the sequence

U(γn)e
iT (f1) · · · eiT (fk)Ω = eiT

γn (f1) · · · eiT
γn (fk)Ωγn

is convergent to eiT
γ(f1) · · · eiT

γ(fk)Ωγ , because all the operators eiT
γn (f1), · · · , eiT

γn (fk) are uni-
formly bounded and convergent in the strong operator topology. Since vectors of the form
eiT (f1) · · · eiT (fk)Ω span a dense subspace of the whole Hilbert space H(c, h), together with the
uniform boundedness of U(γn), we obtain the convergence of U(γn) to U(γ) in the strong operator
topology.

The claimed continuity follows from this, because for any x ∈ B(H), AdU(γn)(x) is conver-
gent in the strong operator topology, again because U(γn) is uniformly bounded.

Corollary 3.7. Let U = U(c,h) be the irreducible unitary projective representation of Diff+(S
1)

with central charge c and lowest weight h. Then U extends to a strongly continuous irreducible
unitary projective representation of Diffk

+(S
1) with k ≥ 4.

Proof. This is an immediate corollary of the continuous embedding Diffk
+(S

1) →֒ Ds(S1), s ≤
k.

Remark 3.8. Our argument for the construction of projective representations of Ds(S1) can be
used to simplify the proof of the integrability of the irreducible unitary positive energy repre-
sentations of the Virasoro algebra to strongly continuous projective unitary representations of
Diff+(S

1). Such a proof was first given in [GW85, Section 3, Theorem 4.2] by realizing them in
the oscillator algebra. One can do it now only within the Virasoro algebra as follows.

Besides the energy-bounds (a priori estimates) in [GW85, Section 2], see also [BSM90], which
are used in [CW05] and are crucial to our proof, we also used (3.1) coming from [GW85]. More
precisely, we used the fact that for every γ ∈ Diff+(S

1) there is a unitary operator U(γ) such
that U(γ)T (f)U(γ)∗ = T γ(f) for all f ∈ Vect(S1) and U(γ)D(L0) = D(L0). This can be proved
directly following the strategy in pages 1100-1101 of [CKL08], see also the proof of [CKLW18,
Proposition 6.4]. One only needs some of the direct consequences of the energy bounds proved
in [TL99, Section 2]. We outline the arguments here:

• Since Diff+(S
1) is simple [Mil84, Remark 1.7], it is generated by exponentials, because the

subgroup generated by exponentials is a normal subgroup.

• By the proof of Corollary 3.5, the set of γ such that a unitary U(γ) with the required
properties exists forms a subgroup of Diff+(S

1). Hence, it is enough to consider the special
case where γ = Exp(g) for g ∈ Vect(S1).

• It follows from the linear energy-bounds by [TL99, Proposition 2.1] that eitT (g)D(Lk
0) =

D(Lk
0) for all positive integers k and all t ∈ R. As a consequence eitT (g)C∞(L0) = C∞(L0)

for all t ∈ R.

• Now, let ξ ∈ C∞(L0) and let ξ(t) = TExp(tg)(f)eitT (g)ξ. By [TL99, Corollary 2.2] we have
d
dt
eitT (g)ξ = ieitT (g)T (g)ξ in the graph topology of D(Lk

0) for all positive integers k. It

then follows from the energy bounds that d
dt
ξ(t) = iT (g)ξ(t). Hence, ξ(t) = eitT (g)T (f)ξ

for all ξ ∈ C∞(L0) so that TExp(tg)(f) = eitT (g)T (f)e−itT (g) which is the required relation.
Continuity of U follows as in Corollary 3.6.
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3.2 Direct sum of irreducible representations

Here we prove that every positive energy projective unitary representation of Diff+(S
1) extends

to a unitary projective representation of Ds(S1) for s > 3. A similar result holds for the
universal covering groups provided that the representation is assumed to be a direct sum of
irreducibles. This is not an immediate consequence of Corollary 3.6, because, in general, the
direct sum of projective representations does not make sense: U(Hj)/C is not a linear space.
On the other hand, if we have multiplier representations of a group G with the same cocycle,
Uj(g1)Uj(g2) = σ(g1, g2)Uj(g1g2) where σ(g1, g2) is a 2-cocycle H2(G,C) of G, then the direct
sum

⊕

j Uj(g) is again a multiplier representation with the same cocycle σ. If we are interested
in a projective representation of a certain quotient G/H by a normal subgroup H we have to
make sure that the direct sum

⊕
Uj(h) reduces to a scalar when h ∈ H.

Continuous fragmentation of D̃s(S1). Let I be a proper open interval of S1 and I ′ = (S1\I)◦

be the interior of its complement. We denote by I the closure of I. Diff+(I) (resp. Ds(I)) denotes
the subgroup of diffeomorphisms Diff+(S

1) (resp. Ds(S1)) such that γ(x) = x for x ∈ I ′. We
also say that γ ∈ Diff+(I) (resp. γ ∈ Ds(I)) is supported in I.

Let {Ij}j=1,2,3 be a cover of the unit circle as Fig. 1. Let us name the end points of the

intervals: Ik = (ak, bk). We also take slightly smaller intervals Îk = (âk, b̂k) ⊂ Ik which still
provide a cover of S1, and take points ă1 ∈ (a1, â1), b̆1 ∈ (b̂1, b1), c.f. [DFK04]. Furthermore, we
take b̂2, b̌2 such that â1 < b̂2 < b̌2 < b2.

I1

I2

I3
I1

( )
Î1

( )
a1 b1ă1 â1 b̂1 b̆1

I2

b2

()

I3

a3

Figure 1: The covering of the unit circle.

Any given diffeomorphism γ can be written as a product of elements supported in Ik. This is
known as fragmentation (see [Man15] and references therein). We need a slightly refined version
of it, namely, if γ is in a small neighborhood V of the unit element ι, then we can take the
fragments γk also in a small, but larger neighborhood V̂. The precise statement is the following.

Lemma 3.9. Let s > 3
2 and k ∈ {1, 2, 3}. There is a neighborhood V of the unit element ι of

D̃s(S1) and continuous localizing maps χk : V → D̃s(Ik) with

γ = χ1(γ)χ2(γ)χ3(γ)

and χk(ι) = ι, suppχk(γ) ⊂ Ik, where supp γ := {θ ∈ S1 : γ(θ) 6= θ}. If supp γ ⊂ Ĭk ∪ Ĭk+1, then
χk+2(γ) = ι, where the indices k + 1 and k + 2 are considered mod 3 as elements of {1, 2, 3}.

Proof. We may assume without loss of generality that 0 < a1 < ă1 < â1 < b2 < a3 < b̂1 < b̆1 <
b1 < 2π, (see Figure 1).

15



Let us take a smooth 2π-periodic function Dc,1 with Dc,1(t) = 1 for t ∈ Î1 = [â1, b̂1] and

Dc,1(t) = 0 for t ∈ [0, ă1] ∪ [b̆1, 2π] and 0 ≤ Dc,1(t) ≤ 1 everywhere. Let 0 ≤ Dl,1(t) ≤

1 be another smooth 2π-periodic function with support in (a1, ă1) and with
∫ 2π
0 Dl,1(t)dt =

∫ ă1
a1
Dl,1(t)dt =

1
2 (ă1−a1) (which is possible because the interval (a1, ă1) is longer than 1

2 (a1, ă1)).

Similarly, let 0 ≤ Dr,1(t) ≤ 1 be a smooth 2π-periodic function with support in (b̆1, b1) and with
∫ 2π
0 Dr,1(t)dt =

1
2 (b1 − b̆1).

We consider the following neighborhood of the unit element of D̃s(S1)

Vε :=
{

γ ∈ D̃s(S1) : |γ(θ)− ι(θ)| < ε, |γ′(θ)− 1| < ε for θ ∈ [0, 2π]
}

.

Note that since s > 3/2, Vε is open by the Sobolev-Morrey embedding theorem.
Suppose γ ∈ Vε. We set

M := max {Dc,1(t), t ∈ [0, 2π]}

and define the constant α1(γ) by

α1(γ) =
2

ă1 − a1

(

γ(â1)− â1 −

∫ â1

0
(γ′(t)− 1)Dc,1(t)dt

)

. (3.12)

It follows that

|α1(γ)| ≤
2

|ă1 − a1|
ε(1 + â1M) (3.13)

by the definition of Vε and

γ(â1) =

∫ â1

0
((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t))dt.

Similarly, set the constant β1(γ) by

β1(γ) =
−2

b1 − b̆1

(∫ 2π

0
((γ′(t)− 1)Dc,1(t) + α1(γ)Dl,1(t))dt

)

(3.14)

(

=
2

b1 − b̆1

(

b̂1 − γ(b̂1)−

∫ b1

b̂1

(γ′(t)− 1)Dc,1(t)

))

,

then it follows that

|β1(γ)| ≤
2

|b1 − b̆1|
ε(|b̂1 − b1|M + 1) (3.15)

and

b1 =

∫ b1

0
((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t) + β1(γ)Dr,1(t))dt.

Now, the function

γ1(θ) =

∫ θ

0
((γ′(t)− 1)Dc,1(t) + 1 + α1(γ)Dl,1(t) + β1(γ)Dr,1(t))dt (3.16)

is 2π-periodic, the first derivative

γ′1(θ) = (γ′(θ)− 1)Dc,1(θ) + 1 + α1(γ)Dl,1(θ) + β1(γ)Dr,1(θ)

is positive by (3.13), (3.15) if ε is taken sufficiently small and γ′1−1 ∈ Hs−1(S1) (by Lemma 2.4,

using that γ − ι ∈ Hs(S1)), therefore, γ1 can be regarded as an element in D̃s(S1). It also has
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the desired properties, namely γ1(θ) = θ for θ ∈ I ′1 and γ1(θ) = γ(θ) for θ ∈ Î1. Note that the

assignment Vε → D̃s(S1), γ → γ1 is continuous by (3.16)(3.12)(3.14) and Lemma A.1.

We choose ε such that γ′1 is positive for γ ∈ Vε. Now the assignment Vε → D̃s(S1), γ → γγ−1
1

is continuous by Lemma 2.5. We take V ⊂ Vε to be the neighborhood of the identity of D̃s(S1)

such that for γ ∈ V we have γγ−1
1 ∈ Vε1 where ε1 is small enough that we obtain γ2 ∈ D̃s(S1)

(in particular γ′2 is positive) if we do an analogous construction on I2 for γγ−1
1 .

For γ ∈ V we set χ1(γ) = γ1. The continuity of the map χ1 in the topology of D̃s(S1) is
clear from (3.16) and (3.12)(3.14).

Next we construct χ2(γ). By construction (γγ−1
1 )(θ) = θ for θ ∈ Î1, therefore , supp γγ−1

1 ⊂
I2∪I3. We can apply an analogous construction to I2 and γγ−1

1 to obtain γ2 such that supp γ2 ⊂
Î2, γ2(θ) = (γγ−1

1 )(θ) for θ ∈ Î2. In this way we obtain the continuous map χ2(γ) := γ2.

Furthermore, by our choice â1 < b̂2 < b̌2 < b2, γ2(θ) = (γγ−1
1 )(θ) for θ ∈ Î1 where both are equal

to θ, hence for Î1 ∪ Î2.
Now we have (γγ−1

1 γ−1
2 )(θ) = θ for θ ∈ Î1 ∪ Î2, and as {Îk} is a cover of S1, (Î1 ∪ Î2)

′ ⊂ Î3.
Therefore, if we set χ3(γ) = γγ−1

1 γ−1
2 , it is supported in Î3 ⊂ I3 and the map χ3 is continuous

because it is a composition of continuous maps (Lemma 2.5).

If γ is already localized, we can have the following improvement.

Lemma 3.10. Let s > 3
2 , k ∈ {1, 2, 3} and Ĩk = Ik ∪ Ik+1 where the index k + 1 is considered

mod 3 as an element of {1, 2, 3}. Then there exists a neighborhood V of the unit element ι of

D̃s(S1) and continuous localizing maps

χ
(k)
k : V ∩ ˜Ds(Ĩk) → D̃s(Ik),

χ
(k)
k+1 : V ∩ D̃s(Ĩk) → ˜Ds(Ik+1),

such that γ = χ
(k)
k (γ)χ

(k)
k+1(γ) and χ

(k)
k (ι) = χ

(k)
k+1(ι) = ι.

Proof. Without loss of generality, we may assume k = 2. This is done by applying the steps of
the construction of χ2 and χ3 in the proof of Lemma 3.9 to slightly enlarged I2 and Î2, so that

χ
(2)
2 (γ)(θ) = γ(θ) for θ ∈ I ′3.

Lemma 3.11. Let U(c,h1), U(c,h2) be irreducible, projective representations of D̃s(S1) with central
charge c and lowest weight h1, h2 respectively, constructed as in Section 3. Let I be a proper
interval of S1. Then the projective representations U(c,h1) and U(c,h2) restricted to Ds(I) are
unitarily equivalent. Furthermore, a unitary U intertwines U(c,h1) and U(c,h2) restricted to Ds(I)
if and only if it intertwines T(c,h1)(f) and T(c,h2)(f) for every f ∈ Vect(S1) with support in I.

Proof. Let Ĩ an open proper interval of S1 such that Ĩ ⊃ I. By [Wei17, Theorem 5.6] there exists
a unitary W which intertwines the representations U(c,h1), U(c,h2) when restricted to Diff+(Ĩ). Let

γ ∈ Ds(I), then by Lemma A.4 there exists a sequence of C∞-diffeomorphisms {γn} ⊂ Diff+(Ĩ)
converging to γ. By Corollary 3.6,

AdWU(c,h1)(γ)W
∗ = Ad lim

n→∞
WU(c,h1)(γn)W

∗ = Ad lim
n→∞

U(c,h2)(γn) = AdU(c,h2)(γ).

The last assertion follows from [Wei17, Lemma 2.1].

We are going to show that we can take the direct sum of irreducible projective representations
of Ds(S1), {U(c,hj)}, with the same central charge c but possibly different lowest weights {hj},
where differences hj − hj′ are integers. We split the proof into two steps. First, we make U(c,hj)

into continuous multiplier representations with the same cocycle in some neighborhood V of the
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identity diffeomorphism ι ∈ D̃s(S1). Then it is straightforward to take the direct sum. Next, we
show that the direct sum representation reduces to a projective representation of Ds(S1) if the
differences hj − hj′ are integers.

Let G and G′ be two topological groups. Given a neighborhood V of the identity in G, a
continuous map µ : V → G′ is a local homomorphism if µ(g1)µ(g2) = µ(g1g2) for all g1, g2 ∈ V
and g1g2 ∈ V.

We say that a map U is a local unitary multiplier representation of a topological group G on
a neighborhood V of the identity if U is a map from V to the unitary group U(H) of a Hilbert
space H which satisfies the equality U(g1)U(g2) = σ(g1, g2)U(g1g2), where σ : V × V → T

and σ(g1, g2)σ(g1g2, g3) = σ(g1, g2g3)σ(g2, g3) whenever g1, g2, g3, g1g2 and g2g3 are in V. The
following is obtained by reversing the idea of [Tan18].

Proposition 3.12. Let s > 3. For a family {(c, hj)} of pairs with the same central charge c,

there is a neighborhood V of D̃s(S1) such that the irreducible unitary projective representations
U(c,hj) lift to local multiplier representations of V with the same cocycle σc(·, ·).

Proof. Let us take h1. As explained in Section 2.4 (cf. also [Mor17, Proposition 12.44]), in a

neighborhood V̂ of the identity ι ∈ D̃s(S1), U(c,h1) lifts to a continuous multiplier representation,
with some continuous cocycle σc(·, ·), which we will denote by U1.

Because D̃s(S1) is a topological group, and by Lemmas 3.9, 3.10, for each neighborhood W,

there is a smaller neighborhood p(W) such that p(W)2 ⊂ W and χk(γ), χ
(k)
k (γ), χ

(k)
k+1(γ) ⊂ W

for γ ∈ p(W). We take V = p11(V̂) = p(p(p(· · · V̂ · · · )))
︸ ︷︷ ︸

11-times

.

Construction of multiplier representations Uj. We show that we can take Uj with the
same cocycle σc(·, ·). Let us take a local multiplier representation U1 = U(c,h1) with (c, h1).

We fix a covering {Ik} of S1 as in Lemma 3.9. For γ ∈ p(V̂), we define Uj as follows: By
Lemma 3.11, there are unitary intertwiners {Vj,k} between U(c,h1) and U(c,hj) restricted to Ds(Ik).
We set

Uj(χk(γ)) = AdVj,k(U1(χk(γ))),

which makes sense because p(V̂) ⊂ V̂. Note that Uj(χk(γ)) does not depend on the choice of
unitary intertwiner Vj,k, since, if Vj,k and V̂j,k are both unitary intertwiners, then by Lemma 3.11

AdV ∗
j,kV̂j,k(Uj(χk(γ))) = Uj(χk(γ))

for γ smooth, and by continuity of U1 for χk(γ) ∈ Ds(Ik) ∩ V̂.
Let us denote γk = χk(γ) for simplicity. Now, since γ = γ1γ2γ3 with γk ∈ Ds(Ik)∩ V̂ , we can

define Uj(γ) by

Uj(γ) = Uj(γ1)Uj(γ2)Uj(γ3)σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1, (3.17)

and note that the corresponding equation holds for U1.

Well-definedness. We used a particular set of maps χk to define Uj , but actually they do not
depend on the choice of such map χk if γ satisfies certain properties and is sufficiently close to
ι. Namely, we take two decompositions γ = γ1γ2γ3 = γ′1γ

′
2γ

′
3 where γk, γ

′
k ∈ Ds(Ik) ∩ p

5(V̂).

It holds that γ−1
3 γ−1

2 γ−1
1 γ′1γ

′
2γ

′
3 = ι in D̃s(S1) and U1(γ1)

∗ = σc(γ1, γ
−1
1 )U1(γ

−1
1 ), hence we

have
σc(γ1, γ2, γ3, γ

′
1, γ

′
2, γ

′
3) := U1(γ3)

∗U1(γ2)
∗U1(γ

−1
1 γ′1)U1(γ

′
2)U1(γ

′
3) ∈ C.
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Furthermore, as U1 is a multiplier representation in V̂, we have

U1(γ) = U1(γ1)U1(γ2)U1(γ3)σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1

= U1(γ
′
1)U1(γ

′
2, )U1(γ

′
3)σc(γ

′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1.

By putting all factors in one side, we obtain

σc(γ1, γ2, γ3, γ
′
1, γ

′
2, γ

′
3)σc(γ

−1
1 , γ′1)σc(γ1, γ

−1
1 )σc(γ1, γ2)σc(γ1γ2, γ3)σc(γ

′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1 = 1.
(3.18)

Note that Uj is unitarily equivalent to U1 on any proper interval, therefore, Uj(γ1)
∗Uj(γ

′
1) =

σc(γ
−1
1 , γ′1)σc(γ1, γ

−1
1 )Uj(γ

−1
1 γ′1), and γ−1

1 γ′1 = γ2γ3γ
′−1
3 γ′−1

2 has support in I2 ∪ I3. Then we can
again use the unitary equivalence between Uj and U1 on I2 ∪ I3 to obtain

Uj(γ3)
∗Uj(γ2)

∗Uj(γ
−1
1 γ′1)Uj(γ

′
2)Uj(γ

′
3) = σc(γ1, γ2, γ3, γ

′
1, γ

′
2, γ

′
3),

which is, by (3.18), equivalent to the equality

Uj(γ1)Uj(γ2)Uj(γ3)σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1

= Uj(γ
′
1)Uj(γ

′
2)Uj(γ

′
3)σc(γ

′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1.

In other words, Uj is well-defined on p6(V̂).

Cocycle relations. Next we show that Uj is a local multiplier representation on V. Let
γ, γ′ ∈ V = p11(V̂) and we take decompositions γ = γ1γ2γ3, γ

′ = γ′1γ
′
2γ

′
3. We first look at the

product γ3γ
′
1. This is supported in I1 ∪ I3, and we can find another decomposition γ3γ

′
1 = γ′′1γ

′′
3

using Lemma 3.10, where γ′′j ∈ Ds(Ij) ∩ p
8(V̂). By repeating such operations and taking new

decompositions in proper intervals, we find

γγ′ = γ1γ2γ3γ
′
1γ

′
2γ

′
3

= γ1γ2γ
′′
1γ

′′
3γ

′
2γ

′
3

= γ1γ
′′′
1 γ

′′′
2 γ

′′′′
2 γ′′′′3 γ′3,

where γ
(k)
j ∈ Ds(Ij) ∩ p

6(V̂).
Again, by considering the multiplier representation U1, we can prove the following relations

U1(γ3)U1(γ
′
1) = U1(γ

′′
1 )U1(γ

′′
3 )σc(γ3, γ

′
1, γ

′′
1 , γ

′′
3 ),

U1(γ2)U1(γ
′′
1 ) = U1(γ

′′′
1 )U1(γ

′′′
2 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 ),

U1(γ
′′
3 )U1(γ

′
2) = U1(γ

′′′′
2 )U1(γ

′′′′
3 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 ),

(3.19)

where σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 ), σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 ), σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 ) ∈ C are defined by these equalities.

Therefore, as U1 has the cocycle σc,

σc(γ, γ
′)U1(γγ

′)

= U1(γ)U1(γ
′)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×U1(γ1)U1(γ2)U1(γ3)U1(γ
′
1)U1(γ

′
2)U1(γ

′
3)

by (3.17)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×U1(γ1)U1(γ
′′′
1 )U1(γ

′′′
2 )U1(γ

′′′′
2 )U1(γ

′′′′
3 )U1(γ

′
3)

×σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 )

by (3.19)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 )

×σc(γ1, γ
′′′
1 )σc(γ

′′′
2 γ

′′′′
2 )σc(γ

′′′′
3 γ′3) · U1(γ1γ

′′′
1 )U1(γ

′′′
2 γ

′′′′
2 )U1(γ

′′′′
3 γ′3)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 )

×σc(γ1, γ
′′′
1 )σc(γ

′′′
2 γ

′′′′
2 )σc(γ

′′′′
3 γ′3) · σc(γ1γ

′′′
1 , γ

′′′
2 γ

′′′′
2 )σc(γ1γ

′′′
1 γ

′′′
2 γ

′′′′
2 , γ′′′′3 γ′3)U1(γγ

′)
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or equivalently, the following relation between scalars:

σc(γ, γ
′) = σc(γ1, γ2)

−1σc(γ1γ2, γ3)
−1σc(γ

′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

× σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 ) (3.20)

× σc(γ1, γ
′′′
1 )σc(γ

′′′
2 γ

′′′′
2 )σc(γ

′′′′
3 γ′3) · σc(γ1γ

′′′
1 , γ

′′′
2 γ

′′′′
2 )σc(γ1γ

′′′
1 γ

′′′
2 γ

′′′′
2 , γ′′′′3 γ′3).

Since Uj is locally equivalent to U1, the following also follows from (3.19):

Uj(γ3)Uj(γ
′
1) = Uj(γ

′′
1 )Uj(γ

′′
3 )σc(γ3, γ

′
1, γ

′′
1 , γ

′′
3 ),

Uj(γ2)Uj(γ
′′
1 ) = Uj(γ

′′′
1 )Uj(γ

′′′
2 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 ),

Uj(γ
′′
3 )Uj(γ

′
2) = Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 ).

(3.21)

Now, in order to show that Uj is a local multipler representation with the cocycle σc, we only
have to compute

Uj(γ)Uj(γ
′)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×Uj(γ1)Uj(γ2)Uj(γ3)Uj(γ
′
1)Uj(γ

′
2)Uj(γ

′
3)

by (3.17)

= σc(γ1, γ2)
−1σc(γ1γ2, γ3)

−1σc(γ
′
1, γ

′
2)

−1σc(γ
′
1γ

′
2, γ

′
3)

−1

×Uj(γ1)Uj(γ
′′′
1 )Uj(γ

′′′
2 )Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )Uj(γ

′
3)

×σc(γ3, γ
′
1, γ

′′
1 , γ

′′
3 )σc(γ2, γ

′′
1 , γ

′′′
1 , γ

′′′
2 )σc(γ

′′
3 , γ

′
2, γ

′′′′
2 , γ′′′′3 )

by (3.21)

= (σc(γ1, γ
′′′
1 )σc(γ

′′′
2 γ

′′′′
2 )σc(γ

′′′′
3 γ′3)σc(γ1γ

′′′
1 , γ

′′′
2 γ

′′′′
2 )σc(γ1γ

′′′
1 γ

′′′
2 γ

′′′′
2 , γ′′′′3 γ′3))

−1

×σc(γ, γ
′)Uj(γ1)Uj(γ

′′′
1 )Uj(γ

′′′
2 )Uj(γ

′′′′
2 )Uj(γ

′′′′
3 )Uj(γ

′
3)

by (3.20)

= (σc(γ1γ
′′′
1 , γ

′′′
2 γ

′′′′
2 )σc(γ1γ

′′′
1 γ

′′′
2 γ

′′′′
2 , γ′′′′3 γ′3))

−1

×σc(γ, γ
′)Uj(γ1γ

′′′
1 )Uj(γ

′′′
2 γ

′′′′
2 )Uj(γ

′′′′
3 γ′3)

= σc(γ, γ
′)Uj(γγ

′),

where we used local equivalence between Uj and U1 in the 2nd and 4th equalities, and the well-
definedness (independence of the partition of a group element into Ds(Ik) ∩ p

5(V̂)) in the 5th
equality. Namely, Uj has the cocycle σc on V = p11(V̂).

Direct sum of multiplier representations. Since all the projective representations Uj can
be made into the local multiplier representations with the same cocycle σc, the direct sum

U :=
⊕

j Uj is again a local multiplier representation of D̃s(S1) on V. By forgetting the phase, we

can interpret U as a local projective representation of V ⊂ D̃s(S1), or in other words, a continuous
local group homomorphism from V into U(H)/T (see Section 2.4), where H =

⊕

j H(c, hj).

As D̃s(S1) is simply connected and locally connected, U extends to a continuous projective

representation of D̃s(S1) [Pon46, Theorem 63].

Theorem 3.13. Let s > 3. For a family {(c, hj)} of pairs with the same central charge c such

that hj − hj′ ∈ N, the above defined direct sum projective representation U of D̃s(S1) satisfies

U(R(2π)) ∈ C, where R(·) is the lift of rotations to D̃s(S1), or in other words, U gives a projective
representation of Ds(S1).

Proof. Let Ũ(c,hj) the irreducible global multiplier representation of ˜Diff+(S1) with central charge
c and lowest weight hj associated to the Bott-Virasoro cocycle. As a projective representation,
we have U

∣
∣

˜Diff+(S1)
=
⊕

j Ũ(c,hj): this is because, by definition of U , they agree on a neighbor-

hood of the identity of ˜Diff+(S1), and since ˜Diff+(S1) is simply connected they agree globally.
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Since ˜PSL(2,R) is a simply connected and simple Lie group, U
∣
∣

˜PSL(2,R)
extends to a true rep-

resentation of ˜PSL(2,R) by changing U(γ) only by a scalar [Bar54, Theorem 7.1]. The lift to a

true representation of ˜PSL(2,R) is unique, since if V1 and V2 are true representations which give

rise to the same projective representation, we have that V1(g) = χ(g)V2(g) for all g ∈ ˜PSL(2,R),

where χ is a character. Since ˜PSL(2,R) is a perfect group, χ(g) = 1 for all g. By the uniqueness
of the lift of U

∣
∣

˜PSL(2,R)
to a true representation V , we have that V =

⊕

j V(c,hj), where V(c,hj)

is the lift of Ũ(c,hj)

∣
∣

˜PSL(2,R)
to a true representation. As we assumed that hj − hj′ are integers,

V (R(2π)) ∈ C.

From the previous theorem, it follows that every positive energy projective unitary represen-
tation of Diff+(S

1) extends to a unitary projective representation of Ds(S1) using the following
well-known fact that we here prove for self-containment.

Proposition 3.14. Let U be a positive energy unitary projective representation of Diff+(S
1) on

the Hilbert space H. Then U is unitarily equivalent to a direct sum of irreducible positive energy
unitary projective representation of Diff+(S

1) and extends to Ds(S1), s > 3.

Proof. As in the proof of Theorem 3.13, we have that U
∣
∣
PSL(2,R)

can be lifted to a true represen-

tation of ˜PSL(2,R). Thus we can take the generator of rotations L0 and, since ei2πL0 ∈ C1 from
the fact that U is a projective representation of Diff+(S

1), it follows that L0 is diagonalizable
with spectrum Sp(L0) ⊂ {h1 + N} with h1 ∈ R, h1 ≥ 0. Let Hfin be the dense subspace of H
generated by the eigenvectors of L0. We can apply [CKLW18, Theorem 3.4] to conclude that
there exists a positive energy unitary representation πU of Vir on Hfin.

The representation of Vir on Hfin is equivalent to an algebraic orthogonal direct sum of
multiples of irreducible positive energy representations of Vir in the following sense. Let V1
be the smallest πU -invariant subspace of Hfin which contains ker(L0 − h11Hfin) where h1 is
the smallest eigenvalue of L0. By induction let Vn be the smallest πU -invariant subspace of
(V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)

⊥∩Hfin which contains (V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)
⊥∩ker(L0−hn1Hfin) where

hn is the smallest eigenvalue of L0 restricted to (V1 ⊕ V2 ⊕ · · · ⊕ Vn−1)
⊥ ∩Hfin. It is straightfor-

ward to see that Hfin =
⊕

n Vn in the algebraic sense. Now choose an orthonormal basis {enj }
of Wn := Vn ∩ ker(L0 − hn1Hfin). We define Hn

j to be the smallest πU -invariant subspace of Wn

which contains the vector enj . By construction Hn
j has no proper πU -invariant subspaces, Hn

j

and Hn
k are orthogonal subspaces for j 6= k and Vn =

⊕

j H
n
j . Let T be the stress-energy tensor

associated to the representation πU of Vir. By construction T (f)|Hn
j

is essentially self-adjoint on
Hn

j .

To conclude the decomposition of U , we have to show that eiT (f)Hn
j ⊂ Hn

j for all f ∈

Vect(S1). We note that D

((

(T (f)|Hn
j
)
)ℓ
)

⊂ D(T (f)ℓ) and if ξ ∈ D

((

(T (f)|Hn
j
)
)ℓ
)

then

(

T (f)|Hn
j

)ℓ

ξ = (T (f))ℓξ. Thus the analytic vectors for (T (f)|Hn
j
) are also analytic for T (f)

and e
i(T (f)|Hn

j
)
ξ = eiT (f)ξ. Using the density of the analytic vectors in Hn

j , we obtain that

e
i(T (f)|Hn

j
)
= eiT (f)

∣
∣
Hn

j

. Irreducibility of U |Hn
j

follows because T |Hn
j

is irreducible.

The extension to Ds(S1) is now a mere corollary of Theorem 3.13.

Corollary 3.15. Let U be a positive energy unitary projective representation of Diff+(S
1) on

the Hilbert space H. Then U is unitarily equivalent to a direct sum of irreducible positive energy
unitary projective representation of Diff+(S

1) and extends to Diffk
+(S

1) with k ≥ 4.
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Proof. This again follows from Proposition 3.14 and the continuous embedding Diffk
+(S

1) →֒
Ds(S1), s ≤ k.

We do not know whether our local multiplier representations can be extended to a global

multiplier representation of D̃s(S1). It is also open whether the global multiplier representa-

tion of Diff+(S
1) with the Bott-Virasoro cocycle [FH05, Proposition 5.1] extends to D̃s(S1) by

continuity.

4 Conformal nets and diffeomorphism covariance

Let PSL(2,R) be the Möbius group and I be the set of nonempty, non-dense, open intervals
of the unit circle S1. I ′ denotes the interior of the complement of the interval I ∈ I , namely
I ′ = (S1\I)◦. A Möbius covariant net (A, U,Ω) on S1 is a triple of a family A = {A(I), I ∈ I}
of von Neumann algebras, a strongly continuous unitary representation U of PSL(2,R) acting
on a separable complex Hilbert space H and Ω ∈ H, satisfying the following properties:

(1) Isotony: A(I1) ⊂ A(I2), if I1 ⊂ I2, I1, I2 ∈ I .

(2) Locality: A(I1) ⊂ A(I2)
′, if I1 ∩ I2 = ∅, I1, I2 ∈ I .

(3) Möbius covariance: for g ∈ PSL(2,R), I ∈ I ,

U(g)A(I)U(g)−1 = A(gI)

where PSL(2,R) acts on S1 by Möbius transformations.

(4) Positivity of energy: the representation U has positive energy, i.e. the conformal Hamiltonian
L0 (the generator of rotations) has non-negative spectrum.

(5) Vacuum vector: Ω is the unique vector (up to a scalar) with the property U(g)Ω = Ω for
g ∈ PSL(2,R). Additionally Ω is cyclic for the algebra

∨

I∈I A(I).

With these assumptions, the following automatically hold [GF93, Theorem 2.19(ii)][FJ96, Section
3]

(6) Reeh-Schlieder property: Ω is cyclic and separating for A(I).

(7) Haag duality: for every I ∈ I , A(I ′) = A(I)′ where A(I)′ is the commutant of A(I).

(8) Additivity: if {Iα}α∈A is a covering of I ∈ I , with Iα ∈ I for every α, then A(I) ⊂
∨

αA(Iα).

(9) Semicontinuity: if In ∈ I is a decreasing family of intervals and I = (
⋂

n In)
◦ then

A(I) =
∧

nA(In).

By a conformal net (or diffeomorphism covariant net) we shall mean a Möbius covariant
net which satisfies the following:

(10) The representation U extends to a projective unitary representation of Diff+(S
1) such that

for all I ∈ I we have

U(γ)A(I)U(γ)∗ = A(γI), γ ∈ Diff+(S
1),

U(γ)xU(γ)∗ = x, x ∈ A(I), γ ∈ Diff+(I
′)

where Diff+(I
′) denotes the subgroup of diffeomorphisms γ such that γ(z) = z for all z ∈ I.
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A positive energy representation U of Diff+(S
1) is equivalent to a direct sum of irreducible

representations, see Proposition 3.14. Every irreducible component Uj in the decomposition has
the same value of the central charge c and if hj is the lowest weight of Uj, hj − hk ∈ Z for every
j, k. This fact is crucial for our purpose, which is to extend the conformal symmetry of the net
to the larger group Ds(S1), s > 3, in the sense that we want to show that the conditions in (10)
are satisfied for arbitrary γ in Ds(S1) and Ds(I ′) respectively.

Proposition 4.1. A conformal net (A, U,Ω) is Ds(S1)-covariant for every s > 3.

Proof. Let {γn} be a sequence of diffeomorphisms in Diff+(S
1) converging to γ ∈ Ds(S1) in the

topology of Ds(S1) as in Lemma A.4. For all n ∈ N it holds that

U(γn)A(I)U(γn)
∗ = A(γnI) ⊂ A(

⋃n
k=m γkI),

where we used isotony of the net A. For x ∈ A(I), it follows for m ≤ n that

U(γn)xU(γn)
∗ ∈ A(

⋃n
k=m γkI) =

∨∞
k=mA(γkI),

by additivity. By Proposition 3.6 it follows that U(γ)xU(γ)∗ = limn→∞ U(γn)xU(γn)
∗ (conver-

gence in the strong operator topology) is in
⋃∞

k=mA(γk · I) for any m, hence we have by upper
semicontinuity that

U(γ)A(I)U(γ)∗ ⊂
⋂

m

A(
⋃∞

k=m γkI) = A(γI).

The other inclusion follows by applying AdU(γ−1).
Now consider γ ∈ Ds(I ′) and x ∈ A(I). We know from Lemma A.4 that there exists a

sequence {γn} ⊂ Diff+(I
′
n) converging to γ in the topology of Ds(S1) and a decreasing sequence

of intervals I ′n ⊃ supp (γn) ⊃ I ′ such that
⋂

n I
′
n = I ′. For x ∈ A(In), U(γm)xU(γm)∗ = x if

m ≥ n, hence by Proposition 3.6 we obtain U(γ)xU(γ)∗ = x. As n is arbitrary, this holds for
any x ∈ A(

⋃

n In) = A(I) by additivity.

Representations of conformal nets

Let (A, U,Ω) a conformal net. A representation ρ of (A, U,Ω) is a family ρ = {ρI}, I ∈ I , where
ρI are representations of A(I) on a common Hilbert space Hρ and such that ρJ |A(I) = ρI if
I ⊂ J . The representation ρ is said to be locally normal if ρI is normal for every I ∈ I (this
is always true if the representation space Hρ is separable [Tak02, Theorem 5.1]). We say that a
representation ρ of a conformal net (A, U,Ω) is diffeomorphism covariant if there exists a positive

energy representation Uρ of ˜Diff+(S1) such that

Uρ(γ)ρI(x)U
ρ(γ)∗ = ργ̊I(U (̊γ)xU (̊γ)∗), for x ∈ A(I), g ∈ ˜Diff+(S1),

where γ̊ is the image of γ in Diff+(S
1) under the covering map.

Now let ρ be a locally normal representation of the conformal net A and assume that ei2πL
ρ
0

has pure point spectrum (this is always the case if ρ is a direct sum of irreducibles). By using
[Car04, Proposition 2.2] and arguing as in the proof of [Car04, Proposition 3.7] it is not hard
to see that ρ is diffeomorphism covariant (this will be directly proved in [Tan18]) and that the

corresponding positive energy projective unitary representation Uρ of ˜Diff+(S1) is a direct sum

of irreducibles. By our previous results Uρ extends to D̃s(S1), s > 3, and this extension makes

ρ D̃s(S1)-covariant. Furthermore, if ρ is a direct sum of irreducible representations, then the
adjoint action AdUρ(R(2π)) is trivial, and in this sense ρ is Ds(S1)-covariant. We summarize
this fact in the following proposition.

Proposition 4.2. Let ρ be a locally normal representation of the conformal net A and assume

that ei2πL
ρ
0 has pure point spectrum. Then ρ is D̃s(S1)-covariant for every s > 3. If further ρ is

a direct sum of irreducible representations, then it is also Ds(S1)-covariant.
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5 Outlook

For all positive integers n and some h, the irreducible unitary representation U(n,h) can be
extended to Ds(S1), s > 2 [DIT19]. It would be interesting to better understand to what extent
the regularity of the diffeomorphisms can be weakened in such a way that the representations
U(c,h) may be extended to such a class in a continuous way. The proof of [DIT19] (based on
the strategy of [Vro13]) relies on the better-behaving U(1)-current, and it appears that such
extensions do not act nicely on the stress-energy tensor T , which we are currently able to extend
only to S 3

2

(S1). On the other hand we know that at least some degree of regularity is required, i.e.

we cannot just completely drop differentiability, at least when assuming that the representation
has reasonable properties. Indeed, using the modular theory of type III1 factors, it can be shown
that a positive energy representation does not extend e.g. to the group of orientation preserving
homeomorphisms, still satisfying the locality property. For a detailed discussion on this point see
[DIT19], in particular how this fact is related to the construction of soliton sectors for conformal
nets.

Another interesting question is whether the global multiplier representations in [FH05] extend

to D̃s(S1). The question is whether these representations are continuous in the Ds(S1)-topology.
Instead, what we used in Proposition 3.12 is the continuity of our extensions as projective
representations, and the existence of local multiplier representations follows. In particular, we

do not know whether there is a multiplier representation of D̃s(S1) with the Bott-Virasoro
cocycle.
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A Appendix: Various definitions of Sobolev spaces

By Fourier coefficients. In Section 2.3 we introduced for s ≥ 0 the Sobolev spaces Hs(S1)
through the Fourier coefficients,

Hs(S1) := {f ∈ L2(S1,R) :
∑

(1 + k2)s|f̂k|
2 <∞}, (A.1)

and for s > 3
2 the Sobolev groups

Ds(S1) := {γ ∈ Diff1
+(S

1) : γ̃ − ι ∈ Hs(S1)}, (A.2)

where γ̃ is a lift to D̃iff1
+(S

1) and ι : R → R is the identity map. We can also give the topology

first to D̃s(S1) as an open subset of Hs(S1) + ι with the topology given by Hs(S1), then to
Ds(S1) by the quotient map. The definition by Fourier coefficients is convenient for us because
it is crucial that D3+ε(S1) acts on the set of vector fields in S 3

2

(S1) (to which the stress-energy

tensor can be extended) and the latter is defined again through Fourier coefficients. However, we
also cited Lemmas 2.4, 2.5 from [IKT13, Lemma B.4, Theorem B.2] where the Sobolev spaces
are defined in another way. Therefore, we have to check that these definitions coincide.

By local integral. Let us first observe that an analogue of [IKT13, Lemma B.1] holds.
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Lemma A.1. Let f ∈ L2(S1,R) and s > 1. Then, f ∈ Hs(S1) if and only if f ∈ D(i d
dθ
) and

f ′ ∈ Hs−1(S1). Moreover, the norm ‖f‖+ ‖f ′‖Hs−1 is equivalent to ‖f‖Hs , where ‖f‖ = ‖f‖H0

is the L2-norm.

With this Lemma, we can consider the second characterization, parallel to [IKT13, Lemma
B.2].

Lemma A.2. Let s > 0, s /∈ Z and λ = s − ⌊s⌋, where ⌊s⌋ denotes the largest integer not
exceeding s. Then f ∈ Hs(S1) if and only if f ∈ H⌊s⌋ and [f (⌊s⌋)]λ < ∞, where [f (⌊s⌋)]λ is the
L2-norm of the following function on S1 × S1

(θ1, θ2) 7−→
|f (⌊s⌋)(eiθ1)− f (⌊s⌋)(eiθ2)|

|θ1 − θ2|
λ+ 1

2

,

where |θ1 − θ2| denotes the distance5 of two points θ1, θ2 along the circle S1 = R/2πZ.

Proof. Following [IKT13, Lemma B.2], we prove the Lemma by induction. Let us assume ⌊s⌋ = 0,
hence s = λ. We have

∫

S1

∫

S1

|f(eiθ1)− f(eiθ2)|2

|θ1 − θ2|2λ+1
dθ1dθ2 =

∫

S1

∫

S1

|f(ei(θ1+θ))− f(eiθ1)|2

|θ|2λ+1
dθ1dθ

=

∫

S1

1

|θ|2λ+1

∫

S1

|f(ei(θ1+θ))− f(eiθ1)|2dθ1dθ.

By Parseval’s theorem,
∫

S1

|f(ei(θ1+θ))− f(eiθ1)|2dθ1 =
∑

k

| ̂f(ei(·+θ))k − f̂k|
2

=
∑

k

|eikθ − 1|2 · |f̂k|
2,

therefore,
∫

S1

∫

S1

|f(eiθ1)− f(eiθ2)|2

|θ1 − θ2|2λ+1
dθ1dθ2 =

∑

k

|f̂k|
2

∫

S1

|eikθ − 1|2

|θ|2λ+1
dθ

=
∑

k

|k|2λ|f̂k|
2

∫

S1

|eikθ − 1|2

|k|2λ|θ|2λ+1
dθ.

Note that, for k 6= 0, by substitution θ̂ = kθ we obtain
∫

S1

|eikθ − 1|2

|k|2λ|θ|2λ+1
dθ =

∫ π

−π

|eikθ − 1|2

|k|2λ|θ|2λ+1
dθ

=

∫ kπ

−kπ

|eiθ̂ − 1|2

|θ̂|2λ+1
dθ,

and this last integral is uniformly bounded both below and above with respect to k. Therefore,
for f ∈ H⌊s⌋(S1) = L2(S1,R), ‖f‖Hs =

∑

k(1+ |k|2)λ|f̂k|
2 <∞ if and only if

∑

k |k|
2λ|f̂k|

2 <∞,
if and only if

∫

S1

∫

S1

|f(eiθ1)− f(eiθ2)|2

|θ1 − θ2|2λ+1
dθ1dθ2 <∞.

Assuming that the statement holds for s− 1, we can conclude induction by applying it to f ′

and using Lemma A.1.

5We may assume that −π ≤ θ1, θ2 < π, and |θ2 − θ1| = min{|θ2 − θ1|, 2π − |θ2 − θ1|}, hence this depends only
on θ2 − θ2.
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The whole Appendix B of [IKT13] can be adapted to Hs(S1) and Ds(S1) using these norms
and one obtains Lemma 2.5 for s /∈ Z, corresponding to [IKT13, Lemmas B.5,B.6] (for s ∈ Z, see
[IKT13, Section 2]). We believe this is the fastest way for the reader not familiar with Sobolev
spaces.

By local Sobolev spaces. Alternatively, one may start with the Sobolev spaces on R, follow-
ing [IKT13]:

Hs(R,R) :=

{

f ∈ L2(R,R) :

∫

R

(1 + ζ2)s|f̂(ζ)|2dζ <∞

}

,

where f̂ denotes the Fourier transform for f ∈ L2(R,R) (with a slight abuse of notation: f̂
depends on whether f ∈ L2(R,R) or f ∈ L2(S1,R)). For an open connected set U ⊂ R, we set
(see [IKT13, Definition B.1], where the boundary ∂U is required to be Lipschitz, but in R it is
not necessary):

Hs(U ,R) := {f ∈ L2(U ,R) : there is f̃ ∈ Hs(R,R) s.t. f = f̃ |U}.

Let us consider S1 as a manifold, namely supplied with an atlas {Uk}.
For s > 1

2 , we may take another definition for Hs(S1) = Hs(S1,R):

{f ∈ C(S1,R) : for each θ ∈ S1 there is U ∋ θ s.t. f |U ∈ Hs(U ,R)}.

Now, from Lemma A.2, it is clear that being in Hs(S1) is a local property (note that S1 is
compact). If f ∈ Hs(S1) (in the sense of (A.1)), for any smooth function ψ with compact
support, ψf ∈ Hs(S1) by Lemma A.2. To a chart U in the atlas, take a smooth function ψ
which is 1 on U and supported in a non-dense interval. Then ψf can be considered as an element
of Hs(R,R) by [IKT13, Lemma B.2], hence the definition (A.1) is stronger. Conversely, if for
each θ ∈ S1 there is U ∋ θ such that f |U ∈ Hs(U ,R), by compactness of S1 one can take a finite
cover {Uk} of S1 and a smooth partition of unity {ψk} subordinate to it, and it follows that
f =

∑

k ψkf ∈ Hs(S1) in the sense of (A.1), therefore, the two definitions are equivalent.
It is also clear that the following definition [Tay11, Section 4.3]

Hs(U ,R) := {f ∈ L2(U ,R) : ψf ∈ Hs(R,R) for any ψ ∈ C∞(U ,R), suppψ ⊂ U}

is equivalent to the definition through Fourier coefficients for s ≥ 0.
Now, we define Hs(S1, S1) to be the maps f : S1 → S1 such that there are two atlases

{Uk}, {Vk} of S1 such that f |Uk
∈ Hs(Uk,R), where we identified f(Uk) ⊂ Vk as a subset of R

by the chart (see [IKT13, Section 3.1]) and

Ds(S1) = {γ ∈ Diff1
+(S

1) : γ ∈ Hs(S1, S1)}.

Recall that the definition (A.2) is local, and the identity map ι is a smooth function, hence it is
equivalent to the definition above which is manifestly local.

Now that we have the equivalence of definitions, we can use [IKT13, Theorem B.2], which
we cited and specialized as Lemma 2.5.

Local approximation of diffeomorphisms. We also need that elements in Ds(S1) with
compact support can be approximated by elements Ds(S1) with slightly larger support.

Lemma A.3. Let s ≥ 0. For a fixed f ∈ Hs(S1), the rotation R ∋ t 7→ ft = f(ei(·−t)) ∈ Hs(S1)
is continuous.
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Proof. We have f̂t,k = eiktf̂k, and hence |f̂t,k| = |f̂k| and f̂t,k → f̂k as t → 0. By Lebesgue’s
dominated convergence theorem (applied to the measure space Z with the counting measure,
with the dominating function k 7→ 4|(1 + k2)sf̂k|

2)

∑

k

(1 + k2)s|f̂t,k − f̂k|
2 → 0.

This means ‖f − ft‖Hs → 0.

Lemma A.4. Let s ≥ 3
2 . For every γ ∈ Ds(S1), there exists a sequence {γn} ⊂ Diff+(S

1)
converging to γ in the topology of Ds(S1). Furthermore, if γ is supported in I, we can take γn
such that supp γn ⊃ γn+1 and

⋂

n supp γn = I.

Proof. Let γ ∈ Ds(S1) and ϕ ∈ D̃s(S1) such that ϕ(θ + 2π) = ϕ(θ) + 2π and γ(eiθ) = eiϕ(θ). If
γ is supported in a proper interval we may assume without loss of generality that ϕ(θ) = θ if
θ ∈ [−π, a) ∪ (b, π]. The function ψ := ϕ′ − 1 is 2π-periodic and has compact support [a, b] as a
function on [−π, π].

We now choose a set of C∞-functions {gn} with compact support strictly contained in [−π, π]
such that for all n ∈ N gn ≥ 0,

∫
gn = 1, supp (gn) ⊃ supp (gn+1), supp (gn) → {0}. In addition,

if γ is supported in [a, b], we may assume that [a, b] + supp (gn) ⊃ supp (ψ ∗ gn), where the
convolution is defined on S1 ≃ R/2πZ as an abelian group. With this choice, ψ ∗ gn + ι defines
an element in Ds(S1), because

∫

t
ψ ∗ gn(t)dt = 0 and ψ ∗ gn > 0 for sufficiently large n.

To obtain the claim, it is enough to show that ‖ψ − ψ ∗ gn‖Hs → 0 as n → 0. This follows
from

‖ψ − ψ ∗ gn‖Hs ≤

∫

S1

gn(t)‖ψ − ψt‖Hsdt

and Lemma A.3.
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