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Abstract—Computational notebooks have become the tool of
choice for many data scientists and practitioners for performing
analyses and disseminating results. Despite their increasing
popularity, the research community cannot yet count on a large,
curated dataset of computational notebooks. In this paper, we
fill this gap by introducing KGTORRENT, a dataset of Python
Jupyter notebooks with rich metadata retrieved from Kaggle,
a platform hosting data science competitions for learners and
practitioners with any levels of expertise. We describe how we
built KGTORRENT, and provide instructions on how to use it
and refresh the collection to keep it up to date. Our vision is that
the research community will use KGTORRENT to study how data
scientists, especially practitioners, use Jupyter Notebook in the
wild and identify potential shortcomings to inform the design of
its future extensions.

Index Terms—open dataset, repository, Kaggle, computational
notebook, Jupyter

I. INTRODUCTION

Computational notebooks, a modern implementation of the

literate programming paradigm [1], are interactive documents

interleaving natural language text, source code, and its output

to form a human-friendly narrative of a computation. The most

prominent example of a computational notebook platform is

Jupyter Notebook,1 which has seen a widespread endorsement,

especially by data scientists [2].

Because of their popularity, Jupyter notebooks have also

become the primary target of many archival studies [3]–[7], in

which a sizable number of publicly available notebooks from

online software repositories are put together under the lens of

researchers. However, the task of gathering a large dataset of

notebooks, which meets specific research criteria, is nontrivial

and time-consuming. Due to the novelty of this research area,

a large, annotated dataset of computational notebooks has been

missing so far.

To fill this gap, in this paper we present KGTORRENT, a

large dataset of computational notebooks with rich metadata

retrieved from Kaggle2, a Google-owned platform that hosts

machine learning competitions for data scientists of all expe-

rience levels. In addition to hosting data science challenges,

Kaggle also provides a large number of datasets as well as

a cloud-based data science environment. The latter enables

the development and execution of scripts and computational

notebooks written in R or Python.

1https://jupyter.org
2www.kaggle.com

Among the various datasets offered by the platform, there

is Meta Kaggle,3 a daily-updated collection of data about the

Kaggle community and its activity. Moreover, Meta Kaggle

stores detailed information about publicly available notebooks,

which can be obtained through the Kaggle API or, at a lower

level, through direct HTTP requests.
To build KGTORRENT, we thoroughly analyzed Meta Kag-

gle and reverse-engineered its underlying data schema explicit

to build a relational database for storing Kaggle metadata;

then, after populating our database, we gathered a full copy

of 248 761 publicly available Jupyter notebooks written in

Python. By linking the notebook archive to the relational

database, not only we offer to the research community a

large dataset of Jupyter notebooks, but also a practical way

to select a sample of interest, based on any criterion that can

be expressed in terms of the Kaggle metadata.
Finally, along with the dataset and its companion database,

we publish the scripts used to build them. These can be

conveniently executed to reproduce the collection as well

as to effortlessly update it to more recent versions of Meta

Kaggle. To the best of our knowledge, KGTORRENT is the

largest available dataset of Python Jupyter notebooks with rich

metadata.
The name of our dataset is inspired by two previous works

of similar nature, GHTorrent [8] and SOTorrent [9]. The

former provides an offline mirror of data from GitHub, the

popular project hosting site. The latter is an open dataset

containing the version history of posts from Stack Overflow,

the most popular question-and-answer website for software

developers.
The remainder of this paper is organized as follows. In

Section II, we present an overview of the Kaggle platform.

Next, we describe the two main components of KGTORRENT,

namely the database of metadata in Section III and the dataset

of Jupyter notebooks in Section IV. Then, Section V provides

a short guide on how to use and update KGTORRENT,

while Section VI offers a couple of insights on its potential

applications in research. Finally, we describe future work in

Section VII.

II. KAGGLE

Since 2010, Kaggle started offering worldwide machine

learning competitions that ensure their winners both money

3https://kaggle.com/kaggle/meta-kaggle
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prizes and high visibility in the platform leaderboards. No-

tably, some competitions have even been used by international

companies for recruiting purposes. Most of the challenges

are indeed sponsored by large organizations seeking AI-based

innovative approaches to their business challenges or research

agenda. Besides providing funds for the competition prizes,

they often supply new datasets to the platform, as part of the

competition packages.

Since its foundation, Kaggle has continually evolved over

the years, gradually widening its offer to a cloud-based ecosys-

tem of services in support of competitions. It started hosting

a large number of datasets, shaping up to be a public data

platform, and, most interestingly, began providing its users

with a web-based data science environment powered by a

state-of-the-art containerization technology. Kaggle enables

its users to create scripts and computational notebooks in R

and Python – both known as ‘kernels’ in the Kaggle jargon.

These can be developed directly on the platform, where large

datasets are one click away. The entire computation happens

in a containerized cloud environment that users can customize

at their will (e.g., by installing custom dependencies). Nev-

ertheless, a comprehensive number of commonly used data

science packages are available in kernels out of the box. In

addition, both kernels and datasets get versioned in Kaggle.

Once a user has finished working on their notebook, they can

choose to temporarily save it or commit it – and, when this

applies, submit its results (e.g., a pickled model) in response

to a competition.

Besides competitions and data science tools, Kaggle hosts a

rich bundle of social features. The platform enables its users to

discuss in forum-like threads about kernels, datasets, and the

competitions themselves. Additionally, users can follow each

other so that content published by the followed user (kernel,

datasets, and discussion posts) surfaces in the newsfeed of the

follower.

Another key mechanism of the platform is the Kaggle

Progression System.4 The growth of users as data scientists

gets tracked in terms of four categories of expertise, namely

Competitions, Notebooks, Datasets, and Discussion. For each

category of expertise, Kaggle assigns its users a performance

tier among the following: Novice, Contributor, Expert, Master,

and Grandmaster. Advancement through performance tiers is

tied to the activity of users in the platform and abide by

different rules depending on the specific category of expertise.

To step towards the next available tier, users have to earn

medals, which are awarded as a consequence of successful

action on the site (e.g., a competition won, upvotes received

by a forum message, or an uploaded original dataset).

Finally, Kaggle makes freely available Meta Kaggle, the

official collection of public metadata on users, competitions,

datasets, and notebooks from the platform. It was first released

on Sept. 2015 and is updated daily, with each new version

replacing the previous.

4www.kaggle.com/progression

III. KGTORRENT DATABASE

KGTORRENT comprises 1) a dataset of Python Jupyter

notebooks from Kaggle and 2) a companion database derived

from Meta Kaggle, which stores metadata about each notebook

and comprehensive information about the overall activity of

Kaggle users.5

As a first step in the development of KGTORRENT, on

October 27, 2020, we downloaded the latest available version

of the Meta Kaggle dataset. Meta Kaggle comprises 29 files

in the .csv format. Each of these represents the dump of

a database table. Since an official schema definition for Meta

Kaggle was not available, we reverse-engineered the relational

schema from the set of plain text .csv tables. This step

involved understanding the structure of each table, the related

constraints as well as the column data types. Unfortunately,

Kaggle does not provide any official documentation of the

dataset, leaving the table content and relationships open to

interpretation. Nevertheless, we managed to piece together the

schema structure and column definitions, also by leveraging

the related discussions in the forum.

Then, we imported the information contained in Meta

Kaggle into a dedicated relational database. Our DBMS of

choice was MySQL and that is the format in which we provide

the dump of the KGTORRENT database, weighing 8.31GB

(1GB compressed). Nonetheless, users interested in adopting a

different DBMS technology can easily create their own version

of KGTORRENT, as we handled all database operations via

SQLAlchemy,6 a popular ORM package for Python supporting

a large number of DBMS; therefore, minimal changes are

required in our scripts to migrate to a different database

technology.

Because some information is missing in the Meta Kaggle

dump (i.e., it is not made publicly available by the platform

maintainers), many tables present rows for which one or more

foreign keys cannot be resolved. Henceforth, a straight import

of Meta Kaggle tables using a relational DBMS is not feasible

due to a substantial number of violations of referential integrity

constraints. To import Meta Kaggle into a relational database,

one has to decide whether each foreign key constraint has

to be enforced (thus losing orphan records in the referencing

table) or dropped (at the expense of the expressiveness of

the resulting schema). We opted for the first solution: to

enforce referential integrity, we decided not to insert rows for

which one or more foreign keys could not be resolved. While

dropping rows from the dataset likely resulted in giving up

potentially useful information, we opted for consistency over

completeness. In the average case, we kept 91.23% of the rows

of a table – e.g., for the Kernels table, we had to give up 7.69%

of the rows to enforce referential integrity. Furthermore, we

identified several occurrences of cyclic relationships across the

tables: to smoothly populate the database and avoid incurring

in referential integrity errors during the process, we had to

5KGTORRENT is available at https://doi.org/10.5281/zenodo.4468522
6www.sqlalchemy.org
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Fig. 1: Conceptual schema of the KGTORRENT database

postpone the definition of foreign key constraints after the

population step.

The UML-based conceptual schema in Figure 1 provides

a high-level overview of the database structure and is not

meant to capture every detail. For instance, it does not show

that competitions, kernels, and datasets can be assigned tags.

Similarly, for the sake of brevity, the schema omits relevant

entities such as UserAchievements, describing the progress

of users through the Kaggle Progression System, and the

Submissions table. For further details, please refer to the

logical schema of the database available online as part of the

KGTORRENT documentation.7

Beyond kernels metadata, the KGTORRENT database stores

information about 5 598 921 users and 2 910 competitions.

IV. KGTORRENT DATASET

The KGTORRENT dataset consists of 248 761 Jupyter note-

books written in Python. The collection covers the period be-

tween November 2015 and October 2020. The KGTORRENT

dataset has a total size of 175 GB. The compressed notebooks

archive has a size of 76 GB.

Kaggle kernels can be downloaded manually via the web

interface or through the platform API. Interestingly, when

downloaded via the API, notebooks lack the output of code

cells, thus making impossible to evaluate the results of their

execution. Being able to examine the output of computations

can be crucial to answering certain research questions, such

as “Are computational results replicable?”; therefore, to build

7https://collab-uniba.github.io/KGTorrent

KGTORRENT – rather than using the Kaggle API – we pulled

integral notebook versions via HTTP requests, thus emulating

the manual download option. Unfortunately, we were not able

to retrieve every notebook for which we could assemble the

download URL as in 9 cases (0.004%) the HTTP request raised

an error.
For each notebook to be downloaded, our scripts build a

list of notebook URLs by querying the KGTORRENT com-

panion database. In particular, the URLs are inferred from the

CurrentKernelVersionId field in the Kernels table.

We downloaded the latest available version of each kernel.

To optimize download duration and resource consumption, we

decided to restrict the download to Jupyter notebooks written

in Python, as they appear to be the most popular (∼96% of

the total number of kernels).

V. USING KGTORRENT

The most basic use case we envision for KGTORRENT is

the analysis of its whole collection of notebooks. In such a

case, downloading the companion database is not required.
On the other hand, we believe that the most interesting

use cases will involve querying the database for notebooks

that meet specific criteria (e.g., high-quality, contest-winning

notebooks, notebooks labeled with certain tags, etc.). In such

cases, users need to download both the notebooks archive

and the companion database dump; then, they should extract

the former to a local folder and import the latter in a local

installation of MySQL.
The Jupyter notebooks in KGTORRENT are saved

with a filename based on the following pattern:
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UserName_CurrentUrlSlug.8 By including such

pattern in the SELECT statement of a database query, the

corresponding result set will comprise a column listing the

file paths of all the selected notebooks; these will be relative

to the position of the folder where users chose to place the

uncompressed notebooks archive.

The KGTORRENT repository9 contains all the scripts that

are necessary to replicate the collection or update it according

to a newer version of Meta Kaggle.

A. Replicating the collection

To replicate the collection, one should run the main script

of KGTORRENT on a Python 3.7+ interpreter with the init
argument. Users can choose between one of the two download

strategies introduced in Section IV: the argument strategy
accepts either the HTTP option (for a download of full copies

of notebooks based on HTTP requests) or the API option

(for a faster download of notebooks without code cell outputs,

performed via the official Kaggle API).

Further information needed to run the scripts – e.g., the

details about the connection to the desired MySQL server,

or the path to the local folder containing Meta Kaggle – are

expected as environment variables.

Replicate

python kgtorrent.py init --strategy HTTP

If it does not exist yet, the program will create a new

MySQL database – or overwrite the existing one otherwise;

then, it will populate the database with Meta Kaggle data, and

start the download of notebooks from Kaggle. Notably, this

last step requires a large and increasing amount of time as the

number of available Kaggle notebooks keeps growing. As of

this writing, we were able to complete the download in about

4.3 days.

B. Refreshing the collection

Some users might be interested in refreshing KGTORRENT

according to the latest available version of Meta Kaggle. In

this case, the KGTORRENT dataset has to be downloaded

and uncompressed along with the new Meta Kaggle version.

Only after performing these preliminary steps and setting the

environment variables accordingly, users can run the refresh

procedure by issuing the following command:

Refresh

python kgtorrent.py refresh --strategy HTTP

The program will use the latest version of Meta Kaggle to

build a fresh copy of the KGTORRENT database. Then, the

download procedure will start: only the notebooks that are not

already present in the local archive will be downloaded and

added to the collection; on the other hand, notebooks from the

original version of KGTORRENT that are no more referenced

8Where UserName is a field of the Users table, while
CurrentUrlSlug is a field of the Kernels table.

9https://doi.org/10.5281/zenodo.4472989

in the refreshed database will be deleted. Indeed, we observed

that, sometimes, new versions of Meta Kaggle do not include

all the previously available rows. Consequently, these no more

referenced notebooks and users become no longer retrievable

via database queries due to the constraint-checking procedure

that removes tuples with unresolved foreign keys on import.

VI. POTENTIAL RESEARCH APPLICATIONS

Previous studies analyzed computational notebook archives

to understand how data scientists use notebooks and how

these tools fit in a typical data science workflow [3], [10]. In

addition, as notebooks have been criticized for inducing poor

programming practices [11], some studies have investigated

their quality and reproducibility [4]–[6] and proposed tools to

improve them [12]–[14]. The results of these studies confirm

that notebooks are often inundated by poor-quality code,

ignoring even basic software engineering principles. However,

they did not release any corpus of annotated notebooks (e.g.,

Pimentel et al. [4] shared the replication package scripts and

results, but not the dataset); moreover, none of the studies

analyzed notebooks from the Kaggle platform.

Researchers interested in this topic might use KGTORRENT

to analyze notebooks produced by data scientists at different

levels of expertise, with the goal of identifying usage patterns

and common pitfalls in notebook development and inform the

design of notebook-specific quality assurance tools.

Moreover, following the example of Yan et al. [7], note-

books from the KGTORRENT dataset could be examined with

the intent of gaining a deeper understanding of data science

pipelines and design recommender systems for assisting prac-

titioners in the field.

VII. CONCLUSION AND FUTURE IMPROVEMENTS

In this paper, we described KGTORRENT, a dataset of

Python Jupyter notebooks from Kaggle augmented with a

companion database containing rich metadata about notebooks

and their authors. Our contribution is three-fold: first, we pro-

vide an unofficial documentation of the Meta Kaggle dataset

and share its logical schema as part of the KGTORRENT

documentation; second, we build a large dataset of Python

Jupyter notebooks with rich metadata; third, we share the

scripts used for building the KGTORRENT dataset as well as

keeping it up-to-date over time.

Due to the limited resources at our disposal, the current

version of the KGTORRENT dataset is restricted to only

Jupyter notebooks written in Python. Still, we understand

that the research community might also be interested in

examining R notebooks; therefore, we plan to extend future

versions of KGTORRENT to include kernels developed in any

programming language. In addition, as a future extension,

we intend to capture information on the historical evolution

of notebooks, following the example of GHTorrent [8] and

SOTorrent [9]. Finally, we intend to build a minimal RESTful

API to enable the download of filtered subsets of notebooks

from KGTORRENT without the need to store the whole

collection locally.
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