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Abstract: Given the algebra of observables of a quantum system subject to selection rules, a state
can be represented by different density matrices. As a result, different von Neumann entropies
can be associated with the same state. Motivated by a minimality property of the von Neumann
entropy of a density matrix with respect to its possible decompositions into pure states, we give a
purely algebraic definition of entropy for states of an algebra of observables, thus solving the above
ambiguity. The entropy so-defined satisfies all the desirable thermodynamic properties and reduces
to the von Neumann entropy in the quantum mechanical case. Moreover, it can be shown to be equal
to the von Neumann entropy of the unique representative density matrix belonging to the operator
algebra of a multiplicity-free Hilbert-space representation.

Keywords: quantum entropy; operator algebra; quantum statistical mechanics

1. Introduction

In 1931, von Neumann [1] found a connection between two branches of physics:
quantum mechanics and thermodynamics. If a system satisfies the laws of thermodynamics,
its entropy is well defined. With this in mind, von Neumann obtained that a quantum
system, described by a density matrix p, has entropy

Syn(p) = —kg Tr(plogp), 1)

where kg is the Boltzmann constant.

Besides its importance from a fundamental point of view, von Neumann entropy is
useful also to answer practical questions in quantum information theory, for example when
dealing with multipartite systems and one wants to characterize the entanglement between
them; in this context, it has been shown [2,3] that a particularly meaningful measure of
the entanglement contained in a pure state shared by two parties is the von Neumann
entropy of the reduced state of one party, since it allows characterizing the usefulness
of such entanglement in the thermodynamic limit when multiple copies of the state are
available. This measure is then extended to mixed states by exploiting the convex structure
of the set of quantum states, and taking the infimum over all the possible decompositions
into pure states [4].

As quantum field theory developed, attempts to extend Equation (1) to a broader
scheme have been made. Von Neumann entropy is used to evaluate the entropy of a black
hole [5-7], which originates from the lack of knowledge of the system inside of it. However,
“it is never hard to find trouble in field theory” ([8], p. 74), as ambiguities in this definition
arise from the dependence on the cutoffs introduced to regularize the theory. In [9,10], this
ambiguity is traced back to the ambiguity in the definition of a density matrix associated
with a state in an algebraic theory. In fact, the proper mathematical formalization of a
quantum field theory requires the introduction of C*-algebras [11]. In this context, in
general, the set of observables is not the full operator algebra, but a subalgebra [12,13].
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We can get a glance of the ambiguity by the following example. Consider the algebra
of diagonal n x n matrices

A ={A€M,:A;j=0fori#j} )
For any density matrix p, the result of a measurement is

Tr(pA) = ZPiiAiir 3)

and depends only on the diagonal elements of p. Thus, density matrices define the same
state as long as they have the same diagonal elements. However, their von Neumann
entropy, as defined in Equation (1), can be different. Which density matrix is associated
with the correct physical entropy?

To attain an unambiguous definition of entropy, it is necessary to study states as
abstract entities rather than density matrices. In this abstraction, the only relevant feature
of the set of quantum states is its convex structure, and the problem translates into the
more general question of giving a sensible definition of entropy for points in a convex set.
This problem is studied in [14,15].

The purpose of this article is to give an unambiguous definition of entropy for a state
over an algebra of observables, connecting this problem to the definition of entropy for
points on a convex set. In addition, the physical implications of this mathematical definition
are investigated, together with its thermodynamic interpretation and its connection with
von Neumann entropy. The study is carried out for a finite dimensional algebra.

The article is organized as follows. In Section 2, we introduce the essential notation
and briefly recall the algebraic approach to quantum theory. In particular, we discuss a
structure theorem for finite dimensional C*-algebras, which plays a central role in the
derivation of the results presented. Then, in Section 3, we briefly discuss the relation be-
tween von Neumann entropy of a density matrix in quantum mechanics and the Shannon
entropy of its possible decompositions into pure states, which motivates the definition of
the entropy for a state over a C*-algebra as the infimum over its possible decompositions.
In Section 4, we explicitly compute the quantum entropy of a state by using first a generic
faithful representation, and then the GNS construction, and we show its connection with
von Neumann entropy. We also discuss some physical implications by extending a thermo-
dynamic argument due to von Neumann to the algebraic setting. Finally, in Section 5, we
conclude the paper with some remarks.

2. Algebraic Approach: Observables and States

There are several equivalent descriptions of quantum mechanical systems including
the Hilbert space picture [16], the Moyal-Wigner phase space description [17-19], and
the tomographic picture [20-22]. For an infinite number of degrees of freedom—as in a
quantum field theory—a proper description is given in terms of algebras [11,23]. The main
idea is to define observables for each region of space-time, such that observables associated
with casually disjointed regions are compatible (or simultaneously measurable).

The set of observables 2l is required to satisfy certain properties, which define the
structure of a C*-algebra. One considers the observables of a given experiment, and defines
states as positive linear functionals giving the expectation values of the measurement
outcomes. This is at variance with the standard quantum mechanics description on Hilbert
spaces, where one starts by considering the set of vector states, and then defines the
observables as operators on this set.

A C*-algebra is a Banach space (i.e., a normed and complete vector space) 2 with
a product

(AB)eAxA— AB 4)

and an involution
AeA— A" e, (5)
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satisfying || A||* = ||A*A].

An algebra can be represented as an algebra of operators on a Hilbert space H. More
precisely, a representation of the theory is a pair (7, 1) where 7 is a linear map from 2
to B(H) preserving (4) and (5) and B(H) is the algebra of bounded operators on H. A
representation is said to be faithful when 71(A) = 0 if and only if A = 0.

Given an algebra of observables, a state is characterized by the measurement outcomes.
States are defined as functionals

w:A—-C (6)
satisfying
(@ w(A*A) >0,
b)) w(l) = flwl] =1,
where T is the unit element of the algebra. The definition can be extended to non-unital
algebras (see [12]). The convex combination of two states w; and wy,

w = Awi + (1 = A)ws, (7)

with A € (0,1), is still a state. A state is called pure or extremal if it cannot be written as
a convex combination of other states, that is if Equation (7) implies that w; = wy = w.
The states over an algebra 2 with a unit element form a convex weakly-* compact set and
coincide with the weak-* closure of the convex envelope of its pure states. In other words,
we can always decompose a state into pure states.

In the standard quantum mechanical approach, states are represented by density
matrices p, and the expectation value of an observable A € B(H) is given by

wp(A) = Tr(pA), ®)

which becomes (p|Ay) for a vector state, that is a rank-1 projection p = [¢)(¢|, with
lp|| = 1. It is immediate to verify that this is a functional satisfying both Properties (a) and
(b), and thus is a state over the full operator algebra B(#).

In fact, one can prove that in the algebraic description a state can be always realized
in this way, using the GNS construction [24,25]. Given a C*-algebra 2 and a state w, there
exists (up to a unitary transformation) a unique representation (H,, 71,,) and a unique unit
vector (), € H such that

W(A) = <Qw|7Tw(A)Qw>- )

Notice, however, that, at variance with quantum mechanics, in general, the algebra 7., (2)
is smaller than the full operator algebra B(#.,), and a vector state (and in particular
|Q) (Q|) does not necessarily correspond to a pure state and vice versa. This is the case
when the quantum system is subject to superselection rules or is composed by more than
one thermodynamic phase [23,26].

In this article, we deal only with finite dimensional C*-algebras. In this case, the
algebra is isomorphic to the direct sum of full matrix algebras [13]:

Theorem 1 (Structure theorem). Every finite dimensional C*-algebra can be faithfully represented
as the direct sum of full matrix algebras

7'[(2[) = Mnl S M‘rlz b---b M'rlk/ (10)

and thus any finite dimensional C*-algebra is unital. Moreover, any faithful non-degenerate finite
dimensional representation has the form

@) =M™ e M & e MU, (11)
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up to a unitary transformation, with

M" = {XoX® - @X:XeM,) (12)

m

the algebra obtained by repeating m times the same element of M,,.

As a result of Theorem 1, any finite dimensional algebra can be faithfully represented
as a finite-dimensional algebra of operators, as in Equations (11) and (12). Note that
standard quantum mechanics corresponds to the case k = m; = 1.

3. Shannon Entropy and von Neumann Entropy

Given a probability vector 7 = (p1, p2, ..., pn), with p; > 0and }; p; = 1, its Shannon
entropy is defined as

H(p) = — ) pilogp;. (13)

i=1

As required for the entropy, H is a strictly concave function, that is
H(AP+ (1= A)q) = AH(p) + (1 - )H(7), (14)

forall A € (0,1), with equality holding if and only if § = 4.

There is a connection between Shannon entropy and von Neumann entropy in quan-
tum mechanics. For a given density matrix p with eigenvalues A;, its von Neumann entropy
is (by setting the Boltzmann constant kg = 1)

N
Syn(p) = —Trplogp = — ) A;log A; = H(A). (15)
i=1

that is the Shannon entropy of its eigenvalues. It can be seen that von Neumann entropy is
also strictly concave as a function of p.

There is a deeper connection between the two entropies. Given a state in quantum
mechanics, described by a density matrix p, it can always be seen as a probabilistic mixture
of vector states

p=) pilgn{dil, piz0, Y pi=1 (16)
i=1 i=1

However, this decomposition is not unique and the same state can be prepared in different
ways as a convex combination of vector states: using the language of convex geometry, the
set of quantum states is not a simplex [27,28].

The ambiguity in the preparation of a state is one of the greatest difference between
classical and quantum information theory [29]. For any decomposition (16), it is possible
to define a Shannon entropy H(p), and the ambiguity in the preparation is reflected in
an ambiguity in the Shannon entropy. In particular, the von Neumann entropy (15) is the
Shannon entropy associated with the spectral decomposition of p.

The problem of the ambiguity in the ensemble preparation was studied in a seminal
paper by Schrodinger [30], who found a relation between all the preparations of a state,
that is all the possible decompositions of a density matrix into vector states. He proved
that for any decomposition (16) there exists an 7 X n unitary matrix U such that

N 2
pi =) [Uy["A), (17)
=1

foralli =1,...,n, where A1, Ay, ..., Ay are the (not necessarily distinct) eigenvalues of the
density matrix p (in general, n > N). Conversely, for any unitary matrix U, it is possible to
find a decomposition in the form (16) such that (17) holds.
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Notice that, since U is unitary, the matrix B with entries B;; = ]Uﬂz is a doubly
stochastic matrix, and in particular Y3 ; B;j = 1. Thus, the probability vector f is a
randomization of the probability vector A, through a stochastic process, namely 7 = BA.

From (17), using the concavity of h(p) = —plog p, we get

H(p) = Zh(Pi) = Zh(z Bij)\j) > ZZBijh()\j) = Zh()‘j) =H(R), (18)
i i j roj ]

that is .
H(p) > H(A) = Sun(p)- (19)

This is a very interesting result, as the von Neumann entropy of a density matrix
p can be characterized in terms of Shannon entropies of its decompositions into vector
states, as the most ordered decomposition, that is the decomposition with the smallest
Shannon entropy:

Syn(p) = inf {H(F) : p = ¥_pilei) (9l }. (20)

Since convex decomposition into extremal states is a broader concept than orthogonal
decomposition, this minimality property suggests a possible definition of entropy for
points in a generic convex set, and in particular for states over a C*-algebra.

Majorization Relation

There is a profound link between the Shannon entropy and the randomness of a
probability vector, which sheds light on Equation (17), by giving a partial ordering on the
set of probability vectors: the majorization relation [31,32]. Given two probability vectors g
and 7 of length 1, we say that g majorizes 7 if

k k
Yorr=Yaq, Vk=1..n-1, (21)

and we write
p-q. (22)

Here, p* is the permutation of f such that pf > pﬁ =2 pIL\,.
The majorization relation is related to the disorder content of a probability vector. For
example, every probability vector g is always in the relation

ﬁdet - ﬁ - ﬁunif/ (23)

with respect to the deterministic vector pger = (1,0,...,0) and the maximally random
probability vector Py = (1/n,1/n,...,1/n). Notice, however, that it can happen that
two probability vector g and 7 cannot be compared, that is neither 7 > § nor § > p hold.

Nevertheless, one can prove that § >~ 7 if and only if 7 is a randomization of p, that
is § = Bp for some double stochastic matrix B [33,34]. Due to the above properties, the
majorization relation and its connection with Shannon and von Neumann entropies have
proved to play an important role in the quantum resource theories of entanglement [35,36]
and of quantum coherence [37-39]

In terms of majorization, one can restate Schrodinger’s theorem (17) by saying that
the spectral decomposition of a density matrix majorizes all its possible decompositions:

A~ 7. (24)
Moreover, the Shannon entropy (13) is a Schur concave function [28,32], that is if A P, then

H(7) > H(A), (25)
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that is inequality (19). In this sense, Shannon entropy is a measure of disorder.

In the next section, motivated by this minimality property, we define the entropy
of a generic state over a C*-algebra as the minimal Shannon entropy over all its possible
decompositions into extremal states. By Schrodinger’s theorem, this quantum entropy
reduces to the von Neumann entropy in the quantum mechanical case.

4. Entropy of States Over a C*-Algebra

By mirroring the minimality property (20), we now give a definition of entropy for
states over an algebra of observables. Given a finite-dimensional C*-algebra 2, the set
of states over 2 is a finite-dimensional convex compact set. We define the entropy of a
state w to be the minimal Shannon entropy among its possible decompositions into pure
states, namely

S(w) = inf {H(ﬁ) : w =) piwj, Pprobability vector, w; pure states}. (26)
i

In the following, we study the properties of this entropy, and, by representing the
algebra on a Hilbert space, we investigate the implications of this formula and its physical
interpretations. Different features can be obtained from inequivalent representations of the
C*-algebra 2.

Given a representation (7, 77), it is known that the image 77(2) is a C*-subalgebra of
the operator algebra B(#) [12]. However, we cannot represent any state w of the original
algebra as a state over 77(2). Consider the representative state

wr:t(A) = C, (27)
T(A) — w(A). (28)

This definition makes sense if and only if, for B € :
n(B) =0= w(B) =0. (29)

This condition is fulfilled in a faithful representation, where by definition 7r(B) = 0 if and
only if B = 0. Condition (29) is also fulfilled in the GNS representation associated with the
state w, where 71, (A) = 0 implies that w(A) = (Qu|7w(A)Qyw) = 0. In the following, we
compute the entropy (26) using a faithful representation (and later the GNS representation)
and exhibit its connection with the von Neumann entropy of a distinguished representative
density matrix in that representation.

4.1. States Over a C*-Algebra of Operators

In this section, we show that states can be uniquely characterized by density matrices
when we deal with a finite dimensional algebra of operators. Moreover, we prove that
there exists a unique representative density matrix which is also an element of the algebra.

Theorem 2. Let 2 be a C*-algebra of operators over a finite-dimensional Hilbert space
20 C B(H), dimH =n < oo, (30)

and let w be a state over . Then, there exists a unique density matrix belonging to the algebra,
Pw € AU, such that
w(A) =Tr(pwA), VA€ (31)

Proof. To prove the existence of such an element, consider the Hilbert-Schmidt inner
product on B(H),
(A|B)us = Tr (A'B), (32)
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which makes the subspace 2 a Hilbert space. From Riesz’s lemma, for any functional
f € %, there exists a unique py € 2 such that:

f(A)=Tr(ojA) VAex (33)

In particular, given a state w we get a unique operator p,, € 2 satisfying w(A) = Tr(p{,A)
forall A € 2.

We now prove that p,, is a density matrix, that is pf, = p., pw is positive (semi-
definite), and Tr(p,,) = 1.

IfB= ATAis positive, then

w(B) = Tr (0,B) = Tr(B*pw) = Tr(pwB), (34)

where we use the fact that w(B) is real. Since every self-adjoint operator is a linear
combination of two positive operators, and every operator is a linear combination of two
self-adjoint operators, we have Tr(p!, A) = Tr(p, A) for all A € 2, whence p,, = pf.,.

Since p, is self-adjoint, it can be written in its spectral decomposition p, = }; A;P;,
with A; eigenvalues and P; eigenprojections. Since

p— [T %=, (35)

we have P; € 2 for all i. However, then,

since P; = P!D; is positive. Here, H; is the eigenspace of the eigenvalue A;. Therefore,
A 2 0, and p, is positive.
Finally, one has
Tr(pw) = Tr(pol) = w(l) = 1. (37)

Therefore, p, is a density matrix. [

For an infinite-dimensional Hilbert space, only a subclass of states, known as normal
states, can be represented by a density matrix. In this setting, Equation (32) is not defined
for all pairs of bounded operators, and one must recur instead to the duality between
bounded operators and trace-class operators [12].

Observe that, given a state w, different density matrices can be chosen to represent it.
However, p, is the only density matrix which is also an element of the algebra (. Thus, we
have a distinguished representative density matrix, and we might think to define the entropy
of our system as the von Neumann entropy of this density matrix. A natural question is to
understand what is the relation between this von Neumann entropy and the entropy of a
state given by formula (26), and in particular whether

S(w) = Syn(pw) (38)

holds or not. In the next section, we study the entropy of a state (26), and we see that
indeed (38) is true for a faithful and multiplicity-free representation.

4.2. Evaluation in a Faithful Representation

Let us consider a finite-dimensional C*-algebra 2l and a finite-dimensional faithful
representation (#, 7r), that is
m(A)=0 & A=0. (39)

Given a state w on 2, it can be represented on 77(2) by

Wy =worm L (40)
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Let us decompose the representation into irreducible sub-representations

(H,7) = évg (", 7). (41)

i=1

Here, (H;, ;) are irreducible sub-representations. The multiplicity of the sub-representation
7T; is m;, and

'Hfmi):Hi@Hi@"'@Hi/ n.(mi):ﬂi@ﬂi@"'@ﬂi. (42)

1

m; m;
The elements of 77(2A) have the form

X=X18X18..8Xi0XspX0P..0Xo0B...pXNPXND ... D XN, (43)

my my myn

with X; spanning all B(#;), by the structure theorem (see Equation (10)).
From representation (41), we can obtain another, more economical faithful representa-

tion of the form
N

(7:[, ﬁ_’) = @(Hl‘, 7'[1') (44)
i=1
where the multiplicities are m; = 1 for all i, thus eliminating all the redundancy of our
description. For the moment, we stick with the general form (41), but we clearly expect
that our results do not depend on the multiplicity m;.
We rewrite the decomposition (41) in the form

N

(H, ) = P (Hi ®C", m; @ L,). (45)
i=1

(m;)

This follows by considering the unitary transformation which acts on each ;""" as

QOLD O € H" 5 B Qe +EH®er+...Em Qlm € H;@C™,  (46)

i

where {e1, ey, ...,ep,} is an orthonormal basis of C(mi),
Given a state w over the C*-algebra 2, by Theorem 2 we can consider the unique
representative density matrix p,, belonging to 7r(2() such that

w(A) = Tr(pwm(A)). (47)

Since p, is an element of the algebra, it has the form
Pw =P p®]1ﬂ ®p P®Hﬂ ©---Dpn|p ®]I’”7N (48)
w 1| o1 - 2| 02 o N|PON my )’

where p; are density matrices of B(H;), and § = (p1,...,pN) is a probability vector.
Conversely, any density matrix of the form (2) defines a state over 2.
Given two states w, and wj, and their representative density matrices p, and py,
we have
w=A+ (1 =ANwp & pw=A2Apa+ (1—A)pp. (49)

Therefore, a state w is pure if and only if its density matrix is pure with respect to decom-
positions in density matrices of 77(2).
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Let p., be a pure state, and let (48) be its decomposition. Then, we must have that all
pi = 0, except for one i. For example, if p;, p» were both different from zero, then we could
decompose p into two other density matrices of 7r(2(). Thus, a pure state p,, has the form

L.
ml)@...@ol (50)
m;

Po=0&: & (l¢<f>><¢(”| ®

for some i, with () being a unit vector of ;.
Given a state w over %, let its representative p., be in the form (48). Consider the
spectral decomposition of each density matrix p;,

oi = LM 1) g, (51)
]

and obtain a decomposition of the density matrix p,, into pure states

N N
_ Hm,‘ o @), (1) (i) ]Imi
Pw = iE_BlPi<Pi®mi> = §B1pi<]ZAj |¢j ><1Pj |®E

N i i i I, i i
- @ (W1 ) = Eef &
with I
pJ(I)ZOEBEB('IP](I)><IP](Z)|®7:’>€B@O (53)
i

The weights of this decomposition are pi/\](.i). We show that this is the minimal decompo-
sition, i.e., having the minimal Shannon entropy as in definition (26), which is then the
entropy S(w) of the state w.

Consider a generic decomposition of p,, into pure states

pw =Y w0, (54
ij
with (7].(i):
) ; . L.
f’j(”—0@---@<|¢§”><¢§”|®,Zf)ea---eao. (55)
We gather the pure states so that o) has support in H l-(mi ). Notice that Pw can be expressed

]
in the canonical form (48), with

pi =Y w (56)
]
and )y (i ()
pi =Y o o) (o], (57)
]
where ‘
(i) w)! (i) (i)
1 _ ] 1 1 _
0: —_— 7 (% 2 0/ Zv] - 1 (58)
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(if p; = 0, then all ) = 0 and we can drop the corresponding terms in Equation (54)).
p i P P g q
The Shannon entropy of the decomposition (54) is

sz log(pio)

:—Zp, logpl Zp, logv

P +Zp1’H 7
1

p) + Z piSvN(0i)- (59)

Here, Syn (p;) is the von Neumann entropy of the density matrix p;, which, by Schrodinger’s
theorem, is always smaller than the Shannon entropy of any other decomposition of p;.

Now, the last line of (59) is also the Shannon entropy of the decomposition (52).
Therefore, the entropy (26) reads

S(w) =H(p) + ZPiSVN(pi)- (60)

This is our main result, which expresses the entropy of a state w over an algebra 2 in terms
of the canonical decomposition (48) of its distinguished representative density matrix p.
belonging to a faithful representation (45) of 2. The entropy S(w) is given by the sum of
two contributions: the Shannon entropy H(7) of the probability vector g of the weights of
the component density matrices p; in the irreducible sub-representations plus the average
von Neumann entropy of these components. Notice that, as expected, the result does not
depend on the arbitrary multiplicities m; of the representation.

On the other hand, the von Neumann entropy of the distinguished representative
density matrix p,, in the representation (45) in general differs from the entropy (60) of the
state w:

o L.
Svn(pw) = H(P) + ) piSun <Pi ® n’:’)
7 i

= H(7) + }_ pi(Svn(p;) +logm;)

N
w) + Z pilogm;. (61)
i=1

Indeed, it contains an additional entropic term due to the redundancy of the represen-
tation, that is the presence of multiplicities m;. A similar phenomenon appears already
at the level of classical thermodynamics in presence of a redundancy, e.g., for identical
particles [40-42].

The equality between the two entropies is restored if one considers the most economi-
cal representation with no multiplicities (44). In such a case, the entropy of the state w is
equal to the von Neumann entropy of its distinguished representative density matrix p.
and equality (38) holds. This observation has a major consequence: since S(w) is the von
Neumann entropy of the representative density matrix of a representation with no multi-
plicities, it is a bona fide entropy and possesses all the desired thermodynamic properties;
in particular, by Equation (49), it is a concave function.

We have proved the following theorem which gathers our main results:
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Theorem 3 (Entropy of a quantum state). Let 2 be a finite dimensional C*-algebra. For any
state w over U define its entropy as

S(w) = inf {H(ﬁ) t w=)_piwj, Pprobability vector, w; pure states}. (62)
i

Then, w — S(w) is a nonnegative concave function which vanishes on pure states.

Moreover, let (M, 77) be a faithful finite-dimensional and multiplicity-free representation of 2.
Given a state w, let p., € 71(H) be the unique density matrix such that w(A) = Tr(pmt(A)) for
all A € . Then, one has

S(w) = Sun(pw), (63)
where Syn(p) = — Tr(plogp) is the von Neumann entropy of p.

4.3. Thermodynamic Considerations

In this section, we discuss the physical motivations of the definition (26) for the entropy
of a quantum state w. We make use of thermodynamic considerations by extending to the
algebraic framework von Neumann’s beautiful argument, based on the notions of Einstein’s
gas and semipermeable walls [1,27]. To this purpose, some preliminary considerations
are necessary.

There is no immediate definition of eigenstates in the algebraic approach, and yet they
are key ingredients in von Neumann’s thermodynamic considerations. Instead, we can
consider states that have a definite value for a given observable. If a state w, has a definite
value for an observable A, every measurement of this observable will yield the same value
a on it. This can be expressed by saying that w,(A) = a and its variance is zero:

wa((A—a)?) =0, (64)

Furthermore, we assume that this property is stable in the sense that if a second measure-
ment of the same observable is performed just after the first, the same result is obtained.

In the following, we consider the faithful representation (#, 7r) of a finite-dimensional
C*-algebra 2, without multiplicities, as given by (44), namely

N

(H, ) = P (M, ;) (65)

i=1

with (H;, 7t;) being irreducible sub-representations. Consider an observable A = A* € 2
and let 7(A) = 7t(A)" be its representative. Let (¢;); be its eigenstates with eigenvalues
(a;); and suppose that A (and thus 71(A)) has non-degenerate spectrum, that is a; # a;
for i # j. Now, if the density matrix p, € 71(2) is the representative of the state w,, then
Pa = |@;) (@] for some j, and a = a;. Indeed, Equation (64) reads

2
Trlpa(70(A) — a)*] = Tr [pa (Zai|4’i><§0i| —a), |§0i><§0i|> ]
= Y (¢ilpagi) (a; —a)* = 0. (66)

Therefore, p, has no support on ¢; whenever a; # a. As a result, a = Tr[p,7t(A)] is an
eigenvalue of 77(A), say a = a; for some j, and p, is supported on its eigenspace. Thus,
we have

pa = 19) (@jl- (67)
We are now ready to apply von Neumann’s argument. In the previous sections we

showed that, by considering the faithful multiplicity-free representation (65), there is a
one-to-one correspondence between states w over 2 and density matrices p,, belonging
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to 77(2), and pure states over 2l correspond to vector states |¢) (| belonging to 77(2),
which, by the above argument, are states with a definite value for a suitable non-degenerate
observable. Moreover, we have seen that the entropy of any state w is equal to the von
Neumann entropy of its distinguished representative p,, as in equality (38). Therefore, the
strategy is to use von Neumann'’s argument on the representation 7r(2().

Consider an ensemble of M copies of a system prepared in a state w, represented by
the density matrix p € 7r(2). If M is large enough, we expect the system to follow the laws
of thermodynamics. To obtain the entropy of the system, we need to evaluate the heat
exchanged along a reversible transformation that brings the system from a reference state
wop, whose entropy Sy is assigned to the state w. The entropy is given by

w
Sgas = 8o + dTQ (68)
wo

In quantum mechanics, one chooses pure states as the reference states, and sets Sp = 0.
In fact, it can be proved that pure states are isoentropic, and that two pure states can be
connected adiabatically [1]. We show below that this is in general not true in the algebraic
description, and that there are states that cannot be transformed into each other in this way.

Let us recall von Neumann'’s argument, which makes a clever use of a peculiar feature
of quantum mechanics, later on named “quantum Zeno effect” [43,44]. Consider two
orthogonal vectors ¢ and i in H. We explicitly construct the adiabatic transformation from
@ to ¢. Fix an integer k, and define forv =0,1,...,k

v v

lP(V) — cos(ﬁ>¢+81n(ﬁ)¢- (69)

with (©) = ¢ and ) = y. Consider a family of non-degenerate self-adjoint operators
B(™) such that ¢(*) is one of the possible eigenvectors. By measuring in sequence the
observables corresponding to B(), B2, ..., B(K) on the vector state |¢) (¢| one gets

) gl 25 p® 255 @ B2, B, o0 70)
The fraction of states that goes from ¢(*~1) to ¢(*) in the measurement of B(*) is
Py — ) = (D jpl) 2 = cos?(22) 71)
2k
and
P > cos? (2 N 72
(9 = ) > cos™ (1) o , 72)

so that for large k we have a transformation of ¢ into 1 with probability one. Assuming
that in the measurement no heat exchange occurs, we have:

S(p)(@l) = S(le) (o). (73)
Since the transformation can be repeated in the opposite direction ¢y — ¢, we get
Sy (l) = S(e){el)- (74)

This proof works in quantum mechanics, where the algebra of observables is the full
algebra B(7# ), but has problems for a generic algebra 2 subject to selection rules, whose
representation 71(21) is a proper subalgebra of B(H ).

In order for the operator B(") to be the representative of an observable, we need
19 ()] to be in 71(A) for all v. Since pure states are vector states in a subspace #;
of (65), ™)) (V)| are elements of 7(2A) if and only if the vectors ¢ and ¢ in (69) belong
to the same Hilbert space #;. Only in this case we can prove that they are isentropic.
Otherwise, they cannot be transformed into each other by the procedure described above,
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and we cannot compare their entropies. Physically, they represent pure states belonging to
disjoint phases (or sectors) that cannot be connected by any physical operation.

We then call s, s, . .., sy the entropies of the pure states whose representatives are in
Hi,Ha, ..., HN, respectively. From the entropy of pure states, we obtain the entropy of a
generic mixed state. We need to consider a reversible process that brings the ensemble to a
final pure state. This is performed by introducing the concept of Einstein’s gas: the copies
of the quantum system are inserted into boxes IC; (a box for each copy), which are so thick
and massive that the state of the system w is not affected by the motion of the boxes. We
then insert all these boxes into a larger box K, which is kept in contact with a reservoir R at
temperature T. The boxes behave as a perfect gas if the temperature T is high enough.

Consider the spectral decomposition of the density matrix p corresponding to the state
w in the representation 77. We get that the decomposition

= GGG
:Z(ZP;‘AJ‘ |l:b] ><l/J] |>/ Pz,)\ >0 Zpl =1, (75)
]

with \lp](i)> <l[J](i) | € m;(2), corresponds to the decomposition into pure states of w,
w=Y pAlw?, (76)
ij
where the index i labels different sectors. Define the non-degenerate self-adjoint operator

B_ZZa ) gV € (@), witha £ a) for (i,f) # (4,K), (77)

i=1 j

representing the observable A, i.e., B = 7(A), and for which a](-i) are the possible outcomes

of a measurement and tp](’) are the associated eigenvectors.

To separate the pure components w'! of the state w represented by |1p](i)> <l,b/(i) |, we

use a semipermeable wall, constructed as a wall with some windows on it. In particular,
when a box K; reaches a window, we let an engine open it and measure the observable A

on the state inside the box. If the result is a given value a](i), the engine lets the box pass;

otherwise, it reflects it. In this way, the wall is transparent for the states w](i)

the others. Using such a wall, it is possible to separate the pure components (see Figure 1).
This process is reversible, and we get a final configuration of equal boxes, each
(i)

containing one of the components w j

and opaque for

of the gas. We then compress each box isothermally,
so that the system will have the same density of the original gas (see Figure 2). The heat

exchanged in each compression is given by
Q=W= kBplA(’)MTlog Vin _ o, ()MTlog(plA(’)) (78)

The initial entropy of the gas is therefore

Sgas = — L kepir) M1og(pirl”) + Spure = MSy (p) + Spure (79)
7
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We now need to find the entropy of the final configuration Spyre consisting in separated
pure components of the gas. Since entropy is an extensive quantity, it is given by the sum
of the entropies of the pure components:

N (i) N
Spure = Y _ (Z pir; s,-M> =Y pisiM. (80)
j i=1

i=1

Therefore, we finally get

S,
]%le = SVN + szsl - S + szsu (81)
where equality (38) is used.
K1 i/C © 0o °° :
e Q o ¢
wiin: “e © wi
| C e O
I OO. O @ |
I o ®@ O O {RT

@)

(b)

(©)

Figure 1. (a) On the left of the box K is placed another box K1, equal to it. Between them there are
a wall W and a semipermeable wall W,, transparent only for the pure component w!l ] (the blue
spheres in figure). On the right of the box K there is another semipermeable wall opaque only to
the pure component w( (b) If W and W) are translated to the left, then, by keeping their distance
@) .

constant, the component w j is separated in a reversible way (c).

The entropy of the state w obtained by thermodynamic considerations in (81) differs
from S(w) given in (26) by an additional term, }; p;s;, which is the average of the arbitrary
entropies s; assigned to pure states belonging to different phases. By assuming that pure
states belonging to disjoint phases have the same entropy s; = sp = -+ = sy, we get
that the thermodynamic entropy is equal to the entropy S(w) up to an arbitrary constant,
which we can set to 0. This is in agreement with the physical meaning of expression (26),
where the entropic content of a state w is obtained exclusively as a result of the mixing
process with weights p; of pure states w; with zero entropy.
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Ki-1 K Kii1
% Vi
RT
(a)
Ki Ky -
RT

(b)

Figure 2. Each box is compressed reversibly (a) in order to have the same density in all the boxes (b).
The process is carried on isothermally at temperature T.

4.4. Evaluation via the GNS Construction

In this last section, we compute the entropy (26) of a quantum state w by using the
GNS representation of w. The problem of the ambiguity was studied in this framework by
Balachandran, de Queiroz, and Vaidya [15]. In particular, they described how to represent
irreducible sub-representations as decomposition into pure states. This can be generalized
for any decomposition.

We start with the following result [12,25].

Theorem 4. Let w be a state and (H, 7w, Qw ) be its GNS representation. Then, the following
conditions are equivalent.
o (Huw, mw) is irreducible;
*  wispure.

Moreover, there is a one to one relation between positive functionals Awr over A and majorized
by w and positive operators T on H,, in the commutant 7t),(A) and with norm ||T|| < 1:

Awr(A) = (Qu| Tty (A)Quw)- (82)

Notice that here, A is introduced in order to make wr a state. Moreover, we say that
AwrT is majorized by w if w — Awr is positive, that is:

w(A*A) — Awp(A*A) >0 (83)

for all A. Observe that w majorizes Awr if and only if w = Awr + (1 — A)ws for some
state wg. Therefore, the above theorem links a convex decomposition to operators on a
Hilbert space. In particular, one can prove that wr is pure if and only if T is proportional to
a projection Pr in the commutant, and the corresponding sub-representation (Hr, 7r7) is
irreducible [12].

As a result, given a state w, it is equivalent to consider a decomposition into pure
states w;,

w = ZAiwi ’ (84)
i
or a decomposition of the identity of the representation in projections P;,

Iy, = Y tiP, (85)
i
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with t; < 1and
Aiwi(A) = t;{(Qu | Pt (A) Q). (86)

The weights of the decomposition are obtained by evaluating Equation (86) at A = I:
Ai = 1(Qw | PiQw). (87)

Note that, if t; = 1 for all 7, the projections will be orthogonal to each other, and we
obtain a decomposition of the GNS representation into irreducible sub-representations,

(/Hw, 7Tw) = @(Hi,wi). (88)

1

This is the description given in [15].

In the finite dimensional case, a decomposition into irreducible sub-representations
always exists, as well as a decomposition into pure states is always possible in a convex set
(by Minkowski’s theorem). We can decompose the representation as

N N
(Heo, 7o) = @(’Hf””), nf’”f>) = P(H; @ C", ;@ ) (89)
i=1 i=1

using the unitary transformation (46). By the structure theorem, the representation of the
algebra is

(@) = (B(H1) @1, ) © (B(Ho) @ Ly ) &+ & (B(Hn) @ Ly ) (90)
and its commutant is
7' () = (T, @ Min, ) & (I, ® My ) @ -+ & (Igyy © M )- (91)
Thus, from (91), the irreducible projections have the form
P =Ty, ®[0) (o] ©2)

for some i, with v a unit vector in C™, ‘
Therefore, given a family of irreducible projections (P].(Z) ), Equation (85) becomes

Iy, = Yt P, (93)
ij

with t](-i) < land

PV =y @ [0l (0. (94)

In particular, the index i labels the sub-representation H; @ C™i considered, while j labels
the different projections in it. From (93), we get, foralli=1,..., N,

b = 210 0} = D) ©)
j ]

with

() _ [40),00)
u]. =4/t i vj . (96)
Consider now the normalized projection of (), on H; ® C™i, namely

0 =

(]I’Hi ® Hm,) Qw/ (97)

g

i
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where p; = || (I, ® Iy, ) Qu |*. By plugging (94) and (97) into Equation (87), we get
A = 10401200} = 1 pityl I, @ of) 0! DY)
= pi{Qu| Iy, © | ("))
= i Tegg, (1) (Qu])u”) = pi(u? |zl (98)
with
07 = Ty, (1€%) (1) (99)
In general, the decomposition of the identity in Equation (95) consists of M; > m;
elements. If ( ]( )) j=1,...,m; is an orthonormal basis of C", it can be written as
N 10100y 1))
1 1 1 1
Sen = Y (e 1) i ey (100)
j=1

This is an orthonormal relation between m1; vectors of length M;. We can expand the Hilbert
(i) (i)

space adding M; —m; vectors e, ,,..., €., and obtain a complete orthonormal system in
Equation (100). Therefore, by settmg

4 Mo
al) = Z(el({l)|u](l)>e,((l) (101)

we also get complete orthonormal system in CMi. The operators o; are defined so that they

)

vanish on ¢; for j > m;.

We now evaluate the Shannon entropy of the weight /\ in (98):
H(A) = — ZA“) log A"
= Z Pz |Uz 10g pi

- Z pz |0'1 10g< |0'1 )> (102)

Since (); is normalized, the term in the second line becomes
—_pilogpi = H(p). (103)
i

The term in the last sum takes its minimal value when #\” are the eigenvectors of the

reduced density matrix ;, becoming its von Neumann entropy. We finally get

M;
H(X) > H(p) + }_ piSyn (i) = S(w), (104)
i=1

where formula (60) is used.

It is clear that we have re-obtained by this approach the results previously obtained by
using a faithful representation. However, some properties of the entropy—concavity, for
example—are somewhat hidden in this description. Nevertheless, the derivation via the
GNS construction might prove itself to be useful if one would like to extend these results
to the infinite-dimensional case.
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5. Conclusions

We showed that the ambiguity in the definition of the quantum entropy of a state can
be traced back to an ambiguity in the definition of a representative on a Hilbert space, as
different density matrices can be physically equivalent for a C*-algebra of observables.

We started by observing the property of the von Neumann entropy to be the minimum
of the Shannon entropies of the decompositions into pure states. This minimality property
is assumed to define unambiguously an entropy on the convex set of states over a C*-
algebra, obtaining a concave entropy, which generalizes the von Neumann entropy. We
find that the theory can always be represented in an Hilbert space in which it yields the
von Neumann entropy of a suitable density matrix.

We also observe that it is possible to obtain this entropy by using thermodynamic
arguments. The main difference with respect to quantum mechanics is that we have to
assume pure states to be isoentropic. In particular, we find that a theory can have disjoint
sectors, associated with nontrivial invariant subspaces, and pure states of different sectors
cannot be connected by a physical process.

A possible generalization of our construction could be its application to other entropies,
such as the Kullback-Leibler divergence or the family of Rényi entropies. An interesting
open problem would be the extension of our results to an infinite-dimensional C*-algebra
of observables. Here, new phenomena arise as there are states which are not represented
by a density matrix and, in general, one expects, e.g., to have decompositions given by an
integral—with a suitable measure y—over the set of pure states.
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