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Abstract: Brain responses are often studied under strictly experimental conditions in which elec-
troencephalograms (EEGs) are recorded to reflect reactions to short and repetitive stimuli. However,
in real life, aural stimuli are continuously mixed and cannot be found isolated, such as when listening
to music. In this audio context, the acoustic features in music related to brightness, loudness, noise,
and spectral flux, among others, change continuously; thus, significant values of these features can
occur nearly simultaneously. Such situations are expected to give rise to increased brain reaction with
respect to a case in which they would appear in isolation. In order to assert this, EEG signals recorded
while listening to a tango piece were considered. The focus was on the amplitude and time of the
negative deflation (N100) and positive deflation (P200) after the stimuli, which was defined on the
basis of the selected music feature saliences, in order to perform a statistical analysis intended to test
the initial hypothesis. Differences in brain reactions can be identified depending on the concurrence
(or not) of such significant values of different features, proving that coterminous increments in several
qualities of music influence and modulate the strength of brain responses.

Keywords: event-related potentials (ERP); electroencephalography (EEG); musical features

1. Introduction

Conventional studies on the brain’s perception and processing of music using elec-
tromagnetic approaches—for example, magnetoencephalography (MEG) and electroen-
cephalography (EEG)—focus on recognizing the neural processing of non-natural sounds
that are chosen for their adaptation to the requirements of each specific test. This wide
scope of research on music and the brain incorporates pure vs. complex tones as stim-
uli [1,2], as well as consonant vs. dissonant sequences [3,4], chordal cadences [5], and
simple monophonic melodies, some of them accompanied by harmony, while others are
not [6,7].

However, studying continuous listening and its effects on brain response from the nat-
uralistic paradigm perspective together with the presence of coterminous musical features
is still an important issue to be analyzed. This research involves natural music listening [8]
and, thus, the subjects’ perception of the distinctive properties of music—impurity, spon-
taneity, expectancy, interaction, etc.—together with their link to musical analysis for the
identification of relevant coterminous features in order to reveal the integration of the
brain’s response to auditory features [9] in naturalistic music listening.

In this context, Pearce et al. [10] found that in comparison with high-probability notes,
low-probability ones prompted a greater late negative event-related potential (ERP) factor,
raising the beta-band oscillation over the parietal lobe. The component was elicited at
an interval of 400–450 ms. A study of the awareness of musical resonance by selecting
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instrumental sounds as stimuli was carried out by Meyer et al. [11]. They highlighted how
instruments with different resonances stimulated regions of the brain that were correlated
with auditory and emotional imagery tasks apart from enhanced N1/P2 responses.

In addition, a number of functional MRI (fMRI) research works have examined the
use of natural and continuous music and the consequences of a sudden change in some
features. This was done in spite of the fact that hemodynamic reactions that are registered
with fMRI are slow, which obscures quick feature alterations that happen at key points
of musical pieces. In this context, extracts from real musical pieces have generally been
observed [12,13], and more recently, complete pieces [14,15] have been considered. In
addition, Alluri et al. [16] investigated the neural processing of specific musical properties
using fMRI by listening to an orchestral music recording, associating fMRI data with
computational musical features. In [17], using diverse pieces of music, musical features
were correlated with activation in a variety of brain areas. Nevertheless, it must be taken
into account that brain activity, when studied using fMRI, is averaged across a few seconds
because the subtleties of hemodynamic reactions registered with fMRI are slow in contrast
with the methods of electromagnetic brain studies.

In this work, we created an innovative experimental paradigm for analyzing brain
responses to music by automatically extracting a number of key musical features from full
pieces of music and checking their concurrent incidence individually, by pairs, or in groups
of three simultaneous features. Often, research on the effects of concurrent or synchronized
stimuli on the brain response focuses on the presence of stimuli of a diverse nature, and
the audio–visual scenario is the most widely examined [18–21], though occasionally, solely
the audio context is considered with respect to concurrent sounds [9,22]. However, our
hypothesis and purpose are different from previous ones: We aim to investigate whether
electrophysiological brain responses change when musical features extracted from a piece
of music change concurrently. We opted to study electric brain activity provoked by the
acoustic properties of Adios Nonino by Astor Piazzolla, which is the same Tango Nuevo
piece that Alluri et al. studied using fMRI. Alluri et al. [16] found that low-level musical
properties, such as those that we use, give rise to measured brain signals peaking in
temporal regions of the scalp; as opposed to this, we consider EEG signals and, most
importantly, coterminous features. Note that low-level audio features, such as the ones we
use, can be considered those that can be extracted from short audio excerpts.

The existing understanding of artificial sound is applied in our research into continu-
ous music. We assume that swift variations in real musical features will provoke similar
sensory components, as shown by traditional ERP studies that examined tone stimuli.
Further, we assume that ERP amplitudes will depend on the scale of the quick growth
of individual feature values [23] and the length of the previous period of time with low
feature values [24], as demonstrated by Poikonen [25], but we now treat ERP variations
that are related to coterminous musical feature changes.

We will mostly observe signals at the positive sensory deflation taking place
200 milliseconds following the onset of the stimulus (P200) and the negative sensory
deflation taking place 100 milliseconds after (N100). So, we perform comparisons regard-
ing the brain’s reactions in relation to isolated/concurrent abrupt changes in the selected
features. Note that the P1/N1/P2 responses were previously considered regarding the
appearance of acoustical features in relation to their event rate [26]. In addition, it is
often assumed that magnitudes in an acoustical feature are linearly related to ER ampli-
tudes [26,27]. We consider a similar context, but one that is related to the timing of different
acoustical features.

Our focus is on the time and frequency features—brightness, zero-crossing rate, and
spectral flux (Section 2.4)—because we want to investigate quick neural responses in the
auditory areas of the temporal cortices [16]. In addition, we consider the root mean square
(RMS) feature, which is connected to loudness. We study all of these features in isolation,
in pairs, or in groups of three, hypothesizing that the concurrent incidence of alterations
of features will cause stronger reactions than isolated changes in the features. Feature
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conjunction is a main aspect of the analysis performed in this work, as opposed to the
consideration of isolated musical feature saliences.

In the next section, the data employed and the processing stages of the EEG and audio
signals will be described. Then, the results of the analysis of the signals and a discussion
will be exposed. Finally, some conclusions will be drawn in Section 4.

2. Data and Methods

In this section, the data acquisition methodology, the stimulus, and the database
employed are described, as well as the processing and data analysis schemes and the
specific features and feature sets considered for the identification of the points of interest in
the audio sample.

2.1. Subjects

The dataset employed came from the same dataset employed in [25], which has been
used in other studies [26,28]. The data were used under a specific agreement. Briefly, our
subset contained samples from eleven right-handed Finns with a near-even ratio of males
to females. We chose the samples for our subset so that no artifacts close to the points of
interest were observed. The average age of the subjects was 27.1, ranging from 20 to 46.
None of the subjects reported previous neurological conditions or hearing loss.

There were no professional musicians among the participants, though some subjects
reported a musical education and others reported an active interest in music (singing,
dancing, learning to play an instrument, or making music on a computer). The experimental
protocol under which the dataset was recorded was approved by the Committee on Ethics
of the Faculty of the Behavioral Sciences of the University of Helsinki and was carried out
in compliance with the Declaration of Helsinki.

2.2. Stimulus

The stimulus considered in the experiment was the Tango Nuevo piece “Adios Nonino”
by Astor Piazzola [16]; it is an 8.5 min piece recorded in a live concert in Lausanne,
Switzerland. These are the same data and stimuli as those used in [17].

Note that Adios Nonino has a versatile musical structure and large variability, which
makes it an interesting piece for finding variations in audio features, their concurrence,
and their relation to EEG signals.

2.3. Technology Used and Procedure

The procedure followed is thoroughly described in [17]; here, a brief summary is
exposed: The subjects were presented with the piece of music using the Presentation 14.0
program and Sony MDR-7506 headphones. The intensity was 50 dB above the individually
set auditory threshold [17]. The researcher played the piece back after a brief discussion
with the subjects via microphone. The subjects were asked to listen quietly to the music
with their eyes open to maintain their attention toward the music; on the other hand, note
that keeping their eyes closed could be problematic for our experiments, since this enhances
the alpha rhythm, which can disturb the N1-/P2-evoked response measurements [26,29].

EEG data were recorded using BioSemi bioactive electrode caps with a 10–20 sys-
tem [30], with five external electrodes placed at the left and right mastoids, on the tip of the
nose, and around the right eye, both vertically and horizontally. A total of 64 EEG channels
were sampled at 600 Hz.

2.4. Processing and Analyzing Data

Feature extraction was performed by using MIRtoolbox (version 1.7) [31]. MIRtool-
box is a set of MATLAB tools that extract various musical aspects in relation to sound
engineering, psychoacoustics, and music theory. MIRtoolbox is designed to process audio
files and can process a number of time and frequency features in audio. Brightness, RMS,
zero-crossing rate, and spectral flux were the short-term low-level features chosen in this
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experiment. They were collected in a window of 25 ms with 50% overlap, which is common
in Music Information Retrieval (MIR) [32]. The audio signal was sampled at 44,100 Hz, so
every frame was 2205 samples long: X = [x1, x2, . . . , xn], with n = 2205. With the excep-
tion of the RMS, these features coincided with the ones discovered to provoke auditory
activation in the temporal cortices in the experiment by Alluri et al. [16]. The description of
the features is given in the following:

• Brightness: Brightness is defined as the spectral energy above a certain frequency
with respect to the total energy for each analysis window [31]. It can be measured as
follows:

B =
∑N

i=k |Xi|2

∑N
i=1 |Xi|2

(1)

where N is the number of samples of the discrete Fourier transform (DFT) of X:
X = [X1, X2, . . . , XN ], the signal in the analysis window, and k stands for the smallest
frequency bin corresponding to a frequency larger than the cutoff frequency defined
to measure brightness; this frequency was set to 1500 Hz in MIRtoolbox. Low values
of brightness mean that a small percentage of the spectral energy is in the higher
frequency range of the frequency spectrum, and vice versa.

• Root mean square (RMS): This feature is connected to a song’s dynamics or loudness.
It is defined as the square root of the average of the squared amplitude samples:

RMS =

√
∑n

i=1 x2
i

n
(2)

Lower sounds have lower RMS values [31].
• Zero-crossing rate: This rate is defined by the number of times the audio waveform

crosses the zero level per unit of time [33]. It is an accepted indicator of noisiness: A
lower zero-crossing rate indicates less noise in the considered audio frame [31]. It can
be measured as follows:

ZCR =
1

2n− 1

n

∑
i=2
|sign(xi)− sign(xi−1)| (3)

with sign(x∗) = 1 for positive amplitudes and −1 otherwise.
• Spectral flux: This feature comes from the Euclidean norm of the difference between

the amplitude of consecutive spectral distributions [34]:

SF = || |X| − |Y| || (4)

where X and Y stand for the DFT of two consecutive audio frames: the current one, X,
and the previous window, Y, respectively. || · || represents the Euclidean norm.
The spectral flux value is high in the event of great variation in spectral distribution
in two consecutive frames. The curves of spectral flux show peaks at the transition
between successive chords or notes [31].

Now, recall that we are considering continuous music listening, so, in our research,
the duration of low-level feature values before their swift growth is consistent with the
inter-stimulus interval (ISI) of prior studies; there are no recurrent silent intervals in real
music. In this paper, we call the ISI-like period the preceding low-feature phase (PLFP).
We consider EEG signals linked to concurrent musical properties that are changing and,
most specially, doing so concurrently. It is assumed that prolonged ISI enhances the early
sensory ERP responses and that extended PLFP will lead to higher ERP amplitudes when
listening to continuous music.

Thus, we define triggers for instants when some properties rise after long preceding
low-feature phases (PLFPs) [24,25]. Thus, instants with a quick rise of a musical property
are located. Specifically, we test different lengths of the PLFPs—from 200 to 1000 ms—
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and we set the speed of the growth of the feature to be higher than the magnitude of rapid
increase (MoRI) [25], which we set to 75 ms. The moving averages in 75 ms windows of
the song for each feature are determined, and the change in magnitude is defined on the
basis of the moving average value. The range of the MoRI goes from ±5% to ±20% of the
feature’s mean; with this, the triggers considered valid are the ones preceded by a PLFP
under the lower mean value threshold.

With this, significant instants are identified using each of the features selected. In
addition, instants at which certain combinations of features significantly change at the
same time are selected. Thus, we consider features both individually and, specifically,
jointly, which is our main objective.

2.5. EEG Signal Analysis

Again, MATLAB was used to pre-process the subjects’ EEG data. The electrode on
the tip of their nose served as a reference [25]. The data were low-pass filtered at 70 Hz
to retain EEG signal information from the beta and gamma bands. A notch filter was
applied at 50 Hz to avoid interference from the power line, high-pass filtered at 1 Hz
to avoid drifts [26]. This gave a continuous data stream with a length between 297,000
and 321,600 samples from the position of the trigger for the initial synchronization at the
beginning to the end of the recording session.

Continuous EEG data were split into sets of intervals according to the triggers defined
in the musical stimuli beginning 200 ms before the trigger and ending 700 ms after. We de-
fined the baseline corresponding to the 500 ms time frame before the trigger. Intervals with
amplitudes over ±100 µV were eliminated to ensure eye artifact removal (following [35]),
and all of the selected intervals underwent a visual inspection to ensure that no artifacts
were present.

Then, in order to identify features or feature sets that affected, from a statistical point
of view, the subjects’ EEG signals at the selected intervals, the N100 and P200 components
were considered. The N100 component was sought in each combination of regions/features
(see Section 2.6) to locate a minimum of the subjects’ average within a window ranging
between 10 and 300 ms from the trigger. Similarly, the P200 component was sought by
finding the maximum in an interval ranging from 200 to 500 ms.

We acquired the N100 and P200 amplitudes in relation to the changes in musical
features or feature sets, which were considered to be the source of the ERP. We followed
the same approach with their latency.

2.6. Data Computation and Naming Convention

The EEG samples were processed as described previously in this section by using the
points of interest obtained by identifying instants at the audio frame level when two or
more audio features stood out; we also did so individually. Specifically, the features and
feature sets considered and the notation employed are shown in Table 1.

Table 1. Features and feature sets under consideration and their notation.

Groups Features/Feature Sets

x1 Brightness
x2 RMS
x3 Zero-crossing rate (ZCR)
x4 Spectral flux
x5 Brightness and RMS
x6 Brightness and ZCR
x7 Brightness and spectral flux
x8 RMS and spectral flux
x9 Three concurrent features (time points with coterminous changes in three

features, whatever they are).
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Regarding the behavior of the selected features in the chosen piece of music, the fol-
lowing facts must be observed:

• There were not enough time points at which RMS and ZCR changed concurrently to
perform an analysis.

• There was not an acceptable number of time points with three coterminous features
changing simultaneously to study this phenomenon in each of the different combina-
tions of variables by threes, so we considered these combinations as a whole.

• It was not possible to find points with the four features changing at the same time, so
this scenario will not be considered.

Regarding the number of trials, the minimum accepted number of identified time
points for the definition of trials for the analysis was 12. The analysis of EEG data was
considered separately according to the regions. In each cortical region, the computed
EEG signals were obtained as the average across all of the subjects and the electrodes
corresponding to the area under analysis; specifically, the following areas were considered:

• Frontal: Average of Fz, F1, F2, F3, and F4.
• Central: Average of Cz, C1, C2, C3, and C4.
• Parietal: Average of Pz, P1, P2, P3, and P4.
• Occipital: Average of Oz, O1, O2, PO7, and PO8.
• Temporal: Average of T7, T9, TP7, and TP9. Note that only the left temporal side

was studied.

For the sake of simplicity, not all of the cortical regions were evaluated. Only the
two that presented more significant oscillations will be discussed; these are the occipital
region and the temporal region. Recall that it was suggested by Alluri et al. [16] that
resonance-related acoustic aspects of musical pieces played without interruption have a
positive correlation with the activation of major temporal lobe regions.

3. Results and Discussion

In this section, the results found after processing the audio data for the identification
of the points of interest and the EEG data (as previously described) are shown. Statistical
analyses of the ERPs are performed.

To begin with the observation of the behavior of EEG data, in Figure 1, the EEG data
acquired in response to abrupt changes in only brightness, only spectral flux, and jointly in
Brightness and Spectral Flux are shown. Note that all of the figures are drawn using the
same scale for easy comparison. The average signal is drawn, and its standard deviation is
represented by the shade. The occipital and temporal regions seem to be where oscillations
were more strongly marked. However, it can be observed that the amplitudes of the N100
and P200 components were larger when the brightness and spectral flux were concurrent.
In addition, larger standard deviations of each peak are also appreciable in Figure 1c.

These particularities can be exposed in a different manner by displaying the distribu-
tion of the peaks in box plots for both the amplitude and time of the events.
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Figure 1. (a) EEG data related to changes in brightness. (b) EEG data related to changes in spectral flux. (c) EEG data related
to changes in both brightness and spectral flux.

Figure 2 shows the different distributions of the amplitude and latency of N100 and
P200 when an abrupt change in the musical piece was due to RMS evolution (Figure 2a);
the same is shown for spectral flux (Figure 2b). The case of a significant and concurrent
variation in both RMS and spectral flux is shown in Figure 2c. According to Figure 2, the
P200 amplitudes in particular are wider when both the RMS and spectral flux present
changes compared to when the RMS or spectral flux changes significantly but alone. This
behavior is more remarkable in the temporal and occipital regions.
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Figure 2. (a) Box-plot distributions of the N100 and P200 amplitudes (N100, P200) and latencies (TN100, TP200) due to RMS
changes. (b) Box-plot distributions of the N100 and P200 amplitudes (N100, P200) and latencies (TN100, TP200) due to
spectral flux changes. (c) Box-plot distributions of the N100 and P200 amplitudes (N100, P200) and latencies (TN100, TP200)
due to coterminous RMS and spectral flux changes.

Considering N100 and P200 by groups and cortical regions, it is possible to test if their
distributions are different depending on the presence of significant changes in the feature or
feature set under consideration. First, the Shapiro–Wilk test of normality was used to check
that all of the EEG components were distributed normally. Then, multi-sample ANOVA
was used to compare the different combinations that could reflect changes in the N100
and P200 amplitudes and latencies. For this purpose, a commonly accepted significance
level of α = 0.05 was chosen to reject the null hypothesis, H0. The results of this statistical
analysis for assessing the existence of differences in the EEG signals in the different cases
considered will be discussed next.

3.1. Analysis of the N100 Amplitude

Regarding the N100 amplitude, the ANOVA tests showed that the means of the
following pairs in the occipital region were significantly different: x1–x7, x2–x7, x3–x5,
x3–x7, and x4–x7; likewise, the following pairs in the temporal region were also significantly
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different: x1–x5, x1–x7, x1–x8, x2–x7, x3–x7, x4–x7, x6–x7, and x7–x9; the p-values are
provided in Figures 3a and 4a, respectively.
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Figure 3. Occipital region. Comparisons of p-values obtained with ANOVA by pairs. (a) N100 amplitude. (b) P200 amplitude.

1

0.999

0.999

0.996

0.032

0.687

0.001

0.015

0.639

0.999

1

0.999

0.999

0.138

0.951

0.001

0.084

0.932

0.999

0.999

1

0.999

0.111

0.94

0.001

0.062

0.919

0.996

0.999

0.999

1

0.197

0.984

0.001

0.124

0.975

0.032

0.138

0.111

0.197

1

0.787

0.495

0.999

0.824

0.687

0.951

0.94

0.984

0.787

1

0.004

0.705

0.999

0.001

0.001

0.001

0.001

0.495

0.004

1

0.41

0.005

0.015

0.084

0.062

0.124

0.999

0.705

0.41

1

0.752

0.639

0.932

0.919

0.975

0.824

0.999

0.005

0.752

1

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1

x2

x3

x4

x5

x6

x7

x8

x9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

0.982

0.996

0.999

0.001

0.178

0.011

0.001

0.024

0.982

1

0.999

0.999

0.001

0.794

0.188

0.658

0.247

0.996

0.999

1

0.999

0.001

0.681

0.128

0.531

0.178

0.996

0.999

0.999

1

0.001

0.429

0.045

0.286

0.078

0.001

0.001

0.001

0.001

1

0.073

0.549

0.093

0.807

0.178

0.794

0.681

0.429

0.073

1

0.985

0.999

0.979

0.011

0.188

0.128

0.045

0.549

0.985

1

0.995

0.999

0.001

0.658

0.531

0.286

0.093

0.999

0.995

1

0.991

0.024

0.247

0.178

0.078

0.807

0.979

0.999

0.991

1

x1 x2 x3 x4 x5 x6 x7 x8 x9

x1

x2

x3

x4

x5

x6

x7

x8

x9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b)

Figure 4. Temporal region. Comparisons of p-values obtained with ANOVA by pairs. (a) N100 amplitude. (b) P200 amplitude.

It is remarkable that these differences were found between isolated features and
combinations of two features regardless of the nature of the individual features and the
presence of one of the single features in the pair of features under comparison. For example,
the x7 feature set contained brightness (x1) and spectral flux (x4); nevertheless, significant
differences in the N100 amplitude were found between x1–x7 and x4–x7, as well as between
x2–x7 and x3–x7, which seems to indicate that it was the coincidence of the features that
was responsible for the differences, and not their specific relations regarding their nature.

In addition, observe that differences were also found regarding the behavior with
respect to single features and the x8 feature set, though their means were not considered
statistically different by the test.

Surprisingly, in light of the previous observation, no statistically significant differences
were found between the x6 feature set and the individual features of x1 to x4, though the
p-values found were larger than in the set of comparisons between individual features (see
Figures 3a and 4a).
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Finally, it is interesting to observe that low p-values were found regarding the com-
parisons of x6–x7 and x7–x8 in the temporal and occipital regions that were analyzed.
Although the null hypothesis was not rejected in these cases, except in the case of the x6–x7
comparison in the temporal region (Figure 4a), the p-values found seem to suggest some
differences in those comparisons, which could be due to the different natures of ZCR vs.
spectral flux and brightness vs. RMS and their interpretation in the brain.

3.2. Analysis of the P200 Amplitude

Considering the P200 amplitude, an analysis similar to the one performed for the
N100 amplitude was carried out. The results show the same trend as in the previous case.
These results are shown graphically and numerically in the heat maps in Figures 3b and 4b
for the occipital and temporal regions, respectively.

The test of the hypothesis on the occipital P200 data revealed that the H0 hypothesis
was rejected in the following cases: x1–x5, x1–x7, x2–x5, x2–x7, x3–x5, x3–x7, x4–x5, and
x4–x7. Observe the coincidences in these results between the x5 and x7 feature sets and the
individual features. Furthermore, regarding the the temporal region, the null hypothesis
was rejected in the following tests: x1–x5, x1–x7, x1–x9, x2–x5, x3–x5, x4–x5, and x4–x7.

These observations and their correlation with the results regarding the N100 amplitude
highlight the relevance of the combination defined by the x5 and x7 feature sets to elicit
brain activity versus the appearance of significant values of single features.

3.3. Overall Considerations of the N100 and P200 Amplitude Analysis

Overall, regarding the observed behavior of the N100 and P200 amplitudes in the
regions considered, the sets of isolated features of x1, x2, x3, and x4 constituted a group
in which the hypothesis test performed by pairs did not indicate the rejection of the null
hypothesis in any case, which implies similar responses from the statistical point of view.

Likewise, the group formed by the x5 to x9 feature sets showed similar behavior,
except in the case of the N100 amplitude in the temporal region for the feature sets x6–x7
and x7–x9. So, we can conclude that, in general, sets with two coincident features elicit
similar responses from the point of view of the N100 and P200 amplitudes, as the x5
and x7 feature sets, which include brightness and RMS and brightness and spectral flux,
respectively, are especially relevant.

The behavior of x9 was diverse; this case could be explained by the fact that this set
included ternaries from the four features that were taken three by three, i.e., not all ternaries
included the same three variables, but rather combinations of the four single features.

Generally speaking, joint changes in the values of the selected feature sets (x5 to x9,
with the exception of x6) elicited stronger responses than changes in a single feature. On the
other hand, since x6 was the only combination that included ZCR, it can be concluded
that this feature did not contribute to the increase in brain response when combined with
another feature.

3.4. Analysis of the N100 and P200 Latencies

Hypothesis tests regarding the N100 and P200 latencies in the temporal and occipital
regions were performed in a manner similar to that of the battery of tests carried out for
the N100 and P200 amplitudes.

The null hypothesis, equality of means, was not rejected in any of the tests performed,
which indicates the independence of this characteristic with respect to the features (x1 to
x4) or feature sets (x5 to x9) considered.

4. Conclusions

Brain response in the form of ERP is a phenomenon that has been widely studied in
the literature. This effect regarding sound and music has often been analyzed under tightly
controlled laboratory conditions with very short excerpts of sound or music; few cases are
found on its analysis in a more naturalistic context similar to that of real life.
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In this framework, under real music-listening conditions, it has been observed that
the response to additive audio feature saliences also shows additive characteristics. This
result should be considered when selecting musical stimuli on the basis of the existence of
concurrent instances of feature salience.

The results obtained based on the statistical analysis of the N100 and P200 time and
latency support this idea. Specifically, the combination of simultaneous brightness and RMS
or brightness and spectral flux elicit more pronounced responses than when significant
values of these features appear in isolation. The RMS and spectral flux also give rise to
stronger responses than when used separately, although to a lesser extent.

Unlike the measured amplitudes, the timing of the response seems to remain unaf-
fected by the coincidence of feature saliences or lack thereof in the tests performed.

Future research can deepen the analysis of the effects of concurrent changes in audio
features, the analysis of EEG signals by using other features, and the enlargement of the set
of musical features to include not only other low-level ones, but also high-level musical
features that span in time.
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