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Abstract. When hyperspectral images are analyzed, a big amount of
data, representing the reflectance at hundreds of wavelengths, needs to
be processed. Hence, dimensionality reduction techniques are used to dis-
card unnecessary information. In order to detect the so called “saliency”,
i.e., the relevant pixels, we propose a bottom-up approach based on three
main ingredients: sparse non negative matrix factorization (SNMF), spa-
tial and spectral functions to measure the reconstruction error between
the input image and the reconstructed one and a final clustering tech-
nique. We introduce novel error functions and show some useful math-
ematical properties. The method is validated on hyperspectral images
and compared with state-of-the-art different approaches.

Keywords: Error measures · Hyperspectral images · Saliency detection.

1 Introduction

HyperSpectral Imaging (HSI) is a technology that combines the imaging prop-
erties of a digital camera with the spectroscopic properties of a spectrometer
able to detect the spectral attributes of each pixel in an image. Hyperspectral

? The research of Antonella Falini is founded by PON Project AIM 1852414 CUP
H95G18000120006 ATT1. The research of Cristiano Tamborrino is funded by PON
Project “Change Detection in Remote Sensing” CUP H94F18000270006. The re-
search of the other authors is funded by PON Ricerca e Innovazione 2014-2020, the
application of the proposed method to the saliency detection task is developed in
partial fulfillment of the research objective of project RPASInAir “Sistemi Aero-
mobili a Pilotaggio Remoto nello spazio aereo non segregato per servizi” (ARS01
00820). While the application to the change detection task is developed in partial
fulfillment of the research objective of the project“CLOSE to the Earth” (ARS01
00141).



2 A. Falini et al.

sensors measure radiance, i.e. the radiant energy emitted, reflected, transmitted
or received by a surface, by a large number of regularly spaced narrow bands
covering a wide spectral range. All the information about reflectance across the
whole spectral range of the sensor is contained by a single pixel, producing the so
called spectral signature. Every spectral image can be thought as a cuboid: on the
x- and y- directions, the spatial information is stored, while on the z-direction
the spectral signature is smeared. Due to the size of the spectral signature, it is
crucial to develop techniques able to reduce the dimensionality of the problem
while keeping the important information. Characterizing what can be considered
salient and what can be neglected becomes another challenging task. The con-
cept of saliency refers to identifying parts, regions, objects or features that first
draw visual attention and hence can be considered notable and important. Many
attention models derive from the “Feature Integration Theory” [15], where it is
stated which visual features can be considered important to drive human atten-
tion. In [7], Koch and Ullman propose a feed-forward model to combine these
features and introduce the concept of a saliency map as a topographic map rep-
resenting conspicuousness of scene locations. Saliency detection methods can be
divided into top-down (see e.g., [4]), bottom-up (see e.g., [5]) approaches or a
combination of both (see e.g, [18]). Besides being used as a technique to identify
“what draws attention first”, saliency detection can be employed also for more
advanced tasks, as the so called “change detection”. In this case it is relevant
to highlight those pixels which result different when the hyperspectral image of
the same area has been acquired at different time intervals, see for example [11]
and references therein for a general overview.

To compress the dimension of the problem being able to extract relevant
features, usually saliency detection methods are combined with matrix factor-
ization techniques, like Principal Component Analysis (PCA) or Independent
Component Analysis (ICA). In the present work, we use Non Negative Matrix
Factorization (NMF) and the Gaussian Mixture Model clustering (GMM) to de-
velop a saliency detection algorithm following a bottom-up approach. The main
peculiarity of NMFs lies in factorizing a given matrix into the product of two
matrices with non-negative values. Thanks to this property, NMFs are especially
suitable for dealing with data which are only positive or null, like for instance
intensities colors, and are preferable to other factorizations like PCA or ICA.
NMFs were recently introduced in the context of saliency detection in [13], to
discover the latent structure of image data-set, in [14] to extract features infor-
mation from each superpixel, and in [9] to learn the basis functions from images
patches. Once the factorization is performed, the reconstruction error is com-
puted by using several functions. In particular, new error measures and their
mathematical properties are analyzed. The introduction of such new functions
provides a valuable contribution to output the sought saliency map. Then the
reconstruction error vector, together with specific configurations of the available
information is processed by the clustering algorithm in order to produce the final
saliency map.
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The remainder of the paper is organized as follows. In Section 2 the defini-
tions of the employed error functions are provided. In Section 3 the structure of
the proposed algorithm is presented. In Section 4 the experimental results are
shown. In Section 5 final conclusions and possible directions for future work are
discussed.

2 Reconstruction Error Measures

Every image can be represented as a tensor A of size m × n × k, where m and
n identify the location of every pixel, while k represents the expression of the
spectrum in the adopted spectral space. The input image A ∈ Rm×n×k can be
rearranged as a matrix A of size p× k, with p = m× n. In the resulting A, the
spectral information of each pixel (x, y) is stored in a suitable row. The chosen
factorization algorithm produces as output matrices W ∈ Rp×r+ and H ∈ Rr×k+

such that A ≈ Z := WH. The number r is called compression index. The r
columns of the basis matrix W can be thought as the latent factors embedded
into the dataset. The elements of the coefficient matrix H can be considered as
the weights associated to each factor.

We call reconstruction error the vector defined as RE(A,Z) that collects
the spectral differences between every pixel (x, y) in A and the pixels in the
approximation Z. The RE can be thought as a dissimilarity index between the
reconstructed image and the input one. In particular, since the background is
the more extensive part of an image, we expect the NMF to reconstruct it quite
accurately, discarding any other detail. Measuring RE should provide an image
containing the salient part of the input A, therefore, finding a good error measure
it is of fundamental importance. To this end we compute the following functions:

– Euclidean distance (ED), corresponds to the usual 2-norm for vectors and it
is computed for every row of the matrix A− Z;

– Spectral Angle Mapper (SAM) [8], for every pixel (x, y) let ` denote its cor-
responding index in A and let A`,: be the `-th row of the matrix A. SAM
computes the angle between the spectral vectors A`,: and Z`,: in a space of
dimension equal to the number of bands k.

– Spatial Spectral Cross Correlation (SSCC) [17], a measure of the similarity
in the spatial-spectral domain of two images within a local window V (`)
centered at the specific pixel (x, y). The window V (`) collects the indices `i,j
corresponding to the pixels (x+ I, y + J) with I, J = ±dV and dV ≥ 1.

– The modified Z-score Index (ZID) from [12],

– SAMZID [12], a combination of a modified Z-score Index and the SAM
function,

– SAM g ZID we combine the SAM function with a new ZID index where a
geometric mean has been used rather than the usual arithmetic mean:

SAM g ZID := [scale(sinSAM)]× [scale(ZID g)].
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ZID g is computed as the ZID indicator from [12] with the arithmetic mean
replaced by µg` , the geometric mean for the vector A`,:,

µg` :=

(
k∏
i=1

A`,i

)1/k

The geometric mean describes the central tendency. The same mean µg` is
used to compute the standard deviation for the vector A`,: required by the
definition of the ZID.

– Spatial Mean SAM (SMSAM), we consider the angles between the spectral
vectors A`,: and Z`,: for the label ` varying in V and then we compute their
arithmetic mean:

SMSAM(`) :=
1

|V (`)|
∑

`i,j∈V (`)

arccos

(
A`i,j ,:Z

>
`i,j ,:

‖A`i,j ,:‖2‖Z`i,j ,:‖2

)
.

The symbol |V (`)| denotes the number of elements of V (`).
– Spatial Mean Spectral Angle Deviation Mapper (SMSADM), we compute the

arithmetic mean within a local window V of the deviation angles from their
spectral mean inside V ,

SMSADM(`) :=
1

|V (`)|
∑

`i,j∈V (`)

arccos

(
E(A)E(Z)>

‖E(A)‖2‖E(Z)‖2

)
.

For a generic matrix S, the operator E(S) is defined as:

E(S) := (S`i,j ,: − µ(S)V (`)).

The quantity µ(S)V (`) denotes the spectral mean within the window V (`)
for the matrix S.

To improve the efficiency of processing every image, a superpixel segmentation
can be applied to the original image A. We use the “simple linear iterative clus-
tering” (SLIC) [16] algorithm which groups pixels in separate regions according
to color. With this setting we compute three new error measures, Spx-SSCC,
Spx-SMSAM, Spx-SMSADM, which respectively are the functions SSCC, SM-
SAM and SMSADM, where V is given as a tile produced by the superpixel
algorithm.

2.1 Mathematical properties

In this section we show some useful properties for the proposed reconstruction
errors.

It is straightforward to notice that RE(A,Z) = RE(Z,A) for SAM, SSCC,
SMSAM, SMSADM and their respective superpixel variants, i.e., the listed func-
tions are symmetric.
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Moreover, we can also prove that those error measures result scale invariant,
i.e., RE(αA,αZ) = RE(A,Z) for any α ∈ R. For the SAM measure we have,

RE(αA,αZ) = arccos

(
αA`,:αZ

>
`,:

‖αA`,:‖2‖αZ`,:‖2

)
= RE(A,Z).

The same steps can be applied to SMSADM, Spx-SMSADM and to ZID. Re-
garding SSCC, SMSADM and their superpixel version we can observe that, given
a generic matrix S and α ∈ R,

E(αS) =
(
αS`i,j ,: − µ(αS)V (`)

)
=
(
αS`i,j ,: − αµ(S)V (`)

)
= αE(S).

Then, for instance, if we use SSCC, for any α ∈ R we have,

RE(αA,αZ) =

∑
`i,j∈V (`)

E(αA)E(αZ)>

√√√√√
∑

`i,j∈V (`)

‖E(αA)‖2
√√√√√

∑
`i,j∈V (`)

‖E(αZ)‖2
= RE(A,Z)

All the proposed error measures are non negative besides SAMZID and
SAM g ZID. Finally, we observe that any rotation or reflection applied in the
spatial domain, would not change the relative location of the spectral vectors.
Therefore, the RE value is the same up to the applied transformation.

3 Structure of the algorithm

The output of our algorithm will be a binary map where pixels belonging to the
salient region have value 1 and 0 otherwise. The algorithm can be summarized
by the following stages:

1- The input image is factorized by using one NMF algorithm provided by the
open source Python library Nimfa [19], with compression index r = 2. NMF
algorithms return as output a basis matrix W and a mixture matrix H such
that A ≈WH.

2- The reconstruction error RE is computed by using several functions (see
Section 2 for the details). Whenever a window V is considered, we set dV =
±2.

3- A clustering algorithm is employed to classify the pixels between salient and
not salient ones.

4- A post-processing step is performed to partly remove the noise in the final
output. More precisely, for each pixel (x, y) a square window V (`) with
dV = ±4 is considered. The same label as the 65% of the pixels within
V (`) is assigned to pixel (x, y) under consideration.

The set-up for parameters r and dV has been empirically done by selecting the
values which gave the best output.

In the following subsections, we recall some details and mathematical back-
ground.
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3.1 NMF

Images datasets usually contain non negative elements. Therefore, when stored
in matrices, in order to reduce the dimensionality of the problem, it is useful to
apply first some non-negative factorization algorithm (NMF). In this study we
use a variant of a standard NMF which is able to enforce sparseness constraints
(SNMF) on the coefficient matrix H. Indeed, since we are trying to “compress”
the spectral dimension, it is meaningful to set a null weight to certain coefficients.

We solve the following minimization problem

min
W≥0,H≥0

1

2

‖A−WH‖2F + η‖W‖2F + β

k∑
j=1

‖H(:, j)‖21

 (1)

where ‖ ‖F denotes the Frobenius norm, η > 0 is a parameter to minimize
‖W‖2F and β > 0 is a regularization parameter to balance the trade-off between
the accuracy of the approximation and the sparseness of H. In particular, the
initialization of the matrices W and H is done by averaging m/5 random columns
and n/5 random rows of the matrix A. Then the descent gradient method is
applied in order to compute the proper W and H that minimize the cost function
(1). The problem (1) is a non convex optimization problem, therefore there is no
guarantee to converge to a global minimum. Hence, we run the factorization 3
times and then, the matrices W and H with the lowest objective function value
are chosen (parameter n run = 3 ). We set η = 1, β = 10−4 and, as a stopping
criterion, the maximal number of iterations is given equal to 15.

3.2 Clustering stage

In order to classify the pixels belonging to the salient region we use the Gaussian
Mixture Model (GMM) algorithm provided by the library scikit-learn, [10].
GMM is a “model-based” method as it relies on a probabilistic model for the
data generation process. In particular, GMM assumes the points to be generated
by a mixture of a finite number of Gaussian distributions. The number of com-
ponents of our model is a-priori given, in particular, one cluster should gather
salient pixels and another one should group the not-salient pixels, for a total of 2
clusters. At the beginning, each sample is assigned membership to the Gaussian
it most probably belongs to, by computing posterior probability of each compo-
nent. Then the expectation maximization (EM) strategy is applied to maximize
the likelihood of the data, given those memberships.

As input to the GMM algorithm, for every error function, we provide the
following configurations:

(1) D W: the RE(A,Z) and the basis matrix W .
(2) D WM: the RE(A,Z) and WM where the index M denotes the column of W

which outputs the maximal ‖RE(A,Z)−RE(A,W:,iHi,:)‖F .
(3) D Wm: the RE(A,Z) and Wm where the index m denotes the column of W

which outputs the minimal ‖RE(A,Z)−RE(A,W:,iHi,:)‖F ,
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(4) D D-WM: the RE(A,Z) and RE(A,WMHM ).
(5) D D-Wm: the RE(A,Z) and RE(A,WmHm).
(6) D D-W: the RE(A,Z), RE(A,W:,1H1,:) and RE(A,W:,2H2,:).

The GMM has been run with setting: the general covariance matrix is used for
every component, the convergence threshold is set to 10−4, k-means algorithm is
used for three initializations. Moreover, in order to produce more robust results,
we produce three different binary maps by running the GMM algorithm three
times, where each new run starts with the last computed information. Supposing
that the salient region covers a small part of the whole image, the best classifi-
cation output is chosen to be the one which by far has two clusters of the same
size.

4 Experimental Results

We test the proposed algorithm on the HS-SOD dataset3 introduced in [6] and
on the Hermiston dataset4 which is a common benchmark for change detection
task.

(a) image id= 26 (b) Ground Truth (c) SAMZID, D WM,
AUC:92.55%

Fig. 1. Output on image id = 26 from HS-SOD dataset.

4.1 HS-SOD dataset

The HS-SOD dataset is a hyperspectral salient object detection dataset consist-
ing of 60 hyperspectral images and their relative ground-truth binary images.
There are 81 spectral bands, collected in the visible spectrum (380 - 780 nm).
Each image has 1024×768 pixels resolution. The performance of the algorithm is
evaluated by comparing the output saliency map with the provided ground-truth
by using the Borji variant of the Area Under the Roc Curve (AUC) [2]. In the
figures we show the output of the proposed method on four images, with respect

3 https://github.com/gistairc/HS-SOD
4 https://gitlab.citius.usc.es/hiperespectral/ChangeDetectionDataset/-/tree/master
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(a) image id= 34 (b) Ground Truth (c) SMSAM, D D-WM,
AUC:95.48%

Fig. 2. Result on image id = 34 from HS-SOD dataset.

(a) image id= 2 (b) Ground Truth (c) SMSADM, D D-W,
AUC:92.80%

Fig. 3. Output of the algorithm on image id = 2 from HS-SOD dataset.

(a) image id= 38 (b) Ground Truth (c) SAM g ZID, D D-W,
AUC:60%

Fig. 4. The algorithm cannot fully identify the correct saliency map on image id = 38
from HS-SOD dataset.
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to the best cluster configuration. For each image, in (a) we display the RGB ren-
dering, in (b) the corresponding ground-truth and in (c) the best AUC obtained
with the selected error measure and cluster configuration, see Fig. 1-2-3-4.

In Fig. 4 we also decided to show an example where our method partially fails
to fully detect the correct salient region. This highlights one limitation of the
proposed approach which is mainly driven by identifying spectral similarities
using several error measures. When the spectral features of the salient region
are alike to the ones of the background, our algorithm is not able to extract
the correct information and the background is not distinguished at all from the
salient object.

Table 1 reports the mean and standard deviation for the AUC on the whole
dataset, obtained varying the error function. The label “Best” refers to the
mean and standard deviation computed by taking into account only the best
configuration for every image, regardless from the used error function.

In Table 2 we show the percentage of the images classified with AUC greater
than 80% (class f1), AUC between 65%−80% (class f2) and AUC less than 65%
(class f3) by varying the adopted error function and configuration. We observe
that SMSAM has the highest percentage on f1 for three different cluster config-
urations among all the error measures, while the Euclidean distance (ED) has
the highest percentage on f3 for all the cluster configurations. It is noteworthy
that the obtained results are sensitive to the initialization of both the SNMF
and the GMM algorithms. From the experiments we observed that by using the
“Best” settings, 77% of the images were classified on class f1, 22% on f2 and
only 2% on f3. This result suggests the importance of defining an automatic
selection algorithm for the suitable error measure.

Finally, in Table 3 we can see that the proposed algorithm, Alg 1, outper-
forms several techniques tested on HS-SOD. More in details, the competitors
include: a preliminary version of the current approach, Alg 0, introduced by the
same authors in [3]; a variant, named AISA, where an autoencoder architecture
is constructed to elaborate HSI data [1], other methods analyzed in [6].

4.2 Hermiston dataset

The second dataset consists of two hyperspectral images of Hermiston City (Ore-
gon) acquired by HYPERION sensor taken on year 2004 and 2009, respectively
and a ground truth binary image. The hyperspectral images have 390×200 pixels
resolution and 242 spectral bands. The proposed algorithm has been tested to
detect the changes in the two pictures I1, I2 by determining the saliency map of
the following input: |I1−I2| (|1−I1s/I2s| + |1−I2s/I1s|)/2, where Ijs = Ij +s, s
is chosen such that the minimum value between I1 and I2 is 1 and the difference
to 1 on the ratios has been applied in order to enhance the changes. From the
results displayed on Fig. 5 we can see that the produced output and the expected
ground truth are very much alike.



10 A. Falini et al.

Table 1. Mean ± standard deviation for AUC-Borji computed on the HS-SOD dataset.
In bold the maximum value achieved by every error measure.

RE AUC (mean ± std)
D W D WMax D Wm D D-WM D D-Wm D D-W

ED 0.71± 0.11 0.70± 0.11 0.68± 0.12 0.68± 0.11 0.70± 0.11 0.69± 0.12
SAM 0.72± 0.12 0.74± 0.12 0.67± 0.12 0.76± 0.11 0.74± 0.11 0.72± 0.13
SSCC 0.72± 0.13 0.72± 0.13 0.69± 0.13 0.73± 0.12 0.74± 0.12 0.74± 0.10
ZID 0.71± 0.12 0.73± 0.11 0.70± 0.12 0.74± 0.12 0.73± 0.11 0.74± 0.11

SAMZID 0.71± 0.12 0.71± 0.14 0.71± 0.13 0.73± 0.12 0.73± 0.12 0.74± 0.11
SAM g ZID 0.72± 0.12 0.70± 0.14 0.70± 0.13 0.74± 0.12 0.74± 0.13 0.75± 0.11

SMSAM 0.73± 0.12 0.75± 0.12 0.67± 0.12 0.76± 0.12 0.76± 0.12 0.71± 0.13
SMSADM 0.73± 0.12 0.73± 0.13 0.68± 0.13 0.73± 0.11 0.75± 0.11 0.74± 0.11
Spx-SSCC 0.73± 0.13 0.71± 0.13 0.68± 0.13 0.73± 0.12 0.73± 0.13 0.72± 0.12

Spx-SMSAM 0.72± 0.11 0.74± 0.12 0.69± 0.13 0.73± 0.13 0.75± 0.12 0.73± 0.13
Spx-SMSADM 0.72± 0.11 0.70± 0.12 0.69± 0.13 0.73± 0.13 0.72± 0.12 0.73± 0.12

Best 0.85± 0.08

Table 2. Percentage for the classes f1, f2 and f3 for each error function and configura-
tion. In bold the maximum value achieved according to the used cluster configuration.

RE D W D WM D Wm D D-WM D D-Wm D D-W

f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3 f1 f2 f3
ED 23 38 38 22 35 43 18 32 50 18 32 50 23 33 43 20 35 45

SAM 28 37 35 38 32 30 20 28 52 37 43 20 30 43 27 32 32 37
SSCC 33 25 42 33 33 33 27 35 38 33 37 30 37 40 23 33 47 20
ZID 24 35 42 28 48 23 23 35 42 35 40 25 25 53 22 35 43 22

SAMZID 28 33 38 30 25 45 35 25 40 33 38 28 20 40 30 30 45 25
SAM g ZID 28 28 43 32 22 47 30 28 42 33 38 28 35 33 32 33 47 20

SMSAM 32 35 33 43 32 25 20 25 55 43 35 22 42 37 22 30 25 45
SMSADM 30 35 35 38 30 32 22 32 47 33 40 27 35 43 22 33 42 25
Spx-SSCC 32 35 33 32 37 32 18 35 47 37 33 30 40 28 32 28 42 30

Spx-SMSAM 25 43 32 42 30 28 22 35 43 35 33 32 38 35 27 30 35 35
Spx-SMSADM 25 37 38 30 27 43 22 33 45 38 28 33 35 32 33 38 32 30

Table 3. Comparison of the AUC-Borji with competitors from [3], [1] and [6]. In
particular, these last ones are the following: Itti’s method; a saliency detection method
based on the computation of the euclidean distance (SED) and spectral angle distance
(SAD); spectral group method (GS); orientation-based salient features method (OCM)
in combination with: SED and GS (SOG), and, SED and SAD (SOS); the method
using the spectral gradient contrast (SGC) computed by using superpixels with both,
spatial and spectral gradients.

Method Alg 1 Alg 0 AISA Itti SED SAD GS SOG SOS SGC

AUC-Borji 0.8509 0.7971 0.7727 0.7694 0.6415 0.7521 0.7597 0.7863 0.8008 0.8205
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Ground Truth SAMSADM, D D-WM,
AUC:91.00%

ED, D D-W, AUC:90.66%

Fig. 5. Results for the change detection task on Hermiston dataset.

5 Conclusions

In the present work we propose an algorithm to detect saliency regions in hyper-
spectral images by employing SNMF and several reconstruction errors based on
spectral and spatial measures which add a notable contribution to better char-
acterizing what should be understood as salient. This approach has been tested
on HS-SOD and Hermiston datasets. The obtained results are promising, leave
room to further investigations and to broader applications in data mining tasks
such as semantic discovery patterns, collaborative filtering and recommender
systems design. The output of our approach is strongly dependent on the initial-
ization steps for the SNMF and for the clustering algorithm, and on the choice
of the error measure as well. Hence a possible future direction could be to au-
tomatically identify the best settings. In particular, it would be interesting to
study the relations between the adopted error function and the obtained output.
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