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Abstract

Goal of this paper is to study the following singularly perturbed nonlinear Schrödinger
equation

ε2s(−∆)sv + V (x)v = f(v), x ∈ RN ,

where s ∈ (0, 1), N ≥ 2, V ∈ C(RN ,R) is a positive potential and f is assumed
critical and satisfying general Berestycki-Lions type conditions. When ε > 0 is small,
we obtain existence and multiplicity of semiclassical solutions, relating the number
of solutions to the cup-length of a set of local minima of V ; in particular we improve
the result in [37]. Furthermore, these solutions are proved to concentrate in the
potential well, exhibiting a polynomial decay. Finally, we prove the previous results
also in the limiting local setting s = 1 and N ≥ 3, with an exponential decay of the
solutions.
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1 Introduction

Following Feynman's path integral approach to quantum mechanics, Laskin [42]
developed a new extension of the fractality concept deriving the fractional nonlinear
Schrödinger (fNLS for short) equation

iℏ∂tψ = ℏ2s(−∆)sψ + V (x)ψ − f(ψ), (x, t) ∈ RN × (0,+∞). (1.1)

Here s ∈ (0, 1), N > 2s, the symbol (−∆)sψ = F−1(|ξ|2sF(ψ)) denotes the frac-
tional Laplacian de�ned via Fourier transform F on the spatial variable, ℏ designates
the usual Planck constant, V is a real potential and f is a Gauge invariant nonlin-
earity, i.e. f(eiθρ) = eiθf(ρ) for any ρ, θ ∈ R. The wave function ψ = ψ(x, t)
represents the quantum mechanical probability amplitude for a given unit mass par-
ticle to have position x at time t, under the con�nement due to the potential V .
We refer to [42, 43] for a detailed discussion on the physical motivation of the fNLS
equation, and we highlight that several applications in the physical sciences could
be mentioned, ranging from the description of boson stars to water wave dynam-
ics, from image reconstruction to jump processes in �nance (see [27] and references
therein).

Special solutions of the equation (1.1) are given by the standing waves, i.e. factor-

ized functions ψ(x, t) = e
iµt
ℏ v(x) with µ ∈ R. Regarding ℏ > 0 as a small quantity,

these standing waves are usually called semiclassical states since the transition from
quantum physics to classical physics is somehow described letting ℏ → 0: roughly
speaking, when s = 1 the centers of mass qε = qε(t) of the soliton solutions in (1.1),
under suitable assumptions and initial conditions, converge as ℏ → 0 to the solution
of the Newton's equation of motion

q̈(t) = −∇V (q(t)), t ∈ (0,+∞); (1.2)

for s ∈ (0, 1) a suitable power-type modi�cation of equation (1.2) is needed. Here,
considering small ℏ roughly means that the size of the support of the soliton in
(1.1) is considerably smaller than the size of the potential V ; for details we refer to
[11, 34, 41, 9], and to [51] for the fractional case.

Without loss of generality, shifting µ to 0 and denoting ℏ ≡ ε, the search for
semiclassical states leads to the investigation of the following nonlocal equation

ε2s(−∆)sv + V (x)v = f(v), x ∈ RN (1.3)

where V is positive and ε > 0 is small. Setting u := v(ε·), we observe that (1.3) can
be rewritten as

(−∆)su+ V (εx)u = f(u), x ∈ RN , (1.4)

thus the equation
(−∆)sU +m0U = f(U), x ∈ RN (1.5)

becomes a formal limiting equation, as ε → 0, of (1.4). Solutions of (1.3) usually
exhibit concentration phenomena as ε → 0: by concentrating solutions we mean a
family vε of solutions of (1.3) which converges, up to rescaling, to a ground state
of (1.5) and whose maximum points converge to some point x0 ∈ RN given by the
topology of V (see Theorem 1.1 for a precise statement). This point x0 reveals,
generally, to be a critical point of V - i.e. an equilibrium of (1.2) - as shown in
[57, 30].

2



In the subcritical case, that is when the growth at in�nity of the function f is
strictly slower than |t|2∗s , with

2∗s :=
2N

N − 2s

fractional Sobolev critical exponent, the semiclassical analysis of local NLS equations
has been largely investigated starting from the seminal papers [32, 47]: here the
authors implement a Lyapunov-Schmidt dimensional reduction argument to gain
existence of solutions for homogeneous sources, relying on the nondegeneracy of the
ground states of the limiting problem (1.5). Successively, variational techniques have
been implemented to gain both existence and multiplicity, see [49, 57, 3, 26, 21, 4,
12, 14, 20] and references therein. As regards the fractional subcritical case, we
con�ne to mention [25, 30, 2, 31, 52, 18, 5, 19] and references therein.

In the present paper we aim to study (1.3) in a critical setting, when N ≥ 2.
Namely, we focus on possibly degenerate local minima of V , that is V satis�es

(V1) V ∈ C(RN ,R) ∩ L∞(RN ), V := infRN V > 0,

(V2) there exists a bounded domain Ω ⊂ RN such that

m0 := inf
Ω
V < inf

∂Ω
V,

with set of local minima

K := {x ∈ Ω | V (x) = m0}, (1.6)

and we assume general Berestycki-Lions assumptions on f , i.e.

(f1) f ∈ C(R,R), and f ∈ C0,γ
loc (R,R) for some γ ∈ (1− 2s, 1) if s ∈ (0, 1/2],

(f2) f(t) ≡ 0 for t ≤ 0,

(f3) limt→0
f(t)
t = 0,

(f4) limt→+∞
f(t)

t2
∗
s−1 = a > 0, where 2∗s =

2N
N−2s ,

(f5) for some C > 0 and max{2∗s − 2, 2} < p < 2∗s, i.e. satisfying

p ∈


( 4s

N − 2s
,

2N

N − 2s

)
N ∈ (2s, 4s),(

2,
2N

N − 2s

)
N ≥ 4s,

(1.7)

it results that
f(t) ≥ at2

∗
s−1 + Ctp−1 for t ≥ 0.

See also Remark 1.3 for some weakening and comments on the assumptions (V1),
(f1) and (f5). Notice that the stronger condition on p in the �rst line of (1.7) is
veri�ed, whenever N ≥ 2, only if N = 2 and s ∈ (12 , 1], or N = 3 and s ∈ (34 , 1]. We
point out that the condition C > 0 in (f4) is of key importance: indeed, for pure
critical nonlinearities of the type

f(t) = |t|2∗s−2t,

the limiting problem (1.5) exhibits a quite di�erent scenario.
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Some physical models related to assumptions (f1)�(f5) arise, for example, in
nonlinear optics [44]. See also [58, 50, 29].

The existence of a solution in a critical, fractional setting, in the case of local min-
ima (V1)-(V2) and general Berestycki-Lions assumptions (f2)�(f5), has been faced
in [40] by assuming V ∈ C1(RN ), and moreover in [36] by means of penalization
methods.

Inspired by [49], multiplicity of solutions of (1.3) in the case of global minima of
V was studied in [54] for power-type nonlinearities. Moreover, in [45] the authors
consider functions of the type

f(t) = g(t) + |t|2∗s−2t, (1.8)

where g is subcritical and satis�es a monotonicity condition which allows to im-
plement the Nehari manifold tool, and they relate the number of solutions to the
Lusternik-Schnirelmann category of the set of global minima.

Existence of multiple solutions for local minima of V has been investigated, in
the spirit of [26], by [37] with sources of the type (1.8), where now g satis�es also
an Ambrosetti-Rabinowitz condition: this assumption enables to employ Mountain
Pass and Palais-Smale arguments, combined with a penalization scheme. Again, the
authors are able to �nd cat(K) solutions, where K is the set of local minima of V
and cat(K) denotes its Lusternik-Schnirelmann category.

In the present paper we prove a multiplicity result for equation (1.3) under almost
optimal assumptions of f , showing the concentration of the solutions around local
minima of V .

In particular, we prove the following result.

Theorem 1.1 Assume s ∈ (0, 1), N ≥ 2 and that (V1)-(V2), (f1)�(f5) hold. Let K
be de�ned by (1.6). Then, for small ε > 0 equation (1.3) has at least cupl(K) + 1
positive solutions, which belong to C0,σ(RN ) ∩ L∞(RN ) for some σ ∈ (0, 1). More-
over, each of these sequences vε concentrates in K as ε → 0: namely, there exist
xε ∈ RN global maximum points of vε, such that

lim
ε→0

d(xε,K) = 0

and
C ′

1 + |x−xε
ε |N+2s

≤ vε(x) ≤
C ′′

1 + |x−xε
ε |N+2s

for x ∈ RN

where C ′, C ′′ > 0 are uniform in ε > 0. Finally, for every sequence εn → 0+ there
exists a ground state solution U of (2.12) such that, up to a subsequence,

vεn(εn ·+xεn) → U as n→ +∞

in Hs(RN ) and locally on compact sets.

Here cupl(K) denotes the cup-length of K de�ned by the Alexander-Spanier co-
homology with coe�cients in some �eld F (see De�nition 4.1). This topological tool
denotes the geometric complexity of the set K, and it was successfully implemented
also in [4, 20, 18, 19]: the idea of exploiting the topological con�guration of the
problem, in a singularly perturbed framework, goes back to the work [24] and it has
been widely used to get multiplicity of solutions.
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Remark 1.2 Notice that the cup-length of a setK is strictly related to the Lusternik-
Schnirelmann category of K. Indeed, if K is a contractible set (e.g. a point) or it is
�nite, then

cupl(K) + 1 = cat(K) = 1;

if K = SN−1 is the N − 1 dimensional sphere in RN , then

cupl(K) + 1 = cat(K) = 2;

if K = TN is the N -dimensional torus, then

cupl(K) + 1 = cat(K) = N + 1.

However in general
cupl(K) + 1 ≤ cat(K)

(see [22, Sections 2.8 and 9.23] for some examples where the strict inequality is
attained).

Remark 1.3 As observed in [19, 20], assumption (V1) in Theorem 1.1 can be re-
laxed without assuming the boundedness of V (see also [12, 14]). Moreover, the
condition

p > max{2∗s − 2, 2}

in (f5) can be relaxed in p > 2 by paying the cost of considering a su�ciently large
C ≫ 0; see for instance [53, 36]. Finally, we remark that (f1), instead of the mere
continuity of f , is needed only to get a Pohozaev identity by means of the regularity
of solutions (see [13, Proposition 1.1]).

We highlight that Theorem 1.1 extends the existence results in [36, 45] to a
multiplicity result, and it improves the multiplicity theorem in [37], since we do
not assume monotonicity nor Ambrosetti-Rabinowitz conditions on the nonlinearity.
Moreover, no nondegeneracy and global conditions on V are considered.

The idea of the present paper is the following: �rst, we gain compactness and
uniform L∞-bounds on the set of ground states of the critical limiting problem
(1.5); to this aim we employ a Moser's iteration argument adapted to the fractional
framework, without the use of the s-harmonic extension, and appropriate for weak
solutions. The criticality of the problem, as well as the absence of a chain rule, make
the argument more delicate. The gained uniformity allows then the introduction of
a suitable truncation on the nonlinearity f ; the new truncated function reveals thus
to be subcritical.

Therefore, we can apply to the truncated problem the approach of [19]: we em-
ploy a penalization argument on a neighborhood of expected solutions, perturbation
of the ground states of a limiting problem, and this neighborhood results to be in-
variant under the action of a deformation �ow. Compactness is restored also by
the use of a new fractional center of mass, which engages a seminorm stronger than
the usual Gagliardo one; the topological machinery between two level sets of the
associated inde�nite energy functional is then built also through the use of a Po-
hozaev functional. The number of solutions is thus related to the cup-length of K
and these solutions are proved to exhibit a polynomial decay and to converge to a
ground state of the limiting equation. This last convergence allows �nally to prove
that these solutions solve the original critical problem (1.3).
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We point out that the techniques employed in [19] cannot be applied directly
to the critical framework: indeed, the embedding of Hs(RN ) in L2∗s (RN ) is not
compact, even if we reduce to radially symmetric functions or to bounded domains;
in particular, the criticality obstructs the convergence of truncated Palais-Smale
sequences related to the penalized functional, which is a key point in [19]. Moreover,
the regularity results given by [23], exploited in the concentration and in the decay
of the solutions, do not apply; in particular, L∞-bounds and compactness of the set
of ground states of the limiting problem have to be speci�cally investigated.

We highlight that the conclusions of Theorem 1.1 hold also for s = 1 and N ≥ 3,
as we state in Theorem 5.1. Regarding this local framework, Theorem 5.1 is the
critical counterpart of the result in [20]: again, we point out that the arguments
exploited in the subcritical setting of [20] cannot be directly implemented in our
framework, because of the lack of compactness. In the critical case, previous results
were given by [1, 62, 6]: in particular we extend here the existence result in [59] to a
multiplicity result, and we improve the multiplicity theorem in [56] in the sense that
we do not need to work with global minima of V nor we need monotonicity on f .
In this setting, the solutions decay exponentially and enjoy more regularity. Notice
that in such a case (f1) means f merely continuous.

Remark 1.4 In [37, 56] the multiplicity of solutions is related to cat(K), where

cat(K) ≥ cupl(K) + 1.

In those papers, indeed, the monotonicity of the map t 7→ f(t)
t implies the boundedness

from below of the functional restricted to the Nehari manifold: thus, the tool of
the (absolute) Lusternik-Schnirelmann category can be implemented in order to get
cat(K) solutions.

Under our general assumptions (f1)�(f5), we can not rely on the boundedness
from below of the functional, and thus, in order to control both from above and below
the energy, we need more sophisticated tools, such as the relative category. On the
other hand, for any interval I ⊂ R and any neighborhood Kd of K, considered the
inclusion

j : (I ×K, ∂I ×K) → (I ×Kd, ∂I ×Kd)

the key relation
cat(j) ≥ cat(K),

essential in the estimation of the relative category of two subleves of the inde�nite
functional (see [20, Remark 4.3]) does not generally hold [22, Remark 7.47]. On the
other hand, the same relation for the cup-length

cupl(j) ≥ cupl(K)

holds true, as proved in [20, Lemma 5.5] (see also [33, Proposition 3.5]). Here
cat(j) denotes the category of the inclusion j, which is a standard generalization of
the relative category

cat(A,B) ≡ cat
(
id : (A,B) → (A,B)

)
with B ⊂ A; similarly for cupl(j) (see [8] for precise de�nitions).

Thus, we need to take advantage of the (relative) cup-length in order to get a
bound on the number of solutions.
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The paper is organized as follows. In Section 2 we recall some notions on the
fractional Sobolev space, and then we obtain compactness of the set of ground states
and a crucial L∞-bound on the critical limiting problem. In Section 3 we use this
uniform estimate to introduce a truncation which brings the problem back to the
subcritical case, and in Section 4 we prove Theorem 1.1. Finally, in Section 5 we
deal with the local case.

2 Uniform L∞-bound

Let N ≥ 2 and s ∈ (0, 1). For every u ∈ L2(RN ) we de�ne the Gagliardo seminorm
[27, Section 2]

[u]2s :=

∫
RN

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy

and the fractional Sobolev space

Hs(RN ) :=
{
u ∈ L2(RN ) | [u]s < +∞

}
endowed with the norm

∥u∥2Hs(RN ) := ∥u∥22 + [u]2s, u ∈ Hs(RN );

here ∥·∥q denotes the Lq(RN )-Lebesgue norm for q ∈ [1,+∞]. Moreover, for every

u ∈ Hs(RN ) we de�ne the fractional Laplacian

(−∆)su(x) := C(N, s)

∫
RN

u(x)− u(y)

|x− y|N+2s
dx

where the integral is in the principal value sense and C(N, s) is a positive constant.
We have the following relation between the Gagliardo seminorm and the L2-norm
of the fractional Laplacian [27, Proposition 3.6]

[u]2s = C ′(N, s)
∥∥∥(−∆)s/2u

∥∥∥2
2
, u ∈ Hs(RN ), (2.9)

with C ′(N, s) > 0, and moreover by polarization∫
RN

∫
RN

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|N+2s

dx dy = C ′(N, s)

∫
RN

(−∆)s/2u (−∆)s/2v dx

(2.10)
for every u, v ∈ Hs(RN ). We recall that the immersion

Hs(RN ) ↪→ Lq(RN )

is continuous [27, Theorem 3.5] for q ∈ [2, 2∗s], where 2∗s = 2N
N−2s , and compact for

q ∈ (2, 2∗s) if we restrict to the subspace of radially symmetric functions [46]. We
highlight that the embedding is not compact for q = 2∗s even on bounded subsets
of RN . Finally we have that there exists a best Sobolev embedding constant S > 0
such that [27, Theorem 6.5]

∥u∥2∗s ≤ S− 1
2

∥∥∥(−∆)s/2u
∥∥∥
2
, u ∈ Hs(RN ). (2.11)
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Let us recall some crucial results on the limiting critical problem (1.5), that is

(−∆)sU +m0U = f(U), x ∈ RN . (2.12)

De�ne the energy C1-functional L : Hs(RN ) → R

L(U) :=
1

2

∫
RN

|(−∆)s/2U |2 dx+
m0

2

∫
RN

U2 dx−
∫
RN

F (U) dx, U ∈ Hs(RN )

and the related least energy

Em := inf
{
L(U) | U ∈ Hs(RN ) \ {0}, L′(U) = 0

}
.

Moreover we de�ne the Mountain Pass level

Cmp := inf
γ∈Γ

sup
t∈[0,1]

L(γ(t))

with
Γ :=

{
γ ∈ C

(
[0, 1], Hs(RN )

)
| γ(0) = 0, L(γ(1)) < 0

}
.

Finally we introduce the following minimization problem

Cmin := inf
{
T (U) | U ∈ Hs(RN ), V(U) = 1

}
(2.13)

where

T (U) :=

∫
RN

|(−∆)s/2U |2 dx, V(U) :=

∫
RN

(
F (U)− m0

2
U2
)
dx.

Notice that L = 1
2T − V. The following collection of results states the equivalence

of the previous problems and the existence of a solution.

Proposition 2.1 There exists a ground state solution for the problem (2.12), that
is a function U which solves the equation and such that

L(U) = Em.

Moreover, every ground state is also a Mountain Pass solution and (up to scaling)
also a solution for the minimization problem (2.13), and viceversa; in addition the
following relations hold

Em = Cmp,

Em =
s

N
(2∗s)

− N
2∗ss (Cmin)

N
2s , (2.14)

and every ground state is positive. Finally, recalled that S is the best Sobolev constant
for the embedding (2.11), we have that the following upper bound holds

Cmin <

(
2∗s
a

) 2
2∗s

S (2.15)

where a > 0 appears in assumptions (f4)-(f5).
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Proof. The positivity is a straightforward consequence of assumption (f2). Ex-
istence of a ground state solution can be achieved through the use of (2.15) and
minimization of Cmin as classically made by [10]. The equivalence with the Moun-
tain Pass formulation is instead discussed as in [39]. We refer to [40, Proposition
2.4] for the precise statement and to [60, Section 4.1 and Remark 1.2] for details.

Moreover, as observed in Remark 1.3, to get the existence of a ground state, the
restriction on the range of p in assumption (f5) can be substituted, by arguing as
in [54, Lemma 3.3], with the request that C is su�ciently large (see also [36] and
references therein).

Thanks to Proposition 2.1 we can de�ne

Ŝ :=
{
U ∈ Hs(RN ) \ {0} | U ground state solution of (2.12), U(0) = maxRN U

}
.

We observe that, by the fractional version of the Pólya-Szeg® inequality [48] (see
also [13, Theorem 1.2]), every minimizer of Cmin (i.e. every ground states of (2.12))
is actually radially symmetric decreasing up to a translation. Thus, the request in
Ŝ for U to have a maximum in zero is equivalent to the radial symmetry of U ; that
is

Ŝ =
{
U ∈ Hs(RN ) \ {0} | U radially symmetric ground state solution of (2.12)

}
.

(2.16)

Proposition 2.2 Every U ∈ Ŝ satis�es the Pohozaev identity, i.e.∫
RN

|(−∆)s/2U |2 dx− 2∗s

∫
RN

(
F (U)− m0

2
U2
)
dx = 0. (2.17)

Moreover, the set Ŝ is compact.

Proof. Once one observes that U ∈ L∞(RN ), whose proof is an easy adaptation of
Proposition 2.3 below (focusing on a single U ∈ Ŝ), the proof of (2.17) is gained by
means of regularity results and explicit computations on the s-harmonic extension
problem; the arguments can be easily adapted from [13, Proposition 1.1] to the
critical case.

Let us show the boundedness of Ŝ. For any U ∈ Ŝ, the embedding (2.11) and
the Pohozaev identity (2.17) lead to

∥U∥2∗s ≤ S− 1
2

∥∥∥(−∆)s/2U
∥∥∥
2
= S− 1

2
N

s
L(U) = S− 1

2
N

s
Em;

moreover the equation (2.12) and the assumptions (f3)-(f4) imply∥∥∥(−∆)s/2U
∥∥∥2
2
+m0 ∥U∥22 =

∫
RN

f(U)U dx ≤ δ ∥U∥22 + Cδ ∥U∥2
∗
s

2∗s

for δ < m0 and some Cδ > 0. The combination of the two bounds leads to the claim.

Let thus focus on compactness; we use some ideas from [61]. Let Un be a sequence
in Ŝ; by (2.16) we assume (Un)n ⊂ Hs

r (RN ), where Hs
r (RN ) denotes the subset of

Hs(RN ) consisting in radially symmetric functions. We recall that Hs
r (RN ) ↪→↪→

Lq(RN ) for q ∈ (2, 2∗s). By the boundedness of Ŝ we can assume Un ⇀ U in Hs
r (RN ).

Set

σ :=

(
1

2∗s
Cmin

) 1
2s
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and
Vn := Un(σ·), V := U(σ·)

we have, by exploiting the Pohozaev identity, that Vn are solutions of the minimiza-
tion problem (2.13), that is

T (Vn) = Cmin, V(Vn) = 1.

Thus we have Vn ⇀ V in Hs
r (RN ), and hence Vn → V in Lq(RN ), q ∈ (2, 2∗s), and

Vn → V almost everywhere. By the lower semicontinuity of the norm we obtain

T (V ) ≤ Cmin; (2.18)

hence, to conclude the proof, it is su�cient to show that V(V ) = 1, since this implies
also that U = V (σ−1·) lies in Ŝ.

Set
Wn := Vn − V

we have by the Brezis-Lieb Lemma (since (−∆)s/2Vn ⇀ (−∆)s/2V in the Hilbert
space L2(RN ))

T (Wn) = T (Vn)− T (V ) + o(1)

= Cmin − T (V ) + o(1) (2.19)

≤ Cmin + o(1). (2.20)

Moreover, rewrite V(Wn) as

V(Wn) =

∫
RN

(
F (Wn)−

a

2∗s
W 2

n

)
dx+

a

2∗s
∥Wn∥2

∗
s

2∗s
− m0

2
∥Wn∥22 . (2.21)

Again by the Brezis-Lieb Lemma (since Vn ⇀ V in Lq(RN ), q = 2, 2∗s and Vn → V
almost everywhere) we have

∥Wn∥qq = ∥Vn∥qq − ∥V ∥qq + o(1), q = 2, 2∗s. (2.22)

Set
g(t) := f(t)− at2

∗
s−1

we have that g is subcritical at in�nity by (f4), and superlinear in zero by (f3); thus,
set G(t) :=

∫ t
0 g(τ)dτ , by classical arguments (see e.g. [17, Lemma 2.4]) we have∫

RN

G(Wn) dx = o(1),

∫
RN

G(Vn) dx =

∫
RN

G(V ) dx+ o(1). (2.23)

Therefore by (2.21)�(2.23) we obtain

V(Wn) = V(Vn)− V(V ) + o(1)

= 1− V(V ) + o(1). (2.24)

Finally, through a simple scaling argument, we observe that

T (u) ≥ Cmin(V(u))
2
2∗s for every V(u) ≥ 0. (2.25)
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We pass to prove that V(V ) = 1 by contradiction.
Case V(V ) > 1. In this case, by (2.25) we have

T (V ) ≥ Cmin(V(V ))
2
2∗s > Cmin

which contradicts (2.18).
Case V(V ) < 0. Then, by (2.24) we have that

V(Wn) ≥ 1− 1

2
V(V ) > 1 for n≫ 0.

Thus, by (2.25) we obtain

T (Wn) ≥ Cmin(V(Wn))
2
2∗s ≥ Cmin

(
1− 1

2
V(V )

) 2
2∗s

which contradicts (2.20).
Case V(V ) ∈ (0, 1). Again by (2.24) we have that

V(Wn) ≥
1

2
(1− V(V )) > 0 for n≫ 0.

Thus by (2.19), (2.25) and (2.24) we gain

Cmin = lim
n

(
T (Wn) + T (V )

)
≥ Cmin lim

n

(
(V(Wn))

2
2∗s + (V(V ))

2
2∗s

)
= Cmin

(
(1− V(V ))

2
2∗s + (V(V ))

2
2∗s

)
> Cmin

(
(1− V(V )) + V(V )

)
= Cmin

which is an absurd.
Case V(V ) = 0. By (2.24) we have

V(Wn) = 1 + o(1), (2.26)

and thus by (2.25) T (Wn) ≥ Cmin(1 + o(1))
2
2∗s . This, combined with (2.20), gives

T (Wn) = Cmin + o(1). (2.27)

Combining (2.26), (2.21) and (2.23) we obtain

1 + o(1) = V(Wn) =
a

2∗s
∥Wn∥2

∗
s

2∗s
− m0

2
∥Wn∥22

that is

∥Wn∥2
∗
s

2∗s
=

2∗s
a

+
2∗sm0

2a
∥Wn∥22 + o(1)

≥ 2∗s
a

+ o(1). (2.28)

By (2.27), the Sobolev embedding (2.11) and (2.28) we gain

Cmin + o(1) = T (Wn) =
∥∥∥(−∆)s/2Wn

∥∥∥2
2
≥ S ∥Wn∥22∗s ≥ S

(
2∗s
a

+ o(1)

) 2
2∗s
.
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Letting n→ +∞ we �nally have

Cmin ≥
(
2∗s
a

) 2
2∗s

S

which is in contradiction with (2.15). This concludes the proof.

As a key property to employ the truncation argument, and to detect a handy
neighborhood of approximating solutions, we have the following result (see also [28]).

Proposition 2.3 The following bound holds

sup
U∈Ŝ

∥U∥∞ <∞.

Proof. Assume by contradiction that there exists (Un)n ⊂ Ŝ such that ∥Un∥∞ →
+∞ as n→ +∞. By the compactness of Ŝ in Proposition 2.2 we may assume that
Un is positive and convergent in Hs(RN ). If we prove that

sup
n

∥Un∥∞ < +∞

we get a contradiction and conclude the proof. We use a Moser's iteration argument
in a critical, fractional framework, appropriate for weak solutions.

We already know that Un is bounded in L2∗s (RN ) by (2.11). Let us introduce
γ > 1, to be �xed, and an arbitrary T > 0, and set a γ-linear truncation at T

h(t) ≡ hT,γ(t) :=


0 if t ≤ 0,

tγ if t ∈ (0, T ],

γT γ−1t− (γ − 1)T γ if t > T .

We have that h ∈ C1(R) ∩W 1,∞(R), it is positive (increasing and convex) and by
direct computations it satis�es the following properties

0 ≤ h(t) ≤ |t|γ , t ∈ R, (2.29)

0 ≤ th′(t) ≤ γh(t), t ∈ R, (2.30)

lim
T→+∞

hT,γ(t) = tγ , t ≥ 0. (2.31)

The goal is to estimate ∥h(Un)∥2∗s and give thus a bound of Un in L2∗sγ(RN ), where
2∗sγ > 2∗s. In order to handle the weak formulation of the notion of solution we
introduce

h̃(t) :=

∫ t

0
(h′(r))2 dr, t ∈ R

and observe that h̃ ∈ C1(R) ∩ W 1,∞(R) is positive, increasing and convex. In
particular

h̃′(t) = (h′(t))2, t ∈ R (2.32)

by de�nition and
(h̃(t)− h̃(s)) ≤ h̃′(t)(t− s), t, s ∈ R (2.33)

12



by convexity, and we gain also the Lipschitz continuity

|h̃(t)− h̃(r)| ≤
∥∥∥h̃′∥∥∥

∞
|t− r|, t, r ∈ R.

Combining the de�nition of h̃, (2.30) and (2.29) we obtain

0 ≤ h̃(t) ≤
∥∥h′∥∥∞ |t|γ , t ∈ R. (2.34)

Finally, by a direct application of Jensen inequality we gain

|h(t)− h(s)|2 ≤
(
h̃(t)− h̃(s)

)
(t− s), t, s ∈ R. (2.35)

We observe that h̃(Un) ∈ Hs(RN ): indeed, by (2.9) and the convexity (2.33) we
have ∥∥(−∆)s/2h̃(Un)

∥∥
2
≤
∥∥h̃′∥∥∞∥∥(−∆)s/2Un

∥∥
2
<∞;

moreover, since 2∗s is the best summability exponent, if we assume

1 < γ ≤ 2∗s
2

(2.36)

by (2.34) we obtain also

h̃(Un) ≤
∥∥h′∥∥∞ Uγ

n ∈ L2(RN ).

We use now (2.11) and combine (2.9), (2.35) and (2.10) to obtain

∥h(Un)∥22∗s ≤ S−1
∥∥∥(−∆)s/2h(Un)

∥∥∥2
2

= (C ′(N, s))−1S−1

∫
R2N

|h(Un(x))− h(Un(y))|2

|x− y|N+2s
dx dy

≤ (C ′(N, s))−1S−1

∫
R2N

(
h̃(Un(x))− h̃(Un(y))

)(
Un(x)− Un(y)

)
|x− y|N+2s

dx dy

= S−1

∫
RN

(−∆)s/2Un (−∆)s/2h̃(Un) dx.

Since h̃(Un) ∈ Hs(RN ) we can choose it as a test function in the equation and gain

∥h(Un)∥22∗s ≤ S−1

∫
RN

(
f(Un)−m0Un

)
h̃(Un) dx.

By the assumptions (f3)-(f4) we �nd a su�ciently large constant C = C(m0) > 0
such that

f(t) ≤ m0

2
t+ Ct2

∗
s−1, t ≥ 0

and thus, thanks to the positivity of h̃(Un),

∥h(Un)∥22∗s ≤ CS−1

∫
RN

U2∗s−1
n h̃(Un) dx.

Now we use (2.33) (with s = 0), (2.32), and (2.30)

∥h(Un)∥22∗s ≤ CS−1

∫
RN

U2∗s−1
n Unh̃

′(Un) dx (2.37)
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≤ CS−1

∫
RN

U2∗s−1
n Un(h

′(Un))
2 dx

≤ γ2CS−1

∫
RN

U2∗s−2
n (h(Un))

2 dx. (2.38)

Let now R > 0 to be �xed; splitting the right-hand side of (2.38) and by using the
Hölder inequality we obtain∫

RN

U2∗s−2
n (h(Un))

2 dx =

=

∫
Un≤R

U2∗s−2
n (h(Un))

2 dx+

∫
Un>R

U2∗s−2
n (h(Un))

2 dx

≤ R2∗s−2 ∥h(Un)∥22 +
(∫

Un>R
U2∗s
n dx

) 2∗s−2

2∗s
∥h(Un)∥22∗s .

The convergence of Un in L2∗s (RN ) implies that the sequence is dominated by some
function in L2∗s (RN ); thus by the Dominated Convergence Theorem we can �nd a
su�ciently large R = R(γ,m0,S−1) such that

(∫
Un>R

U2∗s
n dx

) 2∗s−2

2∗s
<

1

2

1

γ2CS−1
, uniformly for n ∈ N.

Thus, plugging this information into (2.38), and absorbing the second piece on the
right-hand side into the left-hand side, we obtain by (2.29)

∥h(Un)∥22∗s ≤ 2γ2CS−1R2∗s−2 ∥h(Un)∥22 ≤ 2γ2CS−1R2∗s−2 ∥Un∥2γ2γ .

Recalled that h = hT,γ , by (2.31) and Fatou's Lemma we have

∥Un∥2γ2∗sγ =

(∫
RN

lim inf
T→+∞

h
2∗s
T,γ(Un) dx

) 2
2∗s

≤
(
lim inf
T→+∞

∫
RN

h
2∗s
T,γ(Un) dx

) 2
2∗s

≤ 2γ2CS−1R2∗s−2 ∥Un∥2γ2γ .

By our choice (2.36) of γ we gain that Un ∈ L2∗sγ(RN ), which was the claim. We
want now to employ an iteration argument; since this last inequality reveals not to
be suitable, we exploit again (2.38). Thus applying again Fatou's Lemma to (2.38)
and using (2.29) we obtain

∥Un∥2γ2∗sγ ≤ γ2CS−1 ∥Un∥2
∗
s+2(γ−1)

2∗s+2(γ−1)

where we observe that
2γ < 2∗s + 2(γ − 1) < 2∗sγ.

To get an iteration we set γ0 :=
2∗s
2

2∗s + 2(γi+1 − 1) := 2∗sγi

so that

γi − 1 =
2∗s
2
(γi−1 − 1) =

(
2∗s
2

)i+1(2∗s
2

− 1

)
.
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We now reiterate the argument proving that, for each i ∈ N, (Un)n ⊂ L2∗sγi(RN ) and

∥Un∥2γi2∗sγi
≤ γ2i CS−1 ∥Un∥2

∗
s+2(γi−1)

2∗s+2(γi−1)

that is
∥Un∥2γi2∗sγi

≤ γ2i CS−1 ∥Un∥2
∗
sγi−1

2∗sγi−1

or equivalently

∥Un∥
2γi
γi−1

2∗sγi
≤ (γ2i CS−1)

1
γi−1 ∥Un∥

2γi−1
γi−1−1

2∗sγi−1
.

Notice that the iteration is possible since at each step the equivalent of (2.36) holds,
that is by our choice of γi we have

1 < γi ≤
2∗sγi−1

2
.

Thus we have

∥Un∥
2γi
γi−1

2∗sγi
≤

(
i∏

k=1

(γ2kCS−1)
1

γk−1

)
∥Un∥

2γ0
γ0−1

2∗sγ0
.

Notice that
γi → +∞ as i→ +∞,

and by direct computations

i∏
k=1

(γ2kCS−1)
1

γk−1 ≤
(
CS−1 2

∗
s − 2

2

) 2
2∗s−1

∑∞
k=1

(
2
2∗s

)k+1 (
2∗s
2

) 2
2∗s−1

∑∞
k=1(k+1)

(
2
2∗s

)k+1

=: C0 uniformly for i ∈ N.

Thus, recalled that ∥·∥p → ∥·∥∞ as p→ +∞ we obtain

∥Un∥∞ ≤ C0 ∥Un∥
γ0

γ0−1

2∗sγ0

which leads to the claim.

3 The truncated problem

In virtue of Proposition 2.3, let

M := sup
U∈Ŝ

∥U∥∞ + 1.

We preliminary observe that we can �nd a t0 ∈ [0,M ] such that

F (t0) >
1

2
m0t

2
0. (3.39)

Indeed �xed a whatever U ∈ Ŝ, by the Pohozaev identity (2.17) we have (notice
that (−∆)s/2U cannot identically vanish)∫

RN

(
F (U)− m0

2
U2
)
dx =

1

2∗s

∥∥∥(−∆)s/2U
∥∥∥2
2
> 0
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and thus there exists an x0 ∈ RN such that

F (U(x0)) >
m0

2
U(x0)

2;

setting t0 := U(x0) ∈ [0,M ] we have the claim.
We thus set

k := sup
t∈[0,M ]

f(t) ∈ (0,+∞),

where we observe that the strict positivity is due to the fact that F (t0) > 0. Moreover
we de�ne the truncated nonlinearity fk : R → R

fk(t) := min{f(t), k}, t ∈ R.

We have the following properties on fk : R → R:

� fk(t) ≤ f(t) for each t ∈ R,

� fk(t) = f(t) whenever |t| ≤M ,

� fk(U) = f(U) for every U ∈ Ŝ.

Notice that the same relations hold also for F and

Fk(t) :=

∫ t

0
fk(τ)dτ.

We have that fk is subcritical, i.e. fk satis�es assumptions (f1)�(f3) together with

(fk4) limt→+∞
fk(t)
tq = 0 for some q ∈ (1, 2∗s − 1),

(fk5) Fk(t0) >
1
2m0t

2
0 for some t0 > 0;

here q ∈ (1, 2∗s − 1) is however �xed and t0 ∈ [0,M ] is the one appearing in (3.39);
notice that t0 does not depend on k.

Consider now the truncated problem

ε2s(−∆)sv + V (x)v = fk(v), x ∈ RN (3.40)

and the corresponding limiting truncated problem

(−∆)sU +m0U = fk(U), x ∈ RN . (3.41)

Notice again that, since fk satis�es (f2), all the ground states of (3.41) are positive.
Thus de�ne

Ŝk :=
{
U ∈ Hs(RN ) \ {0} | U ground state solution of (3.41), U(0) = maxRN U

}
.

We have that the following key relation holds.

Proposition 3.1 It results that Ŝ = Ŝk. Moreover, the least energy levels coincide.

Proof. Let us denote by Lk, Γk, Vk, Ek
m = Ck

mp, C
k
min the quantities of the trunca-

tion problem analogous to the ones introduced in Section 2 for the critical problem.
First observe that, by Lk ≥ L, we have Γk ⊂ Γ and

Ck
mp ≥ Cmp; (3.42)
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moreover for any V ∈ Ŝ we have also L′
k(V ) = 0, and hence

min
V ∈Ŝ

Lk(V ) ≥ min
L′
k(V )=0

Lk(V ) = Ek
m. (3.43)

Let now U ∈ Ŝ. We have by (3.42) and (3.43)

Ck
mp ≥ Cmp = L(U) = Em = min

V ∈Ŝ
L(V ) = min

V ∈Ŝ
Lk(V ) ≥ Ek

m.

Therefore
Lk(U) = L(U) = Ck

mp = Ek
m

which, together with L′
k(U) = L′(U) = 0, gives that U ∈ Ŝk. Hence Ŝ ⊂ Ŝk. As a

further consequence we gain
Ek

m = Em. (3.44)

We show now that Ŝk ⊂ Ŝ. By (3.44), (2.14) and the analogous relation on the
subcritical problem, we have

Ck
min = Cmin,

thus, by rescaling, it is su�cient to prove that every minimizer of Ck
min is also a

minimizer of Cmin. Let thus U be a minimizer for Ck
min, i.e. T (U) = Ck

min and
Vk(U) = 1. Since T (U) = Cmin, it su�ces to prove that V(U) = 1. By de�nition,
we have

V(U) ≥ Vk(U) = 1.

On the other hand, set θ := (V(U))
1
N we obtain, by scaling, that V(U(θ·)) = 1 and

thus
T (U) = Cmin ≤ T (U(θ·)) = θ−

N+2s
N T (U)

from which we achieve
V(U) ≤ 1.

This concludes the proof.

4 Proof of Theorem 1.1

Before proving the main result, we �rst recall the de�nition of cup-length (see e.g.
[16, 33, 22] and references therein).

De�nition 4.1 Let A be a topological space, and let F be a whatever �eld. Denote
by

H∗(A) =
⊕
q≥0

Hq(A)

the Alexander-Spanier cohomology with coe�cients in F (see [35] and references
therein). Let

⌣: H∗(A)×H∗(A) → H∗(A)

be the cup-product. The cup-length of A is de�ned by

cupl(A) := max
{
l ∈ N | ∃α0 ∈ H∗(A), ∃αi ∈ Hqi(A), qi ≥ 1, for i = 1 . . . l,

s.t. α0 ⌣ α1 ⌣ · · ·⌣ αl ̸= 0 in H∗(A)
}
;

if such l ∈ N does not exist but H∗(A) is nontrivial, we have cupl(A) := 0, otherwise
we set cupl(A) := −1.
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When A is not connected, a slightly di�erent de�nition (which makes the cup-
length additive) can be found in [7]. See Example 1.2 and Remark 1.4 for some
computation and comparison with the notion of category.

Proof of Theorem 1.1.

Step 1. We �rst look at the truncated problem (3.40). Indeed, by [19, Theorem
1.1 and Theorem 1.4] we obtain the existence of cupl(K) + 1 sequences of solutions
of (3.40) satisfying the properties of Theorem 1.1 for ε > 0 small. To highlight the
ideas behind the result, for the reader's convenience we sketch here an outline of the
proof. We omit the dependence on the value k to avoid cumbersome notation.

We work with u = v(ε·). Through a compact slight perturbation of the set Ŝk
(see [19, Section 3.2]), still called Ŝk, we �rst de�ne, for each r > 0, a non-compact
neighborhood of Ŝk

S(r) :=
{
u = U(·−y)+φ ∈ Hs(RN ) | U ∈ Ŝk, y ∈ RN , φ ∈ Hs(RN ), ∥φ∥Hs(RN ) < r

}
.

To detect information on its elements we de�ne a minimal radius map ρ̂ : Hs(RN ) →
R+

ρ̂(u) := inf
{
∥u− U(· − y)∥Hs(RN ) | U ∈ Ŝk, y ∈ RN

}
, u ∈ Hs(RN ),

u ∈ S(r) =⇒ ρ̂(u) < r,

and, for some suitable ρ0, R0 > 0, a barycentric map Υ : S(ρ0) → RN

Υ(u) :=

∫
RN y d(y, u)dy∫
RN d(y, u)dy

, u ∈ S(ρ0),

u = U(· − y) + φ ∈ S(ρ0) =⇒ |Υ(u)− y| ≤ 2R0;

the density map d(y, u) appearing in the center of mass is de�ned by

d(y, u) := ψ

(
inf

U∈Ŝk

∥u− U(· − y)∥BR0
(y)

)
, (y, u) ∈ RN × S(ρ0),

where ψ is a suitable cut-o� function (see [19, Lemma 3.7]) and the norm involved
is a modi�cation of the usual Hs(BR0(y))-norm, made through the use of a stronger
seminorm which takes into account the tails of the functions, i.e.

∥u∥2A :=

∫
A
u2 dx+

∫
A

∫
RN

|u(x)− u(y)|2

|x− y|N+2s
dx dy, u ∈ Hs(RN ), A ⊂ RN .

Then, in order to localize solutions in Ω (introduced in (V2)), we introduce a suitable
penalization on the functional Iε : Hs(RN ) → R

Iε(u) :=
1

2

∫
RN

|(−∆)s/2u|2 dx+
1

2

∫
RN

V (εx)u2 dx−
∫
RN

Fk(u) dx, u ∈ Hs(RN )

associated with the rescaled equation

(−∆)su+ V (εx)u = fk(u), x ∈ RN , (4.45)
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and we call this penalized functional Jε : Hs(RN ) → R (see [19, Section 4.1]). Then,
we restrict our attention to a neighborhood of expected solutions

Xε,δ :=
{
u ∈ S(ρ0) | εΥ(u) ∈ Kd, Jε(u) < Em +R(δ, ρ̂(u))

}
,

whereKd is a suitable neighborhood ofK, R(δ, ρ̂(u)) is a suitable u-dependent radius
and δ > 0 is chosen su�ciently small (see [19, Section 4.3]). On Xε,δ, for ε small, since
the nonlinearity is subcritical we succeed in proving delicate ε-independent gradient
estimates for Jε, a truncated Palais-Smale-type condition, and the existence of a
deformation �ow η : [0, 1] × Xε,δ → Xε,δ; moreover, we prove that each solution of
J ′
ε(u) = 0 is also a solution of the original problem I ′ε(u) = 0 (see [19, Theorem 4.7,

Corollary 4.9, Proposition 4.10 and Lemma 4.11]).
To �nd multiple solutions we build two continuous maps satisfying

I ×K
Φε→ XEm+δ̂

ε,δ
Ψε→ I ×Kd and ∂I ×K

Φε→ XEm−δ̂
ε,δ

Ψε→ (I \ {1})×Kd,

where I ⊂ R is a suitable neighborhood of 1, δ̂ ∈ (0, δ) and the superscript denotes
the intersection with the sublevels of Jε. These maps are de�ned by

Φε(t, y) := U0

(
·−y/ε

t

)
, (t, y) ∈ I ×K,

Ψε(u) :=
(
T (Pm0(u)), εΥ(u)

)
, u ∈ XEm+δ̂

ε,δ ,

where U0 ∈ Ŝk is �xed, T is a truncation over the interval I, and Pm0 is a Pohozaev
functional de�ned by

Pm0(u) :=

(
2N

N − 2s

∫
RN Fk(u) dx− m0

2 ∥u∥22∥∥(−∆)s/2u
∥∥2
2

) 1
2s

+

, u ∈ Hs(RN ) \ {0};

notice that Pm0(U) = 1 for every U ∈ Ŝk (see [19, Section 4.4]). The composition
Ψε ◦ Φε results being homotopic to the identity, and this leads to the existence of
at least cupl(K) + 1 solutions by the following chain of inequalities involving the
relative category and the relative cup-length (see [19, Section 5])

#
{
u solutions of (4.45)

}
≥ #

{
u ∈ Xε,δ | J ′

ε(u) = 0, Em − δ̂ ≤ Jε(u) ≤ Em + δ̂
}

≥ cat
(
XEm+δ̂
ε,δ , XEm−δ̂

ε,δ

)
≥ cupl

(
XEm+δ̂
ε,δ , XEm−δ̂

ε,δ

)
+ 1

≥ cupl(Ψε ◦ Φε) + 1 ≥ cupl(K) + 1.

Finally, uniform L∞-bounds and C0,σ-regularity are proved through the use of recent
fractional De Giorgi classes [23] (see [19, Section 5.1]).

Step 2. Rescaling back again, for each of these sequences vε of solutions of
(3.40), called xε ∈ RN a global maximum point of vε, by [19, Theorem 1.4] (and
some contradiction argument through subsequences) we obtain

lim
ε→0

d(xε,K) = 0

and
C ′

1 + |x−xε
ε |N+2s

≤ vε(x) ≤
C ′′

1 + |x−xε
ε |N+2s

for x ∈ RN (4.46)
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where C ′, C ′′ > 0 are uniform in ε > 0. Moreover, for every sequence εn → 0+ there
exist U ∈ Ŝk and an x0 ∈ RN such that, up to subsequences,

vεn(εn ·+xεn) → U(·+ x0), as n→ +∞ (4.47)

in Hs(RN ) and locally on compact sets. For further details we refer to [19].

Step 3. Notice that by Proposition 3.1 we have U ∈ Ŝ, thus U(· + x0) is a
ground state of (2.12). We prove now that vε are solutions of the original equation,
which is given by

∥vε∥∞ < M de�nitely for ε small. (4.48)

Assume by contradiction that (4.48) does not hold: thus there exists a sequence
εn → 0 such that

∥vεn∥∞ ≥M for each n ∈ N.

By the previous Step, there exists an U ∈ Ŝk and an x0 ∈ RN such that, up to
subsequence, (4.47) holds. In particular, by the pointwise convergence we obtain

∥vεn∥∞ = v(xεn) → U(x0) ≤ ∥U∥∞ < M

which implies
∥vεn∥∞ < M

de�nitely for n≫ 0, which is an absurd. Thus (4.48) holds. As a consequence

fk(vε) = f(vε)

and hence vε are solutions of the original problem (1.3), satisfying the desired prop-
erties.

Remark 4.2 We point out that the found solutions are perturbations of ground
states of the truncated limiting problem (3.41) which are, on the other hand, co-
inciding with the ground states of the critical limiting problem (2.12) thanks to
Proposition 3.1. One may think to search directly the solutions as perturbation
of functions in the compact set Ŝ, as made in [19], but actually the direct ap-
proach in a critical setting reveals several problems, such as the convergence of the
Palais-Smale sequences. A di�erent and direct approach is given in [6] by means
of Concentration-Compactness techniques, in the assumptions that f satis�es mono-
tonicity and Ambrosetti-Rabinowitz conditions.

5 The local case

The arguments presented in Theorem 1.1 apply, with suitable modi�cations, also
to local nonlinear Schrödinger equations. We give here some details. Conditions
(f1)�(f5) rewrite in the local case s = 1 as

(f1') f ∈ C(R,R),

(f2') f(t) ≡ 0 for t ≤ 0,

(f3') limt→0
f(t)
t = 0,

(f4') limt→+∞
f(t)

t2∗−1 = a > 0, where 2∗ := 2N
N−2 ,
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(f5') for some C > 0 and max{2∗ − 2, 2} < p < 2∗, i.e. satisfying

p ∈


(4, 6) N = 3,(
2,

2N

N − 2

)
N ≥ 4,

it results that
f(t) ≥ at2

∗−1 + Ctp−1 for t ≥ 0.

See also Remark 1.3 for some weakening and comments on the assumption (f5').

Theorem 5.1 Suppose N ≥ 3 and that (V1)-(V2), (f1')�(f5') hold. Let K be de�ned
by (1.6). Then, for small ε > 0 the equation

−ε2∆v + V (x)v = f(v), x ∈ RN

has at least cupl(K) + 1 positive solutions, which belong to C1,σ(RN )∩L∞(RN ) for
some σ ∈ (0, 1). Moreover, each of these sequences vε concentrates in K as ε → 0:
namely, there exist xε ∈ RN global maximum points of vε, such that

lim
ε→0

d(xε,K) = 0

and

vε(x) ≤ C ′exp
(
− C ′′

∣∣∣x− xε
ε

∣∣∣) for x ∈ RN (5.49)

where C ′, C ′′ > 0 are uniform in ε > 0. Finally, for every sequence εn → 0+ there
exists a ground state solution U of

−∆U +m0U = f(U), x ∈ RN ,

such that, up to a subsequence,

vεn(εn ·+xεn) → U as n→ +∞

in Hs(RN ) and locally on compact sets.

Proof. The arguments of the previous sections apply mutatis mutandis. Indeed, we
de�ne in the same way the set of ground states Ŝ, which turns to be nonempty [61]
and compact. Moreover to get the uniform L∞(RN ) bound, one can easily adapt
the proof of Proposition 2.3 after observing that by the chain rule it holds

|∇h(U)|2 = ∇U · ∇h̃(U), U ∈ H1(RN ),

where we recall that h̃′ = (h′)2. Then the truncation machinery can be set in
motion, and one can prove Ŝk = Ŝ. Existence, multiplicity and decay of solutions of
the truncated problem are given by [20, Theorem 1.1 and Remark 1.3]; the regularity
is instead a consequence of standard elliptic estimates [55, Appendix B].

Acknowledgments. The author would like to thank the referee for some fruitful
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