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Abstract

In this work we present our findings of the so-called CIR#, which is a modified version
of the Cox, Ingersoll & Ross (CIR) model, turned into a forecasting tool for any term
structure. The main feature of the CIR# model is its ability to cope with negative
interest rates, cluster volatility and jumps. By considering a dataset composed of
money market interest rates during turmoil and calmer periods, we show how the
CIR# performs in terms of directionality of rates and forecasting error. Comparison
is carried out with a revamped version of the CIR model (denoted CIRadj), the Hull
and White model and the EWMA which is often adopted whenever no structure in
data is assumed. Testing and validation is performed on both historical and had hoc
data with different metrics and clustering criteria to confirm the analysis.

Keywords: Interest rate forecasting, Hull and White model, CIR model, ARIMA,
cluster volatility and jumps fitting
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1. Introduction

This paper expands on previous research Orlando et al. (2018), (2019a), (2019b)
where it was provided a new accessible methodology to forecast future interest rates
called CIR#. In this introduction we are not going to list all details of the CIR#
model but we will recall the most important characteristics. Above all we mention
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that, in order to preserve its analytical tractability and simplicity of single-factor
model, the CIR# has been designed in a way that the improvements are obtained
within the original Cox, Ingersoll & Ross (CIR) framework. Apart from turning a
short rate model used for pricing into a forecasting tool, the novelty of the CIR#
consists in an appropriate partitioning of the dataset into sub-groups. To this end,
in Orlando et al. (2020), it was shown how the said partitioning enables to capture
statistically significant time changes in volatility of interest rates. This, in turn,
implies modelling sudden changes/jumps in data. To solve the issue of negative/near-
to-zero interest rates, as others did (e.g. Brigo and Mercurio (2000)), we contemplate
an opportune shift of interest rates to positive values. Another feature of the CIR#
model is the calibration of parameters to actual data. With regard to the latter, in
our framework the random part of the numerical simulation scheme is driven not by
a standard Brownian motion but by the Gaussian residuals of an “optimal” ARIMA
model appropriately chosen. Thanks to that it is obtained an exact trajectory of CIR
fitted values which replaces the usual Monte Carlo averaged over 100,000 simulated
trajectories, thus reducing considerably the computational cost of the estimating
procedure.

As mentioned above the challenge is to forecast interest rates with a single factor
model, therefore, in this paper there is a comparison of the CIR# model versus real
data, the EWMA, the ”revamped” (through partitioning, shifting and calibrating)
CIR model (which we call CIR adjusted) and the single-factor Hull and White model.
To level the playing field, the latter comparison is performed by using the same data
(in terms of shifting and partitioning). The performance of both models has been
tested on monthly money market interest rates ranging from 1 day to 12 months over
EUR, USD, JPY and CHF currencies. The dataset includes both turmoil and calmer
periods on which we compute the predictive power in terms of directionality of rates
and error. Apart from the usual techniques available to investors, risk managers
and regulators, this paper suggests i) an index to verify the predictive power of
the model in terms of directionality of interest rates, ii) the Bland-Altman plot for
verifying the similarity between predictions and realizations, iii) a new application
of hierarchical clustering for model testing and validation. Those implementations
are new in literature.

The remainder of the paper is organized as follows. Section 2 summarizes the
literature on the CIR model. Section 3 explains the reasons behind our idea to
propose a new approach in the CIR framework and provides a short description of it.
Section 4 presents the numerical procedure in full detail and tests the goodness-of-fit
of the new methodology to real market data. Section 5 describes how forecasts can
be tested and validated. Finally, Section 6 concludes.
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2. Literature review

In 1985 Cox, Ingersoll & Ross proposed a term structure model (CIR), to describe
the price of discount zero-coupon bonds with various maturities under no-arbitrage
condition. The idea was to generalize the Vasicek model (1977) to the case of non
constant volatility with underlying short term interest rate assumed to be a diffusion
process, i.e. a continuous Markov process. A positive feature at the time was that
the paths of the CIR process never reach negative values. Its relatively simplicity
and analytical tractability allowed the CIR model to become one of the most widely
used short-term structure models in financial institutions. Additional applications
are stochastic volatility modelling in option pricing Heston (1993), Mininni et al.
(2020) or default intensities in credit risk Duffie (2005).

With time some drawbacks such as failure in calibration were exposed: “the zero
coupon curve is quite likely to be badly reproduced, also because some typical shapes,
like that of an inverted yield curve, may not be reproduced by the model,...... no
matter the values of the parameters in the dynamics that are chosen” (see Brigo
& Mercurio (2001)). Cox, Ingersoll and Ross themselves, acknowledged that the
model can ”produce only normal, inverse or humped shapes” (1985). The seeming
contradiction lies in the practical implementation. In fact, as proved by Keller-Ressel
and Steiner (2008) the yield-to-maturity curve of any time-homogeneous, affine one-
factor model is either normal, humped or inverse. For the CIR model, the yield curve
is normal when r(t) ≤ kθ/(γ − 2(k + λ)), it is inverse when r(t) ≥ kθ/(k + λ) and
for intermediate values is humped.

In any case “tweaking the parameters can produce yield curves with one hump
or one dip (a local minimum), but it is very difficult (if not impossible) to calibrate
the parameters so that the hump/dip sits where desired. There are not enough
parameters to calibrate the models to account for observed features contained in the
prices quoted on the markets” (see Carmona and Tehranchi (2006)).

This created the quest for models able to fit to the observed yield curve, which
could take into account multiple sources of risks as well as jumps. Among the best
known developments we mention: the Hull-White (1990) with time-dependent coef-
ficients; the Chen (1996) three-factor model; the CIR++ model by Brigo & Mercurio
(2001); the jump diffusion JCIR model Brigo & Mercurio (2006) and JCIR++ by
Brigo & El-Bachir (2006); the CIR2 and CIR2++ two-factor models Brigo & Mer-
curio (2006). Zhu (2014) proposed a CIR process with Hawkes ”clustering effect”,
Moreno et al. (2015) suggested a square-root model with harmonic oscillators driv-
ing the long-run mean and the volatility and Najafi et al. (2017) extended the CIR
model with mixed fractional Brownian motion to account for the randomness.

All above mentioned extensions of the CIR model keep the positivity of interest

3
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rates but do not fit with the financial crisis of 2007 and the ensuing quantitative
easing policies. “Interest rates have been extraordinarily low for an exceptionally long
time, in nominal and inflation-adjusted terms, against any benchmark”. “Between
December 2014 and end-May 2015, on average around $2 trillion in global long-term
sovereign debt, much of it issued by euro area sovereigns, was trading at negative
yields”. “Such yields are unprecedented. Policy rates are even lower than at the peak
of the Great Financial Crisis in both nominal and real terms. And in real terms they
have now been negative for even longer than during the Great Inflation of the 1970s.
Yet, exceptional as this situation may be, many expect it to continue”. “Such low
rates are the most remarkable symptom of a broader malaise in the global economy:
the economic expansion is unbalanced, debt burdens and financial risks are still too
high, productivity growth too low, and the room for manoeuvre in macroeconomic
policy too limited. The unthinkable risks becoming routine and being perceived as
the new normal” (see Engelen (2015) and BIS (2015)). Bianchi (2020) conducted an
empirical test and found that ”the calibration of multi-factor CIR models is affected
by the presence of low level (near zero) rates, and these observed patterns complicate
the convergence properties of the optimization algorithm”.

Thus, the market needs a model able to cope with changing regimes, shocks and
negative rates. To this end, we have proposed within the CIR framework Orlando
et al. (2018, 2019a, 2019b, 2020) a new methodology that fits well the structure of
interest rates and preserves the analytical tractability of the original CIR model.

3. Methods and material

3.1. Data
Our data consists of LIBOR time series retrieved from Bloomberg and test data

built by us for this exercise.

3.1.1. Real time series

Real data consists of weekly interest rates from 31 December, 2009 to 31 January,
2020 as retrieved from Bloomberg at the “LIBOR Index Page BBAM <GO>” and
described in Table 1.

3.1.2. Test data

Test data are composed by the EUR Overnight, a copy of the EUR Overnight,
the out-of-sample forecast of the EUR Overnight, a random time series, the EUR
Overnight plus the random time series above-mentioned and the changed sign of the
EUR Overnight as detailed in Table 2.

4

This article is protected by copyright. All rights reserved. 



Table 1: Bloomberg tickers for money market interest rates

Code Description Bloomberg Ticker Tenor
EUR1 EUR Overnight EE00O/N Curncy N
EUR2 EUR 1 Month EE0001M Curncy 1M
EUR3 EUR 2 Month EE0002M Curncy 2M
EUR4 EUR 3 Month EE0003M Curncy 3M
EUR5 EUR 6 Month EE0006M Curncy 6M
EUR6 EUR 12 Month EE0012M Curncy 12M
USD1 USD Overnight US00O/N Curncy N
USD2 USD 1 Month US0001M Curncy 1M
USD3 USD 2 Month US0002M Curncy 2M
USD4 USD 3 Month US0003M Curncy 3M
USD5 USD 6 Month US0006M Curncy 6M
USD6 USD 12 Month US0012M Curncy 12M
JPY1 JPY Spot Next JY00S/N Curncy N
JPY2 JPY 1 Month JY0001M Curncy 1M
JPY3 JPY 2 Month JY0002M Curncy 2M
JPY4 JPY 3 Month JY0003M Curncy 3M
JPY5 JPY 6 Month JY0006M Curncy 6M
JPY6 JPY 12 Month JY0012M Curncy 12M
CHF1 CHF Overnight SF00S/N Curncy N
CHF2 CHF 1 Month SF0001W Curncy 1M
CHF3 CHF 2 Month SF0001M Curncy 2M
CHF4 CHF 3 Month SF0003M Curncy 3M
CHF5 CHF 6 Month SF0006M Curncy 6M
CHF6 CHF 12 Month SF0012M Curncy 12M

Table 2: Bloomberg tickers for money market interest rates

# Test data Description
1 RealEUR1 EE00O/N Curncy
2 Random Randomly generated time series
3 NoiseEUR1 RealEUR1 + Random
4 NegEUR1 Negative RealEUR1
5 CopyEUR1 Copy of RealEUR1
6 ForEUR1 Out-of-sample forecast of RealEUR1

5
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3.2. Models

3.2.1. The CIR model

The CIR interest rate model was proposed by Cox, Ingersoll & Ross (1985) to
solve the problem of pricing discount zero-coupon bonds with various maturities
under no-arbitrage condition. The model generalizes the Vasicek model (1977) to the
case of non constant volatility by assuming that the evolution of the underlying short-
term interest rate is a diffusion process unique solution to the stochastic differential
equation (SDE)

dr(t) = [k(θ − r(t))− λ(t, r(t))]dt+ σ
√
r(t)dW (t), (1)

with initial condition r(0) = r0 > 0. (W (t))t≥0 denotes a standard Brownian motion
and the interest rate process (r(t))t≥0 is called CIR or square root process. The
parameters k, θ and σ, are time-independent. The short interest rate dynamics are
driven only by the market price of risk λ(t, r(t)) := λr(t), where λ is a constant. The
SDE Eq. (1) is then composed by the “mean reverting” drift component k[θ− r(t)],
to ensure the rate r(t) is elastically pulled towards a long-run mean value θ > 0 at
speed k > 0, and the random component W (t), scaled by the standard deviation
σ
√
r(t). The volatility of the instantaneous short rate is denoted by σ > 0. In

the remainder of this paper, and in order to make the comparison even, we show
the performance of the CIR over the same data used for the CIR#. This means
that the CIR is not calibrated on the original data (which would be difficult in a
low/negative interest rate environment) but benefits of the shifting and partitioning
embedded in our algorithm. Therefore we denote this version of the classical model
as CIR adjusted (CIRadj).

3.2.2. The CIR# model

In this Section we summarize the procedure of the CIR# model as detailed in
Orlando et al. (2019b). Let us denote the shifted monthly interest rates as

rshift = {rreal,h + α | h = 1, ..., n}

and its suitable partition, for j = 1, ..., J

r
(j)
shift = {r(j)

shift,h | h = nj−1 + 1, ..., nj} (n0 = 0),

6
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where
J∑
j=1

nj = n 2 and J > 1 is the number of partitioning sub-groups. We denote

r
(j)
shift with r(j).

The fitted values r̂(j) = {r̂(j)
h | h = nj−1+1, , ..., nj} are given by applying the Milstein

discretization scheme to the SDE Eq. (1), for j = 1, ..., J

r̂
(j)
h+1 = r̂

(j)
h + k̂j(θ̂j − r̂(j)

h ) ∆ + σ̂j

√
r̂

(j)
h ∆ Ẑ

(j)
h +

(σ̂j)
2

4
[(
√

∆ Ẑ
(j)
h )2 −∆], (2)

where ∆ = 1/30,

θ̂j =
1

nj

nj∑
h=nj−1+1,

r
(j)
h , σ̂j =

√√√√√ nj∑
h=nj−1+1,

(r
(j)
h − θ̂j)2

nj − 1
,

k̂j = min
k>0

Sj(k) = min
k>0

√√√√√ nj∑
h=nj−1+1,

(u
(j)
h (k))2

nj − 1
,

with u(j)(k) = {r(j)
h (k) − r(j)

h | h = nj−1 + 1, , ..., nj, k > 0} and r
(j)
h : R → R such

that

r
(j)
h+1(k) = r

(j)
h (k) + k(θ̂(j) − r

(j)
h ) ∆ + σ̂j

√
r
(j)
h ∆ Ẑ

(j)
h +

(σ̂j)
2

4
[(
√

∆ Ẑ
(j)
h )2 −∆]. (3)

Note that the elements Ẑ
(j)
h ’s in Eq. (2) and (3) are the Gaussian standardized

residuals of an “optimal” ARIMA model suitable chosen as follows. Consider the
following set, for j = 1, ..., J

{Z(j)
h = f((r

(j)
h+1−r̂

(j)
ARIMA,h+1(pj, ij, qj)−µj)/ηj) | h = nj−1+1, , ..., nj, (pj, ij, qj) ∈ IAC},

where f : R→ R represents the Johnson transformation (1949) , r̂
(j)
ARIMA,h+1(pj, ij, qj)

is the estimate of r
(j)
h+1 by a ARIMA(pj, ij, qj) from a set IAC of candidate mod-

els satisfying some conditions (see Orlando et al. (2019b, Section 4.4.1)), and µj,

ηj are respectively the mean and the standard deviation of the sample {r(j)
h −

2For convenience we use the subscript index j for the constants and the superscript index j for
the arrays.
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r̂
(j)
ARIMA,h(pj, ij, qj) | h = nj−1 + 1, , ..., nj}. The “optimal” ARIMA(p̂j, îj, q̂j) model

for the jth− subgroup is then chosen in the set IAC minimizing the error

min
r̂(j)

εj = min
r̂(j)

√√√√ 1

nj

nj∑
h=nj−1+1

(r
(j)
h − r̂

(j)
h )2 (4)

whith respect to all the samples of fitted values r̂(j) = {r̂(j)
h | h = nj−1 + 1, , ..., nj}

computed by Eq. (2). Thus the Ẑj
h’s are the residuals of the ARIMA(p̂j, îj, q̂j). They

replace the realizations of a standard Brownian motion allowing us to get an exact
trajectory of CIR fitted values instead of a curve averaged over 100,000 simulated
trajectories. Consequently, the computational cost is considerably reduced.

To forecast the next interest rates, we have to first calibrate the model, i.e. the six
parameters (k, θ, σ, p, i, q) as described above, on a fixed rolling window w of length
m of historical data, say w = {rh, ...., rh+m−1}, h ≥ 1, and then the future interest
rate value rFh+m+s, s ≥ 0, can be computed by the steps described in Orlando et al.
(2019b).

3.2.3. The Hull-White model

The Hull-White (HW) model (1990) is one of the most popular one-factor model
in financial literature, under which the dynamics of the short interest rate r(t) is
given by

dr(t) = (θ(t)− αr(t))dt+ σdW (t). (5)

In Eq. (5), α is the strength of the mean reversion, σ represents the local volatility
and θ(t) is a function of time. Generally, θ(t) describes the long-mean rate trend,
so it is typically chosen to match the term structure of zero-coupon bond prices (or
equivalently, the yields). By virtue of the innovation term θ(t), the Hull-White model
can be considered as an extension of the Vasicek model.
It is easy to see the solution of Eq. (5) is

r(t) = e−αtr(0) +

∫ t

0

eα(u−t)θ(u) du+ σe−αt
∫ t

0

eαu dW (u), (6)

where

r(t) ∼ N

(
e−αtr(0) +

∫ t

0

eα(u−t)θ(u) du,
σ2

2α

(
1− e2αt

))
. (7)

In order to calibrate this model and use it to make forecasting, we choose θ(u) like the
EWMA time series. Then we approximate the integral in Eq. (7) by the trapezoidal
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rule, i.e.,∫ t

0

eα(u−t)θ(u) du ' 1

2

N−1∑
i=1

(
eα(ui−t)θ(ui) + eα(ui+1−t)θ(ui+1)

)
(ui+1 − ui),

with 0 = u1 ≤ u2 ≤ ... ≤ uN = t. Observe that θ(uN), which is unknown at time
uN , can be given by the EWMA prediction. The other parameters α, σ are obtained
by solving the following optimization problem

min
(α,σ)

∑
i

(
ri − rHWi (α, σ)

)2

,

where ri, r
HW
i denote the market interest rates and the Hull-White interest rates

(given by Eq. (6)), respectively.
Finally, we predict the future value r(t) by the (conditioning) expected value (see
Eq. (7))

E[r(t)|r(s)] = e−α(t−s)r(s) +

∫ t

s

eα(u−t)θ(u) du, 0 ≤ s < t. (8)

3.3. Calibration

Among many approaches existing in the literature to estimate the parameters of
the CIR model (see Laurini et al. (2017) and references therein), we considered the
MATLAB implementation of the maximum likelihood (ML) estimation method for
the CIR process proposed by Klad̀ıviko (2007), and the estimating function approach
for ergodic diffusion models introduced in Bibby et al. (2010). As shown in Orlando
et al. (2019a), the latter method has turned out to be very useful in obtaining
optimal estimators for the parameters of discretely sampled diffusion-type models
whose likelihood function is usually not explicitly known.

3.4. Forecasting accuracy

In order to check whether our forecasts are closely matching the data, we use a
measure of the amplitude of the error and an indicator of the direction of the interest
rate dynamics. The first is quantified by the root mean squared error (RMSE) and
its related normalized version (NRMSE), while the second is given by the so-called
directional “success” criterion.
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3.4.1. Root mean square error

The root mean squared error (RMSE) is a measure of the closeness between the
observed data and the predicted values from a given model. Hence, it represents the
accuracy of the model in terms of goodness of fit. It is defined as follows

RMSE =

√√√√ 1

n

n∑
h=1

e2
h, (9)

where eh denote the residuals between the observed data and their predictions, over
n times. Hence, a value of 0 (almost never achieved in practice) indicates a perfect
fit to the data, and a value lower than 1 represents a good result. We note that
the RMSE depends on the scale of observed data, thus it is sensitive to the outliers;
however, larger errors have a disproportionately large effect. For that reason, and
to facilitate the comparison between data, we adopt the so-called normalized root
mean squared error (NRMSE):

NRMSE =
RMSE

rmax − rmin

, (10)

where rmax denotes the maximum value and rmin the minimum value of the observed
sample data.

3.4.2. Directionality of forecasting

In order to understand whether the forecast predicts correctly a rise or a drop of
interest rates, we introduce the index of directionality (IDX). Let us denote rt as the
interest rate at time t and the corresponding forecast as rft . We define the variable
αt+1 := rt+1 − rt as the difference between two consecutive interest rates, and the
variable βt+1 := rft+1− rt as the difference between the forecast at time t+ 1 and the
actual interest rates at time t. Further, we consider the indicator variable H(t + 1)
assuming only the values 0, 1 as follows{

H(t+ 1) = 1 if sgn(αt+1) = sgn(βt+1)

H(t+ 1) = 0 if sgn(αt+1) 6= sgn(βt+1).

We attribute the term of forecast “success” (in sign) when H(t + 1) = 1. Therefore
the index IDX is defined as an average of the H(t + 1) values on the number of
forecasts over a time series of length T that is,

IDX :=
1

T − 1

T−1∑
t=1

H(t+ 1). (11)

IDX indicates the percentage of correct predictions of interest rate directionality.

10

This article is protected by copyright. All rights reserved. 



4. Results

In this section firstly we are going to show the results over the full dataset and,
secondly, we will focus on turbulent periods where volatility is above the median.

4.1. Forecasting results over the whole dataset

Let us start by plotting the performances versus the forecasts for all the four
considered currencies. In Figure 1 we show that the forecasts closely follow the
occurrences and they are not spread out.

(a) EUR overnight. Plot of the realized interest rate oc-
currence versus the forecasted value.

(b) USD overnight. Plot of the realized interest rate oc-
currence versus the forecasted value.

(c) JPY overnight. Plot of the realized interest rate occur-
rence versus the forecasted value.

(d) CHF overnight. Plot of the realized interest rate oc-
currence versus the forecasted value.

Figure 1: Multiple comparisons for the overnight interest rate occurrences across currencies versus
their corresponding forecasts.
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We supplement this visual analysis by considering the Bland–Altman plot (also
called difference plot) which is a very popular tool in medicine and chemistry to
analyse the agreement between two different methods Altman and Bland (1983),
Bland and Altman (1986). What inspired Bland and Altman was the need to know
how much the outcomes of a method may differ from another in order to be considered
equivalent. In our case, as the real data overlap with forecasts, we want to investigate
the said agreement more clearly. Figure 2 shows the agreement between real data
and forecasts (see Rik (2020)). Based on this analysis, it is possible to confirm the
good agreement between data and forecasts as the maximum number of outliers are
0.885% (=9/113).

After having concluded the graphical analysis, we introduce the results based on
the more traditional analysis consisting of the results obtained with the Normalized
Root Mean Square Error (NRMSE). In Tables 3, 4, 5 we compare the forecasting
error (NRMSE) and the directionality of forecasting (IDX) for the EWMA, CIRadj,
Hull and White and CIR#. We have included the EWMA because it is a basic
version of the Autoregressive Conditional Heteroscedasticity (ARCH) model, which
is a common tool for forecasting time-varying financial data and a simple benchmark
whenever no structure in data is assumed. The results show that, generally, the
CIR# performs better over the whole dataset.

Table 3: Averaged NRMSE and IDX for the dataset in Table 1.

EUR USD JPY CHF

CIR# CIRadj EWMA HW CIR# CIRadj EWMA HW CIR# CIRadj EWMA HW CIR# CIRadj EWMA HW

NRMSE 3.47% 5.57% 11.41% 9.40% 9.15% 13.60% 14.86% 14.04% 5.31% 10.56% 9.41% 14.74% 8.26% 24.06% 11.54% 16.51%

IDX 71.11% 65.60% 28.85% 42.36% 62.77% 63.93% 38.55% 52.55% 75.62% 70.39% 41.54% 36.15% 53.38% 63.12% 57.51% 46.60%
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Table 4: NRMSE for different models, tenors and currencies

EUR

EE00O/N EE0001M EE0002M EE0003M EE0006M EE0012M

CIR # 5.14% 3.63% 3.56% 3.05% 2.71% 2.77%
CIRadj 10.94% 5.39% 4.87% 4.39% 4.18% 3.64%
EWMA 11.54% 11.77% 11.61% 11.50% 11.11% 10.95%
HW 9.95% 8.63% 8.62% 8.86% 9.74% 10.60%

USD

US00O/N US0001M US0002M US0003M US0006M US0012M

CIR# 7.88% 8.71% 8.53% 14.06% 7.83% 7.90%
CIRadj 10.98% 28.15% 16.48% 10.98% 7.60% 7.75%
EWMA 15.69% 14.85% 15.07% 15.69% 14.32% 13.55%
HW 12.89% 16.20% 16.62% 12.89% 15.49% 10.16%

JPY

JY00S/N JY0001M JY0002M JY0003M JY0006M JY0012M

CIR# 8.66% 5.20% 5.37% 4.85% 3.92% 3.88%
CIRadj 13.55% 11.65% 9.26% 16.64% 6.82% 5.47%
EWMA 9.46% 9.82% 9.91% 9.60% 9.11% 8.56%
HW 13.74% 15.69% 16.09% 16.46% 15.72% 10.74%

CHF

CH00S/N CH0001M CH0002M CH0003M CH0006M CH0012M

CIR# 9.29% 9.19% 8.53% 8.51% 7.51% 6.56%
CIRadj 8.96% 16.80% 14.15% 12.59% 65.21% 26.73%
EWMA 12.47% 12.23% 12.11% 12.00% 10.95% 9.52%
HW 17.64% 17.03% 16.68% 16.54% 17.05% 14.14%
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Table 5: IDX for different models, tenors and currencies

EUR

EE00O/N EE0001M EE0002M EE0003M EE0006M EE0012M

CIR # 66.67% 71.67% 75.00% 75.00% 68.33% 70.00%
CIRadj 53.73% 68.65% 65.67% 68.65% 65.67% 71.64%
EWMA 38.80% 28.35% 25.37% 29.85% 25.37% 25.37%
HW 47.45% 54.23% 50.84% 49.15% 30.50% 22.03%

USD

US00O/N US0001M US0002M US0003M US0006M US0012M

CIR # 60.00% 58.33% 58.33% 66.67% 60.00% 73.33%
CIRadj 73.13% 49.25% 50.74% 73.13% 71.64% 65.67%
EWMA 47.76% 40.29% 32.83% 47.76% 26.86% 35.82%
HW 61.01% 50.84% 47.45% 61.10% 45.76% 49.15%

JPY

JY00S/N JY0001M JY0002M JY0003M JY0006M JY0012M

CIR # 67.16% 71.64% 74.62% 70.14% 86.56% 83.58%
CIRadj 64.17% 77.61% 65.67% 65.67% 77.61% 71.64%
EWMA 56.71% 38.80% 47.76% 47.76% 26.86% 31.34%
HW 45.76% 32.20% 40.67% 42.37% 27.11% 28.83%

CHF

CH00S/N CH0001M JY0002M CH0003M CH0006M CH0012M

CIR # 53.09% 53.09% 57.52% 52.21% 51.32% 53.09%
CIRadj 69.02% 66.37% 61.06% 67.25% 59.29% 55.75%
EWMA 61.06% 56.63% 61.06% 61.06% 52.21% 53.09%
HW 52.54% 50.84% 49.12% 49.15% 37.28% 40.67%
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(a) EUR overnight. Over 113 data points outliers are 9
(out of which only 5 outside LoA confidence level).

(b) USD overnight. Over 113 data points outliers are 9
(out of which only 6 outside LoA confidence level).

(c) JPY overnight. Over 113 data points outliers are 5 (all
of them outside LoA confidence level).

(d) CHF overnight. Over 113 data points outliers are 2
(none of them outside LoA confidence level).

Figure 2: Bland Altman plot. Multiple comparisons for the overnight interest rates occurrences
across currencies versus their corresponding forecasts. Maximum number of outliers are 0.885%.

4.2. Forecasting results in turbulent periods

As described in Section 3.2.3, through our procedure we can identify clusters of
volatility. In Section 4.1 we have shown the averaged performance over the whole
dataset (Table 3) and for each currency (Tables 4, 5). In this Section we illustrate how
the CIR# model performs when volatility is high and forecasts are more challenging.
This corresponds to considering the overnight (as it is the most exposed to market
sentiment), which we have partitioned into clusters of volatility. Then, for each
currency, we have selected the two clusters with higher volatility. Table 6 compares
the forecasting error and the index of directionality for the EWMA, CIRadj, CIR#
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and Hull and White. Note that volatility ratio shows the volatility of the cluster over
the median volatility recorded on the whole dataset for the selected currency. As
displayed the CIR# performs better in any situation. To understand how the CIR#
fits the overnight, for each currency, in Fig. 3 we display the evolution of market
interest rates, the partitioning into clusters (vertical bars) and the CIRadj taken as
benchmark. The difference in absolute value between the prediction errors of CIR#
and CIRadj is also shown.

Table 6: NRMSE and IDX in turbulent periods for the CIR#, CIRadj and EWMA over overnight
maturities and different currencies

EUR USD JPY CHF

Cluster 1-13 39-52 3-8 28-33 49-54 62-68 12-19 29-60

Volatility ratio 7.63%
10.00%

18.33%
10.00%

4.07%
1.26%

1.60%
1.26%

0.83%
0.49%

3.35%
0.49%

3.5%
1.22%

23.63%
1.22%

NRMSE CIR# 59.58% 24.80% 27.90% 16.10% 50.00% 38.46% 54.31% 16.73%
NRMSE CIRadj 59.58% 26.50% 43.50% 25.50% 67.10% 81.00% 67.46% 27.80%
NRMSE EWMA 54.50% 27.32% 61.40% 49.2% 56.30% 52.80% 98.12% 26.78%
NRMSE HW 45.65% 29.89% 59.39% 47.08% 79.78% 51.56% 38.60% 23.49%

IDX CIR# 36.30% 76.9% 100.00% 100.00% 80.00% 83.30% 66.67% 66.57%
IDX CIRadj 35.30% 53.84% 80.00% 80.00% 60.00% 83.30% 66.65% 64.28%
IDX EWMA 36.60% 30.70% 40.00% 20.00% 60.00% 66.66% 64.28% 51.42%
IDX HW 50.00% 46.15% 40.00% 20.00% 60.00% 50.00% 71.42% 64.51%

16

This article is protected by copyright. All rights reserved. 



(a) EUR overnight. On the left y-axis EUR interest rates. On the right y-axis the difference in absolute value
between the prediction errors of CIRadj and CIR#.

(b) USD overnight. On the left y-axis USD interest rates. On the right y-axis the difference in absolute value between
the prediction errors of CIRadj and CIR#.

(c) JPY overnight. On the left y-axis JPY interest rates. On the right y-axis the difference in absolute value between
the prediction errors of CIRadj and CIR#.

(d) CHF overnight. On the left y-axis CHF interest rates. On the right y-axis the difference in absolute value
between the prediction errors of CIRadj and CIR#.

Figure 3: Multiple comparisons for the overnight interest rates across currencies. Vertical lines
identify cluster of volatilities partitioning the sample data in subgroups.
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4.3. Correlations between forecasts and real data

In this Section, in Tables 7, 9, 11 and 13, we report the correlation results obtained
with Kendall rank correlation between real data and forecasts. The alternative hy-
pothesis, against which p-values are computed, is of no correlation (see Tables 8, 10,
12 and 14). Notice that we obtained similar results with Spearman’s rank correlation
but for reason of space we do not report them.

Table 7: EUR Kendall correlations

Real time series
EUR1 EUR2 EUR3 EUR4 EUR5 EUR6

F
o
re
ca

st
s

ForEUR1 0.898198 0.864369 0.840025 0.828644 0.847929 0.847613
ForEUR2 0.876561 0.888257 0.881618 0.882883 0.889521 0.884780
ForEUR3 0.830896 0.862203 0.915962 0.925449 0.914064 0.910902
ForEUR4 0.812871 0.844494 0.909321 0.927979 0.912167 0.908689
ForEUR5 0.840341 0.858046 0.887765 0.896617 0.932343 0.942144
ForEUR6 0.816817 0.842105 0.885096 0.891102 0.930299 0.945788

Table 8: EUR Kendall p-values

Real time series
EUR1 EUR2 EUR3 EUR4 EUR5 EUR6

F
o
re
ca

st
s

ForEUR1 3.99E-45 6.41E-42 1.09E-39 1.15E-38 2.09E-40 2.24E-40
ForEUR2 4.50E-43 3.49E-44 1.50E-43 1.13E-43 2.64E-44 7.49E-44
ForEUR3 7.52E-39 1.06E-41 7.74E-47 8.92E-48 1.19E-46 2.43E-46
ForEUR4 2.95E-37 4.48E-40 3.47E-46 5.00E-48 1.83E-46 4.00E-46
ForEUR5 1.02E-39 2.47E-41 4.01E-44 5.67E-45 1.74E-48 1.79E-49
ForEUR6 1.25E-37 6.90E-40 6.99E-44 1.86E-44 2.70E-48 7.41E-50
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Table 9: USD Kendall correlations

Real time series
USD1 USD2 USD3 USD4 USD5 USD6

F
o
re
ca

st
s

ForUSD1 0.888994 0.876977 0.832068 0.733397 0.807084 0.794434
ForUSD2 0.870514 0.913202 0.886957 0.745613 0.859447 0.843320
ForUSD3 0.835151 0.886992 0.915758 0.761814 0.891418 0.880354
ForUSD4 0.797123 0.849917 0.893543 0.762981 0.901446 0.894491
ForUSD5 0.797724 0.853034 0.892541 0.764855 0.916245 0.914981
ForUSD6 0.787515 0.839984 0.879494 0.750849 0.909522 0.922797

Table 10: USD Kendall p-values

Real time series
USD1 USD2 USD3 USD4 USD5 USD6

F
o
re
ca

st
s

ForUSD1 3.24E-44 4.48E-43 5.98E-39 1.23E-30 9.54E-37 1.17E-35
ForUSD2 1.76E-42 1.42E-46 4.93E-44 1.28E-31 1.89E-41 5.65E-40
ForUSD3 2.93E-39 4.61E-44 7.50E-47 5.93E-33 1.74E-44 1.97E-43
ForUSD4 6.51E-36 1.36E-40 1.10E-44 4.81E-33 1.91E-45 8.94E-45
ForUSD5 5.57E-36 6.77E-41 1.32E-44 3.26E-33 6.50E-47 8.66E-47
ForUSD6 4.20E-35 1.06E-39 2.34E-43 4.59E-32 3.02E-46 1.49E-47

Table 11: JPY Kendall correlations

Real time series
JPY1 JPY2 JPY3 JPY4 JPY5 JPY6

F
o
re
ca

st
s

ForJPY1 0.850634 0.837342 0.823735 0.810033 0.781963 0.772469
ForJPY2 0.858410 0.863476 0.872340 0.859270 0.811873 0.784963
ForJPY3 0.859633 0.838415 0.865016 0.861759 0.809597 0.786796
ForJPY4 0.850535 0.861313 0.872725 0.885000 0.828978 0.796960
ForJPY5 0.776996 0.783958 0.785540 0.797469 0.861483 0.862749
ForJPY6 0.782279 0.772785 0.785760 0.788829 0.864241 0.886393
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Table 12: JPY Kendall p-values

Real time series
JPY1 JPY2 JPY3 JPY4 JPY5 JPY6

F
o
re
ca

st
s

ForJPY1 1.40E-40 2.24E-39 3.66E-38 5.91E-37 1.47E-34 9.13E-34
ForJPY2 2.87E-41 9.78E-42 1.46E-42 2.43E-41 4.27E-37 8.66E-35
ForJPY3 2.35E-41 2.01E-39 7.48E-42 1.52E-41 7.10E-37 6.38E-35
ForJPY4 1.88E-40 1.94E-41 1.69E-42 1.20E-43 1.63E-38 1.00E-35
ForJPY5 3.79E-34 9.86E-35 7.25E-35 7.09E-36 1.38E-41 1.06E-41
ForJPY6 1.38E-34 8.57E-34 7.02E-35 3.90E-35 7.77E-42 6.44E-44

Table 13: CHF Kendall correlations

Real time series
CHF1 CHF2 CHF3 CHF4 CHF5 CHF6

F
o
re
ca

st
s

ForCHF1 0.659276 0.604152 0.549661 0.551562 0.569303 0.591796
ForCHF2 0.691701 0.673323 0.667619 0.668887 0.660965 0.692017
ForCHF3 0.690049 0.668470 0.744631 0.735111 0.721783 0.726226
ForCHF4 0.650816 0.650182 0.725014 0.758942 0.705037 0.757356
ForCHF5 0.695040 0.673840 0.700103 0.723203 0.744087 0.743771
ForCHF6 0.644845 0.675838 0.689121 0.732764 0.716003 0.814042

Table 14: CHF Kendall p-values

Real time series
CHF1 CHF2 CHF3 CHF4 CHF5 CHF6

F
o
re
ca

st
s

ForCHF1 5.38E-25 3.01E-21 7.39E-18 5.70E-18 4.82E-19 1.88E-20
ForCHF2 2.42E-27 5.38E-26 1.39E-25 1.12E-25 4.14E-25 2.29E-27
ForCHF3 3.77E-27 1.40E-25 2.42E-31 1.37E-30 1.50E-29 6.80E-30
ForCHF4 2.31E-24 2.55E-24 7.70E-30 1.54E-32 2.62E-28 2.08E-32
ForCHF5 1.17E-27 4.28E-26 4.88E-28 8.29E-30 1.86E-31 1.97E-31
ForCHF6 4.66E-24 2.89E-26 3.04E-27 1.38E-30 2.80E-29 2.36E-37

20

This article is protected by copyright. All rights reserved. 



5. Testing and validation

In this Section the basic question we want to answer is how our forecasts differ
from: a) original time series, b) purely random data and c) noise? For reason of
space we show the analysis on the EUR Overnight but we got similar results for all
considered time series.

5.1. Results on test data

This analysis is carried out with R on data described in Section 3.1.2 and the
purpose of creating that data is to get an answer to the following question: is the
analysis we intend to run valid and consistent? If yes, time series 1 (EUR1) and
5 (a copy of EUR1) should be identical while time series 1 and 2 (random) should
be unrelated. After having passed that check, next question is: does time series 6
(EUR1 forecast) look similar to time series 1 or it does resemble more 2 or 3 (EUR1
+ noise)?

Apart from the classical instruments described in Section 3.4 for testing the good-
ness of fit, and the correlation in Section 4.3, we measure the distance between data
with several metrics. We start with the default Euclidean distance and complete
clustering (see Warnes and al. (2020)). Figure 4 shows that there is no difference
between EUR1 and its copy and that the next similarity is with the forecasts. Noise
and random series are correctly grouped together and the changed sign EUR1 is left
alone.

Now we want to understand whether the metric or the clustering criterion may
influence the results. In particular we adopt the Manhattan distance and we comple-
ment our clustering analysis with Ward’s criterion (also known as Ward’s minimum
variance method) by Ward Jr (1963), Everitt et al. (2001).

As expected Figure 5 shows that the EUR1 times series and its copy are identical
(which confirms that the analysis is able to correctly identify this feature). The
forecasts follow immediately after. Noise and random are recognized as similar and
they group with the EUR1 changed sign time series.

A generalization of both the Euclidean and the Manhattan distance is the Minkowski
distance (see Giusti and Batista (2013), Batyrshin (2013), Shirkhorshidi et al. (2015)).
Fig. 6 shows similar results to those already presented. Hence, we can conclude that
our model both spatially and hierarchically is very close to reality and, so, fits well
with the intended purposes.
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Figure 4: EUR overnight and test data. Euclidean distance and dendrogram based on complete clustering criterion.
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Figure 5: EUR overnight and test data. Manhattan distance and dendrogram based on Ward’s criterion.
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Figure 6: EUR overnight and test data. Minkowski distance and dendrogram based on Ward’s criterion.
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6. Conclusions

Forecasting interest rates is important for both investment and risk management
reasons. To this end we adopted the Cox, Ingersoll & Ross framework that was
initially proposed for pricing and short-rates modelling. Several different extensions
of the original model have been proposed to date, with the aim of overcoming the
limitations of the CIR model: from one-factor models including time-varying coef-
ficients or jump diffusions to multi-factor models. All these extensions preserve the
positivity of interest rates but, in some cases, the analytical tractability of the basic
model is violated. Moreover, often, the said extensions are not suited for modelling
both periods of high volatility and negative rates. In this work we have shown that
the CIR# model, instead, while preserving those features, is capable of coping with
negative interest rates, cluster volatility and jumps. This has been tested on money
market interest rates during turmoil and calmer periods, by measuring the direction-
ality of rates as well as the forecasting error. Rank correlation and related p-values
witness a link between real data and out-of-sample forecasts. Besides that, we have
demonstrated how the model’s results could be compared with real data with the
Bland–Altman plot. Hierarchical clustering with different metrics is also suggested
for testing and validation.

7. Data availability

The data that support the findings of this study are available from the corre-
sponding author upon reasonable request.
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