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Abstract
Saliency detection mimics the natural visual attention mechanism that identifies an imagery
region to be salient when it attracts visual attention more than the background. This image
analysis task covers many important applications in several fields such as military sci-
ence, ocean research, resources exploration, disaster and land-use monitoring tasks. Despite
hundreds of models have been proposed for saliency detection in colour images, there is
still a large room for improving saliency detection performances in hyperspectral imag-
ing analysis. In the present study, an ensemble learning methodology for saliency detection
in hyperspectral imagery datasets is presented. It enhances saliency assignments yielded
through a robust colour-based technique with new saliency information extracted by taking
advantage of the abundance of spectral information on multiple hyperspectral images. The
experiments performed with the proposed methodology provide encouraging results, also
compared to several competitors.

Keywords Saliency detection · Remote sensing · Imagery data analysis ·
Earth’s observation

1 Introduction

Hyperspectral (HS) remote sensing is a major breakthrough in remote sensing technology
for Digital Earth (Fu et al., 2020). HS sensors, mounted on aircraft or satellites, produce
digital images (HyperSpectral Images - HSI) of an observed scene, by recording reflected
light in hundreds of narrow frequencies covering the visible, near-infrared and shortwave
infrared bands (pixel spectrum) (Appice & Malerba, 2019; Bioucas-Dias et al., 2013; Hoye
& Fridman, 2013; Stuart et al., 2019). Such an abundance of spectral data represents an
invaluable source of knowledge regarding the physical nature of the different materials
possibly observed. In particular, the high-dimensionality of the measured pixel spectrum
may be useful for saliency analysis in HS imagery data, in order to possibly characterise a
landscape having higher contrast with its surroundings (Liang et al., 2013).
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In general, the concept of saliency refers to identifying parts, regions, objects or fea-
tures that first draw visual attention and, hence, can be considered notable and important. In
remote sensing, saliency analysis mimics human intelligence and detects the most attract-
ing objects or pixels in a sensed scene. This analysis has great potential in many fields
such as military science, ocean research, resources exploration, disaster and land-use mon-
itoring. In fact, boosted by a variety of applications (e.g. scene understanding, geological
and environmental monitoring and precision-guided system), various studies in imagery
saliency detection have been progressed better and better in recent years (Borji et al., 2019).
These studies commonly describe machine learning-based techniques that address the task
of saliency detection as a binary pixel labelling problem. In general, these techniques anal-
yse the pixel data of an input image to learn a binary saliency matrix that reveals foreground
and background imagery pixels, respectively.

Despite HS imaging techniques have been progressively gaining popularity in the recent
Earth observation, current saliency detection technologies have achieved real maturity in
the analysis of traditional colour images. The current state-of-the-art of literature mainly
describes techniques for estimating saliency in colour data. With the recent boom of deep
learning, we can already count on various powerful deep learning models (Hou et al., 2019;
Wang et al., 2020; Gao et al., 2019; Favorskaya & Jain, 2019; Liu et al., 2020; Luo et al.,
2020) that have been accurately trained on a big amount of colour images and can be applied
to estimate accurate saliency in new colour data. Nevertheless, a few studies have occurred
on the stage a few years ago to start the investigation of saliency detection in HS images
(e.g. Liang et al., 2013; Cao et al., 2015; Le Moan et al., 2013; Imamoglu et al., 2018; Du
& Zhang, 2014; Du et al., 2016; Yan et al., 2016; Zhang et al., 2018; Falini et al., 2020;
Appice et al., 2020).

The spectral variability and the curse of dimensionality are the major challenges to deal,
in order to properly analyse HS imagery data. The spectral variability is commonly caused
by many conditions such as incident illumination, atmospheric effects, unwanted shade and
shadow, natural spectrum variation and instrument noises. It has been indicated as one of
the main issue of HS classification learning (Appice & Malerba, 2019) and recently of HS
saliency detection (Zhang et al., 2018). On the other hand, the curse of dimensionality, that
is due to the abundance of information in HS spectrum (Hughes, 1968; Appice & Malerba,
2019), prevents us from processing HS imagery data by simply applying one of the pow-
erful techniques designed for saliency detection in colour images. A naive approach to fit
colour imagery techniques to HS imagery data is based on the idea of recovering a colour
composition schema for HS imagery display (Du et al., 2008) and analysing colour data in
place of HS pixels (Liang et al., 2013). Of course the consequence of this approach is that
the abundant HS information is given away for the saliency analysis.

A recent research trend has started estimating the saliency in HS images without resorting
to their colour rendering. Following this research direction, several studies concentrate on
mitigating the curse of dimensionality by applying data reduction techniques to HS data, in
order to extract non-redundant informative features that aid in highlighting discriminative
properties of salient regions (Le Moan et al., 2013; Falini et al., 2020; Appice et al., 2020).
A few studies perform the saliency analysis of HS imagery data according to statistical
properties of HS pixels processed through an anomaly detector (Du & Zhang, 2014; Du
et al., 2016). In alternative, contrast techniques coupled to clustering are applied to gradient
spectral data (Yan et al., 2016; Zhang et al., 2018). All these studies estimate saliency in
the HS imagery data by elaborating the abundance of information enclosed in HS pixels.
Spatial information is often coupled to spectral data to deal with spectral variability. In any
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case, these studies turn down the great progress made in saliency detection techniques for
colour images. In addition, they analyse the imagery pixels of a single HS image.

In this paper, we revamp the idea of leveraging powerful methodologies fine-tuned in
the literature to estimate saliency in colour data. However, we complement initial colour-
based saliency assignments with spectral-based saliency refinements that allow us to better
separate a salient landscape from its un-salient surroundings. In addition, we handle the HS
imagery saliency detection task in the common scenario of surveillance missions, where
multiple HS images of various scenes are collected using the same HS sensor technology.
In this scenario, the task of saliency detection is performed on a dataset of HS images.
As reported in Imamoglu et al. (2018), any saliency detection methodology designed for
a single HS image can, in principle, be used for saliency detection in HS image datasets.
In fact, independent HS saliency detection processes can be run in parallel on separate HS
images to detect saliency in each HS image independently of other HS images. Differently,
in this paper, we intend to take advantage of the collaboration among multiple saliency
detection patterns learned from multiple HS images so that every pattern can possibly refine
saliency assignments of other patterns by gaining accuracy.

To this aim, we propose an HS saliency detection methodology, named AGNES (pseudo-
lAbel Generation for uNsupEvised Saliency detection in Hyperspectral image datasets), that
takes a dataset of HS images acquired with the same HS sensor as input and yields the
binary saliency matrices of the input images as output. In particular, the proposed method-
ology takes advantage of saliency classification patterns that can be learned by jointly
elaborating the multiple HS images of the input dataset. The learning process is conducted
on both the colour mode and the HS mode of each input image. First it applies a pre-
trained, dataset-independent, saliency detection pattern to elaborate colour data and produce
saliency pseudo-labels for all pixels of each input HS image. Then it leverages the produced
colour-based pseudo-labels to supervise learning of a distinct HS saliency classification pat-
tern from each input HS image. The PCA is used to deal with the curse of dimensionality
during HS classification learning. Each classification pattern learned in this step is able to
predict the binary saliency based on the HS pixel spectrum. The use of supervision allows us
to learn an ensemble of multiple HS saliency classification patterns from multiple images.
This ensemble is used to construct the final saliency matrices of the input images (or any
other new testing images acquired with the same HS sensor).

To the best of our knowledge, the novelty of this study consists in the specific use adopted
for colour-based saliency detection patterns within an HS ensemble learning methodology
and the effectiveness of the combination that actually outperforms several state-of-the-art
competitors on a benchmark HS image dataset. In particular, colour-based saliency detec-
tion patterns are used to fuel supervision in HS imagery analysis without requiring the
acquisition of ground truth labels. So, this study contributes to proving that the proposed
formulation is an effective means to delineate salient pixels in an unsupervised manner by
taking actually advantage of the information enclosed in abundant spectrum of HS pixels.
Another contribution is the use of the ensemble in the final labelling step. In this paper,
we show that the ensemble can limit the effects of the lack of generality due to the spec-
tral variability that may occur during the sensing operations of each single image. In fact,
this lack of generality commonly affects saliency detection patterns learned processing HS
data acquired with a single acquisition. Definitively, the empirical validation proves that the
methodology gains in accuracy with the ensemble compared to other HS saliency detection
algorithms.
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The remainder of the paper is organised as follows. The next Section reports a brief
overview of the recent literature. Section 3 introduces basic concepts, while Section 4
illustrates the proposed methodology. Section 5 provides the details of the experiments,
the results and some discussions about them. In particular, the experiments described
show the effectiveness of each component of the proposed methodology and compare
the performance to that of various recent competitors. Finally, Section 6 summarises the
conclusions.

2 Related work

Extensive literature studies have dealt with the saliency detection in traditional colour
images. These methodologies can be roughly divided into two categories – heuristic saliency
detection methodologies and deep learning-based saliency detection methodologies. The
heuristic methodologies are mainly inspired by the human attention model in the neuro-
science (Koch & Ullman, 1987) and have rooted in the Itti’s model defined in Itti et al.
(1998). The Itti’s model mimics the human attention model through a centre-surround
contrast technique that calculates the Euclidean distance of the considered pixel to its sur-
rounding ones in the colour space. While simple, the Itti’s model has inspired the most part
of the subsequent literature (see Borji et al., 2019; Ullah et al., 2020 for recent surveys). On
the other hand, deep neural networks have recently gained great success in a wide range of
computer vision applications. So, a significant research effort is devoted to train deep neu-
ral network-based saliency detection patterns from big amounts of annotated colour images
(Hou et al., 2019; Wang et al., 2020; Gao et al., 2019; Favorskaya & Jain, 2019; Liu et al.,
2020; Luo et al., 2020). In addition to these salient detection methodologies that are defined
for traditional imagery data, a few studies investigate the saliency topic in more challeng-
ing domains, such as video (Jun et al., 2015; Wang et al., 2020) or audio (Zlatintsi et al.,
2015). In this paper we focus the overview mainly on the literature that explores the saliency
detection topic in HS imagery data.

The first saliency detection methodology for HS imagery data is presented in Liang et al.
(2013). It first converts an HS image into a colour image by projecting the HS space into
the CIELAB colour space. Then it applies the Itti’s model to the colour image.

The authors of Cao et al. (2015) seminally formulate a notion of saliency as the extent
to which a group of pixels stands out in an HS image in terms of reluctance instead of
colourimetric contrast. They extract various HS conspicuity features to construct the unique
saliency matrix and they apply the winner-take-all strategy to identify salient targets: pixels
with the highest salience are regarded as salient targets. Features of various dimensionalities
(reflectance curves, principal components and Gabor-filtered pixels) are also extracted in
Le Moan et al. (2013). They are in turn compared using either the Euclidean distance or the
angle distance.

A few studies propose anomaly detection methodologies for saliency detection in HS
images. For example, the authors of Du and Zhang (2014) describe an anomaly detection
methodology that resorts to the manifold feature to divide HS pixels into a potential anomaly
(salient) part and a potential background part. In Du et al. (2016), statistical characteristics
of HS pixels are processed in combination with a sparse representation. In particular, this
study illustrates an anomaly detection approach that sparsely and linearly represents a pixel
with different atoms under different hypotheses and assumes that the noise has the same
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covariance structure, but different variances under the two competing hypotheses. It uses
the generalised likelihood ratio test to construct the anomaly detector.

In Yan et al. (2016), the authors introduce the idea of resorting to a region-based spectral
gradient contrast techniques to analyse HS imagery data. They first compute the gradient
along each HS pixel. Then they apply segmentation and clustering techniques to gradient
data to get a group of imagery regions. Finally, they resort to centre prior and local contrast
to compute the saliency score of each region, with which the salient area can be obtained.
A spectral gradient technique is also described in Zhang et al. (2018), where the authors
propose to yield various saliency matrices through constructing an imagery region-based
hierarchical structure. Each region is evaluated in multiple scales with a saliency pattern
that depicts the region contrast with the spectral gradient.

Finally, very recent studies have applied sophisticated data dimensionality reduction
techniques to saliency detection in HS images. In Falini et al. (2020), the authors propose
an HS saliency detection methodology that cascades non-negative matrix factorisation and
clustering on spectral distances computed between the input HS image and the reconstructed
image. In Falini et al. (2020), the authors extend the approach described in Falini et al.
(2020) by introducing new distance measures. In Appice et al. (2020), HS imagery data are
reconstructed through a deep autoencoder neural network. Similarly to Falini et al. (2020),
various distance measures are used to quantify the saliency degree in the data encoded and
decoded through the autoencoder, while a clustering stage is performed in order to sepa-
rate the salient information from the background. However, experiments reported in Appice
et al. (2020) show that this methodology commonly achieves the best performance when
autoencoders and clustering are coupled to the computation of the spectral spatial distance
introduced in Yang and Mueller (2007).

In general, the HS saliency detection methods that have been defined in the recent lit-
erature have focused the attention on processing spectral data without taking advantage of
supervision mechanisms. To the best of our knowledge, supervised algorithms have been
widely investigated for saliency detection in colour images, where a big amount of annotated
colour-based data is actually available. Instead, the lack of a significant amount of ground-
truth labels for HS data has prevented recent saliency detection algorithms from taking
advantage of supervision mechanisms with HS data. Therefore, introducing the use of super-
vision is a progress in the state-of-the-art of HS saliency detection literature. In any case, we
differ from traditional supervised algorithms as we replace ground-truth labels, that remain
unavailable during the learning stage, with saliency pseudo-labels. These pseudo-labels
are predicted by applying accurate, pre-trained, colour-based saliency detection patterns to
colour-based transformations of HS images. Another novel contribution is that existing HS
saliency detection algorithms, in general, apply machine learning and numerical algorithms
that learn the saliency matrix of a specific HS image without yielding a general pattern that
can be also applied to a different HS image. In particular, they account for the spectral infor-
mation acquired with the HS image under consideration only. So, if applied to a dataset of
HS images, these algorithms process every HS image independently of each other. We note
that this leads to overlook knowledge enclosed in saliency patterns potentially discovered
from multiple HS images. A different approach is investigated in this paper. In particular,
we resort to the ensemble learning theory (Brown, 2010) and explore how multiple saliency
detection patterns learned from a dataset of multiple HS images may be handled as a “com-
mittee” of decision makers to achieve better overall accuracy on the input multiple HS
images than the individual committee members.
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Fig. 1 HS imagery data

3 Preliminary concepts

Let I be a dataset of HS images – digital images of observed scenes which are acquired
using an HS sensor. The HS sensor records reflected light in hundreds of narrow frequencies
covering the visible, near-infrared and shortwave infrared bands of a wavelength λ (also
called spectrum). The spectrum is an m-dimensional feature vector (spectral vector), so that
λ is spanned on the numeric spectral features λ1, λ2, . . . , and λm.

Every HS image Iλ ∈ I (see Fig. 1) is a three-dimensional set of pixels (called hyper-
cube) with values representing spectral reflectance indexed by spatial coordinates u, v and
spectrum λ. A pixel Iλ(u, v) is a region of around a few square meters of the Earth’s sur-
face that is a function of the sensor spatial resolution. Specifically, it is a one-dimensional
spectrum section of hyper-cube Iλ indexed by spatial coordinates (u, v) within the sensor
resolution of the camera. Every pixel spectral value Iλ(u, v, λi) is numeric and expresses
how much the radiation is reflected, on average, at the i-th band of λ from the resolution
cell of the considered pixel Iλ(u, v).

In a task of saliency detection, every HS imagery pixel can, in principle, be labelled
according to an unknown binary target function, whose range is a finite set of two distinct
labels, i.e. “salient” and “no-salient”. According to this function, a saliency matrix S can be
associated to an HS image Iλ. In particular, S is a two-dimensional set of saliency values
with every value S(u, v) representing the saliency label of the HS pixel Iλ(u, v) indexed by
the spatial coordinates u, v.

4 Learning algorithm

We propose a machine learning methodology named AGNES (pseudo-lAbel Generation for
uNsupEvised Saliency detection in Hyperspectral image datasets) for saliency detection in
an HS image dataset. It takes as input a dataset of HS images (all images are sensed on the
same spectrum) and learns an ensemble of HS saliency classification patterns by iterating
colour-based, saliency, pseudo-label generation and HS classification analysis on every HS
image of the dataset. The ensemble is used to build the final HS-driven saliency matrices of
the HS image dataset taken as input.

We point out that, in the proposed methodology, both colour data and HS data analyses
are coupled, since the learning process is performed jointly on these two different repre-
sentations of the same imagery data. In particular, the saliency pseudo-labels, which are
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Fig. 2 The block diagram of AGNES methodology. It takes as input a dataset of HS images. It iterates colour-
based, saliency, pseudo-label generation and HS classification analysis to populate an ensemble. It uses the
ensemble to yield the saliency matrices of the processed HS images

produced from the colour display of HS imagery data, boost the supervision in the HS clas-
sification learning stage. In this way, we are actually able to take advantage of the progress
achieved in colour-based saliency detection to yield good saliency pseudo-labels. These
pseudo-labels allow us to perform classification analyses of HS imagery data although
ground truth saliency labels are unavailable for supervision – HS imagery data are collected
in an unsupervised scenario. Finally, the ensemble strategy (Opitz & Maclin, 1999) allows
us to strengthen the accuracy of single HS saliency classification patterns that are learned
from a dataset of multiple HS images as members of an ensemble. In particular, the ensem-
ble strategy allows us to actually leverage a finite set of different HS saliency classification
patterns for saliency detection. The better flexibility of the ensemble structure turns out to
be more robust to spectral variability.

The block diagram of AGNES is illustrated in Fig. 2, while the pseudo-code is reported
in Algorithm 1. The main used symbols are introduced in Table 1. The learning stages of the
methodology (colour-based, saliency pseudo-label generation, HS classification learning
and ensemble classification) are described in Sections 4.1–4.3. The analysis of the time
complexity of the algorithm is reported in Section 4.4. Finally, the implementation details
of the algorithm are reported in sub-Section 4.5.

Table 1 Main used symbols
Symbol Meaning

I HS image dataset (input)

S Saliency matrix dataset (output)

λ Spectrum (spectral space)

Iλ HS image

IRGB Colour rendering of Iλ
PCλ Principal component space of λ

φλ HS classification function

� Ensemble
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4.1 Colour-based saliency pseudo-label generation

In the first stage, we leverage the information enclosed in a colorimetric rendering of HS
imagery data, in order to generate colour-based, saliency pseudo-labels (lines 4-5, Algo-
rithm 1). These pseudo-labels will be used to supervise the subsequent HS classification
learning stage. The pseudo-label generation procedure is repeated on every HS image of I
and proceeds as follows.

Let us consider an HS image Iλ ∈ I . First we determine IRGB that is the colorimetric
rendering of Iλ. For this operation, we apply the technique described in Foster and Amano
(2019). First the pixel spectrum is scaled to range from 0 to 1 and multiplied by the global
illuminant value,1 converted to CIE XYZ tristimulus values according to equations:

X(u, v) = κ

∫
Iλ(u, v)x(λ)dλ, (1)

Y (u, v) = κ

∫
Iλ(u, v)y(λ)dλ, (2)

Z(u, v) = κ

∫
Iλ(u, v)z(λ)dλ, (3)

1The illuminant is calculated from the imaging day light according to the calculator available at https://
www.waveformlighting.com/tech/calculate-cie-1931-xy-coordinates-from-cct/. If the imaging light-day is
unknown, then the default illuminant at 10000K can be adopted.
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where κ is chosen so that Y=100 for a perfectly white surface under full illumination, while
x(λ), y(λ) and z(λ) are the CIE XYZ colour-matching functions for the second standard
observer (Foster & Amano, 2019). Then, CIE XYZ is scaled to representation to range
from 0 to 1 and transformed to the default RGB color space sRGB according to the linear
transformation (IEC, 1998):⎡

⎣ R(u, v)

G(u, v)

B(u, v)

⎤
⎦ =

⎡
⎣ 3.2406 −1.5372 −0.4986

−0.9689 1.8758 0.0415
0.0557 −0.2040 1.0570

⎤
⎦

⎡
⎣ X(u, v)

Y (u, v)

Z(u, v)

⎤
⎦ . (4)

According to guidelines reported in Foster and Amano (2019), sRGB values less than 0 are
set to 0 and sRGB values greater than 1 are set to 1, in order to satisfy range constraints.
Finally, a nonlinear correction is applied to compensate approximately for the input–output
function of the display device. The typical approximate correction (Foster & Amano, 2019)
has the form: ⎡

⎣ R′(u, v)

G′(u, v)

B ′(u, v)

⎤
⎦ =

⎡
⎣ R(u, v)0.4

G(u, v)0.4

B(u, v)0.4

⎤
⎦ . (5)

Then we use the ASNet pattern – a deep learning neural network pattern described in
Wang et al. (2020) – to yield accurate pixel-wise saliency estimation of IRGB. Specifi-
cally, the ASNet pattern produces a grey-level image that displays the numeric intensity of
saliency estimated at every colour pixel of IRGB. In this study, we use the Otsu’s algorithm
(Otsu, 1979) to determine the upper threshold for separating the grey-level saliency values
estimated by ASNet into two classes: foreground (“salient”) and background (“no-salient”).
In particular, we assign imagery pixels with grey-level saliency intensity higher than the
Otsu’s threshold to the pseudo-label “salient”, while we assign the remaining pixels to the
pseudo-label “no-salient”. In this way, we produce the colour-based saliency matrix SRGB
associated to Iλ, where every value SRGB(u, v) represents the saliency pseudo-label that is
colour-based assigned to the HS pixel Iλ(u, v).

The ASNet pattern is the colorimetric saliency estimation pattern that is described in
Wang et al. (2020). It was learned by training an Attentive Saliency Network – a deep
neural network architecture that was trained with a fixation map, derived at the upper net-
work layers, which mimics human visual attention mechanisms and captures a high-level
understanding of the scene from a global view. In particular, the ASNet architecture views
saliency as fine-grained object-level saliency segmentation that is progressively optimized
with the guidance of the fixation map in a top-down manner. It is a hierarchy of convLSTMs
that offers an efficient recurrent mechanism to sequentially refine the saliency features over
multiple steps. The pattern described in Wang et al. (2020) was trained on 30160 colour
images collected in problems of human fixation prediction and salient object detection.2 In
this paper, the choice of this specific ASNet pattern is due to the extensive empirical vali-
dation illustrated in Wang et al. (2020), which proves that the same ASNet pattern that we
use here can yield accurate pixel-wise grey-level saliency estimation in a high variety of
colour images by outperforming 15 recent deep learning-based alternatives and 4 classical
non-deep learning models.

The Otsu’s algorithm is an adaptive threshold algorithm introduced in Otsu (1979)
commonly used in image binarization problems. It determines a saliency threshold in a grey-
level image by minimising the intra-class intensity variance defined as a weighted sum of
variances of the two classes.

2https://github.com/wenguanwang/ASNet
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4.2 HS classification learning

In the second stage, we leverage the information enclosed in the spectral vectors of HS
imagery data performing a process of HS classification learning. The purpose is to take
advantage of the abundance of spectral information enclosed in HS pixels, in order to refine
the colour-based saliency assignments that may have the highest difficulty in better sepa-
rating the salient landscape from the surrounding landscape. The HS classification learning
stage is repeated on every HS image of I (lines 6-9, Algorithm 1) learning a new HS
saliency classification pattern for feeding the ensemble �. The classification analysis of
every HS image proceeds as follows.

Let us consider an HS image Iλ ∈ I . First, we build IPCλ
– the hyper-cube produced by

approximating the HS pixel of Iλ ∈ I on the independent feature space PCλ spanned by
PC1, PC2, . . ., and PCH . This feature space represents the top-ranked H principal compo-
nents of λ in Iλ. Then we couple the colour-based, saliency pseudo-labels of SRGB to IPCλ

,
in order to construct the training set IPCλ

⊕ SRGB. Finally, we train an HS classification
function φλ : PCλ �→ {salient, un − salient} from IPCλ

⊕ SRGB and add the learned clas-
sification function φλ coupled to the principal component space PCλ to the ensemble �.
We point out that 〈PCλ, φλ〉 defines an HS saliency classification pattern that can be used
to predict the saliency label of any HS pixel sensed on spectrum λ.

Principal Component Analysis (PCA) is one of the most widely used linear feature
extraction techniques, which has been proved to be a powerful HS imagery data reduc-
tion strategy in tasks of HS classification (Xia et al., 2018; Appice & Malerba, 2019) or
HS change detection (Lopez-Fandino et al., 2018; Appice et al., 2020). Specifically, PCA
seeks to reduce the dimension of the data and drops the curse of dimensionality by find-
ing a few orthogonal directions (the Principal Components – PCs) that express the original
spectral bands whose projections on the PCs have the largest variance. In HS image analy-
sis, the preference for the use of PCA for data reduction is also motivated by its ability to
derive a collinearity-free characterisation of the spectrum. The spectral bands are strongly
contemporaneously correlated with each other in the near spectrum, while the spectral prin-
cipal components are contemporaneously uncorrelated with each other. An illustration of

Fig. 3 IMG02 of HS-SOD dataset (see Section 5.1 for further details): heatmap of the Pearson correlation
matrix of spectral bands (Fig. 3a) and heatmap of Pearson correlation matrix of the Principal Components,
expressing an orthogonal reduced representation of the entire spectrum (Fig. 3b)
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this phenomenon can be seen in Fig. 3a and b. We note that the collinearity phenomenon
among near spectral bands may not be simply neglected, as it leads to a series of problems,
such as unreliable coefficients and predictions, as well as aggravated data redundancy and
computational complexity (Howley et al., 2006). In general, as discussed in Pravilovic et al.
(2017) and Pravilovic et al. (2018), PCA is a mandatory step in improving the learning per-
formance, by removing collinearity, speeding up the learning process and reducing the data
storage requirements.

There are also valid alternatives to PCA. For example, autoencoders, that belong to the
neural network family, are similar to PCA as they can be used for finding a low-dimensional
representation of input data (Charte et al., 2018). They minimize the same objective func-
tion as PCA, but they are more flexible than PCA, due to the activation function that can
introduce non-linearities in the encoding. Although autoencoders are really a big class of
potentially extremely complex models, the advantage of PCA is that it is simple and effi-
cient to train in comparison. Assuming that the linear transformation of PCA fits the spectral
data accurately, it is much better to train PCA than try to select some complex deep model.
In Appice and Malerba (2019), the viability of both PCA and autoencoders is compared
in various benchmark HS imaging scenarios concluding that no significant improvement
can be actually achieved in HS imagery analysis by considering auto-encoding instead of
principal components.

For the classification analysis, we select XGBoost (Chen & Guestrin, 2016) as a valuable
classification algorithm for this stage. Although, deep neural networks tend to outperform
all other classification algorithms in various applications (included image analysis), tradi-
tional algorithms are still considered best-in-class when classification analysis comes to
small-to-medium tabular data. In this paper, the choice of XGboost is due to the fact that
it is currently one of the most popular machine learning algorithms (outside deep learning)
in both academy and industry. It is a highly flexible and versatile algorithm that learns a
decision-tree-based ensemble. It uses a gradient boosting framework to minimise the error
of sequential models. In particular, XGBoost is efficient, as the process of sequential tree
building is performed using parallelized implementation. It is designed to make efficient use
of hardware resources and it is implemented with the depth-first approach that contributes to
improve computational performance significantly. XGBoost is able to penalise more com-
plex models through, backward tree pruning, LASSO (L1) and Ridge (L2) regularization to
prevent overfitting. In addition, it employs the distributed weighted Quantile Sketch algo-
rithm to effectively find the optimal split points among weighted datasets. Finally, there
are several studies (Loggenberg et al., 2018; Samat et al., 2020; Zhou et al., 2020), where
XGBoost has been applied to HS imaging with great success.

4.3 Ensemble classification

In the third stage, we use � – the ensemble populated with the HS saliency classification
patterns learned from I – to yield S – the set of the final saliency matrices produced for the
HS images of I (lines 10-16, Algorithm 1).

In particular, let us consider an HS image Iλ ∈ I , we use � to build the saliency matrix
S

φ
↑
λ

associated with Iλ and add S
φ

↑
λ

to S . The computation of S
φ

↑
λ

proceeds as follows. First

we sort � by an estimate of the accuracy of every pattern 〈PCγ , φγ 〉 ∈ � on Iλ. To measure
the accuracy of 〈PCγ , φγ 〉 on Iλ, we compare:

– Sλ
φγ

– the HS-based saliency matrix populated with saliency predictions yielded by
〈PCγ , φγ 〉 on Iλ, and
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– SRGB – the colour-based saliency matrix of Iλ as it has been already computed in the
first stage of the algorithm.

In particular, we measure:

accuracy(〈PCγ , φγ 〉, Iλ) = AUCBorji(Sλ
φγ

,SRGB), (6)

where AUCBorji() is the Borji variant of the Area Under the Roc Curve (AUC), which is
commonly adopted in measuring accuracy in saliency detection tasks (Borji et al., 2013).

After sorting � according to (6), we select the top-ranked HS saliency classification
pattern 〈PC↑

λ, φ
↑
λ 〉 ∈ I , so that:〈

PC↑
λ, φ

↑
λ

〉
= arg max

〈PCγ ,φγ 〉∈�
accuracy(〈PCγ , φγ 〉, Iλ). (7)

Finally, we use
〈
PC↑

λ, φ
↑
λ

〉
to build the final saliency matrix S

φ
↑
λ

associated with Iλ. In

S
φ

↑
λ

, the saliency label Iλ(u, v) indexed by u, v is the prediction yielded by φ
↑
λ on the prin-

cipal component values defined by fitting the principal component space PC↑
λ to the HS

imagery pixel Iλ(u, v).

4.4 Time complexity

Let us consider that: 1) the dataset I collects N images with U ×V pixel resolution acquired
with an HS sensor covering a spectrum λ spanned on m spectral bands; 2) the used neural
network ASNet was pre-trained estimating w weights; 3) the algorithm PCA is used to
remove the collinearity in a system of m spectral bands; 4) the algorithm XGBoost is used
to learn XGBoost patterns with K trees spanned over d layers; 5) the algorithm AUCBorji is
implemented averaging the AUC values computed on s split trials with t equal-width steps
processed in each split trial. Based upon these premises, the time complexity of AGNES is
computed by summing-up the cost of: (i) generating the saliency pseudo-labels with ASNet,
(ii) learning the HS saliency classification patterns with PCA and XGBoost and (iii) using
the ensemble of the learned HS saliency classification patterns coupled with AUCBorji to
produce the final saliency matrices of the input images. Note that the pipeline composed of
the steps (i) and (ii) may be also run in parallel on each independent image of I . Again,
once the ensemble of the HS saliency classification patterns is fully learned by completing
steps (i) and (ii) on all images of I , the step (iii) may be run in parallel on each independent
image of I .

Saliency pseudo-label generation for each HS image Iλ ∈ I , the color image Iλ is
determined and the pseudo-labels SRGB are predicted. The time cost of building IRGB is
proportional to mUV , while the time cost of generating SRGB is proportional to wUV . Con-
sidering that w 
 m, the time complexity of completing this step on all HS images of I
may be re-written as O(N(wUV )).

HS Classification learning for each HS image Iλ ∈ I , its principal components are com-
puted and then XGBoost pattern is trained. The time cost of determining a system of
principal components for an HS image is O(mUV × min(m, UV ) + m3). The time cost
of training a XGBoost pattern is Kd nz + nz log rb where K is the number of trees, d is the
number of tree layers, nz is the number of non-missing entries in the training dataset and rb
is the maximum number of rows in each block. Note that according to the theory reported
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in Chen and Guestrin (2016), the block structure is adopted to speed-up the computation on
large datasets. Therefore, assuming m � UV , the time complexity of completing this step
on all HS images of I is O(N(m2UV + Kd nz + nz log rb)).

Ensemble classification for each HS image Iλ ∈ I , the XGBoost pattern that achieves the
highest AUCBorji predicting the pseudo-labels is selected and the final saliency matrix
is built. The cost of measuring the AUCBorji value of an XGBoost pattern with respect
to the saliency pseudo-labels of an HS image is proportional to stUV , where s denotes
the number of split trials and t is the number of steps. This operation is repeated on each
XGBoost pattern enclosed in the ensemble. The cost of selecting the top XGBoost pattern
of the ensemble is O(N), while the cost of predicting the final labels with the selected
XGBoost pattern is O(Kd). Therefore, the cost of performing this phase on all HS images
of I is O(N(NstUV + N + Kd)). As N < NUV and assuming that Kd � UV , the time
complexity of this step can be rewritten as O(N2stUV ).

4.5 Implementation details

AGNES is written in Python 3.7. It uses the ASNet pattern learned in Wang et al. (2020)3

using Keras 2.34 – a high-level neural network API with TensorFlow5 as the back-end. In
addition, AGNES imports:

– The implementation of Otsu’s algorithm from skimage.filters.threshold otsu.6

– The implementation of PCA from sklearn.decomposition.PCA.7 In particular, we
compute the PCA with the full SVD calling the standard LAPACK solver
(svd solver=‘full’) and with Minka’s MLE (Minka, 2001) for the automatic choice of
dimension H (component=‘mle’). By adopting this choice, the algorithm called proba-
bilistic principal component analysis (PPCA) described in Tipping and Bishop (2006)
is used.

– The implementation of XGBoost from xgboost.XGBoostClassifier,8 by adopting the
default parameter set-up is reported in the documentation.9 In particular, the number
of trees K = 100 and the number of tree layers d = 6.

– The implementation of the AUCBorji algorithms is done by following the guidelines
reported in Borji et al. (2013). In particular, the AUC is measured on t = 10 equal-
width steps and repeated on s = 100 split trials. The final AUC is computed as the
average of AUC values computed on the split trials.

5 Experimental evaluation and discussion

To provide a compelling evaluation of the accuracy of our methodology, we have conducted
a range of experiments on the benchmark HS saliency detection dataset called HS-SOD

3https://github.com/wenguanwang/ASNet
4https://keras.io/
5https://www.tensorflow.org/
6https://scikit-image.org/docs/dev/api/skimage.filters.html#skimage.filters.threshold otsu
7https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
8https://xgboost.readthedocs.io/en/latest/index.html
9https://xgboost.readthedocs.io/en/latest/parameter.html
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(Imamoglu et al., 2018). This dataset is available with the ground-truth saliency images. The
main objective of these experiments is to evaluate the effectiveness of the proposed learning
methodology along its various learning dimensions – learning on spectrum, classification
with principal components, ensemble strategy (Section 5.2). In addition, we investigate how
the proposed methodology compares to state-of-the-art HS saliency detection competitors
(Section 5.3). In all these experiments, the accuracy performance is evaluated with the Borji
variant of the Area Under the ROC Curve (AUCBorji) (Borji et al., 2013). This metric has
been already used in Imamoglu et al. (2018), Appice et al. (2020), Falini et al. (2020), and
Falini et al. (2020) for the analysis of the performance of various HS saliency detection
methodologies defined in the literature and evaluated on the dataset HS-SOD.

5.1 HS-SOD

The dataset HS-SOD (Imamoglu et al., 2018)10 is a benchmark HS image dataset that col-
lects 60 HS images with 1024 × 768 pixel resolution. These HS images were sensed in
various scenes of the public parks of Tokyo Waterfront (City in Odaiba, Tokyo, Japan) in
several days between August - September 2017 when the weather was sunny or partially
cloudy. They exhibit different characteristics in terms of sensed landscapes, salient land-
scape size, foreground-background contrast and salient landscape position on the image. In
particular, each HS image of HS-SOD was acquired using the NH-AIK hyper-spectral cam-
era that covers a spectrum between 350 μm and 1100 μm spanned on 150 spectral bands
with spectral resolution 5 μm. However, the authors of HS-SOD prepared the images on the
visible spectrum (380-780 μm) spanned on 81 spectral bands. In addition, they produced a
ground-truth binary image for every HS image, so that salient pixels were labelled within
each ground-truth image. We point out that ground-truth labels have been ignored during
the execution of the saliency detection methodologies, while they are considered to evaluate
the accuracy of the saliency matrices constructed.

5.2 Learning components analysis

In this Section we analyse the effectiveness of the various learning components of AGNES,
in order to answer the following questions:

1. How does the analysis of the spectrum information affects the accuracy of the saliency
matrices computed?

2. How does the accuracy of the HS imaging analysis change by introducing PCA to deal
with the curse of dimensionality?

3. Is the idea of using the ensemble strategy more powerful than considering single
classification patterns?

To this purpose, we perform an ablation study where we consider four configurations
as baselines. These are in turn defined by removing HS information analysis, PCA and/or
ensemble learning from the whole methodology of AGNES. In particular, these baseline
configurations are defined as follows:

1. ASNet that takes as input each HS image of the input dataset and applies the ASNet
pattern to construct the imagery saliency matrix of the image from the colour rendering

10https://github.com/gistairc/HS-SOD

436 Journal of Intelligent Information Systems (2021) 57:423–446

https://github.com/gistairc/HS-SOD


Table 2 Characteristics of the several configurations of AGNES evaluated

Configuration Colour information Spectral data analysis PCA Ensemble learning

ASNet Yes No No No

XGBoost Yes Yes No No

PCA+XGBoost Yes Yes Yes No

Ensemble Yes Yes No Yes

AGNES Yes Yes Yes Yes

of the HS imagery pixels. This baseline considers the colour pixel representation only
by giving away both HS information analysis, PCA and ensemble learning.

2. XGBoost that takes as input each HS image of the input dataset and applies the ASNet
pattern to generate the saliency pseudo-labels from the colour rendering of the HS
imagery pixels. It uses these colour-based, saliency pseudo-labels to supervise learn-
ing of HS classification patterns with XGBoost. It constructs the final imagery saliency
matrix of each HS image with the saliency predictions produced by the XGBoost pat-
tern learned on the HS imagery pixels of the considered image. This baseline couples
the colour-based analysis to the spectral-based analysis giving away PCA and ensemble
learning.

3. PCA+XGBoost that is like the configuration of XGBoost, but it performs PCA of
HS information before learning HS classification patterns with XGBoost. This base-
line couples the colour-based analysis to PCA and spectral-based analysis giving away
ensemble learning.

4. Ensemble that populates an ensemble with multiple HS classification patterns that are
learned with the configuration XGBoost from the multiple HS images of the input
dataset. It uses this ensemble to build the final imagery saliency matrices of the HS
images in the input dataset. This baseline couples the colour-based analysis to the
spectral-based analysis and considers the ensemble learning giving away PCA during
HS information analysis.

A summary of the characteristics of the compared configurations is reported in Table 2.
We evaluate the performance of ASNet, XGBoost, PCA+XGBoost, Ensemble and

AGNES processing all the HS images of HS-SOD. In particular, Fig. 4 reports the AUCBorji

Fig. 4 AUCBorji (mean ± stdev) of ASNet, XGBoost, PCA+XGBoost, Ensemble and AGNES computed on
the saliency matrices yielded for all the HS images of HS-SOD
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(mean and standard deviation) of the compared configurations confirming that AGNES
outperforms, in average, all its baselines. These results point out that decoupling the
spectral-based analysis from both PCA and ensemble learning (XGBoost) leads to a drop
in accuracy with respect to the baseline decision of saliency assignments based on the
colour-based information only (ASNet). On the other hand, the configuration that couples
PCA to HS imagery classification learning without ensemble (PCA+XGBoost), as well as
the configuration that uses an ensemble of HS classification patterns learned without PCA
(Ensemble) have performance which stay close to that of ASNet. Our interpretation of these
results is that PCA contributes to deal with the curse of dimensionality (as well as with HS
information collinearity) in agreement with the conclusions already drawn in both (Appice
& Malerba, 2019) and (Appice et al., 2020) for HS classification and HS change detection,
respectively. Ensemble learning contributes to handle possible phenomena of spectral vari-
ability that may occur in single HS images by taking advantage of HS multiple classifiers in
place of a single one (Ceamanos et al., 2009). So, the winning strategy that allows AGNES
to properly take advantage of HS information dealing with both issues simultaneously is
derived by combining achievements of both PCA and ensemble learning.

To statistically test whether the improvement in accuracy of AGNES is significant, we use
the Friedman’s test. This is a non-parametric test that is commonly used to compare multiple
approaches over multiple datasets (Demšar, 2006). The Friedman test compares the average
ranks of the approaches, so that the best performing approach gets the rank of 1, the second
best gets rank 2. The null-hypothesis states that all the configurations are equivalent. Under
this hypothesis, ranks of compared approaches should be equal. We perform this test on the
AUCBorji scores of the compared configurations on each image of the dataset HS-SOD and
reject the null hypothesis with p-value ≤ 0.05. As the null-hypothesis is rejected, we use a
post-hoc test—the Nemenyi test—for pairwise comparisons (Demšar, 2006). The display of
the results of this test, reported in Fig. 5, confirms that AGNES is ranked higher than all its
baseline configurations. In particular, the critical difference diagram, obtained using a 0.05
significance level, shows that AGNES is on average the best performing approach with the
configuration PCA+XGBoost as runner-up.

At the completion of this discussion, we compare the visual display of a few saliency
matrices produced by processing colour-based information, as well as joining colour-based
and HS-based information. Figure 6 shows the visual displays of both the input and out-
put of ASNet and AGNES for the HS images 1, 2, 17 and 21 of HS-SOD. These displays
highlight that, in all the HS images, AGNES can better delineate salient regions along their
boundaries. This is a confirmation of the fact that we propose a saliency detection method-
ology that can actually take advantage of the HS information to better separate landscapes.
We also note that the AUCBorji score achieved by AGNES is lower than the AUCBorji
score achieved by ASNet on image 1. This score is computed with the ground truth provided

Fig. 5 Comparison between ASNet, XGBoost, PCA+XGBoost, Ensemble and AGNES with the Nemenyi test
using the AUCBorji. Groups of configurations that are not significantly different (at p ≤ 0.05) are connected
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Fig. 6 IMG1, IMG2, IMG17, IMG21 of HS-SOD dataset: RGB rendering (Fig. 6a, e, i and m), saliency
ground-truth (Fig. 6b, f, j and n), saliency images built by ASNet (Fig, 6c, g, k and o), saliency images built
by AGNES (Fig. 6d, h, l and p)

by the authors of the dataset. In this image, AGNES recognises the sign as the salient part
of the image, but it also separates the illustration within the sign from the white scene. This
separation, that is non reported in ground truth, depends on the fact that the sign background
and the illustration within the sign actually define different landscapes. This suggests that
a possible direction to extend this methodology comprises a mechanism to derive a multi-
level, global-to-local, representation of the saliency information within the same imagery
scene (i.e., the local salient detail emerging within a global salient area).

5.3 Competitor analysis

Finally, we compare the AUC-Borji scores competitors considered in the recent literature
for problems of saliency detection in HS images. For this comparative study, we consider:
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– AISA – the HS saliency detection methodology described in Appice et al. (2020). It uses
an auto-encoder representation of HS imagery data, spectral-spatial difference between
imagery data and reconstructed data, as well as clustering.

– SSMF and SSMF1 – the HS saliency detection methodologies presented in Falini et al.
(2020) and (Falini et al., 2020) respectively. They use a sparse non-negative matrix fac-
torization algorithm together with several error functions, based on spectral and spatial
measures, and with Gaussian-based clustering techniques.

– Itti’s model (Itti et al., 1998) computed on the colour rendering of the HS images.
– SED and SAM – the HS saliency detection methodologies described in Liang et al.

(2013). It is used with spectral Euclidean distance and spectral angular distance,
respectively.

– GS – the HS saliency detection methodology presented in Liang et al. (2013). It first
divides spectral bands into four groups (G1,G2,G3,G4) and then measures the colour
opponency by computing the Euclidean distance between these vectors (G1-G3 and
G2-G4).

– SED-OCM-GS and SED-OCM-SAD – the HS saliency detection combinations pro-
posed in Liang et al. (2013). They use orientation-based salient features (OCM).

– SGC – the HS saliency detection methodology illustrated in Yan et al. (2016). It deter-
mines super-pixels by computing spectral and spatial gradients and identifies local
region contrasts from super-pixels.

Table 3 reports the AUCBorji scores of all the compared methodologies. AGNES
achieves a better average accuracy compared to all the other competitors tested in this study.
The best performance of AGNES is mainly due to the ensemble learning process, coupled
with the specific cascade of colour-based analysis and HS-based analysis. We note that we
take advantage of the ensemble learning as we count on a dataset of HS images. This condi-
tion, generally, happens in surveillance missions (e.g. environmental surveillance done with
a drone), where multiple images of various scenes are, commonly, sensed using the same
HS technology within the same mission.

To complete this study, we analyse the computation time spent completing the saliency
detection task on HS-SOD dataset. The computation time is measured in minutes on an
Intel(R) Core(TM) i7-4720U CPU@2.60 GHz and 16 GB RAM running Microsoft Win-
dows 8.1 (64 bits). Figure 7 reports the total time spent completing the three steps of AGNES

Table 3 Competitor analysis
Saliency detection methodology AUCBorji

AGNES 0.8410

AISA 0.7540

SSMF1 0.7592

SSMF 0.7329

Itti’s model 0.7694

SED 0.6415

SAM 0.7521

GS 0.7597

SED-OCM-GS 0.7863

SED-OCM-SAD 0.8008

SGC 0.8295

AUCBorji score of AGNES and
its competitors computed on
HS-SOD. The AUCBorji of
AISA is reported in Appice et al.
(2020). The AUCBorji of SSMF
and SSMF1 are reported in Falini
et al. (2020) and Falini et al.
(2020). The AUCBorji of of Itti’s
model, SED, SAM, GS, SED-
OCM-GS, SED-OCM-SAD and
SGC are reported in Imamoglu
et al. (2018)
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Fig. 7 Total computation time spent (in minutes) completing the three steps of AGNES on all the HS images
of HS-SOD dataset

(i.e. colour-based saliency pseudo-label generation, HS classification learning and ensem-
ble classification). Table 4 compares the computation times spent completing the saliency
detection task with both AGNES and its competitors AISA, SSMF1 and SSMF.11 These
results confirm that the higher accuracy achieved by AGNES is at the cost of the more
computation time spent both performing the supervision in the HS classification learning
step and adopting the ensemble for producing the final saliency matrices. Note that, in this
evaluation, we have not use a parallel computation infrastructure, in order to perform the
learning steps of the compared algorithms on several HS images simultaneously. In princi-
ple, assuming the availability of a parallel computation infrastructure, AISA, SSMF1 and
SSMF may process all the HS images of HS-SOD dataset in parallel spending, in average,
9.94 minutes, 6.75 minutes and 2.95 minutes, per image, respectively. On the other hand,
AGNES spends, in average, 16.92 minutes per image. This estimate is derived by assuming
that both the pseudo-label generation and the HS classification learning steps are completed
in parallel on each HS image of HS-SOD dataset. Similarly, the ensemble classification of
each HS image is also completed in parallel on each HS image of HS-SOD dataset once all
the classification patterns of the ensemble have been learned.12

6 Conclusion

This paper illustrates a learning methodology for analyzing a dataset of HS images and
detecting, in each HS image, the salient pixel region that can be considered more notable
than the background.

The proposed methodology takes advantage of a learning process done on a dataset of
HS images sensed through the same HS sensor. Learning is done by jointly processing
the imagery pixel information represented on both the colour mode and the HS mode. In
particular, the proposed methodology yields saliency pseudo-labels from a colourimetric

11The code of these algorithms is available to be run for this comparison.
12This approximate estimate of the computation time possibly spent completing the considered saliency
detection task within a parallel computation infrastructure does not consider any estimate of the communica-
tion times. In any case, the investigation of the performance of a parallel strategy to implement the proposed
algorithm is out of the scope of the current paper.

441Journal of Intelligent Information Systems (2021) 57:423–446



Table 4 Competitor analysis

Saliency detection methodology TOTAL TIME AVG TIME

AGNES 1015.22 16.92

AISA 596.84 9.94

SSMF1 405.0 6.75

SSMF 177.0 2.95

Computation time spent in minutes with AGNES and its competitors AISA, SSMF1 and SSMF completing
the saliency detection task on HS-SOD dataset. The TOTAL TIME (column 2) is the time spent processing
all the HS images of HS-SOD dataset. The AVG TIME (column 3) is the time spent, in average, processing
a single HS image of HS-SOD dataset

rendering of HS imagery data. It uses these pseudo-labels to supervise learning of HS clas-
sification patterns trained with XGboost. These HS classification pattern predicts saliency
assignments based on the HS pixel spectrum. It uses PCA, in order to deal with the curse of
dimensionality during HS classification learning, as well as ensemble learning, in order to
strengthen the accuracy of multiple HS classification patterns trained for saliency detection
on multiple HS images.

The experiments are performed on a benchmark HS image dataset that comprises both
HS images and ground-truth saliency images. Ground-truth labels are considered to evaluate
the accuracy of the saliency assignments learned. The performed experiments investigate
the sensitivity of the performance to the steps of the learning methodology proving that
every component of the methodology contributes to the gain in detection accuracy. The
results also reveal that the proposed methodology is able to provide competitive accuracy
compared to state-of-the-art HS models. In fact, with the encouraging performance of the
proposed methodology, precise salient areas of various scenes may be identified.

Some directions for further work are still to be explored. Appropriate deep learning archi-
tectures can be considered, in order to improve the accuracy of the HS classification learning
stage. Active learning mechanisms can be applied for label acquisition in a possible weakly
supervised enhancement of the classification analysis. In addition, we plan to explore the
possibility of introducing a mechanism for a global-to-local mechanism of saliency detec-
tion to recognize (and possibly classify) local components belonging to different landscapes
within the same global salient region. In addition, we intend to investigate different HS
feature engineering algorithms to feed the classification stage of the learning methodology
proposed in this study. In particular, we plan to explore the performance of Gabor features
(Jia et al., 2015), autocorrelation features (Appice & Malerba, 2019), morphological fea-
tures (Appice et al., 2016; 2017) and frequency features (Guccione et al., 2015) in the
investigated HS saliency detection scenario. Finally, we plan to extend the investigation of
the feasibility of a parallel strategy for implementing the proposed algorithm.
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