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Abstract. Embedding models have been successfully exploited for Knowledge
Graph refinement. In these models, the data graph is projected into a low-
dimensional space, in which graph structural information are preserved as much
as possible, enabling an efficient computation of solutions. We propose a solu-
tion for injecting available background knowledge (schema axioms) to further
improve the quality of the embeddings. The method has been applied to enhance
existing models to produce embeddings that can encode knowledge that is not
merely observed but rather derived by reasoning on the available axioms. An
experimental evaluation on link prediction and triple classification tasks proves
the improvement yielded implementing the proposed method over the original
ones.
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1 Introduction

Knowledge Graphs (KGs) are becoming important for several research fields. Although
a standard shared definition for KGs is still not available, there is a general consensus
on assuming them as organizations of data and information by means of graph struc-
tures [12]. KGs are often the result of a complex (integration) process involving multiple
sources, human expert intervention and crowdsourcing. Several examples of large KGs
exist, spanning from enterprise products, such as those built by Google and Amazon, to
mention a few of them, to other open KGs such as the well known DBpedia, Freebase,
Wikidata and YAGO [12]. Despite significant efforts for making KGs as comprehen-
sive and reliable as possible, due to the complex building process they tend to suffer of
two major problems: incompleteness and noise [12,20]. As an example, it was found
that about 70% of the persons described in DBpedia lack of information regarding their
nationality and birth place [8]. Thus, a significant research effort have been devoted to
knowledge graph refinement, aiming at correcting these issues with KGs [22]. Among
the others, two tasks have gained a major attention: Link Prediction, aiming at predict-
ing missing links between entities, and Triple Classification, that consists in assessing
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the correctness of a statement with respect to a KG. In recent years, numeric approaches
to these tasks have gained considerable popularity on account of their effectiveness and
scalability when applied to large KGs. Such models typically map entities and relations
forming complex graph structures to simpler representations (feature-vectors) and aim
at learning prediction functions to be exploited for the mentioned tasks. Particularly, the
scalability purpose motivated the interest delved towards embedding models [4] which
have been shown to ensure good performances on very large KGs. Knowledge graph
embedding methods aim at converting the data graph into an optimal low-dimensional
space in which graph structural information and graph properties are preserved as
much as possible [4,15]. The low-dimensional spaces enable computationally efficient
solutions that scale better with the KG dimensions. Graph embedding methods differ in
their main building blocks: the representation space (e.g. point-wise, complex, discrete,
Gaussian, manifold), the encoding model (e.g. linear, factorization, neural models) and
the scoring function (that can be based on distance, energy, semantic matching or other
criteria) [15]. In general, the objective consists in learning embeddings such that the
score of a valid (positive) triple is lower than the score of an invalid triple standing
for a sort of negative examples. A major problem with these models is that KGs are
mostly encoded exploiting available positive assertions (examples) whilst negative con-
straints are more rarely found, making negative examples more hardly derivable [2].
As positive-only learning settings may be tricky and prone to over-generalization, neg-
ative examples (invalid triples) have to be sought for either by randomly corrupting
true/observed triples or deriving them having made the local-closed world assumption
on the data collection. In both cases, wrong negative information may be generated and
thus used when training and learning the embedding models; hence alternative solutions
are currently investigated [2]. Even more so, existing embedding models do not make
use of the additional semantic information encoded within KGs, when more expressive
representations are adopted, indeed the need for semantic embedding methods has been
argued [5,13,23].

In this paper we present an approach to graph embeddings that, beyond the graph
structural information and properties, is also able to exploit the available knowledge
expressed in rich representations like RDFS and OWL. Recent works [19] have proven
the effectiveness of combinations of embedding methods and strategies relying on rea-
soning services for the injection of Background Knowledge (BK) to enhance the per-
formance of a specific predictive model. Following this line, we propose TRANSOWL,
aiming at injecting BK particularly during the learning process, and its upgraded ver-
sion TRANSROWL, where a newly defined and more suitable loss function and scor-
ing function are also exploited. Particularly, we focus on the application of this idea to
enhance well-known basic scalable models, namely TRANSE [3] and TRANSR [16], the
latter tackling some weak points in TRANSE, such as the difficulty of modeling specific
types of relationships [2]. We built upon such models to better cope with additional
various types of relationships, intervening also on the training process. Indeed, the pro-
posed solutions can take advantage of an informed corruption process that leverages on
reasoning capabilities, while limiting the amount of false negatives that a less informed
random corruption process may cause.
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It is important to note that, in principle, the proposed approach could be applied to
more complex (and recent) KG embedding methods. In this work we intended to show
the feasibility of the approach, starting with well established models before moving on
towards more sophisticated ones, which would need an additional formalization.

The proposed solutions are actually able to improve their effectiveness compared to
the original models that focus on structural graph properties with a random corruption
process. This is proven through an experimentation focusing on link prediction and
triple classification tasks on standard datasets.

The rest of the paper is organized as follows. Basics on KG embedding models that
are functional to our method definition are presented in Sect. 2. The formalization of our
proposed solutions is illustrated in Sect. 3 while in Sect. 4 the experimental evaluation
is provided. Related work is discussed in Sect. 5. Conclusions are delineated in Sect. 6.

2 Basics on Embedding Methods

In the following we assume the reader has familiarity with the standard representation
and reasoning frameworks such as RDF, RDFS and OWL, hence we will consider RDF
graphs made up of triples 〈s, p, o〉 of RDF terms, respectively the subject, the predicate,
and the object, such that s ∈ U ∪ B where U stands for a set of URIs and B as for a set
of blank nodes, p ∈ U and o ∈ U ∪ B ∪ L where L stands for a set of literals. In the
following, given an RDF graph G, we denote as EG the set of all entities occurring as
subjects or objects in G, and as RG the set of all predicates occurring in G.

In this section, basics on knowledge graph embeddings methods [4] are recalled,
with a special focus on TRANSE [3] and TRANSR [16]. Several models have been
actually proposed for embedding KGs in low-dimensional vector spaces, by learning a
unique distributed representation (or embedding) for each entity and predicate in the
KG [4] and different representation spaces have been considered (e.g. point-wise, com-
plex, discrete, Gaussian, manifold). Here we focus on vector embedding in the set of
real numbers. Regardless of the learning procedure, these models share a fundamen-
tal characteristic: given a KG G, they represent each entity x ∈ EG by means of a
continuous embedding vector ex ∈ R

k, where k ∈ N is a user-defined hyperparameter.
Similarly, each predicate p ∈ RG is associated to a scoring function fp : Rk ×R

k → R,
also referred to as energy function [20]. For each pair of entities s, o ∈ EG, the score
fp(es, eo) measures the confidence that the statement encoded by 〈s, p, o〉 holds true.

TRANSE introduces a very simple but effective and efficient model: each entity
x ∈ EG is represented by an embedding vector ex ∈ R

k, and each predicate p ∈ RG is
represented by a (vector) translation operation ep ∈ R

k. The score of a triple 〈s, p, o〉 is
given by the similarity (negative L1 or L2 distance) of the translated subject embedding
(es + ep) to the object embedding eo:

fp(es, eo) = −‖(es + ep) − eo‖{1,2}. (1)

In the case of TRANSR, a different score function f ′
p is considered, that preliminarily

projects es and eo to the different d-dimensional space of the relational embeddings ep

through a suitable matrix M ∈ R
k×d:

f ′
p(es, eo) = −‖(Mes + ep) − Meo‖{1,2}. (2)
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The optimal embedding and translation vectors for predicates are learned jointly.
The method relies on a stochastic optimization process, that iteratively updates the dis-
tributed representations by increasing the score of the triples in G, i.e. the observed
triples Δ, while lowering the score of unobserved triples standing as negative examples
contained in Δ′. Unobserved triples are randomly generated by means of a corruption
process, which replaces either the subject or the object of each observed triple with
another entity in G. Formally, given an observed triple t ∈ G, let CG(t) denote the set
of all triples derived by corrupting t. Then:

Δ′ =
⋃

〈s,p,o〉∈Δ

CG(〈s, p, o〉) =
⋃

〈s,p,o〉∈Δ

{〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}. (3)

The embedding of all entities and predicates in the G is learned by minimizing a margin-
based ranking loss. Formally, let θ ∈ Θ denote a configuration for all entity and pred-
icate embeddings (i.e. the model parameters), where Θ denotes the parameters space.
The optimal model parameters θ̂ ∈ Θ is learned by solving a constrained optimization
problem that amounts to minimizing the following loss functional:

minimize
θ∈Θ

∑

〈s,p,o〉∈Δ

〈s̃,p,õ〉∈Δ′

[γ + fp(es, eo) − fp(es̃, eõ)]+ (4)

subject to ∀x ∈ EG : ‖ex‖ = 1,

where [x]+ = max{0, x}, and γ ≥ 0 is a hyperparameter referred to as margin.
The loss functional in the problem enforces the score of observed triples to be higher

than the score of unobserved triples. The constraints prevent the training process to
trivially solve the problem by increasing the entity embedding norms.

3 Evolving Models Through Background Knowledge Injection

Our approach aims at improving proposed embedding models for KGs, verifying the
intuition that the exploitation of expressive schema-level axioms may help increase the
model effectiveness. We first present TRANSOWL, injecting BK during the learning
process when applied to entity-based models like TRANSE. Then we move on towards
a new formalization that is TRANSROWL, which exploits TRANSR, to better handle
the various types of relations, besides of adopting a newly defined and more suitable
loss function and scoring function.

3.1 TRANSOWL

TRANSOWL aims at enhancing simple but effective and efficient entity-based embed-
ding models like TRANSE with a better use of the available BK. The final goal is show-
ing the feasibility of our approach, that in principle can be applied to more complex
models with additional formalization. In TRANSOWL the original TRANSE setting is
maintained while resorting to reasoning with schema axioms to derive further triples to
be considered for training and that are generated consistently with the semantics of the
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properties. Specifically, TRANSOWL defines specific constraints on the energy func-
tions for each considered axiom, that guide the way embedding vectors are learned. It
extends the approach in [19], generating a model characterized by two main compo-
nents devoted to inject BK in the embedding-based model during the training phase:

Reasoning: It is used for generating corrupted triples that can certainly represent neg-
ative instances, thus avoiding false negatives, for a more effective model training.
Specifically, using a reasoner1 it is possible to generate corrupted triples exploiting
the available axioms, specified in RDFS and OWL, namely domain, range, disjoin-
tWith, functionalProperty; moreover, false positives can be detected and avoided.

BK Injection: A set of different axioms w.r.t. those mentioned above are employed
for the definition of constraints on the energy function considered in the training
phase so that the resulting vectors related to such axioms reflect specific properties:
equivalentClass, equivalentProperty, inverseOf and subClassOf.

In TRANSOWL the basic loss function minimized in TRANSE (see Eq. 4) is more
complex adding a number of terms consistently with the constraints on the energy func-
tion based on the underlying axioms. The most interesting one amounts to generating,
new triples to be added to the training set on the grounds of the specified axioms. The
definition of the loss function along this setting is given as follows:

L =
∑

〈h,r,t〉∈Δ

〈h′,r,t′〉∈Δ′

[γ + fr(h, t) − fr(h′, t′)]+ +
∑

〈t,q,h〉∈ΔinverseOf
〈t′,q,h′〉∈Δ′

inverseOf

[γ + fq(t, h) − fq(t′, h′)]+

+
∑

〈h,s,t〉∈ΔequivProperty

〈h′,s,t′〉∈Δ′
equivProperty

[γ + fs(h, t) − fs(h′, t′)]+ +
∑

〈h,typeOf,l〉Δ∪∈ΔequivClass

〈h′,typeOf,l′〉∈Δ′∪Δ′
equivClass

[γ + ftypeOf(h, l) − ftypeOf(h′, l′)]+

+
∑

〈h,subClassOf,p〉∈ΔsubClass
〈h′,subClassOf,p′〉∈Δ′

subClass

[(γ − β) + f(h, p) − f(h′, p′)]+ (5)

where q ≡ r−, s ≡ r (properties), l ≡ t and t � p, the sets of triples denoted by Δπ ,
where π ∈ {inverseOf, equivProperty, equivClass, subClass}, represent the additional
triples generated by a reasoner exploiting such properties and f(h, p) = ‖eh −ep‖. The
different formulation for the case of subClassOf is motivated by the fact that it encodes
the additional constraint (expressing major specificity) ftypeOf(e, p) > ftypeOf(e, h)
where e is an instance, h subClassOf p and ftypeOf(e, p) = ‖ee+etypeOf−ep‖ as for the
original formulation. This also motivates the adoption of the β factor, that is required to
determine the direction of the inequality to be obtained for the energy values associated
to subclass entities (one w.r.t. the other). As for the equivalentClass formulation, the
rationale is to exploit as much as possible the information that can be made explicit
during the training phase. Particularly, we ground on the fact that the typeOf relation is
one of the most common predicates in KGs, and as such it is used as a primary target
of the training phase. In order to clarify this aspect, let us consider a class A equivalent
to a class B. Given the triple 〈h, typeOf, A〉 it is possible to derive also 〈h, typeOf, B〉.
Training the model on those derived triples brings a considerable number of new triples.

1 Facilities available in the Apache Jena framework were used: https://jena.apache.org.

https://jena.apache.org
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3.2 TRANSROWL

The main motivation for TRANSOWL was to set up a framework that was able to take
into account the BK while using a simple model. However, some of the limits of the
models grounded on TRANSE originate from an inability to suitably represent the speci-
ficity of the various types of properties. Specifically, the main limitations of TRANSE
are related to the poor modeling of reflexive and non 1-to-1 relations as well as to their
interplay. Such limitations can cause generating spurious embedding vectors with null
values or analogous vectors among different entities, thus compromising the ability of
making correct predictions. A noteworthy case regards the typeOf property, a common
N -to-N relationship. Modeling such property with TRANSE amounts to a simple vec-
tor translation; the considered individuals and classes may be quite different in terms
of properties and attributes they are involved in, thus determining strong semantic dif-
ferences (according to [27]) taking place at large reciprocal distances in the underlying
vector space, hence revealing the weakness of employing the mere translation.

TRANSR is more suitable to handle such specificity. Thus, further evolving the
approach used to derive TRANSOWL from TRANSE, a similar setting is applied to
TRANSR, resulting in another model dubbed TRANSROWL, with the variant TRAN-
SROWLR. Particularly, to be more effective on cases involving complex types of
relations, a more elaborate vectorial representation is adopted, usually resulting from
hyperplane projection [25,26] or different vector spaces [14,16]. The underlying model
influences the computation of the loss function gradient, that is required to train the
model. Hence the main variation introduced by the new model regards the way the
entities, within the energy function, are projected in the vector space of the relations,
which increases the complexity without compromising the overall scalability. The lim-
itations of TRANSE w.r.t. typeOf can be nearly overcome once the new setting based
on TRANSR is adopted. The latter, indeed, associates to typeOf, and to all other proper-
ties, a specific vector space where entity vectors are projected to. This leads to training
specific projection matrices for typeOf so that the projected entities can be located
more suitably to be linked by the vector translation associated to typeOf. Furthermore,
methods based on the regularization of the embeddings by exploiting the available
axioms [19] prove that resorting to available BK may enhance their effectiveness on
account of the addition of more specific constraints to the loss function. As such, the
resulting TRANSROWL model maintains the same setting for reasoning adopted by
TRANSOWL, but adopt a different utilization of the available axioms in two variants,
one analogous to TRANSOWL and the other, dubbed TRANSROWLR, following the
method based on the regularization of the embeddings via equivalence and inverse prop-
erty axioms [19].

TRANSROWL adapts to the TRANSR by introducing in the loss function (Eq. 5)
the TRANSR score function f ′(·) (Eq. 2) and additional weighting parameters:
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L =
∑

〈h,r,t〉∈Δ

〈h′,r,t′〉∈Δ′

[γ + f ′
r(h, t)− f ′

r(h
′, t′)]+ + λ1

∑

〈t,q,h〉∈ΔinverseOf
〈t′,q,h′〉∈Δ′

inverseOf

[γ + f ′
q(t, h)− f ′

q(t
′, h′)]+

+λ2

∑

〈h,s,t〉∈ΔequivProperty

〈h′,s,t′〉∈Δ′
equivProperty

[γ + f ′
s(h, t)− f ′

s(h
′, t′)]+ + λ3

∑

〈h,typeOf,l〉∈Δ∪ΔequivClass

〈h′,typeOf,l′〉∈Δ′∪Δ′
equivClass

[γ + f ′
typeOf(h, l)− f ′

typeOf(h
′, l′)]+

+λ4

∑

〈t,subClassOf,p〉∈ΔsubClass
〈t′,subClassOf,p′〉∈Δ′

subClass

[(γ − β) + f ′(t, p)− f ′(t′, p′)]+ (6)

where q ≡ r−, s ≡ r (properties), l ≡ t and t � p (classes), the different triple
sets, denoted by Δπ with π ∈ {inverseOf, equivProperty, equivClass, subClass}, con-
tain additional triples generated by a reasoner exploiting these properties and f ′ (case
of subClass) is defined as for TRANSOWL, considering the embedding vectors coming
from TRANSR. The parameters λi, i ∈ {1, . . . , 4}, weigh the influence that each func-
tion term in Eq. 6 has during the learning phase, analogously to the approach in [19].

In the embedding methods exploiting axiom-based regularization [19], the con-
straints on vectors to be satisfied, representing the related properties of the entities
and relations, are explicitly expressed within the loss function. Considering the model
TRANSER [19], the regularization term based on the equivalence and inverse property
axioms is defined as follows:

L =
∑

〈h,r,t〉∈Δ

(h′,r′,t′)∈Δ′

[γ + fr(h, t) − fr(h′, t′)]+ + λ
∑

r≡q−∈TinverseOf

‖r + q‖ + λ
∑

r≡p∈TequivProp

‖r − p‖ (7)

with the hyperparameter λ and where TinverseOf = {r1 ≡ q−
1 , r2 ≡ q−

2 , ..., rn ≡ q−
n }

and TequivProp = {r1 ≡ p1, r2 ≡ p2, ..., rn ≡ pn} stand for the set of inverse properties
and equivalent properties following from the axioms in the BK.

To adapt this approach to TRANSROWL, it is required to include constraints on
the considered additional properties, such as equivalentClass and subClassOf, and fur-
ther constraints on the projection matrices associated to each relation. This variant of
TRANSROWL, that is dubbed TRANSROWLR, is formalized as follows:

L =
∑

〈h,r,t〉∈Δ

〈h′,r′,t′〉∈Δ′

[γ + f ′
r(h, t) − f ′

r(h
′, t′)]+

+λ1

∑

r≡q−∈TinverseOf

‖r + q‖ + λ2

∑

r≡q−∈TinverseOf

‖Mr − Mq‖

+λ3

∑

r≡p∈TequivProp

‖r − p‖ + λ4

∑

r≡p∈TequivProp

‖Mr − Mp‖

+λ5

∑

e′≡e′′∈TequivClass

‖e′ − e′′‖ + λ6

∑

s′⊆s′′∈TsubClass

‖1 − β − (s′ − s′′)‖ (8)

where TinverseOf = {r1 ≡ q−
1 , r2 ≡ q−

2 , ..., rn ≡ q−
n }, and TequivProp = {r1 ≡ p1, r2 ≡

p2, ..., rn ≡ pn}, resp. the sets of inverse and of equivalent properties, TequivClass =
{e′

1 ≡ e′′
1 , e′

2 ≡ e′′
2 , ..., e′

n ≡ e′′
n} and TsubClass = {s′

1 � s′′
1 , s′

2 � s′′
2 , ..., s′

n � s′′
n} resp.
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the sets of equivalent classes and subclasses. Parameters λi, i ∈ {1, . . . , 6}, determine
the weights to be assigned to each constraint and β has the same role mentioned above.
The additional term for projection matrices is required for inverseOf and equivProp
triples to favor the equality of their projection matrices. This is for having the same
energy associated, via score function, to the triples in their respective sets. Considering
for instance 〈h, r, t〉 and 〈h, p, t〉, if r equivProp p, their energy should be equal.

The idea of taking into account the regularization of the embeddings by means of the
axioms, has been experimentally tested (see Sect. 4) in order to assess whether directly
imposing such constraints is more advantageous than generating further triples, based
on the same constraints, as in the original definition of the TRANSROWL model.

4 Experimental Evaluation

In this evaluation we focused on TRANSOWL, TRANSROWL, TRANSROWLR com-
pared to the original models TRANSE and TRANSR as a baseline. The evaluation aims
at assessing the improvement brought by the choices made for defining new models,
grounded on the exploitation of BK injection.

Specifically, we tested the performance of the mentioned models and related sys-
tems on the task of Link Prediction, together with Type Prediction (that, given typeOf-
triple for a subject, verifies if the model is able to correctly predict a class the individual
belongs to). Then we also tested the models on Triple Classification problems, i.e. the
ability to classify new triples as true or false. Preliminarily, in the following section,
the settings of the experiments are described jointly with the references to the adopted
datasets and source code.

4.1 Experiment Setup

Datasets. The models were tested on four datasets drawn from the following KGs, that
have been considered in the experimental evaluations of related works [6,17].

DBpedia. It is a well-known KG with data extracted from Wikipedia. Its vocabulary has
320 classes and 1650 properties. The English version2 describes 4,58M resources,
4,22M of them classified in an ontology. Its dimensions and the presence of 27M
RDF links towards 30+ external sources make it one of the principal reference of the
Linked Data cloud. We considered two datasets that were extracted to ensure suit-
able axioms to test the models under evaluation, namely axioms on domain, range,
disjointWith, functionalProperty, equivalentClass, equivalentProperty, inverseOf
and subClassOf, in the two variants dubbed3 DBpedia100K [6], containing about
100K entities and 321 relations in 600K triples, and DBpedia15K4 [17], containing
about 12.8K entities and 278 relations in 180K triples.

2 https://wiki.dbpedia.org/about.
3 https://github.com/iieir-km/ComplEx-NNE AER/tree/master/datasets/DB100K.
4 https://github.com/nle-ml/mmkb/tree/master/DB15K.

https://wiki.dbpedia.org/about
https://github.com/iieir-km/ComplEx-NNE_AER/tree/master/datasets/DB100K
https://github.com/nle-ml/mmkb/tree/master/DB15K
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DBPediaYAGO. YAGO 5 is a KG organizing knowledge coming from different sources
such as WordNet, GeoNames and Wikipedia, including 350K+ classes, 10M enti-
ties and 120M assertions [22]. It has been exploited to extend and complete DBpe-
dia15K, resulting in DBPediaYAGO exploiting the many links connecting to DBpe-
dia. DBPediaYAGO is characterized by about 290K triples, with 88K entities and
316 relations.

NELL. The dataset6 comes from a knowledge extraction system for eliciting facts from
corpora of Web pages. The resulting KG amounts to 2.810K+ assertions regarding
1.186 different relations and categories. We considered a fragment of NELL2RDF-
vanilla7, that does not contain all of the properties that can be exploited by the pro-
posed model variants. The considered dataset is made up of about 150K triples, with
272 properties and 68K entities. The aim was to test the models on a dataset with
a limited set of exploitable properties, namely subClassOf, inverseOf, functional-
Property, disjointWith, range and domain. The abundance of subClassOf-triples,
together with a limited number of typeOf-triples for each entity, is meant to test if
the models are able to compensate this partial incompleteness and improve the per-
formance of the base models. Considering the inverseOf-axioms allows to compare
directly the performance of TRANSROWL and TRANSROWLR, when generating
new triples for training or regularizing the embeddings.

Parameter Settings. All models were set up along the same procedure and param-
eter values, consistently with the experiments illustrated in [3,16]: learning rate:
0.001; minibatch dimension: 50; entity/relation vector dimension = 100; epochs:
{250, 500, 1000}. This choice is motivated by the fact that our first aim is to verify the
possible improvements of the proposed solutions over the basic models when exactly
the same conditions, including the parameter values, apply.

Due to a tendency to overfitting that is known to affect TRANSR, it requires an ini-
tialization of the embeddings performed via TRANSE (see [16]). Similarly, also TRAN-
SROWL and its variant were initialized with these embeddings. Overfitting has been
checked on the models derived from TRANSR along the different numbers of epochs.
Moreover, the bern strategy for triple corruption phase was adopted, as this choice led
to a better performance compared to the unif strategy in previous experimental eval-
uations of this class of models [14,16,25,26]. The unif strategy generates negative
triples by sampling a pair of entities for subject and object from EG, assigning uniform
probabilities to the possible replacements; bern assigns different chances (along with
a Bernoulli distribution) based on the nature (1-to-1,1-to-N, N-to-N) of the relation.

As for the TRANSROWL loss function regularization hyperparameters λi, the fol-
lowing values have been found: inverseOf λ1 = 1; equivalentProperty λ2 = 1; equiva-
lentClass λ3 = 0.1; subClassOf λ4 = 0.01; whilst as for TRANSROWLR: λ1 = λ2 =
λ3 = λ4 = λ5 = λ6 = 0.1;

5 https://yago-knowledge.org/.
6 http://rtw.ml.cmu.edu/rtw/.
7 http://nell-ld.telecom-st-etienne.fr/.

https://yago-knowledge.org/
http://rtw.ml.cmu.edu/rtw/
http://nell-ld.telecom-st-etienne.fr/
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Each dataset was partitioned into training, validation and test sets by randomly
selecting 70%, 10%, 20% of the triples per run. Datasets and their partitions, resulting
embedding models, together with the source code are available in a public repository8.

4.2 Link Prediction

Following the standard methodologies for evaluating Translational Distance Models,
we focus on predicting the missing individuals in given incomplete triples. Specifically
the models are used to predict triples 〈h, r, t〉, with h, t ∈ EG and r ∈ RG, correspond-
ing to the patterns 〈?, r, t〉, 〈h, r, ?〉.

The typical metrics considered for this task are Mean Rank and H@10 (the lower
the better, and vice-versa, resp.), that are based on predictions rankings. Two variants
are generally taken into account, Raw and Filtered, where the latter filters off triples
that amount to corrupted ones, i.e. negative cases generated for training the model. For
a deeper insight, we measured separately the performance considering all properties but
typeOf, and then on typeOf only. This allows to verify the improvement brought by the
new models considering Type Prediction (i.e. classification) problems on the classes of
each KG.

As mentioned above, the embeddings were initialized by a first run of TRANSE
(1000 epochs), and the training was run for up to further 1000 epochs. To appreciate
the performance trends, for TRANSR and its extensions, we also report the test results
for models trained in intermediate numbers of epochs, namely 250 and 500. This is in
order to check the occurrence of overfitting cases as discussed above.

The complete outcomes of the link prediction experiments are illustrated in Table 1
(best results are bolded, with ties decided by the precise figures).

Preliminarily, comparing the overall performance of TRANSE and TRANSOWL,
the latter seems to be able to improve only on classification tasks (those targeting
typeOf) and in the experiments on DBpediaYAGO and NELL, it proves even better, in
terms of MR, than TRANSR and derived models. This suggests that TRANSOWL is par-
ticularly suitable for classification. However, in most of the cases the best performance
on this task was achieved by TRANSROWL especially in terms of H@10. Compared to
the results achieved by TRANSR, one cannot conclude that the subClassOf axioms have
determined the same improvements of TRANSOWL compared to TRANSE, suggesting
that more complex models may require more advanced strategies.

Conversely, the results regarding the other properties (no typeOf columns) con-
firmed that TRANSR and derived models are more suitable for general link prediction
problems: TRANSROWL and TRANSROWLR in most of the cases performed much
better than TRANSE and TRANSOWL. Compared to TRANSR, TRANSROWL and
TRANSROWLR showed a better performance, except few cases in which TRANSR
resulted slightly better especially in terms of MR, but they were close runner-ups.
The improvement w.r.t. TRANSE and TRANSOWL is due to the more suitable rep-
resentation for the relations. This is more evident from the outcomes on DBpedia100K
and DBpediaYAGO, the latter having been specifically extended to improve the com-
pleteness. As argued in [11], a more complete dataset yields a larger number of triples

8 https://github.com/Keehl-Mihael/TransROWL-HRS.

https://github.com/Keehl-Mihael/TransROWL-HRS
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Table 1. Link prediction outcomes (MR = Mean Rank and H@10 = Hits@10)

DBpedia15K

Model Epochs no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

(raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSE 1000 587.07 32.46 573.94 35.01 692.29 9.75 67.05 15.68

TRANSOWL 1000 621.06 32.24 607.91 34.85 493.46 13.20 29.14 20.85

TRANSR 250 583.72 60.57 570.54 63.37 498.58 84.86 26.42 93.09

TRANSR 500 587.37 60.66 574.12 63.42 499.39 85.01 20.15 94.51

TRANSR 1000 600.12 60.67 586.83 63.57 504.13 85.01 13.96 95.50

TRANSROWL 250 584.94 60.88 571.74 63.48 493.24 84.91 25.10 93.72

TRANSROWL 500 598.03 60.77 584.79 63.58 487.44 84.97 17.50 95.38

TRANSROWL 1000 606.73 60.59 593.45 63.48 484.04 85.18 13.53 96.54

TRANSROWLR 250 585.84 60.68 572.62 63.40 498.50 84.85 26.60 93.10

TRANSROWLR 500 592.78 60.66 579.55 63.42 491.98 84.97 19.73 95.52

TRANSROWLR 1000 607.43 60.71 594.13 63.65 497.40 85.12 16.50 96.24

DBpedia100K

Model Epochs no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

(raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSE 1000 2233.40 38.56 2204.39 41.11 2224.26 3.62 1615.68 3.86

TRANSOWL 1000 2430.51 38.12 2401.67 40.69 2152.89 5.64 1728.52 6.02

TRANSR 250 2160.79 52.83 2131.51 55.45 1911.06 92.21 1480.79 92.23

TRANSR 500 2152.40 53.02 2122.94 55.67 1927.16 92.17 1479.44 92.35

TRANSR 1000 2142.10 53.17 2112.42 55.96 1957.42 92.04 1480.26 92.25

TRANSROWL 250 2165.42 52.67 2136.25 55.26 1904.80 92.22 1483.62 92.23

TRANSROWL 500 2147.47 52.92 2118.12 55.59 1933.79 92.22 1498.14 92.37

TRANSROWL 1000 2147.56 53.24 2117.87 56.03 1961.75 92.29 1503.87 92.43

TRANSROWLR 250 2159.51 52.76 2130.29 55.35 1915.67 91.98 1485.03 92.18

TRANSROWLR 500 2136.73 52.92 2107.29 55.64 1955.90 92.07 1515.07 92.27

TRANSROWLR 1000 2121.52 53.08 2091.81 55.95 1971.98 92.24 1511.07 92.43

DBpediaYAGO

Model Epochs no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

(raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSE 1000 7417.08 19.24 7385.12 20.20 587.19 8.71 157.14 19.42

TRANSOWL 1000 7455.49 19.21 7423.56 20.18 580.29 8.68 162.03 19.43

TRANSR 250 7279.11 44.04 7247.16 45.13 656.10 83.66 187.91 93.47

TRANSR 500 7256.86 44.03 7224.74 45.18 738.33 81.33 249.10 88.68

TRANSR 1000 7271.50 44.64 7239.09 46.07 844.51 81.98 348.65 88.99

TRANSROWL 250 7279.37 43.76 7247.37 44.92 702.22 84.48 243.45 94.54

TRANSROWL 500 7274.77 43.94 7242.67 45.13 796.46 83.44 314.03 92.93

TRANSROWL 1000 7209.02 44.45 7176.64 45.84 868.27 82.81 373.90 91.17

TRANSROWLR 250 7274.52 43.61 7242.52 44.78 667.70 83.21 208.90 93.22

TRANSROWLR 500 7196.12 44.15 7164.00 45.34 752.57 82.08 271.03 90.52

TRANSROWLR 1000 7226.55 44.13 7194.21 45.52 845.42 81.71 352.16 88.77

NELL

Model Epochs no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

(raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSE 1000 7162.08 19.01 6969.07 26.54 2872.45 6.55 2708.90 6.82

TRANSOWL 1000 9622.40 15.54 9423.73 21.72 2263.09 6.52 2092.51 6.92

TRANSR 250 7118.13 47.13 6921.77 55.10 2796.70 79.28 2628.58 79.70

TRANSR 500 6928.74 47.31 6728.67 55.62 2585.97 79.19 2415.26 79.66

TRANSR 1000 6891.20 47.40 6681.76 55.93 2315.08 79.94 2140.16 80.50

TRANSROWL 250 7263.08 46.76 7066.55 54.72 2775.22 79.05 2606.66 79.40

TRANSROWL 500 7005.75 46.86 6804.32 55.07 2545.47 79.44 2374.09 79.86

TRANSROWL 1000 7136.77 46.72 6929.10 55.40 2334.50 80.00 2161.67 80.56

TRANSROWLR 250 7530.80 45.89 7334.86 53.51 2714.23 78.40 2547.79 78.75

TRANSROWLR 500 7300.14 46.04 7098.93 53.89 2527.41 79.81 2357.55 80.20

TRANSROWLR 1000 7339.53 46.09 7132.22 54.15 2310.11 79.52 2138.99 80.21
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describing single entities/relations, as the resulting prediction model, with more param-
eters to be fitted, can be better trained.

The case of the NELL dataset is more peculiar, as it aimed at testing the models
in a condition of larger incompleteness and with a smaller number of properties to be
exploited for knowledge injection. Specifically, this dataset is characterized by a much
lower number of typeOf-triples per entity, thus making classification a much harder
task. This lack is (partly) compensated by a wealth of subClassOf axioms that can be
exploited during the training of class vectors (an ability, introduced in TRANSOWL,
that is shared also by TRANSROWL and TRANSROWLR). Another type of axioms
that abound in the NELL dataset is inverseOf. The link prediction results (no typeOf-
triples) show a lower performance of both TRANSOWL and TRANSROWL, which
suggests that the underlying approach has margins for improvements in its definition
and/or calls for a better fitting of the regularization parameters.

Considering the outcomes on intermediate models (after 250 or 500 epochs elapsed)
we observe that the methods were not able to improve the resulting models along with
the iterations: in a few cases the overall best results were achieved by models trained
after fewer epochs had elapsed. This suggests that a more refined regularization would
be required.

Lastly, we noticed that TRANSROWL and TRANSROWLR turned out substantially
equivalent in terms of effectiveness, thus indicating efficiency as a criterion for the
choice between the alternatives.

4.3 Triple Classification

Triple Classification is another KG refinement task that focuses on discerning correct
from incorrect triples with respect to the KG. Also for this task, the way for evaluating
predictive models has be consistent with the KG embedding methods.

The evaluation procedure introduced in [24] measures the ability to predict whether
a triple is positive or negative, i.e. it represents a true or false fact w.r.t. the KG. To
make this decision, a threshold sr is to be determined for each r ∈ RG so to maximize
the False Positive Rate (FPR), then test triples will be deemed as positive when their
energy-based score is greater than sr, and negative otherwise [18,26]. The value for sr

was estimated considering a random sample of r-triples selected from the training set.
They represent the triples that the model has learned to deem as true; for each sampled
triple the energy value is computed, measuring the degree of likelihood associated to
the triple, setting the threshold sr to the minimum value. The ability of the model to
correctly classify triples is evaluated considering the thresholds obtained for the single
relations; this unavoidably increases the chance of predicting as true triples that are
actually false, thus it allows to better evaluate the model robustness on the classification
of typeOf-triples (especially with simple models such as TRANSE).

Analogously to the previous experiments the performance indices were determined
separating the cases of typeOf-triples from those involving the other properties. This
allows to better focus on the performance of the proposed models on this relation. The
corrupted (negative) triples required for the tests, were generated by reasoning on range
and domain axioms for the experiment excluding typeOf, while disjointWith axioms
were exploited to get false typeOf-triples.
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Table 2. Triple classification outcomes (Accuracy, Precision, Recall and FP Rate)

DBpedia15K

Model Epochs no typeOf typeOf

Acc P R FPR Acc P R FPR

TRANSE 1000 0.663 0.991 0.407 0.006 0.899 0.781 0.958 0.865

TRANSOWL 1000 0.658 0.967 0.407 0.023 0.975 0.990 0.933 0.127

TRANSR 250 0.655 0.998 0.390 0.002 0.961 0.928 0.954 0.616

TRANSR 500 0.650 0.996 0.380 0.002 0.978 0.979 0.953 0.303

TRANSR 1000 0.641 0.998 0.364 0.001 0.972 0.966 0.946 0.378

TRANSROWL 250 0.646 0.996 0.373 0.003 0.969 0.924 0.987 0.857

TRANSROWL 500 0.652 0.997 0.385 0.002 0.985 0.993 0.960 0.141

TRANSROWL 1000 0.631 0.997 0.347 0.002 0.962 0.999 0.882 0.006

TRANSROWLR 250 0.648 0.997 0.377 0.002 0.937 0.989 0.816 0.049

TRANSROWLR 500 0.647 0.997 0.376 0.002 0.938 0.994 0.815 0.027

TRANSROWLR 1000 0.628 0.998 0.342 0.001 0.981 0.969 0.972 0.523

DBpedia100K

Model Epochs no typeOf typeOf

Acc P R FPR Acc P R FPR

TRANSE 1000 0.742 0.993 0.390 0.004 0.958 0.667 0.943 0.891

TRANSOWL 1000 0.714 0.901 0.359 0.058 0.980 0.908 0.835 0.337

TRANSR 250 0.730 0.997 0.359 0.001 0.983 0.890 0.900 0.526

TRANSR 500 0.721 0.998 0.337 0.001 0.980 0.853 0.910 0.635

TRANSR 1000 0.711 0.998 0.313 0.001 0.976 0.884 0.800 0.344

TRANSROWL 250 0.744 0.998 0.392 0.001 0.983 0.924 0.851 0.321

TRANSROWL 500 0.730 0.995 0.361 0.003 0.979 0.965 0.768 0.106

TRANSROWL 1000 0.705 0.998 0.300 0.001 0.987 0.940 0.895 0.353

TRANSROWLR 250 0.732 0.997 0.364 0.002 0.952 0.635 0.936 0.893

TRANSROWLR 500 0.717 0.997 0.328 0.002 0.971 0.951 0.668 0.094

TRANSROWLR 1000 0.704 0.998 0.298 0.001 0.981 0.872 0.890 0.543

DBpediaYAGO

Model Epochs no typeOf typeOf

Acc P R FPR Acc P R FPR

TRANSE 1000 0.654 0.914 0.428 0.066 0.962 0.969 0.841 0.144

TRANSOWL 1000 0.692 0.887 0.441 0.091 0.931 0.961 0.688 0.081

TRANSR 250 0.658 0.953 0.331 0.024 0.885 0.965 0.449 0.029

TRANSR 500 0.656 0.964 0.325 0.017 0.861 0.955 0.335 0.023

TRANSR 1000 0.644 0.964 0.300 0.016 0.844 0.946 0.247 0.018

TRANSROWL 250 0.662 0.965 0.336 0.018 0.980 0.982 0.919 0.170

TRANSROWL 500 0.658 0.964 0.328 0.018 0.867 0.988 0.351 0.006

TRANSROWL 1000 0.649 0.968 0.307 0.014 0.905 0.973 0.547 0.032

TRANSROWLR 250 0.651 0.963 0.315 0.017 0.876 0.965 0.406 0.024

TRANSROWLR 500 0.648 0.978 0.302 0.010 0.864 0.959 0.349 0.023

TRANSROWLR 1000 0.636 0.981 0.277 0.007 0.854 0.953 0.299 0.020

NELL

Model Epochs no typeOf typeOf

Acc P R FPR Acc P R FPR

TRANSE 1000 0.733 0.755 0.691 0.420 0.626 0.276 0.900 0.959

TRANSOWL 1000 0.675 0.677 0.671 0.493 0.819 0.430 0.615 0.680

TRANSR 250 0.751 0.810 0.656 0.311 0.715 0.305 0.672 0.823

TRANSR 500 0.751 0.819 0.644 0.285 0.749 0.311 0.544 0.726

TRANSR 1000 0.758 0.843 0.636 0.245 0.803 0.389 0.519 0.630

TRANSROWL 250 0.745 0.816 0.632 0.279 0.562 0.246 0.911 0.969

TRANSROWL 500 0.744 0.815 0.633 0.282 0.735 0.311 0.610 0.776

TRANSROWL 1000 0.744 0.835 0.608 0.234 0.763 0.334 0.560 0.717

TRANSROWLR 250 0.737 0.807 0.621 0.281 0.634 0.268 0.804 0.919

TRANSROWLR 500 0.743 0.830 0.612 0.245 0.723 0.293 0.583 0.771

TRANSROWLR 1000 0.739 0.845 0.587 0.207 0.760 0.337 0.598 0.745
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The experimental setting is analogous to the first part (see Sect. 4.1). Table 2 reports
the complete results for each dataset in terms of accuracy, precision, recall, and false
positive rate. Focusing preliminarily on the results of TRANSE and TRANSROWL, we
can appreciate a general improvement of the latter especially in terms of FPR (typeOf
problems) and in terms of accuracy and recall in (no typeOf) experiments on two
datasets in which it outperformed also the other models. The overall results show that
TRANSROWL and TRANSROWLR, achieve the best performance, with a few excep-
tions, particularly in terms of FPR, also on account of a higher precision and limited
decays in terms of recall thus resulting in comparable accuracy measures. These similar
performance are likely due to the similar formulation of the respective loss function. In
the case of TRANSROWL it determines the generation of further triples, based on the
specified axioms, used to train the models: all entities and relations are involved in train-
ing. Conversely, in the case of TRANSROWLR, only entities and relations that comply
with the properties in the constraints are considered. This may explain the slightly supe-
rior performance of TRANSROWL. Analogously to the experiments in Sect. 4.2, a more
incomplete dataset like NELL turned out to be more difficult for methods relying on a
rich BK, whereas a more complete dataset like DBpediaYAGO, yielded a better perfor-
mance of the newly proposed models with differences between the problems focusing
on/excluding typeOf-triples.

Considering the outcomes on intermediate models again there is no clear indication
of improvement with the elapsing of the epochs on all performance indexes. This may
suggest that involving targeted objectives in the training loop may help.

5 Related Work

The presented knowledge injection approach could be applied to many other embedding
models [4] with the aim of exploiting the rich schema-level axioms often available in
the context of the Semantic Web. However, various approaches have been proposed
that leverage different specific forms of prior knowledge to learn better representations
exploited for KG refinement tasks.

In [9] a novel method was proposed jointly embedding KGs and logical rules, where
triples and rules are represented in a unified framework. Triples are represented as
atomic formulae while rules are represented as more complex formulae modeled by
t-norm fuzzy logics admitting antecedents single atoms or conjunctions of atoms with
variables as subjects and objects. A common loss over both representation is defined
which is minimized to learn the embeddings. The specific form of BK which has to be
available for the KG constitutes the main drawback of these approaches.

In [21] a solution based on adversarial training is proposed that exploits Datalog
clauses to encode assumptions which are used to regularize neural link predictors. An
inconsistency loss is derived that measures the degree of violation of such assumptions
on a set of adversarial examples. Training is defined as a minimax problem, in which
the models are trained by jointly minimizing the inconsistency loss on the adversarial
examples jointly with a supervised loss. A specific form of BK is required and a spe-
cific form of local CWA is assumed to reason with it. The availability of such clauses
and the assumptions on their semantics represent the main limitations of this approach.
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Another neural-symbolic approach exploiting prior knowledge through Logic Tensor
Networks [7] has been applied to similar classification tasks.

A common shortcoming of the related methods is that BK is often not embedded in a
principled way. In [10], investigating the compatibility between ontological knowledge
and different types of embeddings, they show that popular embedding methods are not
capable of modeling even very simple types of rules, hence they are not able to learn
the underlying dependencies. A general framework is introduced in which relations are
modeled as convex regions which exactly represent ontologies expressed by a specific
form of rules, that preserve the semantics of the input ontology.

In [1] the limitations of the current embedding models were identified: theoretical
inexpressiveness, lack of support for inference patterns, higher-arity relations, and log-
ical rule incorporation. Thus, they propose the translational embedding model BOXE
which embeds entities as points, and relations as a set of hyper-rectangles, which char-
acterize basic logical properties. This model was shown to offer a natural encoding for
many logical properties and to be able to inject rules from rich classes of rule languages.

6 Conclusions and Ongoing Work

We have proposed an approach to learn embedding models based on exploiting prior
knowledge both during the learning process and the triple corruption process to improve
the quality of the low-dimensional representation of knowledge graphs. New models
have been defined TRANSOWL, TRANSROWL and TRANSROWLR, implemented as
publicly available systems. An experimental evaluation on knowledge graph refinement
tasks has proved the improvements of the derived models compared to the original ones,
but also some shortcomings that may suggest valuable research directions to be pursued.

We are currently working on the application of the presented approach to newer
embedding models which have been proved more effective than those considered in this
work. We intend to extend the approach by exploiting further schema-axioms as well
as hierarchical patterns on properties that can be elicited from the embeddings, namely
clusters of relations and hierarchies of sub-relations. We are also planning to apply
embedding models for solving other predictive problems related to the KGs. Following
some previous works, further methods based on embedding spaces induced by specific
kernel functions will also be investigated.

Acknowledgment. We would like to thank Giovanni Sansaro who formalized and developed the
code for the preliminary version of TransOWL for his bachelor thesis.
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