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Abstract: As a complement to clinical disease surveillance, the monitoring of Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater can be used as an early warning system
for impending epidemics. This study investigated the dynamics of SARS-CoV-2 in untreated wastew-
ater with respect to the trend of coronavirus disease 2019 (COVID-19) prevalence in Southern Italy. A
total of 210 wastewater samples were collected between May and November 2020 from 15 Apulian
wastewater treatment plants (WWTP). The samples were concentrated in accordance with the stan-
dard of World Health Organization (WHO, Geneva, Switzerland) procedure for Poliovirus sewage
surveillance, and molecular analysis was undertaken with real-time reverse-transcription quantita-
tive PCR (RT-(q) PCR). Viral ribonucleic acid (RNA) was found in 12.4% (26/210) of the samples. The
virus concentration in the positive samples ranged from 8.8 × 102 to 6.5 × 104 genome copies/L.
The receiver operating characteristic (ROC) curve modeling showed that at least 11 cases/100,000
inhabitants would occur after a wastewater sample was found to be positive for SARS-CoV-2 (sensi-
tivity = 80%, specificity = 80.9%). To our knowledge, this is the first study in Italy that has applied
wastewater-based epidemiology to predict COVID-19 prevalence. Further studies regarding methods
that include all variables (meteorological phenomena, characteristics of the WWTP, etc.) affecting
this type of wastewater surveillance data would be useful to improve data interpretation.

Keywords: coronavirus; SARS-CoV-2; wastewater-based epidemiology; surveillance

1. Introduction

Several studies have investigated the presence of Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) in wastewater [1–5] in the world. Viral shed-
ding in stool can occur in 50% of symptomatic, asymptomatic, pre- and post-symptomatic
patients with coronavirus disease 2019 (COVID-19). The shedding duration at a load of
102 to 108 ribonucleic acid (RNA) copies/g varies among patients, with an average of
14–21 days [6–11].
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Some authors [12–14] have reported a high correlation between the detection of SARS-
CoV-2 in wastewater and the number of COVID-19 cases in the catchment area served
by wastewater treatment plants (WWTPs), suggesting that the monitoring of wastewater
could be a useful tool for predicting trends in COVID-19 prevalence. This approach, known
as wastewater-based epidemiology (WBE), could solve certain limitations in existing
surveillance systems that have been highlighted during the current COVID-19 pandemic
or during previous ones (e.g., asymptomatic carriers, timing of diagnosis) [15].

To date, wastewater monitoring has been implemented as a successful strategy to
track other health-related chemical and biological biomarkers, for example, in relation to
illicit drug consumption, pharmaceutical use/abuse, water pollution, and the occurrence
of antimicrobial resistance genes [16–20].

In Italy, the first detection of SARS-CoV-2 in a sewage sample was documented in
northern Italy in December 2019 [21], though the first autochthonous case of COVID-19
was recognized in February 2020. Italy has been among the most severely affected countries
in the world, to the point that the Ministerial Decree issued on 11 March 2020 [22] limited
the movement of people throughout the nation and implemented social, recreational, and
cultural lockdown measures that were enforceable [23–25]. In Italy, after a decline in
infections owing to the vaccination campaign that began in January 2021, as of 21 July 2021,
the national weekly incidence increased (19/100,000 inhabitants), primarily because of the
circulation of the Delta variant [26]. This trend is similar to that of other European countries.
To date, although the correlation between the occurrence of SARS-CoV-2 in wastewater
and the number of COVID-19 cases [4,12–14] has been demonstrated, few studies have
been conducted regarding the application of WBE to predict COVID-19 prevalence due to
the complexity and uncertainties associated with the process [27].

Here, we report the first detection of SARS-CoV-2 RNA in untreated wastewater
samples in Southern Italy, collected from WWTPs in the Apulia region. The aims of this
study were: (1) To investigate the dynamics of SARS-CoV-2 in untreated wastewater with
respect to the trend of COVID-19 cases in the region; (2) To apply WBE to predict COVID-19
prevalence.

2. Materials and Methods
2.1. Study Design

Apulia is a region of Southern Italy that hosts a population of approximately 4 million
inhabitants distributed in six provinces: Bari (BA), Barletta-Andria-Trani (BT), Brindisi
(BR), Foggia (FG), Lecce (LE), and Taranto (TA). Apulia covers approximately 20,000 km2

and extends for 834 km along the coast.
The Apulian Water Agency manages the largest European aqueduct, with an ap-

proximate 20,000 km water network and a 10,000 km sewerage pipe network. Currently,
184 WWTPs (BA = 27; BT = 12; BR = 18; FG = 69; LE = 39; TA = 22) serve the region,
covering 74% of total need [28]. Of these, 15 WWTPs were selected for the investigation
and are uniformly distributed throughout the region: BA (two plants, A and B), BT (three
plants, A–C), BR (one plant, A), FG (four plants, A–D), LE (three plants, A–C), and TA (two
plants, A and B) (Figure 1). These WWTPs serve a total of 1,857,189 inhabitants (47.0% of
Apulia’s population, Table 1).
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Figure 1. Locations of the included WWTPs in the Apulia region (Southern Italy). 

Table 1. Population and current capacity of the included WWTPs (source: Apulian Water Agency, 
http://www.aqp.it, accessed on 1 August 2021 [28]). 

Province and WWTP a Served population b Current capacity c (m3/d) d 

BA-A 224,830 84,854
BA-B 380,924 66,634
BT-A 130,000 13,907
BT-B 127,728 15,061
BT-C 66,232 12,960
BR-A 116,022 18,000
FG-A 183,695 33,148
FG-B 75,895 10,000
FG-C 15,969 2150 
FG-D 33,789 4900 
LE-A 43,302 6344 
LE-B 37,576 10,546
LE-C 147,307 25,753
TA-A 34,754 8757 
TA-B 239,166 34,045

a WWTP: Wastewater treatment plant; b Population connected to the wastewater treatment plant;  c 

Average water flow observed during the study period; d m3/d, water flow expressed as volume per 
day; BA-A, Bari-plant A; BA-B, Bari-plant B; BT-A, Barletta-Andria-Trani, plant A; BT-B, Barletta-
Andria-Trani, plant B; BT-C, Barletta-Andria-Trani, plant C; BR-A, Brindisi, plant A; FG-A Foggia, 
plant A; FG-B, Foggia, plant B; FG-C, Foggia, plant C; FG-D, Foggia, plant D; LE-A, Lecce-plant A; 
LE-B, Lecce-plant B; TA-A, Taranto-plant A and TA-B, Taranto-plant B.

Figure 1. Locations of the included WWTPs in the Apulia region (Southern Italy).

Table 1. Population and current capacity of the included WWTPs (source: Apulian Water Agency,
http://www.aqp.it, accessed on 1 August 2021 [28]).

Province and WWTP a Served population b Current capacity c (m3/d) d

BA-A 224,830 84,854

BA-B 380,924 66,634

BT-A 130,000 13,907

BT-B 127,728 15,061

BT-C 66,232 12,960

BR-A 116,022 18,000

FG-A 183,695 33,148

FG-B 75,895 10,000

FG-C 15,969 2150

FG-D 33,789 4900

LE-A 43,302 6344

LE-B 37,576 10,546

LE-C 147,307 25,753

TA-A 34,754 8757

TA-B 239,166 34,045
a WWTP: Wastewater treatment plant; b Population connected to the wastewater treatment plant; c Average
water flow observed during the study period; d m3/d, water flow expressed as volume per day; BA-A, Bari-
plant A; BA-B, Bari-plant B; BT-A, Barletta-Andria-Trani, plant A; BT-B, Barletta-Andria-Trani, plant B; BT-C,
Barletta-Andria-Trani, plant C; BR-A, Brindisi, plant A; FG-A Foggia, plant A; FG-B, Foggia, plant B; FG-C, Foggia,
plant C; FG-D, Foggia, plant D; LE-A, Lecce-plant A; LE-B, Lecce-plant B; TA-A, Taranto-plant A and TA-B,
Taranto-plant B.

http://www.aqp.it
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2.2. Sample Collection

A total of 210 wastewater samples were collected from 15 Apulian WWTPs, as well as
28 from BA, 56 from FG, 42 from LE, 28 from TA, 42 from BT, and 14 from BR. The sampling
of untreated wastewater was performed by the Regional Environmental Protection Agency
twice per month from May to November 2020. Composite samples over a 24 h period were
collected from the WWTP influent post the inlet screens, immediately stored at −20 ◦C,
and dispatched frozen to a regional reference laboratory for SARS-CoV-2 analysis (the
Environmental and Food Hygiene Laboratory of the Department of Biomedical Science and
Human Oncology, University of Bari, Aldo Moro, Italy, hereafter referred to as EnLab). The
samples were stored frozen until further analysis. The samples were processed using Class
II biological safety cabinets, and standard precautions were applied (hand hygiene products
and personal protective equipment such as gloves, gowns, and face and eye protection).

Before virus concentration, the samples were thawed and underwent a 30 min treat-
ment at 57 ◦C to inactivate the possibly present infectious viral particles to increase the
safety of the analytical protocol for both the laboratory personnel and the environment [2].

2.3. Virus Concentration

Sample concentration was carried out via a two-phase separation (the polyethylene
glycol–dextran method) in accordance with the World Health Organization (WHO, Geneva,
Switzerland) Guidelines for the Environmental Surveillance of Poliovirus [29], with mod-
ifications as reported by La Rosa et al. [2] to adapt the protocol to enveloped viruses. In
brief, a wastewater sample (250 mL) was centrifuged to pellet the solids, and the pellet was
stored at 4 ◦C for further processing. The clarified wastewater was mixed with dextran
(22%), NaCl (5 N), and polyethylene glycol 6000 (29%), and the mixture was agitated on
an orbital shaker for 30 min at 4 ◦C. The mixture was then transferred to a separation
funnel and allowed to stand overnight at 4 ◦C. The bottom layer and the interphase were
then collected drop-wise, and this concentrate was added to the pellet from the initial
centrifugation. The combined sample was treated with chloroform (1: 5 v/v) and assayed
for the presence of virus.

2.4. RNA Extraction

The concentrated sample underwent viral RNA extraction using the NucliSENS
miniMAG semi-automated extraction system with magnetic silica, following the manu-
facturer’s instructions (bioMerieux, Marcy l’Etoile, France) with some modifications. In
particular, the lysis phase was prolonged from 10 to 20 min, and a short centrifugation
(2000× g, 1 min) was used to pellet the sediment. Additionally, instead of 50 µL, 100 µL
of magnetic silica beads was added to each sample. The extracted nucleic acids were
further purified by polymerase chain reaction (PCR) inhibitors using the OneStep PCR
Inhibitor Removal Kit (Zymo Research, Irvine, CA, USA) and stored at −20 ◦C until
molecular analysis.

After the RNA extraction, a portion of each sample was processed in the EnLab labo-
ratory (Bari, Italy) for qualitative assessment, and a portion was transferred to the Istituto
Superiore di Sanità laboratory (Rome, Italy, hereafter referred to as ISS) for quantitative
assessment.

2.5. Real-Time Reverse-Transcription Quantitative PCR (Real-Time RT-(q) PCR)

Real-time RT-(q) PCR analysis was performed as described in La Rosa et al. [19].
Briefly, each 25 µL reaction contained 5 µL of RNA, 12.5 µL of 2× reaction buffer pro-
vided with the AgPath-ID™ One-Step RT-PCR reagents (Applied Biosystems, Foster City,
CA, USA, 1 µL of 25× RT-PCR enzyme mix, 1 µL of forward primer (12.5 µM), 1 µL of
reverse primer (22.5 µM), 1 mL of probe (6.25 µM), 1.83 µL of nuclease-free water (not
DEPC, diethylpyrocarbonate-treated), and 1.67 µL of detection enhancer for real-time PCR
(Applied Biosystems, Foster City, CA, USA). The following primer and probe sequences
were used: CoV-2-F: ACA TGG CTT TGA GTT GAC ATC T (code 2297); CoV-2-R: AGC
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AGT GGA AAA GCAT GTG G (code 2298); CoV-2-P: FAM-CAT AGA CAA CAG GTG
CGC TC-MGBEQ (code 2299) [21]. The RT-PCR experiments were carried out in triplicate
using the CFX96 Touch Deep Well Real-Time PCR System (Bio-Rad, Hercules, CA, USA)
for detection and the Quant Studio 12K Flex (Applied Biosystems, Foster City, CA, USA)
for quantification. Thermal cycling conditions included an initial reverse transcription
step at 50 ◦C for 30 min, inactivation of reverse transcriptase at 95 ◦C for 10 min, and
45 cycles of amplification at 95 ◦C for 15 s and 60 ◦C for 45 s (30 s when using Quant Studio
12K Flex (Applied Biosystems, Foster City, CA, USA)) with the fast thermal profile). The
cycle threshold (Ct) values of RT-qPCR were used as indicators of the copy number of
SARS-CoV-2 RNA in the sewage samples, with lower Ct values corresponding to higher
viral copy numbers. A Ct value less than 40 was interpreted as positive for SARS-CoV-2
RNA. The limit of detection (LOD50) and the limit of quantification (LOQ) for this assay
were calculated in a previous study, as described in La Rosa et al., 2021 [21], and were found
to be, on pure samples of target RNA, an LOD50 of 0.41 g.c./µL and an LOQ of 3.71 g.c./µL;
in sewage samples, LOD50 and LOQ were 1.46 g.c./µL RNA and 7.35 g.c./µL, respectively.
To construct a standard curve, the targeted region was synthetized and purified by BioFab
Research (Rome, Italy) and quantified by fluorometric measurement (Qubit, Thermo Fisher
Scientific, Waltham, MA, USA). Tenfold dilutions were used to construct the standard
curve (range 5 × 100–5 × 104 copies/µL). In vitro-synthetized RNA containing the target
region was used as an external amplification control to check for PCR inhibition.

2.6. Statistical Analyses

A descriptive analysis was performed with regard to the distribution of the results of
the WWTP samples analyzed from each province.

To correlate the wastewater results to the number of COVID-19 cases during the
May–November 2020 study period, we first correlated the number of cases to the number
of patient specimen collection swabs taken per day in the area served by each WWTP.

This operation effectively reduced the underestimation of COVID-19 cases. The
maximum daily number of swabs carried out in Apulia during the examined period was
10,265; thus, the following formula was applied in Equation (1):

A = No. of COVID-19 cases on day x in the area served by plant X ×
(10,265/No. swabs carried out on day x)

(1)

where A represents the estimated number of cases on day x in order to eliminate the
uncertainty owing to the number of swabs carried out on day x.

Subsequently, to report the estimated number of COVID-19 cases (A) in the population
served by each plant, the following formula was applied in Equation (2):

B = (A/population served by plan X) × 100,000 (2)

where B represents the number of COVID-19 cases/100,000 inhabitants served by each
plant. This operation allowed us to compare the number of cases that occurred in areas
with different population sizes.

After the preliminary operations, R software version 4.0.5 (Brandon Greenwell, Cincin-
nati, Ohio) was used for the statistical analysis, and a p-value < 0.05 was considered
statistically significant.

Three types of analyses were carried out with regard to the occurrence of COVID-19
during the 15 days before and after wastewater sampling:

1. Chi-squared (χ2) test with Yates’s correction and the odds ratio to compare the
percentage of COVID-19 cases in relation to the results of the wastewater sample for
SARS-CoV-2 in the following time periods:

a. 15 days before: positive vs. negative wastewater samples
b. 15 days after: positive vs. negative wastewater samples
c. 15 days before vs. 15 days after: positive wastewater samples
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d. 15 days before vs. 15 days after: negative wastewater samples

This analysis showed if and how many COVID-19 cases, detected previously and
subsequently to wastewater samples positive for SARS-CoV-2, influenced the SARS-CoV-2
detection in wastewater.

2. A Poisson regression model was used to perform multivariate analysis on the viral
load and the PCR Ct values of the positive wastewater samples in comparison with the
following parameters:

a. COVID-19 case trend in the 15 days before wastewater sampling
b. COVID-19 case trend in the 15 days after wastewater sampling
c. Population served by each plant
d. Current average daily capacity (m3/d) of each WWTP

To standardize the different units of measurement of the four independent parameters,
the data were normalized using the following Equation (3) [30]:

x normalized = (x−x min)/(x max−x min) (3)

where x is each of the four variables indicated above; x max: max value of each variable; x
min: min value of each variable.

The final model included only variables with a p-value of <0.05 in the preliminary
model of all variables.

To quantify the effects of the above parameters on the viral load and Ct values, the
relative risk (RR) of each parameter was calculated [31,32].

3. A receiver operating characteristic (ROC) curve was used to assess the trend of cases
15 days after each sampling event to identify an optimal cutoff value that could predict how
many cases of COVID-19 per 100,000 inhabitants (served by the plant) might occur within
15 days after a positive wastewater sample. The ROC curve shows the tradeoff between
the true positive fraction (TPF) and false positive fraction (FPF), and is generated by the
plot of TPF (sensitivity) versus FPF (1-specificity) across varying cut-offs. The concept of an
ROC curve is based on the notion of a "separator" (or decision) variable as one change in
the criterion for positivity [33]. The ROC curve corresponding to the progressively greater
discriminant capacity of diagnostic tests (max values of sensibility and specificity) are
located progressively closer to the upper-left-hand corner in "ROC space". In our case, we
calculated the cases that occurred 15 days after the wastewater sampling (both positive
and negative for SARS-CoV-2). The ROC identified the optimal cut-off value, above which
were included most of the positive wastewater samples for SARS-CoV-2 (sensitivity) and
under which were included most of the negative wastewater samples (specificity).

3. Results

Overall, SARS-CoV-2 RNA was present in 12.4% (26/210) of the samples. In particular,
32.1% (9/28) of the wastewater samples from BA were positive, followed by 7.1% (4/56)
from FG, 7.1% (3/42) from LE, 17.8% (5/28) from TA, and 11.9% (5/42) from BT. No positive
samples were detected from BR.

The results reported by the EnLab laboratories were all confirmed by ISS, except in
eight samples. The Ct and genome copies/liter (g.c./L) values of the positive samples are
reported in Table 2.

The virus concentrations of the positive samples ranged from 8.8 × 102 to 6.5 × 104 g.c./L.
The highest concentrations were recorded in a sample from TA-B in November 2020
(6.5 × 104 g.c./L) and in a sample from FG-C in May 2020 (6.2 × 104 g.c./L).

The distribution of the number of cases in the presence of positive wastewater samples
in the study area is shown in Table 3.
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Table 2. Positive SARS-CoV-2 detections in wastewater samples by qualitative (Ct value) and
quantitative (g.c./L) real-time PCR, May–November 2020.

Province and WWTP Sampling Date (Year 2020)
EnLab ISS

Ct Value g.c./L

BA-A

October 6 36.11 n.d.

October 22 36.93 n.d.

November 2 37.62 3.5 × 103

November 16 36.17 4.8 × 103

BA-B

July 27 38.73 1.4 × 103

October 6 37.02 n.d.

October 22 37.81 8.8 × 102

November 2 36.17 1.7 × 103

November 16 35.46 4.8 × 103

BT-A
November 10 35.94 4.1 × 103

November 23 35.43 5.1 × 103

BT-B

October 22 37.19 1.5 × 103

November 10 38.42 1.3 × 103

November 23 35.02 1.5 × 104

FG-A October 20 37.57 n.d.

FG-C

May 7 32.04 6.2 × 104

May 29 34.04 1.2 × 104

June 17 33.63 3.4 × 104

LE-B

September 16 37.19 n.d.

October 29 38.12 n.d.

November 4 38.15 1.4 × 103

TA-A
September 8 37.12 n.d.

November 17 37.09 2.4 × 103

TA-B

October 27 38.47 n.d.

November 3 38.24 6.5 × 104

November 17 36.52 1.7 × 103

g.c./L = genome copies/liter; n.d. = not detected; Ct = Cycle threshold; EnLab = Environmental and Food
Hygiene Laboratory; ISS = Istituto Superiore di Sanità.

Tables 4 and 5 present the COVID-19 test swab results in relation to SARS-CoV-2
detection in wastewater from the Apulia region during the study period in the areas served
by the investigated WWTPs. Table 4 shows the results from the 15 days before wastewater
sampling, and Table 5 shows the results from the 15 days after sampling.

The χ2 results with Yates’s correction and odds ratios are reported in Table 6.
Compared with wastewater samples that are negative for SARS-CoV-2, when wastew-

ater samples are positive, there is a 45.8-fold greater risk of cases in the 15 days prior to
sampling and a 32.5-fold greater risk in the 15 days after sampling.

Compared with the results 15 days before wastewater sampling, when samples are
positive for SARS-CoV-2, there is a two-fold greater risk of swabs also being positive for
SARS-CoV-2 (and therefore a two-fold risk of identifying COVID-19 cases) in the 15 days
after sampling.
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Table 3. Epidemiological data summary of COVID-19 cases in the study area and their relation to positive wastewater samples.

30 April 2020 31 May 2020 30 June 2020 31 July 2020 31 August 2020 30 September
2020 31 October 2020 30 November

2020

Province WWTP Cases a Incid b Cases a Incid b Cases a Incid b Cases a Incid b Casesa Incid b Casesa Incid b Cases a Incid b Cases a Incid b

BA 1313 10.5 1483 11.8 1491 11.9 1504 12.0 1890 15.1 3034 24.2 7668 61.4 20,839 166.4

A+B 19 0.3 27 0.4 28 0.4 28 0.4 40 0.6 68 1.1 2105 33.3 2844 47.02

BT 373 9.6 380 9.7 380 9.7 382 9.8 442 11.3 694 17.8 1989 51.0 6186 158.6

A+B 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 2 0.1 578 22.3 1544 59.90

FG 1044 16.8 1155 18.2 1170 18.8 1186 19.1 1377 22.1 1887 30.3 4414 70.9 12,589 202.3

A 10 0.54 4 0.21 3 0.16 0 0 6 0.32 7 0.38 50 2.72 873 47.5

C 8 0.3 10 0.4 11 0.4 11 0.4 11 0.4 12 0.5 62 2.4 252 157.8

LE 487 6.1 515 6.5 521 6.6 557 7.0 670 8.4 797 10.0 1287 16.2 4119 51.8

B 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 1 0.3 3 1.1 44 11.7

TA 258 4.5 281 4.9 281 4.9 281 4.9 313 5.4 540 9.4 1851 32.1 6408 111.1

A+B 16 0.5 16 0.5 17 0.5 17 0.5 17 0.5 24 0.7 374 10.9 1316 48.04
a Data from “Epidemia COVID-19—Bollettino Epidemiologico Regione Puglia” (http://www.regione.puglia.it/web/speciale-coronavirus/elenco-notizie, accessed on 1 August 2021) [34]; b Cumulative
Incidence: the percentage of diagnosed cases per 10,000 inhabitants; Bold = cases concomitant with positive wastewater samples.

http://www.regione.puglia.it/web/speciale-coronavirus/elenco-notizie
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Table 4. Swab results in relation to SARS-CoV-2 detection in wastewater in the 15 days preceding
wastewater sampling.

Outcome of Wastewater
Samples for SARS-CoV-2

No. (%) of Negative Swabs
for SARS-CoV-2

No. (%) of Positive Swabs
for SARS-CoV-2

Negative 453,911 (99.9) 529 (0.1)

Positive 77,049 (95.0) 4101 (5.0)

Total 530,960 (99.1) 4630 (0.9)

Table 5. Swab results in relation to SARS-CoV-2 detection in wastewater in the 15 days following
wastewater sampling.

Outcome of Wastewater
Samples for SARS-CoV-2

No. (%) of Negative Swabs
for SARS-CoV-2

No. (%) of Positive Swabs
for SARS-CoV-2

Negative 453,163 (99.7) 1277 (0.3)

Positive 74,350 (91.6) 6800 (8.4)

Total 527,513 (98.5) 8077 (1.5)

Table 6. The percentage of COVID-19 cases in relation to the wastewater sample outcomes for SARS-CoV-2 detection in the
15 days before and after sampling.

Period Analyzed with
Respect to Wastewater

Sampling

Outcome of
Wastewater Sample

for SARS-CoV-2

Percentage of Cases with
Respect to Wastewater
Sample Outcome for

SARS-CoV-2

χ2 with Yates’s
Correction

Odds Ratio
(95% CI)

15 days before Positive vs. negative 5.0% vs. 0.1% χ2 = 19.579
p-value < 0.0001

45.8 (41.7–50.0)

15 days after Positive vs. negative 8.4% vs. 0.3% χ2 = 30.398
p-value < 0.0001

32.5 (30.6–34.5)

15 days before vs. 15
days after Positive vs. positive 5.0% vs. 8.4% χ2= 715.84

p-value < 0.0001
1.7 (1.6–1.8)

15 days before vs. 15
days after Negative vs. negative 0.1% vs. 0.3% χ2 = 309.59

p-value < 0.0001
2.4 (2.2–2.7)

95% CI = 95% confidence interval.

Table 7 presents the Poisson regression modeling results to evaluate whether indepen-
dent parameters affected the dependent variable "SARS-CoV-2 viral load" in wastewater
samples (mean load = 1825.90 g.c./L, first and third interquartile = 0, median load = 0,
range = 0–65,000).

All independent parameters had a significant influence on the wastewater SARS-
CoV-2 detection results. In particular, the average daily capacity of the WWTPs was
inversely proportional to the SARS-CoV-2 load of the wastewater (the lower the daily
average capacity, the greater the probability of detecting the virus). By contrast, the other
three parameters were directly proportional to the viral load. When the Ct value was used
as a dependent variable in the Poisson regression, none of the four independent parameters
listed in Table 7 had a statistically significant impact. To predict the number of COVID-19
cases/100,000 inhabitants served by the WWTPs in the 15 days after sampling, an ROC
curve model was applied using the wastewater samples that were positive for SARS-
CoV-2 (Figure 2). The analysis showed a cut off value for which at least 11 cases/100,000
inhabitants would occur after a wastewater sample was found to be positive for SARS-
CoV-2 (sensitivity = 80%; specificity = 80.9%).
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Table 7. Poisson regression model of SARS-CoV-2 load in wastewater samples: final model.

β (eβ−1) = RR (%) p-Value

Intercept 8.6647436 <0.0001 *

COVID-19 case trend in the
15 days after sampling 0.0067969 0.68 <0.0001 *

COVID-19 case trend in the
15 days before sampling 0.0640235 6.61 <0.0001 *

Daily average capacity (m3/d ˆ) of
each WWTP

−0.3440558 −29.11 <0.0001 *

Population served by each plant 0.1569391 16.99 <0.0001 *
β = coefficient of the regression model for each independent variable; RR = Relative risk; * statistically significant;
ˆ d = day.
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4. Discussion

The EU Commission recommendation of 17 March 2021 strongly encourages member
states to establish national wastewater surveillance systems to detect SARS-CoV-2 and its
variants in wastewater [35]. These systems should be implemented as soon as possible and
no later than 1 October 2021.

Our study found that SARS-CoV-2 was detected in wastewater during the period in
which cases were being diagnosed within the municipalities served by the investigated
WWTPs.

The virus circulation generally slowed during the summer months, as evidenced by
the low incidence of cases during this time. The presence of SARS-CoV-2 in wastewater
in July and September 2020 from the Bari (A+B) and Lecce (B) plants, respectively, which
served municipalities without newly confirmed cases, could be related to undiagnosed
asymptomatic cases and to previous cases, as the virus is excreted in the stool for some time
after infection (approximately 30 days) [12]. After a small number of detections during
the summer months, the presence of SARS-CoV-2 was again detected in all of the WWTPs,
except for those in Brindisi. During this time, there was a concomitant increase in cases.

The positive samples were qualitatively and quantitatively confirmed by EnLab and
ISS, respectively, and appeared to be related to a high level of the virus circulating in
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the population. The current detection methods are not sensitive enough to detect low
quantities of viral RNA in wastewater because of the complex nature of this media [36].

The non-detection of virus by the ISS in some wastewater samples may be because of
viral RNA degradation, owing to transportation conditions [13,37]. A recent study found
that SARS-CoV-2 RNA is partially stable at 4 ◦C for at least 14 days [38]; however, one
review stated that freezing and thawing the sample from −20 ◦C or −80 ◦C could lead to
the degradation of the SARS-CoV-2 genetic material [39].

In line with previous studies [3,13], we found a direct correlation between the SARS-
CoV-2 RNA concentration in wastewater and the number of COVID-19 cases during the
15 days before and after a positive detection in wastewater. The average daily capacity of
the WWTPs was inversely proportional to the SARS-CoV-2 load in the wastewater samples,
probably owing to dilution (e.g., precipitation, average daily water usage).

To ensure that differences in viral concentration could not be attributed to changes
in population, some authors have inserted an important step in the application of WBE,
namely population normalization. For this purpose, human biomarkers as ammonium
excreted in urine can be used to estimate the serviced population in an area via statistical
modeling [15].

As has been demonstrated in previous examples such as the 2013–2014 silent po-
lio epidemic in Israel [40], environmental surveillance can be used as a tool to decide
when to enact restrictions, with the aim of an early introduction and avoiding prema-
ture repeal [41,42]. This surveillance approach could also be used to inform vaccination
distribution [43] and to investigate emerging genomic variants circulating in the popula-
tion [44–46].

The presence of SARS-CoV-2 in wastewater can be used to predict COVID-19 cases,
supporting the potential of wastewater-based epidemiology (WBE) [1,8,21,47]. This ap-
proach represents a non-invasive early-warning tool for monitoring the status and trends
of COVID-19 infection [48]. Here, we predicted that at least 11 cases/100,000 inhabitants
would occur in the 15 days after detecting a positive wastewater sample. To our knowledge,
this is the first study in Italy to use WBE to predict the COVID-19 prevalence.

However, the usage of WBE for estimating COVID-19 prevalence remains limited,
owing to the complexity and uncertainties associated with the process [37]. Several stud-
ies [28,38,49] have discussed the uncertainties in using WBE to assess SARS-CoV-2 preva-
lence. For viral shedding, variations in the magnitude, probability, and duration were
commonly observed across different studies [27]. Physiological factors such as gender,
age, and pathological conditions impact the probability of virus shedding among patients.
For most viruses, the water matrix plays an important role in their inactivation and decay
because, without active human cells as hosts in wastewater, the infectivity of SARS-CoV-2
was reported to be reduced [50]. From currently available reports, even for the best recovery
method, a considerable loss of virus RNA is commonly observed [38]. The flow inside
the sewers has relatively large uncertainties due to seasonal or diurnal variations in water
usage patterns among the population and any rainfall event [51]. To date, the exploration
for sampling techniques in the detection of SARS-CoV-2 RNA is limited, even if the use of
the composite vs. grab sampling technique is preferable due to the inherent variability in
virus shedding and diurnal sewer flows [37].

One limitation of our study is that it does not take into account several parameters
that influence the result, such as the precipitation, catchment size, variation of the viral
load in stool, virus degradation and dilution in the WWTP, the impact of the wastew-
ater matrix components, and the underestimation of cases owing to asymptomatic pa-
tients [7,37,41]. Moreover, the duration and distribution of SARS-CoV-2 RNA shedding
in feces varies among individuals and across time may be also affected by variants and
vaccination [7,10,14,26].

The EU Commission recommendation [35] states that “wastewater surveillance is a
tool to observe trends and not an absolute means to draw conclusions about the prevalence
of COVID-19 in the population.” Therefore, further studies of the complex methods that
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include all variables that affect this type of wastewater surveillance data would be useful to
improve data interpretation [28,37]. Moreover, a future development of our research (with
a larger number of wastewater samples to make the analysis more robust) could foresee a
validation of the statistical model used by comparing these results with those derived from
innovative approaches such as an artificial neural network (e.g., machine learning) [27].

5. Conclusions

Wastewater surveillance is less resource-intensive than large-scale clinical testing,
making it an optimal tool for long-term virus monitoring and for the early identification
of viral circulation in a population. The early detection of SARS-CoV-2 RNA in wastewa-
ter could signal imminent danger, providing authorities with valuable time in which to
coordinate and implement actions to slow disease spread.
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