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MULTICOMPARTMENTMODELS IN SYNTHETIC CELL RESEARCH

The attractiveness of the “bottom-up” approach as a viable route for constructing cell-like
systems (Luisi, 2002; Stano, 2019) is clearly evident by the ever increasing number of
international projects and initiatives dedicated to this fascinating research (Supplementary
Text S1). Such cell-like systems, simply called “synthetic cells” (SCs), “artificial cells” or
“protocells” (although with slighly different nuances of meaning) are compartment-based
systems (often, but not only, liposomes), capable of mimicking some aspects of cell behavior
in a range of manners, and can be variously conceived in terms of materials, designs, and scopes.
Even if current SCs are not alive, there is a recognized optimism among practicioners about the
contribution of this research to basic and applied science, and there is the bet it will become one
of the most important biotechnologies in the near future,—not resembling anything existing
before—for example in nanomedicine (Leduc et al., 2007; Krinsky et al., 2018, Ding et al., 2018;
Lussier et al., 2021). It seems a useful remark, just after mentioning nanomedicine, recalling that
RNA-based anti-COVID vaccines—which actually are RNA-loaded lipid nanoparticles
(Pilkington et al., 2021) have been actually developed thanks to decades of research on
liposomes and other nanovectors. This suggests a highly relevant and pioneer role that
current SC research might have on future ‘smart’ nanomedicine scenarios.

SC research is now well recognized within the “bottom-up” or “in vitro” or “cell-free” or
“chemical” domains of synthetic biology. Pioneer research, however, dates back to the early 1990s,
mainly referred to the construction of protocellular models of minimal complexity for origins-of-life
studies (Walde et al., 1994; Oberholzer et al., 1995; Szostak et al., 2001). In that context a minimalist
design is generally applied, which means the use of allegedly primitive materials (e.g., fatty acids,
ribozymes, short peptides) (Chen et al., 2005), simple architectures (single, individual
compartments), and essential functions (e.g., growth-division driven by basic physico-chemical
events). Relevance is given to the verification of capabilities, constraints, and properties which might
have ruled the primitive life-like dynamics of compartmentalized chemical systems.

On the other hand, SC research has gradually expanded and has incorporated other approaches
that enriched and favored its development. In particular, current studies include systems made of
various materials, mainly modern biomacromolecules (following, then, a reconstitution philosophy),
but also artificial ones (e.g., block copolymers, ad hoc designed reactive surfactants (Kurihara et al.,
2011; Budin and Devaraj, 2012), etc.), and their various combinations, including allegedly primitive
materials (Figure 1A). Solute-filled liposomes are largely—but not uniquely—employed for that
scope. Indeed, the experimental approaches are inspired by the functional (and relational (Rosen,
1991)) roles of SC components rather than their material embodiment. In a sense, SCs are tools for
investigating life as it was, as it is, and as it could be.
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Interestingly, in addition to single-compartment design,
representing SCs with an architecture of minimal complexity,
multicompartment SCs can be constructed, leading to very interesting
systems with peculiar features. The term “multicompartment”

can refer to a “flanked” (sidewise, Figure 1B) or to a “nested”
design (Figure 1C). In the first case, one refers to structures
having flanked compartments, attached to each other, to
generate 1D, 2D or 3D assemblies (or clusters), often

FIGURE 1 | Synthetic cells (SCs) and the nested multicompartment design. (A) Schematic representation of SC research. SCs can be obtained from modern
cells by a process of minimization, e.g., by designing, constructing, and insert a minimal genome in living cells. Such an approach has been pioneered by C. Venter
(Gibson et al., 2010). The resulting minimal SCs are alive. Bottom-up SCs can be constructed from scratch, by employing different types of molecules (or mixtures
of them). The construction grounds on self-assembly and directed-assembly processes. Up to date, bottom-up SCs are not alive and lie at a much lower
complexity level when compared with SCs à la Venter. (B) “Flanked” or sidewise multicompartment SCs. (C) “Nested” multicompartment SCs, also known as
multivesicular vesicles or vesosomes in liposome technology. (D) A pictorial representation of the concept of segregation (term borrowed by the dynamic systems
theory) which conceptually corresponds to the idea of “module” in synthetic biology. In the dynamic chemical network that constitutes the SC (open to the
environment) it is possible to indentify a sub-network whose relational links with the whole network are inferior in number, strength, and quality—because of physical
or functional segregation. Note, however, that the “module” still interacts with the whole network, i.e., it is not relationally isolated from it. (E) A simplified cartoon
showing that vectorial elements embedded in the membrane (or in general, in any interface) need to have a proper orientation. When such elements should be
incorporated in single compartment or multicompartment SCs, their location (and mechanism of insertion) will correspondingly change dramatically. SC technology
must allow the decoration of interface with vectorial elements in all possible configurations, at will. (F) Detergent-guided reconstitution of vectorial membrane
proteins (MPs) in single compartment SCs from the inside. Image taken from Altamura et al. (2017) with the permission of the National Academy of Science
United States ©2017. (G) Chromatophores from Rhodobacter sphaeroides can be employed as organellae-like particles inside giant vesicles, in order to
construct SCs capable of producing ATP under illumination. Image taken from Altamura et al. (2021) with the permission of the National Academy of Science
United States ©2021.
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considered models of tissues or multicellular systems (Carrara
et al., 2012; Elani et al., 2013). In the second case, the SC
architecture would resemble an eukaryotic cell, and the small
compartments inside the large one mimic biological
intracellular organellae (Bolinger et al., 2004; Elani et al.,
2018). In the jargon of liposome technology, the latter
structures are called “multivesicular vesicles” (MVVs) or
“vesosomes” (Kisak et al., 2004; Giuliano et al., 2021). It
should not escape from the attention that early studies on
vesosomes were actually motivated by the need of
constructing better drug delivery vehicles, for example by
providing better protection of loaded drugs against degrading
enzymes, or easier modular construction of drug cocktails with
differential release (by tuning the membrane properties of
individual internal compartments); for a detailed discussion,
with examples, please refer to (Giuliano et al., 2021).

In this article we will briefly discuss the nested
multicompartment architectures, to highlight their advantages,
mainly when coupled to vectorial chemistry. As a casestudy we
will highlight systems whereby membrane proteins (MPs) provide
the necessary function to generate and/or exploit (electro)chemical
gradients, for instance to produce ATP inside SCs.

NESTED MULTICOMPARTMENTS:
CONSTRUCTION, MODULARIZATION, AND
VECTORIAL CHEMISTRY
Construction
Peter Walde and collaborators have recently described in great
detail the methods available for the construction of lipid vesicles
containing other lipid vesicles, namely, nested multicompartment
systems (Giuliano et al., 2021). However, most methods are quite
specific, and can be used only under particular circumstances. A
recent example that illustrates this principle is provided by the
vesicle-to-sponge nanoparticle transition through the
proliferation of membrane linking pores, a phenomenon that
is finely controlled by amphiphilic composition of the
membranes, and that leads to “spongosomes” (Angelova et al.,
2019). In contrary, a significant step toward the construction of
nested multicompartment SCs comes from those methods that
lead to giant vesicles (GVs) starting from water-in-oil (w/o)
droplets—the so-called droplet transfer method (Pautot et al.,
2003; Dimova et al., 2020), or from water-in-oil-in-water (w/o/w)
droplets. The inner aqueous solution that is employed in these
methods is preliminarily provided with the small compartments
suspended therein (Supplementary Figure S1). When GVs form,
the small compartments will be found in the GV aqueous lumen.
The entrapment efficiency is generally high; the procedure, then,
is rather straigthforward. Moreover, when microfluidic devices
are employed, the principles of operations are similar, and the
process leads to nested multicompartment SCs in a very
reproducible manner (e.g., (Haller et al., 2018)).

Modularization
Any multicompartmentalized architecture implies a spatial and
functional modularization of the whole system in sub-units. Let us

consider a nested multicompartment SC as a wholeness, i.e., as a
large chemical system made of several components. The
compartmentalization of some components in separate sub-
units (the internal vesicles), together with the limited (or
absent) exchange of these components between the units, or
between the units and the large compartment, de facto
generates a modular system, characterized by a (partial or total)
separation of some processes in space and in time. In the language
of general systems theory (von Bertalanffy, 1968) this is called
“segregation” and implies a (partial or total) decoupling between
the processes pertaining to the system’s components (Figure 1D).
As a result, the whole system (the SC) can be treated conceptually
and practically as resulting from the sum of functions of its
segregated components. This is clearly advantageous for making
the construction easier, and reduces the possibility of unwanted
interaction between components. Moreover, because this
particular sort of modularization is based on physical
segregation, it allows multiple milieu coexist in the SC.
Modularization is a well known principle in synthetic biology,
and although it has a reductionistic flavour, it is useful for the
construction of systems with non trivial complexity. Note,
however, that a total decoupling between the parts of a system
conflicts with the concepts of wholeness, integration, and
interactions which are prerequisites for displaying emergent
properties.

Vectorial Chemistry
The relevance of nested multicompartment design does not
include only modularization, but also the possibility of
generating a “vectorial” chemical processes which are
unattainable in bulk (Harold, 1986), generally occurring at the
interface between two sub-systems. The interface we refer to can
be a lipid or polymer membrane (of vesicles), or even the interface
of membraneless compartments. A prototypical example comes
from vectorially operating membrane proteins (MPs) that
translocate chemicals across an interface. Their operation
generates a chemical gradient, and thus directly affecting the
free energy—with a contribution proportional to log (Cin/Cout)—
in the most fundamental physico-chemical form. As it is well
known, living cells generate and exploit the so-called proton-
motive force for producing ATP. The nested multicompartment
design, when coupled to vectorial chemistry, efficiently leads to a
“qualitative leap” directly into bioenergetics. Such a vectorial
mechanism can reside either in the SC outmost boundary (the
outer membrane), but also—and more conveniently—at the
membrane of internal compartments in nested
multicompartment SCs. In contrary to the first case, where the
variability of environmental conditions would hamper its
efficiency, mechanisms localized in the membrane of internal
compartments work more efficiently as it is easier to keep stable
the SC internal milieu. In other words, nested multicompartment
design gains robustness for such kind of gradient-based
mechanisms. A speculation about two additional effects
possibly emerging from the nested multicompartment design
is given in Supplementart Text S2, while Supplementary
Text S3 is a brief commentary on the organization and
complexity of multicompartment SCs.
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MEMBRANE PROTEINS AS KEY
ELEMENTS FOR VECTORIAL CHEMISTRY
IN SINGLE COMPARTMENT- AND NESTED
MULTICOMPARTMENT-SYNTHETIC
CELLS

One of the frontier research line in SC construction directly refers
to bioenergetics, and deals with endogenous ATP production.
Firstly, this is needed to feed processes necessary for complex
SCs. Second, such a production would correspond to the
emancipation from the current “windup toy” approaches based
on endowing SCs, at time zero, with all required chemical energy to
run, and the consequent ceasing when such supply runs out.
Moreover, when the two cuncurrent processes of ATP
production and usage are coupled, the system nicely constitutes
a realization of out-of-equilibrium homeostasis (Pols et al., 2019).

The obvious idea is to engage SCs in an upstream phosphorylation
process (ADP + Pi→ ATP), operated by ATP synthase, and driven by
an (electro)chemical proton gradient. The latter is vectorially generated
by a membrane protein (MP) system capable of coupling redox or
photoredox reactionswith proton pumping. Such a goal, when realized
by means of nested multicompartment SCs, combines the three
concepts defined in Nested Multicompartments: Construction,
Modularization, and Vectorial Chemistry.

Decorating the membranes with MP complexes—the ones that
realize vectorial chemistry for ATP production, for instance,
requires a precise orientation of all MPs involved in it, to avoid
futile cycles. From the simplified drawing of Figure 1E, it is evident
that SCs designed as single-compartment or as nested
multicompartment require two opposite strategies for MP
insertion. This means, in turn, that a complete control of this
key process is required at any case: either insertion of pre-formed
MP delivered with micelle (Jørgensen et al., 2017; Skrzypek et al.,
2018), either insertion of nascent, ribosomally synthesized MP
(Kuruma et al., 2009), and for any direction (from the inside or
from the outside of the compartment).1

Systematic studies about vesicle “decoration” with vectorial MPs
that include all above-mentioned possibilities are still lacking, although
significant advancements have been recently reported for cell-free
synthesis approaches (Sachse et al., 2014; Kuruma and Ueda, 2015;
Niwa et al., 2015; Jacobs et al., 2019; Kruyer et al., 2021),
demonstrating, for instance, MPs insertion in the lipid membrane
can be guided bythe secYEG translocon (Matsubayashi et al., 2014).

In recent reports it has been shown how to reconstituteMPs with
a proper orientation by treating GVs with MPs solubilized as
micelles which were included in their aqueous lumen or in the

external phase (Yanagisawa et al., 2011; Altamura et al., 2017), with
high orientation, Figure 1F. These strategies can be adapted both for
single-compartment and multi-compartment SC approaches.

The multi-compartment “nested” design leads to more complex
SCs, but can be operatively simpler because the internal compartments
can be prepared in advance (Biner et al., 2020), and later inserted in the
larger one (the “host” vesicle). SCs designed as nested systems appear
also more functional, as it is easier to control the SC internal milieu,
providing optimal conditions for the operations of internalized small
compartments. Modularization by sub-compartmentalization offers
the additional advantage of segregating the elements present in the
inner vesicle avoiding the mixing and possible noxious interactions
with the other SC elements. The nested design is currently at the
spotligth of SC research, as it has been employed by several relevant
studies, not only for ATP production (Hindley et al., 2019; Belluati
et al., 2020). As mentioned, this design is quite valuable for ATP
production, being the internal compartments essentially a sort of
organellae-like structures with a dedicated function. For example, the
ATP-producing synthetic organellae (driven by irradiation) have been
produced by detergent-driven reconstitution (Lee et al., 2018) or by
directed assembly (Feng et al., 2016), or by direct insertion of the in
statu nascendi cell-free synthesized membrane proteins (Berhanu
et al., 2019). Alternatively, “prefabricated” and highly efficient
organellae have been used, borrowing them from photosynthetic
bacteria of the genus Rhodobacter (Altamura et al., 2021)
(Figure 1G). Hybrid approaches (particles formed by thylakoid
fragments of spinach plus lipids) have been also explored, but not
inside SCs (Zheng et al., 2018).

CONCLUDING REMARKS

In this Opinion article we have highlight a current trend in SCs
research, namely the one moving from simple and isolated SCs to
systems made of several compartments. “Flanked” (sidewise) or
to a “nested” designs allow moving upward in complexity and
favour the achievement of novel functions that will drive near-
future directions in the field. MPs will be pivotal too. Think, for
example, to G-Protein Coupled Receptors or other receptors as a
way to access and exploit the sensorium toolbox also in SCs (May
et al., 2013; Hamada et al., 2014; Gessesse et al., 2018). In
particular, we have remarked that the nested
multicompartment design ideally endows SCs with the energy-
producing function and decisively contributes to next
advancements.
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1Stricter requirements are instead required when SCs are built aiming at
autonomously producing their components (i.e., being “autopoietic”), MPs
included. In that case, components must be produced from within, and thus
the functionalization of membranes with highly oriented MPs becames a critical
step. For example, see (Berhanu et al., 2019). For a succesful MP synthesis,
insertion, and functioning, the SCs membrane should be made of a proper
lipid mixture in order to 1) form stable vesicles, 2) do not interfere with
transcription-translation, 3) host the MP in correct fold, 4) do not inhibit the
MP functioning (Kuruma et al., 2009).
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