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a b s t r a c t

In the present paper, we investigate the blow-up dynamics for local solutions to the
semilinear generalized Tricomi equation with combined nonlinearity. As a result,
we enlarge the blow-up region in comparison to the ones for the corresponding
semilinear models with either power nonlinearity or nonlinearity of derivative type.
Our approach is based on an iteration argument to establish lower bound estimates
for the space average of local solutions. Finally, we obtain upper bound estimates
for the lifespan of local solutions as byproduct of our iteration argument.
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1. Introduction

Aim of the present work is to derive a blow-up result for the semilinear generalized Tricomi equation with
combined nonlinearity ⎧⎪⎨⎪⎩

∂2
t u− t2ℓ∆u = |∂tu|p + |u|q, x ∈ Rn, t > 0,
u(0, x) = εu0(x), x ∈ Rn,

∂tu(0, x) = εu1(x), x ∈ Rn,

(1)

where ℓ is a positive parameter, p, q > 1 and ε is a positive constant describing the size of Cauchy data. More
specifically, our goal is to enlarge the blow-up region in the (p, q)-plane in comparison to the ones for the
corresponding models with power nonlinearity |u|q and nonlinearity of derivative type |∂tu|p, respectively.

Over the last years, several papers have been devoted to the study of semilinear Cauchy problem
associated with the generalized Tricomi operator ∂2

t − t2ℓ∆. In [1] the authors conjectured the critical
exponent for the semilinear generalized Tricomi equation with power nonlinearity in space dimension n ⩾ 2⎧⎪⎨⎪⎩

∂2
t u− t2ℓ∆u = |u|p, x ∈ Rn, t > 0,
u(0, x) = εu0(x), x ∈ Rn,

∂tu(0, x) = εu1(x), x ∈ Rn,

(2)
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where ℓ > 0 and p > 1. More precisely, this exponent, denoted by p0(n; ℓ) in the present paper, is the positive
root of the quadratic equation

((ℓ+ 1)n− 1)p2 − ((ℓ+ 1)n+ 1 − 2ℓ)p− 2(ℓ+ 1) = 0. (3)

For ℓ = 0 the exponent p0(n; ℓ) coincides with the so-called Strauss exponent (denoted by pStr(n)), which is
he critical exponent for the semilinear wave equation with power nonlinearity.

This conjecture was made according to a blow-up result for the subcritical case 1 < p < p0(n; ℓ) when
⩾ 2 proved by means of the so-called Kato’s lemma for second order ordinary differential inequalities.

hen, in [2] and [3], the global existence of small data solutions in suitable weighted Sobolev spaces in space
imension n ⩾ 3 and n = 2, respectively, is proved for p > p0(n; ℓ) in the subconformal case. Furthermore,

in [3] a blow-up result is proved in the critical case p = p0(n; ℓ) as well (when n ⩾ 2). Recently, in [4] the
one dimensional case has been considered and it has been shown that the critical exponent is no longer a
generalized Strauss exponent, rather the Kato-type exponent 1 + 2

ℓ (all explicit computations are done for
he Tricomi operator, namely, for ℓ = 1/2).

On the other hand, for the semilinear generalized Tricomi equation with nonlinearity of derivative type⎧⎪⎨⎪⎩
∂2

t u− t2ℓ∆u = |∂tu|p, x ∈ Rn, t > 0,
u(0, x) = εu0(x), x ∈ Rn,

∂tu(0, x) = εu1(x), x ∈ Rn,

(4)

n [5] the second and the third author proved a blow-up result for 1 < p ⩽ p1(n; ℓ), where

p1(n; ℓ) .= (ℓ+ 1)n+ 1
(ℓ+ 1)n− 1 = pGla((ℓ+ 1)n) and pGla(n) .= 1 + 2

n− 1

s the so-called Glassey exponent, which is, the critical exponent for the semilinear wave equation with
onlinearity of derivative type |∂tu|p. In [6] the authors announced to have enlarged this blow-up range,
mploying an approach based on the test function method.

Studying the blow-up dynamics for local solutions to the semilinear Cauchy problem (1), we want to
mphasize how the contemporary presence of a power nonlinearity |u|q and of a nonlinearity of derivative
ype |∂tu|p produces a larger blow-up region in the (p, q)-plane than the one that has been got by dealing
ndividually with each of these two kinds of nonlinear terms as in the treatment of (2) or (4).

Moreover, we mention that the semilinear wave models with combined nonlinearity |∂tu|p + |u|q (namely,
1) for ℓ = 0) has been already studied in [7–10]. In particular, in [7,9] blow-up results are shown for p, q > 1
uch that (q − 1)((n − 1)p − 2) < 4, under suitable sign assumptions for the Cauchy data. On the other
and, in [8] it is shown the optimality of the previous condition, by proving the global existence of small
ata solution for p, q > 1 such that (q−1)((n−1)p−2) ⩾ 4, p > pGla(n), and q > pStr(n) in space dimension
= 2, 3.
Finally, we point out that other semilinear wave models with combined nonlinearity have been investigated

from the viewpoint of the blow-up dynamics) in the scattering producing case [11] and in the scale-invariant
ase [12–14].

Let us introduce now the kind of solutions to (1) that we are going to consider throughout this paper.

efinition 1.1. Let u0, u1 ∈ L1
loc(Rn) with suppu0, suppu1 ⊂ BR for some R > 0. We say that u is a

eak solution to (1) on [0, T ) if

u ∈ C([0, T ),W 1,1
loc (Rn)) ∩ C1([0, T ), L1

loc(Rn)) ∩ Lq
loc((0, T ) × Rn) such that ∂tu ∈ Lp

loc((0, T ) × Rn)

satisfies u(0, ·) = εu0 in L1
loc(Rn), the support condition

suppu(t, ·) ⊂ B for any t ∈ (0, T ), (5)
R+ tℓ+1/(ℓ+1)

2
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and the integral identity∫
Rn
∂tu(t, x)ψ(t, x) dx+

∫ t

0

∫
Rn

(
−∂tu(s, x)ψt(s, x) + s2ℓ ∇u(s, x) · ∇ψ(s, x)

)
dx ds

= ε

∫
Rn
u1(x)ψ(0, x) dx+

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
ψ(s, x) dxds (6)

or any test function ψ ∈ C∞
0 ([0, T ) × Rn) and any t ∈ (0, T ).

We point out that performing a further step of integration by parts in (6), we obtain the integral relation∫
Rn

(∂tu(t, x)ψ(t, x) − u(t, x)ψt(t, x)) dx+
∫ t

0

∫
Rn
u(s, x)

(
ψtt(s, x) − s2ℓ∆ψ(s, x)

)
dxds

= ε

∫
Rn

(
u1(x)ψ(0, x) − u0(x)ψt(0, x)

)
dx+

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
ψ(s, x) dxds (7)

or any ψ ∈ C∞
0 ([0, T ) × Rn) and any t ∈ (0, T ).

Let us state the main result of this paper.

heorem 1.2. Let p, q > 1 satisfy[
((ℓ+ 1)n− 1)p− 2ℓ(p− 1) − 2

]
(q − 1) < 4. (8)

et us assume that u0, u1 ∈ L1
loc(Rn) are nonnegative, not both trivial and compactly supported functions with

upports contained in BR for some R > 0. Let

u ∈ C([0, T ),W 1,1
loc (Rn)) ∩ C1([0, T ), L1

loc(Rn)) ∩ Lq
loc((0, T ) × Rn) such that ∂tu ∈ Lp

loc((0, T ) × Rn)

e a weak solution to (1) according to Definition 1.1 with lifespan T = T (ε).
Then, there exists a positive constant ε0 = ε0(n, ℓ, p, q, u0, u1, R) such that for any ε ∈ (0, ε0] the weak

olution u blows up in finite time. Furthermore, the upper bound estimate for the lifespan

T (ε) ⩽ Cε
− p(q−1)

θ(n,ℓ,p,q)

olds, where the positive constant C is independent of ε and

θ(n, ℓ, p, q) .= 2 − 1
2
[
((ℓ+ 1)n− 1)p− 2ℓ(p− 1) − 2

]
(q − 1). (9)

The paper is organized as follows: in Section 2 we provide the proof of Theorem 1.2. In Section 3 we
recall some results already known in the case of the semilinear generalized Tricomi equation with power
nonlinearity that follow straightforwardly by slightly modifying the proof in Section 2. Finally, in Section 4
we explain in detail the obtained blow-up range and we compare it with corresponding blow-up results for
(2) and (4), respectively; in particular, we put a special emphasis on the analysis of the one dimensional
case.

1.1. Notations

Throughout the paper we employ the following notations: the ball in Rn with radius R around the origin
is denoted BR; the notations f ≲ g means that there exists a positive constant C such that f ⩽ Cg and,
similarly, for f ≳ g; by writing ψ ∈ C∞

0 ([0, T ) × Rn) we mean the existence of a compact set K ⊂ R1+n

such that the support of the C∞ function ψ satisfies suppψ ⊂ K ⊂ [0, T ) × Rn; Kν denotes the modified
Bessel function of second kind of order ν. Finally, as in the introduction, p0(n; ℓ) is the positive solution to
(3), pStr(n) = p0(n; 0) denotes the Strauss exponent, and pGla(n) = p1(n; 0) denotes the Glassey exponent.
When 1 + 2/(n− 1) refers to the nonlinear term |u|q we call it Kato exponent (denoted by pKat(n)), as it is
customary in the related literature, although it coincides with the Glassey exponent.
3
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2. Proof of the main result

Let u be a weak solution to (1) according to Definition 1.1 that fulfills the support condition (5). As
time-dependent function, whose dynamic will provide the blow-up result, we consider the space average of
u (following an approach introduced for the first time in [15]), namely,

U(t) .=
∫
Rn
u(t, x) dx.

We will derive the iteration frame for this functional. Furthermore, we will employ also two auxiliary
functionals, whose definitions will be provided in the next subsection, see (18) and (19), to determine a
first lower bound estimate for U .

2.1. The test function

In this section, we recall from [1] the definition of a function Ψ = Ψ(t, x) with separate variables that
olves the linear generalized Tricomi equation, namely

Ψtt − t2ℓ∆Ψ = 0. (10)

s x-dependent function we consider the eigenfunction for the Laplacian introduced in [16]

φ(x) .=

⎧⎨⎩ex + e−x if n = 1,∫
Sn−1

ex·ωdσω if n ⩾ 2.
(11)

his function is radially symmetric, belongs to the class C∞(Rn) and satisfies the following notable
roperties:

∆φ = φ, (12)

φ(x) ∼ |x|−
n−1

2 e|x| as |x| → ∞. (13)

n the next lines we employ some well-known properties of the modified Bessel function of the second kind.
evertheless, for the sake of readability we address the reader to the Appendix for a short recap of these
roperties. Let us recall the time-dependent function λ = λ(t; ℓ) introduced in [1] such that

λ(t; ℓ) .= Cℓ t
1
2 K 1

2ℓ+2

(
1

ℓ+1 t
ℓ+1
)
, (14)

ith the positive constant Cℓ allowing λ(0; ℓ) = 1, where Kν denotes the modified Bessel function of the
econd kind of order ν. Note that we use (A.3) to get a finite, positive value of λ as t → 0. For the sake
f brevity, hereafter, we will write simply λ = λ(t) skipping the dependence on ℓ. Due to the fact that Kν

ulfills the second order ordinary differential equation (A.1) by straightforward computations it follows that
satisfies the following problem: {

λ′′(t) − t2ℓλ(t) = 0, t > 0,
λ(0) = 1, λ(∞) = 0.

(15)

herefore, combining (12) and (15), it follows that the positive function

Ψ(t, x) .= λ(t)φ(x)

olves the desired linear equation (10).

4
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Let us point out that, using the recursive relations for the derivatives of modified Bessel functions of the
second kind (cf. (A.2) in the Appendix) we have

λ′(t) = Cℓ
2 t

− 1
2 K 1

2ℓ+2

(
1

ℓ+1 t
ℓ+1
)

+ Cℓ t
1
2
(

K 1
2ℓ+2

(
1

ℓ+1 t
ℓ+1
))′

= −Cℓ t
1
2 +ℓK 1

2ℓ+2 −1

(
1

ℓ+1 t
ℓ+1
)
< 0, (16)

here in the last line we used that Kν(τ) is a positive function for ν ∈ R and τ > 0. Furthermore, there
xists a constant c0 > 1 such that

|λ′(t)|
λ(t) ⩾

tℓ

c0
for any t > 0 and |λ′(t)|

λ(t) ⩽ c0 t
ℓ for any t ⩾ 1, (17)

s it has been shown in [17, Lemma 2.1]. Note that in (17) we used that λ is positive function (λ is strictly
ecreasing and λ(∞) = 0).

Finally, we can introduce the two following auxiliary functionals:

U0(t) .=
∫
Rn
u(t, x)Ψ(t, x) dx, (18)

U1(t) .=
∫
Rn
∂tu(t, x)Ψ(t, x) dx. (19)

ur strategy in the next subsection is to determine lower bound estimates for U0, U1.

.2. Lower bound estimates for the auxiliary functionals

Let us start this subsection by deriving a lower bound estimate for U0.

emma 2.1. Let u0, u1 be functions satisfying the same assumptions as in the statement of Theorem 1.2.
et U0 be the functional associated with a local (in time) weak solution u of (1) and defined by (18). Then,
here exists T0 > 0 such that

U0(t) ≳ εIℓ[u0, u1] t−ℓ for any t ∈ [2T0, T ), (20)

here
Iℓ[u0, u1] .=

∫
Rn

(
u1(x) − λ′(0; ℓ)u0(x)

)
φ(x) dx. (21)

roof. Due to the property of finite speed of propagation, we have that u fulfills (5), where R > 0 is chosen
o that suppu0, suppu1 ⊂ BR. In particular, thanks to this support condition for the solution u we may
onsider not compactly supported test functions in (6). Therefore, choosing Ψ = λφ ∈ C∞([0, T ) × Rn) as
est function in (7), for any t ∈ (0, T ) we get∫

Rn
∂tu(t, x)Ψ(t, x) dx−

∫
Rn
u(t, x)Ψt(t, x) dx

= ε

∫
Rn

(
u1(x) − λ′(0)u0(x)

)
φ(x) dx+

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
Ψ(s, x) dxds

= εIℓ[u0, u1] +
∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
Ψ(s, x) dxds,
5
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where we employed λ(0) = 1 and (10). Hence, by using (18), we may rewrite the previous identity as follows:

U ′
0(t) − 2λ

′(t)
λ(t) U0(t) = εIℓ[u0, u1] +

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
Ψ(s, x) dx ds (22)

or any t ∈ (0, T ). Since the nonlinearity is nonnegative, from (22) we have

U ′
0(t) − 2λ

′(t)
λ(t) U0(t) ⩾ εIℓ[u0, u1] (23)

or any t ∈ (0, T ). Multiplying both sides of the previous inequality by (λ(t))−2 and integrating over [0, t],
t results

U0(t)
λ2(t) − U0(0)

λ2(0) ⩾ εIℓ[u0, u1]
∫ t

0

ds
λ2(s) . (24)

hus, employing the sign assumption on the first initial data, we find

U0(t) ⩾ εIℓ[u0, u1]λ2(t)
∫ t

0

ds
λ2(s) .

By using the asymptotic behavior for the modified Bessel function of the second kind (see (A.4) in the
Appendix), we have

λ(t) =
√
π(ℓ+ 1)

2 Cℓ t
− ℓ

2 e−ϕℓ(t)
(

1 +O
(
t−(ℓ+1))) as t → ∞. (25)

onsequently, for large t so that 0 < T0 ⩽ t < T , we can estimate

U0(t) ≳ εIℓ[u0, u1] t−ℓe−2ϕℓ(t)
∫ t

T0

sℓe2ϕℓ(s) ds.

Therefore, for t ∈ [2T0, T )

U0(t) ≳ εIℓ[u0, u1] t−ℓe−2ϕℓ(t)
∫ t

t/2
sℓe2ϕℓ(s) ds

≳ εIℓ[u0, u1] t−ℓ
(

1 − e2ϕℓ(t/2)−2ϕℓ(t)
)

= εIℓ[u0, u1] t−ℓ
(

1 − e2(2−(ℓ+1)−1)ϕℓ(t)
)

≳ εIℓ[u0, u1] t−ℓ.

his completes the proof. □

Next we derive a lower bound estimate for the functional U1. The proof of the next result is inspired
y [13, Lemma 3.3].

emma 2.2. Let u0, u1 be functions satisfying the same assumptions as in the statement of Theorem 1.2.
et U1 be the functional associated with a local (in time) weak solution u of (1) and defined by (19). Then,
here exists T0 > 0 such that

U1(t) ≳ εIℓ[u0, u1] for any t ∈ [2T0, T ), (26)

here Iℓ[u0, u1] was defined in (21).

roof. Let us get started by showing that U1(t) ⩾ 0 for any t ∈ [0, T ). According to this purpose, we
ntroduce the further auxiliary functional

F1(t) .=
∫

∂tu(t, x)φ(x) dx for t ∈ [0, T ).

Rn

6
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Since U1 = λF1 and λ is a positive function, if we show that F1 is nonnegative, then, it follows the
nonnegativity of U1 as well. Choosing φ as test function in (7) (this is possible, due to the support condition
for u as explained in the proof of Lemma 2.1), we arrive at∫
Rn
∂tu(t, x)φ(x) dx =

∫ t

0

∫
Rn
s2ℓu(s, x)∆φ(x) dx ds+ ε

∫
Rn
u1(x)φ(x) dx

+
∫ t

0

∫
Rn

(|∂tu(s, x)|p + |u(s, x)|q)φ(x) dxds

=
∫ t

0

s2ℓ

λ(s)U0(s) ds+ ε

∫
Rn
u1(x)φ(x) dx+

∫ t

0

∫
Rn

(|∂tu(s, x)|p + |u(s, x)|q)φ(x) dx ds.

We remark that (24) implies that U0(t) is nonnegative for t ∈ [0, T ). Therefore, due to the fact that
the second data and the nonlinearity are nonnegative, from the previous identity, it follows that F1 is
nonnegative. We prove now the lower bound estimate (26). From (18) and (19), it follows the relations

U1(t) = U ′
0(t) − λ′(t)

λ(t) U0(t). (27)

herefore, from (22) we obtain

U1(t) − λ′(t)
λ(t) U0(t) = εIℓ[u0, u1] +

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
Ψ(s, x) dxds (28)

or any t ∈ (0, T ). Differentiating the last identity with respect to t, we have

U ′
1(t) − λ′(t)

λ(t) U
′
0(t) +

(
−λ′′(t)
λ(t) +

(
λ′(t)
λ(t)

)2
)
U0(t) =

∫
Rn

(
|∂tu(t, x)|p + |u(t, x)|q

)
Ψ(t, x) dx

or any t ∈ (0, T ). The employment of (27) and (15) in the last equation yields∫
Rn

(
|∂tu(t, x)|p + |u(t, x)|q

)
Ψ(t, x) dx = U ′

1(t) − λ′(t)
λ(t) U1(t) − λ′′(t)

λ(t) U0(t)

= U ′
1(t) − λ′(t)

λ(t) U1(t) − t2ℓU0(t).

sing again the nonnegativity of the nonlinearity, for a fixed parameter ω we may rewrite

0 ⩽ U ′
1(t) − λ′(t)

λ(t) U1(t) − t2ℓU0(t)

= U ′
1(t) − 2ωλ

′(t)
λ(t) U1(t) − h1(t)

(
U1(t) − λ′(t)

λ(t) U0(t)
)

− h2(t)U0(t), (29)

here the functions h1, h2 are defined as follows:

h1(t) .= λ′(t)
λ(t) (1 − 2ω), h2(t) .= t2ℓ +

(
λ′(t)
λ(t)

)2
(1 − 2ω).

y using (16) and (17) and the choosing ω ∈
(

1
2 ,

1
2 + 1

2c2
0

)
, we obtain that

h1(t) ⩾ 2ω − 1
c0

tℓ ⩾ 0 and h2(t) ⩾ (1 + c2
0(1 − 2ω)) t2ℓ ⩾ 0 (30)
7
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for any t ⩾ 1. Therefore, combining (28), (29) and (30), we get

U ′
1(t) − 2ωλ

′(t)
λ(t) U1(t) ⩾ h1(t)

(
U1(t) − λ′(t)

λ(t) U0(t)
)

+ h2(t)U0(t)

⩾ h1(t)
(
U1(t) − λ′(t)

λ(t) U0(t)
)

≳ εIℓ[u0, u1] tℓ

or t ∈ (1, T ). We remark that in the second step of the previous chain of inequalities the nonnegativity
f the functional U0 is employed. Multiplying the last estimate by (λ(t))−2ω and integrating over [1, t], we
rrive at

U1(t)
λ2ω(t) − U1(1)

λ2ω(1) ≳ εIℓ[u0, u1]
∫ t

1

sℓ

λ2ω(s) ds. (31)

mploying the nonnegativity of the functional U1, that we proved at the really beginning of this proof, we
ay neglect the second term on the left-hand side of (31). Next, using again the asymptotic behavior of λ

iven in (25) as in the proof of Lemma 2.1, we derive the lower bound estimate for U1. From (31) it follows

U1(t) ≳ εIℓ[u0, u1]λ2ω(t)
∫ t

1

sℓ

λ2ω(s) ds

≳ εIℓ[u0, u1] t−ℓωe−2ωϕℓ(t)
∫ t

T0

sℓ+ℓωe2ωϕℓ(s) ds

≳ εIℓ[u0, u1] e−2ωϕℓ(t)
∫ t

t/2
sℓe2ωϕℓ(s) ds

≳ εIℓ[u0, u1]
(

1 − e−2ω(1−2−(ℓ+1))ϕℓ(t)
)

≳ εIℓ[u0, u1]

for any t ∈ [2T0, T ). Note that in the previous steps we may assume T0 > 1 without loss of generality. The
roof is complete. □

.3. Derivation of the iteration frame

Let us choose a bump function which is equal to 1 on the light-cone {(s, x) ∈ [0, t]×Rn : |x| ⩽ R+ϕℓ(s)}.
hen, from (6) we obtain∫

Rn
∂tu(t, x) dx = ε

∫
Rn
u1(x) dx+

∫ t

0

∫
Rn

(
|∂tu(s, x)|p + |u(s, x)|q

)
dxds,

which leads to

U(t) = U(0) + U ′(0)t+
∫ t

0

∫ s

0

∫
Rn

(
|∂tu(τ, x)|p + |u(τ, x)|q

)
dxdτ ds (32)

⩾
∫ t

0

∫ s

0

∫
Rn

(
|∂tu(τ, x)|p + |u(τ, x)|q

)
dxdτ ds. (33)

dditionally, from nonnegativity of u0, u1 it follows that U(t) ⩾ 0 for any t ∈ (0, T ).
From the paper [1], we know that(∫

Ψ
p

p−1 (τ, x) dx
)p−1

≲ τ− ℓp
2 (R+ ϕℓ(τ))(n−1)(p−1)− n−1

2 p,

BR+ϕℓ(τ)

8
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where hereafter the unexpressed multiplicative constants may depend on n, p,R, ℓ, u0, u1 but are independent
f ε. By using Hölder’s inequality and Lemma 2.2, we obtain∫

Rn
|∂tu(τ, x)|p dx ⩾ |U1(τ)|p

(∫
BR+ϕℓ(τ)

Ψ
p

p−1 (τ, x) dx
)−(p−1)

≳ εpτ
ℓp
2 (R+ ϕℓ(τ))(n−1)(1− p

2 ) (34)

or any t ∈ (2T0, T ). Therefore, if we combine (33) and (34), we derive a first lower bound for U , namely,

U(t) ≳ εp(R+ ϕℓ(t))−(n−1) p
2

∫ t

2T0

∫ s

2T0

τ
ℓp
2 (R+ ϕℓ(τ))n−1 dτ ds

≳ εp(1 + t)−(ℓ+1)(n−1) p
2

∫ t

2T0

∫ s

2T0

(τ − 2T0)
ℓp
2 +(ℓ+1)(n−1) dτ ds

⩾ Kεp(1 + t)−(ℓ+1)(n−1) p
2 (t− 2T0)

ℓp
2 +(ℓ+1)(n−1)+2 (35)

or any t ∈ (2T0, T ), where K is a suitable positive constant.
Eventually, in order to construct an iteration frame, we apply Hölder’s inequality together with the

property of finite speed of propagation. More precisely, we find

U(t) ≳
∫ t

0

∫ s

0
(R+ ϕℓ(τ))−n(q−1)(U(τ))q dτ ds

⩾ C

∫ t

0

∫ s

0
(1 + τ)−(ℓ+1)n(q−1)(U(τ))q dτ ds (36)

or any t ∈ (0, T ) and for a suitable positive constant C, where we neglected the influence of the nonlinearity
f derivative type in (33). In the next section, we will employ (36) to get iteratively a sequence of lower bound
stimates for the functional U(t) starting from (35).

Remark 1. Repeating similar computations to those we made to get Eq. (35) (in particular, by using the
lower bound estimate for U0 from Lemma 2.1 instead of the lower bound estimate for U1 from Lemma 2.2),
we obtain

U(t) ≳ εq(R+ ϕℓ(t))− (n−1)q
2

∫ t

2T0

∫ s

2T0

τ− ℓq
2 (R+ ϕℓ(τ))n−1 dτ ds

⩾ K̃εq(1 + t)−(n−1)(ℓ+1) q
2 − ℓq

2 (t− 2T0)(n−1)(ℓ+1)+2 (37)

or any t ∈ (2T0, T ), where K̃ is a suitable positive constant. By using either (35) or (37), we employed lower
ound estimates for the nonlinearity of derivative type or for the power nonlinearity to get a first estimate
rom below for the functional U . A further lower bound estimate for U can be obtained by assuming u1
ontrivial (so that,

∫
Rn u1(x) dx > 0). Under this additional assumption, from (32) we derive

U(t) ⩾ K̃0εt, (38)

or any t ∈ (0, T ), where the positive multiplicative constant K̃0 depends on u1.

.4. Iteration argument

In this section, we are going to prove a sequence of lower bound estimates for the time-dependent fun-
tional U . In fact, we will prove that

U(t) ⩾ C (1 + t)−αj (t− 2T )βj (39)
j 0

9
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C

for any t ∈ (2T0, T ) and any j ∈ N, where {αj}j∈N, {βj}j∈N and {Cj}j∈N are sequences of nonnegative real
umbers that will be determined recursively in the iteration step.

Clearly, (39) holds true for j = 0 thanks to (35), provided that

C0
.= Kεp, α0

.= (ℓ+ 1)(n− 1) p
2 , β0 = ℓp

2 + (ℓ+ 1)(n− 1) + 2.

In order to use an inductive argument, it remains to show the validity of the inductive step: we assume
the validity of (39) for some j ∈ N and we have to prove its validity for j + 1 too. Plugging (39) in (36), we
get

U(t) ⩾ CCq
j

∫ t

2T0

∫ s

2T0

(1 + τ)−(ℓ+1)n(q−1)−αjq(τ − 2T0)βjq dτ ds

⩾ CCq
j (1 + t)−(ℓ+1)n(q−1)−αjq

∫ t

2T0

∫ s

2T0

(τ − 2T0)βjq dτ ds

⩾ CCq
j (βjq + 1)−1(βjq + 2)−1(1 + t)−(ℓ+1)n(q−1)−αjq(t− 2T0)βjq+2.

Thus, we proved (39) for j + 1 provided that

Cj+1
.= CCq

j (βjq + 1)−1(βjq + 2)−1, (40)

αj+1
.= (ℓ+ 1)n(q − 1)  

.=a

+αjq, βj+1
.= βjq + 2. (41)

n particular, from (41) we have

αj = a+ qαj−1 = · · · = a

j−1∑
k=0

qk + α0q
j =

(
a

q−1 + α0

)
qj − a

q−1 , (42)

βj = 2 + qβj−1 = · · · = 2
j−1∑
k=0

qk + β0q
j =

(
2

q−1 + β0

)
qj − 2

q−1 . (43)

herefore, combining (41) and (43), it results

βj = 2 + qβj−1 <
(

2
q−1 + β0

)
qj .

onsequently, from (40) it follows

Cj ⩾ CCq
j−1(βj−1q + 2)−2 ⩾ C

(
2

q−1 + β0

)−2

  
.=C̃

Cq
j−1q

−2j .
10
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U

h

Applying the logarithmic function to both sides of the last inequality and using in an iterative way the
resulting relation, we obtain

logCj ⩾ q logCj−1 − 2j log q + log C̃

⩾ q2 logCj−2 − 2(j + (j − 1)q) log q + (1 + q) log C̃

⩾ · · · ⩾ qj logC0 − 2 log q
j−1∑
k=0

(j − k)qk + log C̃
j−1∑
k=0

qk.

sing the formula
j−1∑
k=0

(j − k)qk = 1
q − 1

(
qj+1 − q

q − 1 − j

)
(whose validity can be proved through an inductive argument) we find

logCj ⩾ qj logC0 − 2 log q
q − 1

(
qj+1 − q

q − 1 − j

)
+ qj − 1

q − 1 log C̃

= qj

(
logC0 − 2q log q

(q − 1)2 + log C̃
q − 1

)
+ 2j log q

q − 1 + 2q log q
(q − 1)2 − log C̃

q − 1 .

If we denote by j0 = j0(n, p, q, ℓ) ∈ N the smallest integer greater than log C̃
2 log q − q

q−1 , then, for any j ⩾ j0 it
olds

logCj ⩾ qj

(
logC0 − 2q log q

(q − 1)2 + log C̃
q − 1

)

= qj log
(
Kq−(2q)/(q−1)2

C̃1/(q−1)εp
)

= qj log (Dεp) , (44)

where D .= Kq−(2q)/(q−1)2
C̃1/(q−1). Combining (39), (42), (43) and (44), for j ⩾ j0 and t ⩾ 2T0 we arrive at

U(t) ⩾ exp
(
qj log(Dεp)

)
(1 + t)−αj (t− 2T0)βj

= exp
(
qj
(

log (Dεp) −
(

a
q−1 + α0

)
log(1 + t) +

(
2

q−1 + β0

)
log(t− 2T0)

))
(1 + t)

a
q−1 (t− 2T0)− 2

q−1 .

For t ⩾ T1
.= max{1, 4T0} it holds log(1 + t) ⩽ log(2t) and log(t− 2T0) ⩾ log(t/2), so, for j ⩾ j0 it results

U(t) ⩾ exp
(
qj
(

log (Dεp) +
(

2−a
q−1 + β0 − α0

)
log t−

(
a+2
q−1 + α0 + β0

)
log 2

))
(1 + t)

a
q−1 (t− 2T0)− 2

q−1

= exp
(
qj

(
log
(

2−(α0+β0)− a+2
q−1Dεpt

θ(n,ℓ,p,q)
q−1

)))
(1 + t)

a
q−1 (t− 2T0)− 2

q−1 , (45)

where for the exponent of t in the last equality we used

2−a
q−1 + β0 − α0 = 2

q−1 − (ℓ+ 1)n+ (ℓ+ 1)(n− 1) + ℓp
2 + 2 − (ℓ+ 1)(n− 1) p

2

= 2
q−1 − ((ℓ+ 1)n− 1 − 2ℓ) p

2 − ℓ+ 1

= 2
q−1 − 1

2
[
((ℓ+ 1)n− 1)p− 2ℓ(p− 1) − 2

]
= θ(n,ℓ,p,q)

q−1 , (46)
11
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where θ(n, ℓ, p, q) is defined in (9). Note that the blow-up condition on p, q in (8) is equivalent to require
(n, ℓ, p, q) > 0. Let us choose ε0 > 0 satisfying

ε
− p(q−1)

θ(n,ℓ,p,q)
0 ⩾ 2− (α0+β0)(q−1)+a+2

θ(n,ℓ,p,q) D
q−1

θ(n,ℓ,p,q)T1.

o, for any ε ∈ (0, ε0] and for t ⩾ 2
(α0+β0)(q−1)+a+2

θ(n,ℓ,p,q) D
− q−1

θ(n,ℓ,p,q) ε
− p(q−1)

θ(n,ℓ,p,q) it results

t ⩾ T1 and 2−(α0+β0)− a+2
q−1Dεpt

θ(n,ℓ,p,q)
q−1 > 1,

ence, letting j → ∞ in (45) it turns out that U(t) blows up in finite time. Therefore, we proved the
lowing-up of U for any ε ∈ (0, ε0] whenever (8) holds and, besides, as byproduct we established the upper
ound estimate for the lifespan T (ε) ≲ ε

− p(q−1)
θ(n,ℓ,p,q) .

3. Lifespan estimates for the power nonlinearity

Let us consider the Cauchy problem⎧⎪⎨⎪⎩
∂2

t u− t2ℓ∆u = a|∂tu|p + b|u|q, x ∈ Rn, t > 0,
u(0, x) = εu0(x), x ∈ Rn,

∂tu(0, x) = εu1(x), x ∈ Rn,

(47)

or a, b ∈ {0, 1}.
In Section 2, we proved Theorem 1.2 by using an iteration argument, whose first lower bound estimate

for U is given by (35). In particular, we combined the influence of the nonlinearity of derivative type |∂tu|p,
rovided by the lower bound estimate (35), with the iteration frame in (36), which has been derived thanks
o the presence of the power nonlinearity |u|q on the right-hand side of our semilinear model.

On the other hand, as we pointed out in Remark 1, we know also other two lower bound estimates for
U , given by (37) and (38), respectively (let us recall that, in order to derive (38), we need to require u1
nonnegative and nontrivial). However, if we do employ one among these first lower bounds for U , somehow
we neglect the effect |∂tu|p on the equation, obtaining the same blow-up result for the Tricomi equation with
power nonlinearity |u|q from [1,18] in the subcritical case.

By using (37) in place of (35) and applying the machinery from Section 2.4, we find the following result
which coincides with Theorem 1.2 in [18] for (47) when a = 0, b = 1.

orollary 3.1. Let us consider n ⩾ 2 and p, q > 1 satisfying

1 < q < p0(n; ℓ),

here p0(n; ℓ) is the positive root of the quadratic equation in (3). Let us assume that u0, u1 ∈ L1
loc(Rn)

are nonnegative, not both trivial and compactly supported functions with supports contained in BR for some
R > 0. Let

u ∈ C([0, T ),W 1,1
loc (Rn)) ∩ C1([0, T ), L1

loc(Rn)) ∩ Lq
loc((0, T ) × Rn) such that ∂tu ∈ Lp

loc((0, T ) × Rn)

be a weak solution to (1) according to Definition 1.1 with lifespan T = T (ε).
Then, there exists a positive constant ε0 = ε0(n, ℓ, q, u0, u1, R) such that for any ε ∈ (0, ε0] the weak

solution u blows up in finite time. Furthermore, the upper bound estimate for the lifespan

T (ε) ⩽ Cε
− q(q−1)

γ(n,ℓ,q) (48)

olds, where the positive constant C is independent of ε and

γ(n, ℓ, q) .= (ℓ+ 1) + 1
2
(
(ℓ+ 1)n+ 1 − 2ℓ

)
q − 1

2
(
(ℓ+ 1)n− 1

)
q2. (49)
12
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Using (38) rather than (37), we can prove a blow-up result for (1) for 1 < q < pKat((ℓ + 1)n), where
pKat(n) = n+1

n−1 . This result provides actually an improvement of the upper bound for q in the blow-up range
only in the one dimensional case. More precisely, we get the following result, which is already known in the
literature (see [4, Remark 1.6]) for (47) when a = 0, b = 1.

Corollary 3.2. Let us consider n = 1 and p, q > 1 satisfying

1 < q < 1 + 2
ℓ

= pKat(ℓ+ 1).

et us assume that u0, u1 ∈ L1
loc(R) are nonnegative and compactly supported functions with supports

ontained in [−R,R] for some R > 0. Additionally, we require that∫
R
u1(x) dx > 0.

et u ∈ C([0, T ),W 1,1
loc (R)) ∩ C1([0, T ), L1

loc(R)) ∩ Lq
loc((0, T ) × R) such that ∂tu ∈ Lp

loc((0, T ) × R) be a weak
olution to (1) according to Definition 1.1 with lifespan T = T (ε). Then, there exists a positive constant
0 = ε0(ℓ, q, u0, u1, R) such that for any ε ∈ (0, ε0] the weak solution u blows up in finite time. Furthermore,
he upper bound estimate for the lifespan

T (ε) ⩽ Cε
−
(

q+1
q−1 −(ℓ+1)

)−1

(50)

olds, where the positive constant C is independent of ε.

Besides, the upper bound for the lifespan in (48) can be improved for n = 2 for certain exponents q,
rovided that the integral of u1 over the whole space is a positive quantity.

orollary 3.3. Let n = 2 and let us consider p, q > 1 satisfying

1 < q <
2(ℓ+ 1)
2ℓ+ 1 .

et us assume that u0, u1 ∈ L1
loc(R2) are nonnegative and compactly supported functions with supports

ontained in BR for some R > 0. Additionally, we require that∫
R2
u1(x) dx > 0.

et u ∈ C([0, T ),W 1,1
loc (R2)) ∩ C1([0, T ), L1

loc(R2)) ∩ Lq
loc((0, T ) × R2) such that ∂tu ∈ Lp

loc((0, T ) × R2) be a
eak solution to (1) according to Definition 1.1 with lifespan T = T (ε).
Then, there exists a positive constant ε0 = ε0(ℓ, q, u0, u1, R) such that for any ε ∈ (0, ε0] the weak solution

blows up in finite time. Furthermore, the upper bound estimate for the lifespan

T (ε) ⩽ Cε
−
(

q+1
q−1 −2(ℓ+1)

)−1

(51)

holds, where the positive constant C is independent of ε.

The improvement of the upper bound for the lifespan in the low dimensional case n = 1 and n = 2
from Corollaries 3.2–3.3 has already been observed for the case of the semilinear wave equation (see [19]
and [20,21] for the semilinear damped wave equation in the scattering producing case).
13
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Remark 2. For n ⩾ 3 we cannot improve the upper bound estimate in (48). As we have already pointed
out, employing (38) rather than (37), we get a blow-up result for (1) provided that 1 < q < pKat((ℓ+ 1)n).

oreover, the next upper bound estimate for the lifespan can be proved:

T (ε) ⩽ Cε
−
(

q+1
q−1 −(ℓ+1)n

)−1

.

t turns out that this upper bound for T (ε) improves the one in (48) for

q <
2(ℓ+ 1)

(ℓ+ 1)n− 1 .

owever, 2(ℓ + 1)/
(
(ℓ + 1)n − 1

)
< 1 for n ⩾ 3 and any ℓ > 0, therefore, it makes sense to talk about an

mprovement of the lifespan estimate in (48) just in space dimensions n = 1, 2.

emark 3. In this section, even though we formally got results for a = b = 1 in (47), we followed the
pproach applied to study the case with power nonlinearity, that is, for a = 0, b = 1. In particular, in this
ast case it is known that the results from Corollaries 3.1 and 3.2 are sharp (see [2] for n ⩾ 3 and [4] for

= 1 in the special case ℓ = 1
2 ).

4. Analysis of the obtained results

Let us define the following region:

Γ (n, ℓ) .=
{

(p, q) ∈ (1,∞)2 :
[(

(ℓ+ 1)n− 1
)
p− 2ℓ(p− 1) − 2

]
(q − 1) < 4

}
.

According to our main result, we proved the blow-up of local in time weak solutions to (1) under suitable sign
assumptions for the Cauchy data provided that (p, q) ∈ Γ (n, ℓ). We observe that, given n ⩾ 2, {Γ (n, ℓ)}ℓ⩾0

is a family of sets decreasing by inclusion, so the smaller ℓ the wider Γ (n, ℓ).
We begin by pointing out that for ℓ = 0, namely, for the case of the classical semilinear wave equation

with combined nonlinearity, our result coincides exactly with the sharp result obtained by [7,8].
We focus now on the case n ⩾ 2 (we will investigate separately later the case n = 1). In this case, we

remark that the range Γ (n, ℓ) is not fully contained in the strips{
(p, q) ∈ (1,∞)2 : p < p1(n; ℓ) or q < p0(n; ℓ)

}
,

delimited by p = p1(n; ℓ), q = p0(n; ℓ), which intersect in S .= (p1(n; ℓ), p0(n; ℓ)), see Fig. 1. In other words,
thanks to the combined presence of a power nonlinearity and of a nonlinearity of derivative type on the
right-hand side of (1), we find an enlargement of the blow-up range in comparison to the ranges for the
corresponding semilinear models with either a nonlinearity of power type or a nonlinearity of derivative
type. Let us consider for example the special case p = q. The intersection of ∂Γ (n, ℓ) with the diagonal
ields the point (pdiag(n; ℓ), pdiag(n; ℓ)), where pdiag(n; ℓ) is the positive solution to the quadratic equation(

(ℓ+ 1)n− 1 − 2ℓ
)
p2 −

(
(ℓ+ 1)n+ 1 − 4ℓ

)
p− 2(ℓ+ 1) = 0. (52)

y straightforward computations it follows that p1(n; ℓ) < p0(n; ℓ) < pdiag(n; ℓ) for any ℓ > 0 and n ⩾ 2.
herefore, already on the diagonal we are able to prove a blow-up result for (1) for pairs (p, q) satisfying
> p1(n; ℓ) and q > p0(n; ℓ). Since for ℓ = 0 it holds p0(n; 0) = pdiag(n; 0) = pStr(n), we notice that this is
completely new phenomenon in comparison to the case of the classical semilinear wave equation with the
ame kind of nonlinear term.
14
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Fig. 1. Blow-up range for (1): case n ⩾ 2.

emark 4. Let us remark that pdiag(n; ℓ) belongs somehow to the family of Strauss-type exponents. The
trauss exponent pStr(n) is the greatest root of the quadratic equation

(n− 1)(p− 1)2 + (n− 3)(p− 1) − 4 = 0, (53)

and it is the critical exponent for the semilinear wave equation with power nonlinearity. We are interested
here in quadratic equations of the following kind:

α(p− 1)2 + β(p− 1) − 4 = 0 (54)

or, equivalently,
α(p− 1) = α− β + 4 − (α− β)

p
.

he previous relation emphasizes the importance of the quantities α and α − β. Over the last years,
several papers have been devoted to the treatment of semilinear wave models with critical exponents that
are translation shifts of pStr(n) in the dimensional parameter (see [22–31] for models with time-dependent
coefficients and [32,33] for models with space-dependent coefficients). Typically, these models present lower
order terms with critical decay rates, beyond the principal part of the operator, which is the wave operator
∂2

t − ∆, and in all cases the relation α − β = 2 is satisfied as in (54). If we consider a generalized Tricomi
operator ∂2

t − t2ℓ∆ instead of the wave operator, the quadratic equation that reveals p0(n; ℓ) is

((ℓ+ 1)n− 1)(p− 1)2 + ((ℓ+ 1)n− 3 + 2ℓ)(p− 1) − 4 = 0. (55)

n the last equation, we notice a rescaling in α due to the shape of the light-cone. Moreover, α−β = 2(1−ℓ).
f we rewrite (52) in the following way:

((ℓ+ 1)n− 1 − 2ℓ)(p− 1)2 + ((ℓ+ 1)n− 3)(p− 1) − 4 = 0, (56)

we observe that α− β = 2(1 − ℓ) also in this case, so that, pdiag(n; ℓ) is obtained by p0(n; ℓ) through a shift
of magnitude −2ℓ in the coefficients α and β. In this sense, pdiag(n; ℓ) belongs to the family of Strauss-type
exponents.

In Table 1, we summarize the values of parameters α, β, α−β for (54) related to the previously discussed
semilinear hyperbolic equations.

On the other hand, taking the values of α in Table 1, by the relation α
2 (p−1) = 1, we find the Glassey-type

xponents pGla(n), pGla((ℓ + 1)n) and pGla((ℓ + 1)n − 2ℓ) for wave and generalized Tricomi operators (see
emark 5).
15
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Table 1
Values of p, α, β and α − β in the quadratic equation (54) for different PDEs.

Semilinear PDE Critical p α β α − β

(∂2
t − ∆)u = |u|p pStr(n) n − 1 n − 3 2

(∂2
t − t2ℓ∆)u = |u|p p0(n; ℓ) (ℓ + 1)n − 1 (ℓ + 1)n − 3 + 2ℓ 2(1 − ℓ)

(∂2
t − t2ℓ∆)u = |∂tu|p + |u|p pdiag(n; ℓ) (ℓ + 1)n − 1 − 2ℓ (ℓ + 1)n − 3 2(1 − ℓ)

Let us determine now the intersection of the boundary of the blow-up region, i.e. ∂Γ (n, ℓ), with the
traight lines with equations q = p0(n; ℓ) and p = p1(n; ℓ). We get started with the intersection of ∂Γ (n, ℓ)
ith the horizontal line. Denoting Q = (p̃0(n; ℓ), p0(n; ℓ)) the point such that

∂Γ (n, ℓ) ∩ {q = p0(n; ℓ)} = {Q}

n the (p, q)-plane, if we combine
[(

(ℓ+ 1)n− 1
)
p− 2ℓ(p− 1) − 2

]
(q− 1) = 4 and (55), then, we obtain that

0̃(n; ℓ) is the greatest root of the quadratic equation

((ℓ+ 1)n− 1 − 2ℓ)(p− 1)2 + ((ℓ+ 1)n− 3 − 2ℓ)(p− 1) − 2(ℓ+ 2) − 4ℓ(ℓ+ 1)
(ℓ+ 1)n− 1 − 2ℓ = 0.

We underline explicitly that
p̃0(n; 0) = pStr(n) = pdiag(n; 0) = p0(n; 0).

o, denoting D .= (pdiag(n; ℓ), pdiag(n; ℓ)), we find that Q,D → (pStr(n), pStr(n)) as ℓ → 0. The fact that Q,D
ollapse on the same point as ℓ → 0 allows us to understand better the above pointed out phenomenon of
he enlargement for ℓ > 0 of the blow-up range on the diagonal. Indeed, for the semilinear Cauchy problem⎧⎪⎨⎪⎩

∂2
t u− t2ℓ∆u = |∂tu|p + |u|p, x ∈ Rn, t > 0,
u(0, x) = εu0(x), x ∈ Rn,

∂tu(0, x) = εu1(x), x ∈ Rn,

the blow-up range is extended up to the wider range 1 < p < pdiag(n; ℓ), in comparison to the corresponding
semilinear Cauchy problems with either power nonlinearity |u|p or nonlinearity of derivative type |∂tu|p. We
recall that for ℓ = 0 this circumstance does not occur.

We may rewrite ∂Γ (n, ℓ) = {p > 1 : q = f(p;n, ℓ)} with

f(p;n, ℓ) .= 1 + 4
((ℓ+ 1)n− 1 − 2ℓ)p+ 2ℓ− 2 . (57)

sing that the function f = f(p;n, ℓ) in (57) is strictly decreasing with respect to p, the relation p0(n; ℓ) <
diag(n; ℓ) and that the point D is given by the intersection of ∂Γ (n, ℓ) with the diagonal {p = q}, we get
diag(n; ℓ) < p̃0(n; ℓ).

Next we study the intersection of ∂Γ (n, ℓ) with the vertical line p = p1(n; ℓ). Neglecting the influence of
he power nonlinearity |u|q and following [5], a blow-up result for 1 < p ⩽ p1(n; ℓ) can be shown in the case
ith combined nonlinearity too.
For p = p1(n; ℓ) on ∂Γ (n, ℓ) we find

q = p̃1(n; ℓ) .= ((ℓ+ 1)n+ 3)((ℓ+ 1)n− 1) − 4ℓ
((ℓ+ 1)n− 1)2 − 4ℓ .

ince the function f = f(p;n, ℓ) in (57) is strictly decreasing with respect to p, D is given by the intersection
f ∂Γ (n, ℓ) with the diagonal {p = q} and p1(n; ℓ) < pdiag(n; ℓ), it follows pdiag(n; ℓ) < p̃1(n; ℓ).

Hence, if we denote by P the point in the (p, q)-plane such that

∂Γ (n, ℓ) ∩ {p = p (n; ℓ)} = {P},
1
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then, from left to right we have the sorting P,D,Q on the branch of the hyperbola given by ∂Γ (n, ℓ). In
ther words, we obtained

p1(n; ℓ) < pdiag(n; ℓ) < p̃0(n; ℓ),

p0(n; ℓ) < pdiag(n; ℓ) < p̃1(n; ℓ).

Summarizing, we extend the blow-up region for (1) in the (p, q)-plane to the curvilinear triangle PQS. In
ig. 1 we collect all properties that we discussed on the blow-up region for (1) in this section.

emark 5. Let us provide a wider overview on blow-up results for the semilinear generalized Tricomi
quation with nonlinearity of derivative type. In [6] the authors found pGla((ℓ+1)n−2ℓ) as upper bound for
p in the blow-up range for n ⩾ 2. For combined nonlinearity, neglecting |u|q one deduces a blow-up result
ssuming 1 < p ⩽ pGla((ℓ + 1)n − 2ℓ). Plugging p = pGla((ℓ + 1)n − 2ℓ) into the equation for ∂Γ (n, ℓ), we
et q = pconf((ℓ + 1)n), where pconf(n) .= n+3

n−1 is the conformal exponent for the classical semilinear wave
quation (cf. [34]).

Moreover, collecting the upper bound estimates from Theorem 1.2, Section 3 and [5,18] we have

T (ε) ⩽

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cε
− p(q−1)

θ(n,ℓ,p,q) if (p, q) ∈ Γ (n, ℓ);

Cε
− q(q−1)

γ(n,ℓ,q) if 1 < q < p0(n; ℓ) and n ⩾ 2;

Cε
−
(

q+1
q−1 −(ℓ+1)n

)−1

if 1 < q < pKat((ℓ+ 1)n) and n = 1, 2;

Cε
−
(

1
p−1 − (ℓ+1)n−1

2
)−1

if 1 < p < pGla((ℓ+ 1)n);
exp
(
Cε−q(q−1)) if q = p0(n; ℓ);

exp
(
Cε−(p−1)) if p = pGla((ℓ+ 1)n).

For the lifespan estimate in the critical case q = p0(n; ℓ) we refer to [18, Theorem 1.3], while for the upper
ound estimates in the case 1 < p ⩽ pGla((ℓ+ 1)n) we address the interested reader to [5, Theorem 1.1].

Finally, let us consider more in detail the case n = 1. In the one dimensional case the blow-up condition
8) is

(−ℓp+ 2ℓ− 2)(q − 1) < 4. (58)

he main difference in comparison to the higher dimensional cases is that the constant that multiplies p in
58) is negative, modifying substantially the shape of the blow-up region. We will consider separately the
ases ℓ ∈ (0, 2], ℓ ∈ (2, 4] and ℓ ∈ (4,∞).

For the semilinear wave equations (ℓ = 0) with power nonlinearity |u|q and with nonlinearity of derivative
ype |∂tu|p, respectively, it is well-known in the literature (cf. [15,35]) that for n = 1 blow-up results for
ocal in time solutions hold for any q > 1 and any p > 1, respectively. Therefore, for the Cauchy problem
ssociated with semilinear wave equation with combined nonlinearity in the 1-d case ∂2

t u−∂2
xu = |∂tu|p+|u|q

or any p, q > 1 it is possible to prove the blow-up in finite time of the corresponding local in time solution,
rovided that suitable sign assumptions are required for the Cauchy data. In the first two subcases, namely
or ℓ ∈ (0, 4], also for (1) the same situation occurs as for the corresponding wave equation (ℓ = 0), that is,
he blow-up range coincides with the entire set {p, q > 1}. However, in order to prove this fact we need to
istinguish the case ℓ ∈ (0, 2] from the case ℓ ∈ (2, 4].

For ℓ ∈ (0, 2] it holds

2 2
{(p, q) ∈ R : p, q > 1} ⊂ {(p, q) ∈ R : (−ℓp+ 2ℓ− 2)(q − 1) < 4},
17
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Fig. 2. Blow-up range for (1): case n = 1, ℓ ∈ (0, 2].

Fig. 3. Blow-up range for (1): case n = 1, ℓ ∈ (2, 4].

o it follows immediately that the blow-up range from Theorem 1.2 is the full set {p, q > 1}, covering the
ase p > pGla(ℓ+1) and q > pKat(ℓ+1) as well (see Fig. 2). We point out that, as in the one dimensional case
he critical exponent for the semilinear generalized Tricomi equation with power nonlinearity is pKat(ℓ+ 1),
e consider the point S′ .= (pGla(ℓ + 1), pKat(ℓ + 1)) in place of S in the figures of the blow-up regions for
= 1.
On the other hand, for ℓ ∈ (2, 4] the hyperbola

{(p, q) ∈ R2 : (−ℓp+ 2ℓ− 2)(q − 1) = 4}

as asymptotes q = 1 and p = 2− 2
ℓ > 1. Hence, the condition in (58) does not cover the entire set {p, q > 1}.

evertheless, 2 − 2
ℓ < 1 + 2

ℓ = pGla(ℓ+ 1), so, using the blow-up result for 1 < p ⩽ pGla(ℓ+ 1) that can be
proved by working just with the nonlinearity of derivative type (see [5, Theorem 1.1]), we close the gap left
by Theorem 1.2 (cf. Fig. 3).

Finally, for ℓ ∈ (4,∞), even combining the results of Theorem 1.2 and [5, Theorem 1.1], we do not obtain
{p, q > 1} as blow-up range for (1). More precisely, we have to exclude the region{ 2 }
(p, q) ∈ (1,∞) : p > pGla(ℓ+ 1) and (−ℓp+ 2ℓ− 2)(q − 1) ⩾ 4 ,

18
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Fig. 4. Blow-up range for (1): case n = 1, ℓ ∈ (4, ∞).

contained in the strip {pGla(ℓ + 1) < p < 2 − 2
ℓ }, from the blow-up range, since in this case the asymptote

= 2 − 2
ℓ lies to the right of the critical value p = pGla(ℓ+ 1) (see Fig. 4).

inal note. After the preparation of the final version of the present manuscript, the authors found out the
xistence of the preprint [36], where the same blow-up result for (1) has been obtained independently.
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ppendix. Properties of the modified Bessel function of the second kind

In this appendix, we recall the main properties of modified Bessel functions of the second kind that we
mploy throughout the paper. For further details we refer to [37, Chapter 10].

The modified Bessel function of the second kind of order ν satisfies the second-order linear differential
quation with polynomial coefficients

τ2K′′
ν(τ) + τK′

ν(τ) − (ν2 + τ2)Kν(τ) = 0. (A.1)

The derivative of the modified Bessel function of the second kind can be expressed through the following
ecursive relations:

K′
ν(τ) = −Kν−1(τ) − ν

τ
Kν(τ),

K′
ν(τ) = −Kν+1(τ) + ν

τ
Kν(τ),

K′ (τ) = −1(Kν−1(τ) + Kν+1(τ)
)
.

(A.2)
ν 2
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Finally, the following asymptotic estimates for Kν hold for small and large argument, respectively,

Kν(τ) ∼ 2ν−1Γ (ν) τ−ν as τ → 0+, for ℜν > 0, (A.3)

Kν(τ) =
√

π

2τ e−τ
(
1 +O(τ−1)

)
as τ → ∞. (A.4)
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