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Abstract
Motivated by real-world data of monthly values of precipitation, minimum, and
maximum temperature recorded at 360 monitoring stations covering the Italian
territory for 60 years (12 × 60 months), in this work we propose a change-point
model for multiple multivariate time series, inspired by the hierarchical Dirich-
let process. We assume that each station has its change-point structure and, as
main novelties, we allow unknown subsets of the parameters in the data likeli-
hood to stay unchanged before and after a change-point, that stations possibly
share values of the same parameters and that the unknown number of weather
regimes is estimated as a random quantity. Owing to the richness of the for-
malization, our proposal enables us to identify clusters of spatial units for each
parameter, evaluate which parameters are more likely to change simultaneously,
and distinguish between abrupt changes and smooth ones. The proposed model
provides useful benchmarks to focus monitoring programs regarding ecosys-
tem responses. Results are shown for the whole data, and a detailed description
is given for three monitoring stations. Evidence of local behaviors includes
highlighting differences in the potential vulnerability to climate change of the
Mediterranean ecosystems from the Temperate ones and locating change trends
distinguishing between continental plains and mountain ranges.
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1 INTRODUCTION

Climate elements and regimes, such as temperature, precipitation, their annual cycles and mutual relationships, primar-
ily affect the type and distribution of plants, animals, and soils, as well as their combination in complex ecosystems and
ecoregions (Bailey, 2004; Metzger et al., 2013). Consequently, exploring climate change and respective responses of bio-
diversity is of primary importance for natural capital conservation and sustainable development at multiple levels (Pecl
et al., 2017). Notwithstanding the impacts of changes are being quite in depth investigated for species, many uncertain-
ties still remain as regards ecosystems, that is, for groups of interacting species that live in the same environment, and
as regards the ecosystem arrangement within ecoregions (Felton & Smith, 2017; Walther, 2010; Yu et al., 2019). Main
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issues are posed by the enhanced resilience of complex ecological systems with respect to individual species, that probably
determines long-term adaptive responses in terms of comprehensive species composition and/or spatial displacement
(Frauendorf et al., 2019). Also for this reason, abrupt climate changes, potentially detectable by means of change-points
(CPs), are supposed to have a stronger effect on ecosystem structure and functioning than gradual climate feature vari-
ations (Alley et al., 2003; Williams et al., 2011). Models able to provide more evidences on sharp temporal and spatial
shifts in climate regimes are therefore needed, especially at intermediate scales between the site and the global or con-
tinental ones. The hypothesis we moved from is that the detection of CPs by means of a model that takes into account
the similarities among spatial units and the interactions between different bioclimatic features may effectively support
the inference of climate change impacts on ecosystems. Especially in territories with marked orographic and physio-
graphic heterogeneity, climate change may actually occur unevenly across ecological regions and may differently affect
the interdependence between joint climate parameters and biodiversity arrangement and distribution. Accordingly, the
aim of the present work is to develop and disseminate an original methodology for i) defining CPs even on the basis
of the correlation between temperatures and precipitation, besides their mean values and variances and for each of the
meteorological stations occurring in the different ecoregions, ii) describing the spatial distribution of such CPs across
ecoregions at a national level, based on common climatic trends in the respective stations, and iii) spotting similarities
between ecoregions in bioclimatic terms, even independently from potential changes.

Our modeling proposal is applied to investigate the possible presence of CPs in thermopluviometric historical data over
the Italian peninsula. We consider monthly records of precipitation and min/max temperature at 360 monitoring stations
over 60 years (1951–2010). The full database has 3 × 360 × 60 × 12 entries, though almost all time series are affected by
variable amounts of missing data (Mastrantonio et al., 2019). Series observed over a large time span are usually subject
to changes of their structure and features, concerning both the first-order (means) and the second-order (variances and
correlations) properties (Battaglia et al., 2019). Moreover, seasonality is always present in thermopluviometric data and
cannot be disregarded.

CP problems can rely on a quite extensive literature and methods are often directly motivated by specific fields of study
and areas of interest. The use of CP models for climate data has become widespread in the late years, and many different
approaches have been proposed in both the classic and Bayesian framework, including the use of change detection statis-
tics (Jandhyala et al., 2010), the estimation of piecewise linear trends (Tomè & Miranda, 2004), sequential and CUSUM
tests for regime shifts (Robbins et al., 2011; Rodionov, 2004), information approaches (Beaulieu et al., 2012; Lu et al., 2010),
two-phase time series regression models (Lund et al., 2007; Lund & Reeves, 2002), ML estimation (Bhattacharya, 1987;
Hawkins, 2001; Killick et al., 2010), variable selection in high-dimensional regression (Li et al., 2021), with associated
software implementations (James & Matteson, 2013; Lindeløv, 2020). As regards Bayesian methods, the seminal works
of Carlin et al. (1992) and Chib (1998) have influenced much of the subsequent literature, recently reviewed in Peluso
et al. (2019) to whom we refer the interested reader. To the authors knowledge, the works of Ko et al. (2015) and Peluso
et al. (2019) contain previous attempts to exploit the flexibility of the Dirichlet process in the construction of CP models in
the Bayesian framework. The above scholars testify the liveliness and variety of the research in the field of CP modeling.

The approach we propose is motivated by methods that consider time series as possibly broken down into time regimes
composed of adjacent observations (Samé et al., 2011), assuming that observations belonging to the same regime follow a
common distribution. Regimes are separated by local change points, that is, changes that may repeatedly occur in time due
to seasonal or climate cycles, or by global change points, that is, changes that occur only once and determine a permanent
shift in the distribution. Local and global CPs can be obtained by mixture-type models for model-based clustering, where
mixture components act as generators of clusters or time regimes and classification is equivalent to the model fitting
process. As we are interested in global CPs, we rely on the formulation of the Bayesian mixture-type CP model proposed by
Chib (1998) and extend it to a multivariate Dirichlet process-based CP model (Ferguson, 1973). While the former requires
to set a priori the maximum number of CPs, the Dirichlet process (DP) formulation allows to define this number as a
random quantity to be estimated along with the model fitting. Our proposal is inspired by the single-hierarchical DP of
Teh et al. (2006) that we generalize to a combination of multiple DPs, each corresponding to one of the scalar parameters
of a multivariate time series of climate data. In classic mixture-type models (McLachlan & Peel, 2000) the density of
each regime depends on multiple parameters and regime shifts correspond to changes in all of them. Peluso et al. (2019)
proposed a nonhierarchical DP model that allows CPs due to only some of the parameters, but implies a priori knowledge
of which parameters change jointly. Our formalization overcomes these limitations since, when a change point occurs,
it allows us to determine which parameters are affected and how. To summarize, the main novel contributions of our
proposal to the methodology of CP modeling have to do with: i) the definition of CP as due to an unspecified subset of
the parameters of a multivariate time series, ii) the consequent identification of the parameters (i.e., of the distributional
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features) corresponding to the CPs, iii) the estimate of the unknown number of CPs as a by-product of the model fitting
process, iv) the fact that parameter values are possibly shared by different monitoring stations forming clusters of spatial
units, and v) the ability to distinguish between abrupt changes and smooth ones.

In our proposal the data are a realization of a CP model based on the multivariate normal distribution with
vector-valued parameters obtained as suitably modified DP draws. In particular, we assume that each monitoring station
follows its own DP-based CP model with a trivariate normal density for the data, allowing stations to share subsets of the
DP atoms. The model is estimated through the Markov chain Monte Carlo (MCMC) algorithm, after setting the mini-
mum number of contiguous observations that form a regime. This allows to avoid too short regimes with little biological
meaning and hard to interpret and justify in the Mediterranean context. Despite the complexity of the proposed model,
the MCMC algorithm is easy to implement and mostly based on Gibbs steps that are defined by introducing suitable
latent variables. The model capacity to recognize the hypothesized data structure is successfully tested with a simulated
example. Compared with competitive approaches, the proposed model shows a better performance in terms of predictive
ability as measured by continuous ranked probability score (CRPS).

The article is organized as follows. In Section 2 we give a brief account of available climate data and how they appear
in the CP model. Section 3 provides the hierarchical formulation of the CP model with its components. The model
performances are compared with similar competing approaches in Section 4.2. The results are discussed in detail for
three selected stations in Section 4.3, while in Section 4.4 the results for all stations are shown. The article ends with
some concluding remarks and directions for future researches in Section 5. The Appendix contains details of the MCMC
algorithm, an example of how CPs are appropriately identified with artificial data, and the legend of the Italian ecoregion
system.

2 REPRESENTATION OF THE AVAILABLE DATA

The present work relies on monthly records of precipitation and min/max temperature over 60 years (1951–2010) from a
network of 360 weather monitoring stations, spread over the Italian ecoregions (Figure 1). The ecoregions represent wide
ecosystems occurring in discrete geographical areas (Bailey, 1983; Loveland & Merchant, 2004), and a hierarchical classi-
fication of Italian ecoregions was recently obtained by combining climatic diagnostic features with distribution patterns
of biological diversity and other physical characteristics of the environment (Blasi et al., 2018). The Italian ecoregions are
arranged into four hierarchically nested tiers, which consist of two divisions, seven provinces, 14 sections, and 33 subsec-
tions (see Tables C1 and C2). Raw data on precipitation and min/max temperature over the period 1951–2010 were mostly
obtained from National Institutions (ISPRA, CRA/CREA, Meteomont, and ENEA) and local authorities (from each of the
20 Italian regions). Monthly records were obtained by monthly cumulative precipitations and monthly averages of daily
minimum and maximum air temperatures from a network of selected meteorological stations belonging to the different
ecoregions. Almost all time series are affected by variable amounts of missing data but, with respect to other databases
(such as the WorldClim, providing fine resolution but mainly inferred data, Fick & Hijmans, 2017) these are based on
truly observed data and better represent the specificity of the geographical and orographic heterogeneity of Italy. To guar-
antee an even representation of the different ecoregional sectors, also stations presenting a variable amount of missing
data (up to a threshold of 50% of missing data for each of the parameters) have been included in the network (for further
details on the database see Mastrantonio et al., 2019).

Let Y∗
1,t,s, Y∗

2,t,s, and Y∗
3,t,s be the random variables underlying the precipitation, minimum, and maximum temperature

at time t, where t ∈  ≡ {1, 2, … ,T} and spatial location s, where s ∈  ⊂ R2. To simplify the model definition and
the computations, as well as to avoid dimensionality issues, these variables are transformed. While standardization is
sufficient for the minimum and maximum temperature Y∗

2,t,s and Y∗
3,t,s, we have to consider that the precipitation Y∗

1,t,s
is a positive real valued variable with zeros that account for observations with no precipitations. We indicate with Y1,t,s,
Y2,t,s and Y3,t,s the transformed variables, where

⎧⎪⎨⎪⎩
Y1,t,s =

Y∗
1,t,s√
S2

Y∗
1

if Y∗
1,t,s > 0,

Y1,t,s ≤ 0 if Y∗
1,t,s = 0,

(1)

where S2
Y∗

1
is the sample variance. We can then model Y1,t,s instead of Y∗

1,t,s, which has the advantage to be defined over R,
as the two standardized variables Y2,t,s and Y3,t,s, and induces a bulk of probability at zero for Y∗

1,t,s. Equation (1) is an easy
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way to define a zero inflated distribution for Y∗
1,t,s since for any choice of the density of Y1,t,s it ensures that the probability

of Y∗
1,t,s = 0 is equal to the cumulative distribution of Y1,t,s evaluated at zero, while variables Y∗

1,t,s∕
√

S2
Y∗

1
and Y1,t,s have

the same density on the positive real line. Notice that (1) is the same transformation used in the Tobit model (McDonald
& Moffitt, 1980) which is a special case of a censored regression model. Indeed, values of Y1,t,s ≤ 0 cannot be computed
directly from the data and are considered missing, but it is easy to deal with this issue from the implementation point of
view, as we show in the Appendix.

3 THE CP MODEL

With the definition of the random variables Y1,t,s, Y2,t,s, and Y3,t,s underlying the precipitation, minimum, and maximum
temperature given in Section 2, the proposed model assumes that Yt,s = (Y1,t,s,Y2,t,s,Y3,t,s) has a trivariate normal density
at each monitoring station s and time t:

f (yt,s|𝜓t,s,𝜽t,s) = 𝜙3
(
yt,s|𝜓t,s + 𝝁t,s,𝚺t,s

)
. (2)

The vector-valued parameter 𝜽t,s is composed by the nine elements in 𝝁t,s and 𝚺t,s. More precisely, 𝜃t,s,i = 𝜇t,s,i with
i = 1, 2, 3, 𝜃t,s,i = 𝜎2

t,s,i−3 with i = 4, 5, 6 are the variances and the last three elements of 𝜽t,s are the correlation coefficients
between the three climate variables: 𝜌t,s,1,2, 𝜌t,s,1,3 and 𝜌t,s,2,3. The term 𝜓t,s represents a seasonal component that we
expect to be relevant in the available data, with 𝜓t,s = 𝜓t+12,s. As an identification constraint needed to jointly estimate
the monthly effects 𝜓t,s and mean effects 𝝁t,s, we assume

∑12
t=1𝜓t,s = 0. This also ensures that the total contribution of

the seasonal component over the 12 months is 0 and lets 𝝁t,s stand for the mean of yt,s. This last point is critical for the
interpretation, since it enables to compare and test if different monitoring stations have equal means.
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Let 𝝍 and 𝜽 be the vectors containing all the associated parameters, then the proposed model has the following
likelihood:

f (y|𝝍 ,𝜽) = ∏
s∈

∏
t∈

f (yt,s|𝜓t,s,𝜽t,s).

The parameter 𝜽t,s is used to define the CP model by a modified version of the hierarchical DP (Teh et al., 2006), allowing
the time series at different monitoring stations, and the same stations at different time-points, to share the same values
for subsets of the nine elements of 𝜽t,s. Intuitively, at each time-point and monitoring station, the nine-variate parameter
vector 𝜽t,s is assumed to come from a DP mixture-type model. Mixture components correspond to different distributional
features of the underlying three-variate Gaussian distribution, possibly connected with time regimes and clusters of spatial
units of the climate variables. In the next section we introduce the definition of the discrete multivariate distribution that
provides the main building block for the DP-CP model in Section 3.2.

3.1 The discrete multivatiate distribution G0

The DP is often used in Bayesian mixture modeling, since it allows to estimate the number of mixture components from
the data, without exploiting information criteria. First, let us define independent DPs for the nine parameters 𝜃𝓁 ∈ Θ𝓁 of
the multivariate normal distribution. A draw G𝜃𝓁

from DP(𝛾,H𝜃𝓁
) is a discrete distribution that depends on a scaling or

concentration parameter 𝛾 > 0 and on the base distribution H𝜃𝓁
over Θ𝓁 (Ferguson, 1973), that can be written as

G𝜃𝓁
=
∑
p∈N

𝜈𝓁,p𝛿𝜂𝓁,p ,

where 𝛿x be the Dirac delta function. Notice that G𝜃𝓁
is a sample from the DP(𝛾,H𝜃𝓁

) and, as any DP sample, it can be
represented using the sets of atoms {𝜂𝓁,p}p∈N and weights 𝝂𝓁 = {𝜈𝓁,p}p∈N, where 𝜂𝓁,p are i.i.d. from the base distribution
H𝜃𝓁

and 𝝂𝓁 is a draw from an infinite-dimensional Dirichlet distribution whose parameters depend on 𝛾 and H𝜃𝓁
(see Fox

et al., 2011; Teh et al., 2006 for more details) and defined using the stick-breaking representation (Ferguson, 1973).
As a next step we combine the sets of atoms {𝜂𝓁,p}p∈N and weights 𝝂𝓁 of each parameter 𝜃𝓁 to define a multivariate

discrete distribution that will be used as a base distribution of a further DP. Let 𝜼k be a random vector-valued atom
with 𝜼k = {𝜂𝓁,w𝓁,k}

9
𝓁=1, where w𝓁,k = p means that the 𝓁th element of 𝜼k is equal to 𝜂𝓁,p. Then, we can define a discrete

multivariate distribution as follows:

G0 =
∑
k∈N

𝜉k𝛿𝜼k , (3)

with random weights 𝜉k obtained as products of the associated 𝜈𝓁,p, that is,

𝜉k =
9∏

𝓁=1
𝜈𝓁,w𝓁,k , (4)

ensuring that two 𝜼k cannot be exactly the same. The set {𝜼k}k∈N is then comprised of all possible combinations of the
nine parameters without repetitions and all nine-variate atoms of G0 contain three means, three variances, and three
correlations, such that there are not two 𝜼ks that share the values of all the nine parameters. The discrete multivariate
distribution G0 is used as part of the DP-CP model, to generate random sets of vector-valued parameters for all time-points
and monitoring stations. In the next sections we explain how these nonfully overlapping random sets potentially give rise
to weather regimes, possibly shared by monitoring stations, and to CPs in the observed time series.

3.2 The DP-CP model with no-return constraint and minimum regime length

A DP mixture-type model with components that can be shared among monitoring stations is designed introducing the
station-specific discrete multivariate distribution
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Gs =
∑
k∈N

𝜋s,k𝛿𝜼k , (5)

as a draw from the Dirichlet process DP(𝛼,G0) with random set of atoms in {𝜂k}k∈N i.i.d. from G0 and associated random
weights {𝜋s,k}k∈N drawn from an infinite-dimensional Dirichlet distribution whose parameters depend on 𝛼 and G0 (Teh
et al., 2006). The atoms of the distribution Gs (i.e., the combinations of mean, variance, and correlation parameters) con-
tain all the possible values that 𝜽t,s can assume and they are thus random objects generated by construction of the discrete
multivariate distribution G0. Notice that, as in the hierarchical DP of Teh et al. (2006), since the multivariate base distri-
bution G0 is discrete and the same for each station, all Gs share the same atoms 𝜼k ∈ Θ with different associated weights.

Time regimes are constrained by the definition of global CP given in Section 1 as follows: a mixture-type CP model has
the characteristic that if at any time-point t the process moves from the kth mixture component to a new one, at any time
greater than t the process cannot go back to component k. This no-return constraint that characterizes the time evolution
of the system at each monitoring station s is introduced defining 𝝅s() as the restriction of a probability vector 𝝅s for a set
of unique indices  ⊂ N, namely,

𝜋s,k() =
⎧⎪⎨⎪⎩

0 if k ∉ ,
𝜋s,k∑
j∈ 𝜋s,j

if k ∈ ,

that is, the elements with indices not in  are set to zero and the remaining elements are scaled so to obtain a unit total
probability mass. The corresponding restriction of the discrete multivariate distribution Gs in (5) is then

Gs() = ∑
k∈N

𝜋s,k()𝛿𝜼k .

The distribution Gs() assigns nonzero probabilities to values of 𝜽t,s in the set {𝜼k}k∈ . Once we introduce the index vari-
able zt,s so that zt,s = k when 𝜽t,s = 𝜼k, with z0,s = ∅, the no-return constraint then consists in letting t,s = {k ∈ N|zl,s ≠
k, l = 1, 2, … , t} ∪ zt,s, with 0,s ≡ N. Finally, setting to m the minimum regime length, we obtain the nonparametric CP
model as follows:

𝜽t,s|𝜽t−1,s, … ,𝜽1,s,Gs ∼

{
𝛿𝜼zt−1,s

if nt−1
s,zt−1,s

< m
Gs(t−1,s) otherwise

, (6)

where nt
s,k =

∑t
i=1I(zi,s = k), assuming n0

s,k = 0. Equation (6) implies that all regimes are composed of at least m
time-points since, if the regime occupied at time t − 1 is shorter, it gives 𝜽t,s = 𝜼zt−1,s

with probability one. If m or more
time points are in the current regime, then 𝜽t,s is drawn from Gs(t−1,s) which is composed by the atom 𝜼zt−1,s

and all the
other atoms not previously observed at station s.

Equation (6) defines the Dirichlet process change point (DP-CP) model for the parameter vector 𝜽s at station s:

𝜽s|𝛼,G0 ∼ DP-CP(𝛼,G0,m),

with scale parameter 𝛼, base distribution G0 and minimum length m. This is a DP mixture-type model that allows to
discretize the time series of the parameters in 𝜽s in a finite number of regimes of at least m time-points, complying with the
no-return constraint. At each monitoring station, weather regimes can share some of the values of the parameters allowing
CPs in subsets of the whole set of parameters. Analogously, as Gs and Gs′ have the same set of atoms, the time series
at the two monitoring stations s and s′ can share some or all the values of the parameters, allowing for the detection of
similarities between the two corresponding stations. The possibility of identifying clusters of spatial units derives from the
generalization of this consideration to more than two monitoring stations. Such clusters are not assumed to be informed
by geographic distances or boundaries.

3.3 The hierarchical formulation and some operative remarks

Let𝝍 and 𝜽 be the vectors containing all the associated parameters and 𝜽s = {𝜽t,s}t∈ . The proposed model is then defined
by the following hierarchy:
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f (y|𝝍 ,𝜽) = ∏
s∈

∏
t∈

f (yt,s|𝜓t,s,𝜽t,s),

𝜽s|𝛼,G0 ∼ DP-CP(𝛼,G0,m), s ∈  ,
G𝜃𝓁

|𝛾,H𝜃𝓁
∼ DP(𝛾,H𝜃𝓁

), 𝓁 = 1, … , 9,

where G0 is defined as in Equation (3) and priors for the elements of 𝝍 , 𝜽, 𝛼, and 𝛾 are specified in Section 4.
As we said before, since two different 𝜼k can share some of their components, the occurrence of a change point does

not imply that all nine parameters change. The minimal requirement for a CP detection is that at least one of the elements
of the parameter set changes. Every time a CP occurs, the mixture-type model generates a new regime with a set of
parameters that is different from the previous ones. Although this means that something has changed in the distribution,
from a practical point of view there may be cases where this change is too small to be considered a real CP. To single
out the events that correspond to abrupt changes in the time evolution of at least one parameter, and fully address the
definition of global CP given in Section 1, we say that we have a disconnecting CP (d-CP) in a certain time interval when the
95% highest posterior density (HPD) bounds of the corresponding parameter before and after the interval do not overlap.
Conversely, not-disconnecting CPs (nd-CP) correspond to smooth changes, as complementary to d-CPs. As a matter of
fact, the latter definition requires postprocessing the model output and gives rise to a final step that completes the quest
for global CPs, see Section 4.1. The difference between d-CPs and nd-CPs is illustrated in detail in Section 4.3 for two
monitoring stations.

Finally, the constraint induced by the minimum regime length m in (6) would result in the impossibility for a CP to
be observed in the first m time-points of the time series. To avoid that, the set of time indices  was augmented with m
time-points before the first observation and the associated yt,s were considered as missing data.

4 THE DP CHANGE-POINT MODEL FOR THERMOPLUVIOMETRIC DATA

The DP change point model presented in the previous sections is here applied to the thermopluviometric Italian histor-
ical data described in Sections 1 and 2. In the following we provide the results of several estimation runs for alternative
specifications of the model, all obtained using 80,000 MCMC iterations, with 60,000 burnin and thinning by 4. Imple-
mentation involved parallel computing (OpenMP Architecture Review Board, 2008) and computations were performed
on the TeraStat cluster (Petrillo & Guerriro, 2014). Priors were set to N(0, 100) for the means 𝜇t,s,i and seasonal parame-
ters 𝜓t,s, InverseGamma(1, 1) for the variances 𝜎t,s,i, uniform over the space of n.n.d. correlation matrices for 𝜌t,s,i,i′ and
Gamma(1, 1) for the DP hyperparameters 𝛼 and 𝛾 , with i, i′ = 1, 2, 3, t ∈  and s ∈  .

In the model we assume that observations are conditionally independent, given the parameters and monthly effects;
this assumption may be questionable as usually an explicit modelization of time dependence is preferred. However, from
Figure 2, that shows several lags of the sample autocorrelation function for the data and the model residuals, it is clear
that our proposal captures the temporal correlation present in the original data. With these premises, and using the
explicit definition of the seasonal component provided by the term 𝜓t,s, the lack of a specific parametric formulation of
the temporal dependence does not have a considerable impact on the quality of the resulting model.

4.1 The optimal minimum regime length m and model output postprocessing

As a preliminary step, our model implementation requires to set the minimum regime length m. This kind of require-
ment is not new in the field of CP detection, see, for example, Rodionov (2004) where a cut-off regime length of 10 years is
considered for the time series of the Pacific Decadal Oscillation index. Regime lengths may be influenced by global atmo-
spheric patterns and cycles. In southern Europe, and specifically in the Mediterranean region, natural cycles related to
solar activity or global atmospheric dynamics can influence the climate pattern (Luque-Espinar et al., 2017). Interannual
cycles are related to seasonal changes and are accounted for by the model term 𝜓t,s, while biennial cycles may be linked
to quasi-Biennial oscillation (see Luque-Espinar et al., 2017, and references therein). More uncertainty affects the inter-
pretation of longer cycles, for example, 5–6 years cycles may be a harmonic component of the 11-year sunspot cycle or
they may be due to Èl Niño effects. We tested m ∈ {1, 24, 60} since these values were considered plausible, respectively,
corresponding to no constraints, and minimum regime lengths of 2 and 5 years, compatible with the underlying physical
processes. The m = 1 option was tested to confirm that constraining the regime length affects model inferences. Notice
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F I G U R E 2 Autocorrelation functions, averaged over the 360 stations, for the observed data (first row) and the model residuals (second
row). The dashed lines are the credible intervals and the solid lines the mean values

that a large value of m is bound to strongly affect inferences, for example, m = 120 implies that only a maximum of five
CPs can be found in the 60 years observed time series. On the other hand, if m ≤ 12 a seasonal variation can be confused
with a CP. The 5-year time window is often chosen in the description of climatic phenomena, see, for example, the Global
Climate Change NASA web site (https://climate.nasa.gov/vital-signs/global-temperature/) where the 5-year average vari-
ation of global surface temperatures are reported, or Collins et al. (2014) where again a 5-year time-window is adopted to
compare changes in precipitation and temperatures and Mudelsee (2019) where “The bandwidth of 5 years was prede-
fined to inspect mid- and shorter-term (decadal-scale) variations, such as the warming in the years around 1940, and to
smooth away faster variations.”

For each time-point and variable, we randomly selected 10% of the available stations and used them as a validation
set, which was then comprised of 22,628 stations and time-points for Y1, 21,321 for Y2 and 21,272 for Y3. The values of the
three response variables at these stations were then considered missing and models with m ∈ {1, 24, 60} were estimated.
The posterior samples of the variables in the validation set were used to compute the continuous ranked probability scores
(Gneiting & Raftery, 2007) for each of the three thermopluviometric variables. The CRPS is frequently used in order
to assess the accuracy of probabilistic forecasting models and can be thought of as the mean square error between the
predicted and the true cumulative density functions. For a generic element of the validation set y the CRPS is computed as

CRPS(y) = ∫
∞

−∞
[F(x) − 1(y − x)]2dx,

where F() is the posterior predictive distribution and 1 is the Heaviside step function. CRPS values, averaged over
the validation set, are presented in Table 1. For the precipitation and minimum temperature m = 60 is clearly prefer-
able, while the maximum temperature suggests m = 24. To choose a unique value of m for the three variables, we
checked how many times the maximum temperature had smaller CRPS with m = 24 than with m = 60 in the validation
set. This occurred with a relative frequency of 0.51, showing there is not strong evidence that m = 24 is preferable to
m = 60. Then, in the following (Sections 4.2–4.4), we show results obtained fitting the model with m = 60 on the entire
dataset.

Given the large number of stations (360) and multiple parameters (9), we define an automatic procedure to postprocess
the model output and identify d-CPs. With the proposed model, the time when a CP occurs is itself a random variable

https://climate.nasa.gov/vital-signs/global-temperature/
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T A B L E 1 Mean CRPS of the proposed model
under different values of the minimum length of a
regime (m)

Prec. Tmin. Tmax

m = 1 1.0671 0.7059 0.8965

m = 24 1.0454 0.7033 0.8947

m = 60 1.0220 0.7018 0.8951

with some associated uncertainty. Then, even in the presence of d-CPs, it is very likely that adjacent time-points have
overlapping HPD intervals. Therefore the comparison of HPD intervals for adjacent time-points would almost never detect
a d-CP. Thus, we consider 12 time-points to be a time distance useful for HPD interval comparison to spot a d-CP, as it
allows to compare the same months at 1-year distance, accounting for the seasonal variability. The automatic procedure
begins by defining the indicator variable 𝜆t,s,𝓁 that assumes value 1 if the 95% HPD intervals of parameter 𝓁 at times t
and t − 12 do not overlap, and 0 otherwise. Then, given a sequence of time-adjacent 𝜆t,s,𝓁 = 1, the time t corresponding
to the first 𝜆t,s,𝓁 = 1 is defined to be a d-CP. The available data contain a large number of time-points with missing values
for some or all the thermopluviometric variables. As a matter of fact, these time-points are not eligible to be d-CPs for
the parameters of the corresponding missing variables. To take this into account, we adopt the conservative strategy of
discarding CPs corresponding to time-points where the relative climate variables are missing. Notice that if, for example,
only the minimum temperature is missing at time t, this will not affect the detection of a d-CP for the precipitation mean
at the same time.

4.2 Model comparison

As was mentioned in Section 1, the model we propose introduces some new features in standard CP modeling, such
as sharing values for subsets of the parameters among stations and regimes. The same ideas can also be imple-
mented in mixture models, where the no-return constraint is not accounted for. In this section we show that these
particular features, in conjunction with the time constraint, produce a better description of the data with respect
to competing models. Here, again, we use the same validation set described in the previous section and compare
model performances in terms of CRPS. We compared the proposed DP-CP model with the three models described
below.

4.2.1 Ind-CP

In this case we assume that the data come from a CP model with m = 60, based on the trivariate normal density. Here
stations and regimes cannot share the same parameter values, but the no-return constraint still holds. This can be easily
achieved assuming that

Gs ∼ DP(𝛾,H), (7)

where H =
∏9

𝓁=1H𝜃𝓁
∈ Θ, in Equation (6). Notice that for each s the base distribution Gs is constructed independently,

then, since H is a continuous distribution, there are no atoms shared among stations.

4.2.2 Ind-Mixture

This model is similar to the Ind-CP and does not allow that stations and regimes share the same parameter values. In
this case the underlying classification is not based on a CP model but rather on a DP mixture model (without no-return
constraint) with at least m = 60 observations in each regime. In more details Gs is here defined as in Equation (7) and Gs
replaces Gs(t−1,s) in Equation (6).
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T A B L E 2 Average CRPS for the competing models

Prec. Tmin. Tmax

Proposed model 1.022 0.7018 0.8951

Ind-CP 1.052 0.7102 0.9023

Ind-Mixture 1.072 0.7102 0.8991

Shared-Mixture 1.034 0.7024 0.8983

4.2.3 Shared-Mixture

This model is similar to the previous one since it is still a DP mixture model, but here Gs is defined as in Equation (5).
This means that atoms are shared between stations and regimes.

As shown in Table 2, the proposed model outperforms all the others for the three response variables. Moreover,
the comparison of Ind-CP with our proposal and of Ind-Mixture with Shared-Mixture proves that sharing atoms always
improves the model performance. From a computational point of view, all four models require equivalent intense
computations to be estimated.

4.3 The Muravera, Ozieri, and Monte Cimone monitoring stations

The model output allows a very wide set of inferential usages, here we start by illustrating how to read results at the
monitoring station level. As a proof of concept, we describe some of the results concerning two monitoring stations with
a complex dynamic and one where the presence of a CP is very clear. The first two are Muravera and Ozieri, located
in the Sardinia island at 19 and 390-m above sea level, respectively. The two stations are at the southern (Muravera)
and northern (Ozieri) tips of the relative Ecoregion (2B4: Sardegna Section). Muravera is located close to the coast and
shows a Mediterranean hot and dry bioclimatic character, while Ozieri is deeply inland and shows a Mediterranean
wet bioclimatic character. It is known that at the beginning of the 1980s the intensity of the humid circulation in the
Tyrrhenian sea increased, affecting the precipitation in coastal areas. This phenomenon did not touch the inland stations
such as Ozieri. We then expect a larger number of possible changes in the Muravera than in the Ozieri station. However,
these changes may not all be d-CPs, but they might rather correspond to smooth changes and/or missing values.

At the Muravera station the posterior mode of the number of occupied regimes Ks is 9, with probability 0.42, and 95%
HPD interval [8, 11]. In the case of the Ozieri station the posterior mode of Ks is equal to 4, with probability 0.64, and the
95% HPD interval is [2, 6]. As we stated in the previous section, changes in regimes only correspond to potential d-CPs.
Figure 3 shows the posterior 95% HPD intervals of the three mean parameters at each time-point, and allows to spot the
difference between d-CPs and nd-CPs, as defined in Section 4.1. Notice that, due to the multimodality of the posteriors,
the 95% HPD intervals are often composed by disjoint intervals, introducing a further complication in the identification
of d-CPs. In Figure 3c, for example, we observe changes in the posterior distribution of the mean maximum temperature
at Muravera at times ≈150 (June 1962) and ≈250 (October 1970). While in the first case the 95% HDP intervals before and
after the change do not overlap, the converse is true at time 250. We can interpret the first as an abrupt change in the time
series and call it a d-CP, while the second implies a small change in the corresponding parameter and is a nd-CP. There
are quite a few missing data at the Ozieri monitoring station (Figure 3, second row) and, unlike at Muravera, we cannot
spot CPs at times ≈150 or ≈250. For the mean of the minimum temperature in Figure 3e we are not sure when a d-CP
occurs around time 400, due to the missing data, even if the posterior is really different before and after. Then, it is not
possible to identify a d-CP in this case. At the two mentioned stations, our procedure detects only one d-CP at time 150
(June 1962) for the maximum temperature at the Muravera station.

The third monitoring station we consider is Monte Cimone, Aeronautica, where a clear increase in temperatures and
precipitation occurs around the last two decades of the 20th century. The station is located at 2165-m above the sea level, at
the uppermost sector of the Italian Apennine Ecoregion (Ecoregion 1C1: Northern and northwestern Apennine Section),
and shows an Alpine cold bioclimatic character. In Figure 4 we report the observed time series and the HPD bounds
of the three mean parameters for the Monte Cimone station. The model returns four CP’s with probability 0.48. After
checking for the presence of missing data at the CP location, we find that December 1999 is confirmed as a d-CP for the
mean of the three variables, for the variance of maximum temperature, for the correlations between temperatures, and
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F I G U R E 3 95% HPD bounds of the mean parameter for precipitation (first column), minimum temperature (second column), and
maximum temperature (third column) at each time-point, for the Muravera (first row) and Ozieri (second row) monitoring stations. 95%
HPD bounds are shown only for time-points with nonmissing values

for the correlation between precipitation and minimum temperature. The precipitation’s variance instead, shows a d-CP
on January 1952. HPD plots of correlations and variances are not reported for the sake of brevity, but they are available
from the authors upon request

As stations can share the atoms of the underlying DP processes, the model output allows to check if one of the nine
parameters has the same value at two monitoring stations. The relative frequency of the times that the value of the param-
eter 𝓁 is the same in the posterior samples for any pair of stations s1 and s2 at time t is hereby denoted by 𝜋s1,s2,t,𝓁 and
referred to as similarity. As expected, the similarity of the mean of the maximum temperature for the Muravera and Ozieri
stations (Figure 5a) is quite low at all time-points. According to the intensity of the humid circulation in the area, after
December 1979 (time-point 360) the mean of the precipitation shows a decreasing similarity between the two stations
(Figure 5b).

4.4 Summary of model results for all monitoring stations

In Figure 6 stations with at least one d-CP over the entire time-period are reported for the nine parameters. Many stations
have no d-CPs (all of them for the correlation between precipitation and maximum temperature), while d-CPs are found
more often for the mean of the two temperatures and the for correlation between them. Owing to the intrinsic variability
of the precipitation in Mediterranean contexts (Dükeloh & Jacobeit, 2003), d-CPs for this variable sporadically occur in the
Mediterranean ecoregions, involving exclusively areas in mountain sectors, while being relatively more widespread in the
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F I G U R E 4 Time series (first row) and 95% HPD bounds (second row) of the mean parameters for precipitation (first column),
minimum temperature (second column), and maximum temperature (third column) at the Monte Cimone monitoring station

Temperate ecoregions (Alpine and Apennine sections). Similarly, as regards temperatures, fewer changes are observed in
the more continental Sectors (especially 1B1, Po Plain Section, and 2C1, Central Adriatic Section), which are intrinsically
subject to daily and seasonal temperature variations.

We can also evaluate how many d-CPs are observed simultaneously for each pair of parameters 𝓁1 and 𝓁2. For this
purpose we can use the indicator variable 𝜆t,s,𝓁 defined in Section 4.1. Let s,𝓁i be the set of temporal indices that have
𝜆t,s,𝓁i = 1 and let n ,s,𝓁i be its cardinality at location s. The proportion of times in which 𝜆t,s,𝓁2 = 1 conditionally on 𝜆t,s,𝓁1 =
1 is given by: ∑

s∈
∑

t∈s,𝓁1
I(𝜆t,s,𝓁2 = 1)∑

s∈ n ,s,𝓁1

. (8)

Equation (8) gives the proportion of times and stations where 𝓁2 has a d-CP conditional on 𝓁1 having a d-CP. For
each pair of variables and parameters, these indices are depicted in Figure 7, where 𝓁1 represents the row of the matrix
and 𝓁2 the column. As a proof of concept, notice that whenever we have a d-CP in the correlation between the minimum
temperature and the precipitation there is a large probability of observing a d-CP in the correlation between the two
temperatures (row 7, column 9) and the mean of the minimum temperature (row 7, column 2). Figure 7 also shows that
d-CPs in the mean of the two temperatures are often caused by those in the mean precipitation (row 1, columns 2, 3), but
the converse is not true (rows 1, 2, column 1). As expected, Figure 7 shows that the means of the two temperatures often
have concurrent d-CPs (row 2 column 3, row 3 column 2).
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F I G U R E 5 Time series of similarities between the Muravera and Ozieri stations for the mean of maximum temperature (a) and of the
precipitation (b)

Given the large number of stations and time-points, we summarize the similarities 𝜋s1,s2,t,𝓁 between stations s1 and
s2 for parameter 𝓁 at time t by regressing their logistic transformation log(𝜋s1,s2,t,𝓁∕(1 − 𝜋s1,s2,t,𝓁)) on the spatial distances
Δsp between stations s1 and s2, the differences in their elevation Δel and a grouping factor that identifies the combination
of the ecoregions (14 sections) of the two stations. Notice that, for each parameter 𝓁, we consider the couple of stations
(s1, s2) at time t only if both do not have missing values in the corresponding variable. All the regression coefficients of
Δsp and Δel suggest that the similarity decreases with the spatial distance and with the elevation difference. In Table 3
we report the coefficients referred to the mean and variance parameters. Notice that, while the distance between stations
seems to have approximately the same effect for the three mean parameters, similarities are more sensitive to distance
effects for the precipitation variance than for the temperature ones. Indeed rainfall and snow events are less linked to
geographical variables than temperature (Ninyerola et al., 2000). As expected, differences in elevation affect the similarity
of the mean temperatures more than they do with the precipitation.

For each of the nine parameters, Figure 8 describes the relative variation of the logit of the similarities between pairs
of ecoregions predicted by the regression model using the mean spatial distance and mean elevation difference between
the ecoregions. Notice that, even if we do not use spatial information in the model, we can see in Figure 8 that regions
that are spatially close tend to be more similar, which confirms that the results we obtain are sound.

According to the diagnostic criteria adopted for drawing ecoregion boundaries (Blasi et al., 2014), the similarity in bio-
physical features between ecoregional sections is generally expected to increase with their belonging to the same higher
tier of the classification (province or division). Results in Figure 8 allow this hypothesis to be verified and detailed as
regards climatic characteristics. For example, dissimilarities between the Italian Temperate division and the Mediter-
ranean division (set of ecoregions with codes alternatively beginning with “1” or “2”) emerged to be more marked in terms
of mean temperatures (Figure 8b,c) rather than of mean precipitation (Figure 8a), for the same reason above-mentioned.
At this level, precipitation means become differential just for a subset of the Temperate ecoregions (namely, the Alpine
sections 1A1 and 1A2, characterized by higher precipitation values and clearly dissimilar from all the Mediterranean
sections) or, alternatively, for a subset of the Mediterranean ecoregions (namely, the southernmost sections 2B3, 2B4, 2C2,
characterized by a very marked summer decrease and clearly dissimilar from most of the Temperate sections). As regards
provinces (codes denoted by the first number plus the first letter) within the same division, the Alpine Province (codes
beginning with “1A”) is quite well fitting within the Temperate division in terms of maximum temperatures variance
(Figure 8f) and correlation between temperatures (Figure 8i), while emerged to be dissimilar from the other Temperate
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F I G U R E 6 Stations with at least one d-CP, for the nine parameters
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F I G U R E 7 Proportion of times and stations where the parameter 𝓁2 (columns) has a d-CP conditional on 𝓁1 (rows) having a d-CP.
Each square represents the proportion of times and stations where 𝜆t,s,𝓁 of the column element is equal to one, in the subset of times and
stations where 𝜆t,s,𝓁 of the row element is equal to 1
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T A B L E 3 Estimated regressive coefficients referred to
similarities of mean and variance parameters (with confidence
intervals)

𝚫sp 𝚫el

Mean prec. −1.313 −0.061

(−1.323, −1.302) (−0.610, −0.604)

Mean min. temp. −1.447 −1.125

(−1.454, −1.439) (-1.127 -1.123)

Mean max. temp. −1.464 −1.937

(−1.472, −1.456) (−1.939, −1.935)

Var. prec. −2.244 −0.477

(−2.255, −2.232) (−0.481, −0.473)

Var. min. temp. −1.395 −1.058

(−1.405, −1.386) (-1.062, −1.056)

Var. max. temp. −1.757 −0.325

(−1.767, −1.747) (−0.322, −0.329)

provinces for mean temperatures (Figure 8b,c) and for precipitation means and variance (Figure 8a,d). This distinctive-
ness may be ascribed, on the one hand, to longer and deeper winter frost with respect to that occurring in the Po Plain
Province at lower altitudes (code beginning with “1B”) and in the Apennine Province at lower latitudes (codes beginning
with “1C”), and, on the other hand, to higher values and continental regime for precipitation (with winter minimum)
with respect to lower values and summer minimums occurring in the peninsular sectors at lower latitudes. As regards
sections, some transitional characters could instead be detected. For example, the Central Adriatic Section (2C1) is quite
well fitting within the Adriatic Province (codes beginning with “2C”) of the Mediterranean division for all the parame-
ters, but many similarities with the Po Plain and Apennine Provinces of the Temperate division also emerged (especially
in terms of mean and variance of precipitation, mean and variance of maximum temperatures, and all the correlations).

5 CONCLUSIONS

In this work we propose a model-based CP detection procedure for large multivariate time series. The motivating example
spreads from a climate dataset with monthly values of precipitation, minimum, and maximum temperature recorded
in Italy from a network of 360 monitoring stations over 60 years. Our proposal introduces some remarkable novelties
in CP modeling: we do not force all parameters to change at a CP; changing parameters are not set a priori but their
identification is part of the model inference; monitoring stations can share values of the parameters; at each monitoring
station the number of CPs is a random quantity that is estimated. As a by-product, the model output allows to identify
clusters of spatiotemporal observations that share values of some or all the parameters, that is, to identify time regimes
or groups of stations that are similar all over the observed time-window. Model output postprocessing also informs on
which parameters are more likely to change simultaneously, and provides a procedure to distinguish abrupt from smooth
changes. Actually, the model enabled to support the identification of abrupt changes in individual climate features and
in their mutual relationships, which potentially impair the resilience of Italian natural ecosystems.

It is known that the presence of positive autocorrelation in the time series is a key issue which can eventually degrade
climate CP detection. Nevertheless, explicitly accounting for time dependence in the model formulation would obviously
add considerably to the computational complexity. However, we showed that our proposal is capable of handling time
dependence effectively (see Figure 2). The high-computational complexity of our proposal is counterbalanced by the
richness of the model output. Indeed, it allows to comment on the behavior of single time series and on their joint behavior
in both time and space. Local and general features are easily highlighted and we obtain a very relevant insight into the
analyzed phenomena. A unique feature of our proposal is that it allows to postprocess the model output at different spatial
scales, thus giving the possibility of evaluating the similarities between stations and/or areas in terms of CPs. A further
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F I G U R E 8 Predictive values of the logit of the similarities between pairs of ecoregions (sections), obtained using the mean value of Δsp

and Δel. As ecoregion 1D1 is composed of one station we do not compute the self-similarity, leaving the relative square grey. To ease the
comparison between ecoregions, the color scale is made specific for each panel
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improvement on standard CP search protocols is that the choice of the minimum regime length can be done in a rigorous
and verifiable way using the available data, as shown in Section 4.1, reducing the level of discretion in the model setting.

The inferences allowed by the proposed model significantly improve the bioclimatic characterization of the Italian
ecoregions and, therefore, the understanding of complex climate patterns in a country of great physiographic hetero-
geneity. In particular, with the support of observed rather than interpolated data, it makes possible to better define i) the
similarity/dissimilarity within and between ecoregions in terms of climate mean and variability, ii) the effects of the dif-
ferent correlation between climatic variables on vegetation patterns, with a focus at the national/subnational scale, and
iii) the vulnerability of sensitive ecosystems to local climate change trends, in accordance with the IUCN Red List criteria
(Keith et al., 2015). Actually, the presented outcomes provide useful benchmarks to better focus monitoring programs as
regards ecosystem responses (e.g., Chelli et al., 2017). It may be possible, for example, to determine according to which
parameters the potential vulnerability to climate change of the Mediterranean ecosystems differs from that of the Temper-
ate ones. Otherwise, the detection of d-CP occurrence across ecoregional sections provides a better spatial locationing of
change trends with respect to available models at broader scales, for example, by distinguishing d-CP frequency between
continental plains and mountain ranges within the Temperate context.

Finally, although the model is presented in the context of a CP problem, the same ideas can be used in other
mixture-type models, where it is of interest to evaluate which elements of a vector-valued parameter differ between
regimes or sets of observations, allowing to enhance common and different features.

ACKNOWLEDGMENT
The authors acknowledge the support of the Italian Ministry of Education, University, and Research (MIUR), grant Dipar-
timenti di Eccellenza, CUP: E11G18000350001, conferred to Dipartimento di Scienze Matematiche - DISMA, Politecnico
di Torino.

The data that support the findings of this study are available from http://www.scia.isprambiente.it/wwwrootscia/
Home_new.html. Restrictions apply to the availability of these data, which were used under license for this study.

ORCID
Gianluca Mastrantonio https://orcid.org/0000-0002-2963-6729

REFERENCES
Alley, R. B., Marotzke, J., Nordhaus, W. D., Overpeck, J. T., Peteet, D. M., Pielke, R. A., Pierrehumbert, R. T., Rhines, P. B., Stocker, T. F., Talley,

L. D., & Wallace, J. M. (2003). Abrupt climate change. Science, 299(5615), 2005–2010.
Bailey, R. G. (1983). Delineation of ecosystem regions. Environmental Management, 7(4), 365–373.
Bailey, R. G. (2004). Identifying ecoregion boundaries. Environmental Management, 34(Suppl 1), S14–S26.
Battaglia, F., Cucina, D., & Rizzo, M. (2019). Parsimonious periodic autoregressive models for time series with evolving trend and seasonality.

Statistics and Computing, 30(1), 77–91.
Beaulieu, C., Chen, J., & Sarmiento, J. L. (2012). Change-point analysis as a tool to detect abrupt climate variations. Philosophical Transactions

of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1962), 1228–1249.
Bhattacharya, P. (1987). Maximum likelihood estimation of a change-point in the distribution of independent random variables: General

multiparameter case. Journal of Multivariate Analysis, 23(2), 183–208.
Blasi, C., Capotorti, G., Copiz, R., Guida, D., Mollo, B., Smiraglia, D., & Zavattero, L. (2014). Classification and mapping of the ecoregions of

Italy. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 148(6), 1255–1345.
Blasi, C., Capotorti, G., Copiz, R., & Mollo, B. (2018). A first revision of the Italian ecoregion map. Plant Biosystems, 152(6), 1201–1204.
Carlin, B. P., Gelfand, A. E., & Smith, A. F. M. (1992). Hierarchical Bayesian analysis of changepoint problems. Journal of the Royal Statistical

Society Series C (Applied Statistics), 41(2), 389–405.
Chelli, S., Wellstein, C., Campetella, G., Canullo, R., Tonin, R., Zerbe, S., & Gerdol, R. (2017). Climate change response of vegetation across

climatic zones in Italy. Climate Research, 71(3), 249–262.
Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86(2), 221–241.
Collins, M., Knutti, R., Arblaster, J., Dufresne, J-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W., Johns, T., Krinner, G., Shongwe, M.,

Tebaldi, C., Weaver, A., & Wehner, M. (2014). Long-term climate change: Projections, commitments and irreversibility. In T.F. Stocker, D. Qin,
G-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley, (eds.), Climate change 2013 – The physical
science basis: Working group i contribution to the fifth assessment report of the intergovernmental panel on climate change (pp. 1029–1136).
Cambridge University Press.

Dükeloh, A., & Jacobeit, J. (2003). Circulation dynamics of mediterranean precipitation variability 1948-98. International Journal of Climatol-
ogy, 23(15), 1843–1866.

Felton, A. J., & Smith, M. D. (2017). Integrating plant ecological responses to climate extremes from individual to ecosystem levels. Philosophical
Transactions of the Royal Society B: Biological Sciences, 372(1723), 20160142.

http://www.scia.isprambiente.it/wwwrootscia/Home_new.html
http://www.scia.isprambiente.it/wwwrootscia/Home_new.html
https://orcid.org/0000-0002-2963-6729
https://orcid.org/0000-0002-2963-6729


18 of 29 MASTRANTONIO et al.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1(2), 209–230.
Fick, S. E., & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of

Climatology, 37(12), 4302–4315.
Fox, E. B., Sudderth, E. B., Jordan, M. I., & Willsky, A. S. (2011). A sticky HDP-HMM with application to speaker Diarization. The Annals of

Applied Statistics, 5(2A), 1020–1056.
Frauendorf, T. C., MacKenzie, R. A., Tingley, R. W., III, Frazier, A. G., Riney, M. H., & El-Sabaawi, R. W. (2019). Evaluating ecosystem effects

of climate change on tropical Island streams using high spatial and temporal resolution sampling regimes. Global Change Biology, 25(4),
1344–1357.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association,
102(477), 359–378.

Hawkins, D. M. (2001). Fitting multiple change-point models to data. Computational Statistics and Data Analysis, 37(3), 323–341.
James, N. A., & Matteson, D. S. (2013). ecp: An r package for nonparametric multiple change point analysis of multivariate data. Journal of

Statistical Software, 62(7), 1–25.
Jandhyala, V. K., Fotopoulos, S. B., & You, J. (2010). Change-point analysis of mean annual rainfall data from Tucumán, Argentina.

Environmetrics, 21(7-8), 687–697.
Keith, D. A., Rodríguez, J. P., Brooks, T. M., Burgman, M. A., Barrow, E. G., Bland, L., Comer, P. J., Franklin, J., Link, J., McCarthy, M. A.,

Miller, R. M., Murray, N. J., Nel, J., Nicholson, E., Oliveira-Miranda, M. A., Regan, T. J., Rodríguez-Clark, K. M., Rouget, M., & Spalding,
M. D. (2015). The IUCN red list of ecosystems: Motivations, challenges, and applications. Conservation Letters, 8(3), 214–226.

Killick, R., Eckley, I. A., Ewans, K., & Jonathan, P. (2010). Detection of changes in variance of oceanographic time-series using changepoint
analysis. Ocean Engineering, 37(13), 1120–1126.

Ko, S. I. M., Chong, T. T. L., & Ghosh, P. (2015). Dirichlet process hidden Markov multiple change-point model. Bayesian Analysis, 10(2),
275–296.

Li, Y., Chan, N. H., Yau, C. Y., & Zhang, R. (2021). Group orthogonal greedy algorithm for change-point estimation of multivariate time series.
Journal of Statistical Planning and Inference, 212, 14–33.

Lindeløv, J. K. (2020). mcp: An r package for regression with multiple change points. OSF Preprints.
Loveland, T. R., & Merchant, J. M. (2004). Ecoregions and ecoregionalization: Geographical and ecological perspectives. Environmental

Management, 34(Suppl 1), S1.
Lu, Q., Lund, R., & Lee, T. C. M. (2010). An MDL approach to the climate segmentation problem. The Annals of Applied Statistics, 4(1),

299–319.
Lund, R., & Reeves, J. (2002). Detection of undocumented changepoints: A revision of the two-phase regression model. Journal of Climate,

15(17), 2547–2554.
Lund, R., Wang, X. L., Lu, Q. Q., Reeves, J., Gallagher, C., & Feng, Y. (2007). Changepoint detection in periodic and autocorrelated time series.

Journal of Climate, 20(20), 5178–5190.
Luque-Espinar, J. A., Mateos, R. M., García-Moreno, I., Pardo-Igúzquiza, E., & Herrera, G. (2017). Spectral analysis of climate cycles to predict

rainfall induced landslides in the Western Mediterranean (Majorca, Spain). Natural Hazards, 89(3), 985–1007.
Mastrantonio, G., Jona Lasinio, G., Pollice, A., Capotorti, G., Teodonio, L., Genova, G., & Blasi, C. (2019). A hierarchical multivariate

spatio-temporal model for clustered climate data with annual cycles. The Annals of Applied Statistics, 13(2), 797–823.
McDonald, J. F., & Moffitt, R. A. (1980). The uses of tobit analysis. The Review of Economics and Statistics, 62(2), 318–321.
McLachlan, C., & Peel, D. (2000). Finite mixture models. John Wiley & Sons.
Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Sayre, R., Trabucco, A., & Zomer, R. (2013). A high-resolution bioclimate map of the world:

A unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 22(5), 630–638.
Mudelsee, M. (2019). Trend analysis of climate time series: A review of methods. Earth-Science Reviews, 190, 310–322.
Ninyerola, M., Pons, X., & Roure, J. M. (2000). A methodological approach of climatological modelling of air temperature and precipitation

through gis techniques. International Journal of Climatology, 20(14), 1823–1841.
OpenMP Architecture Review Board (2008). OpenMP application program interface version 3.0.
Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi,

L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., … Williams, S. E.
(2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332), 1–9.

Peluso, S., Chib, S., & Mira, A. (2019). Semiparametric multivariate and multiple change-point modeling. Bayesian Anal, 14(3), 727–751.
Petrillo, F. U., & Guerriro, R. (2014). Terastat computer cluster for high performance computing. Department of Statistical Science Sapienza

University of Rome. http://www.dss.uniroma1.it/en/node/6554
Pitman, J. (2002). Combinatorial stochastic processes. Technical report 621, Lecture notes for St. Flour course. Department of Statistics.
Robbins, M., Gallagher, C., Lund, R., & Aue, A. (2011). Mean shift testing in correlated data. Journal of Time Series Analysis, 32(5), 498–511.
Rodionov, S. N. (2004). A sequential algorithm for testing climate regime shifts. Geophysical Research Letters, 31(9), 1–4.
Samé, A., Chamroukhi, F., Govaert, G., & Aknin, P. (2011). Model-based clustering and segmentation of time series with changes in regime.

Advances in Data Analysis and Classification, 5(4), 301–321.
Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association,

101(476), 1566–1581.
Tomè, A. R., & Miranda, P. M. A. (2004). Piecewise linear fitting and trend changing points of climate parameters. Geophysical Research Letters,

31(2), 1–4.

http://www.dss.uniroma1.it/en/node/6554


MASTRANTONIO et al. 19 of 29

van Dyk, D. A., & Park, T. (2008). Partially collapsed gibbs samplers. Journal of the American Statistical Association, 103(482), 790–796.
Van Gael, J., Saatci, Y., Teh, Y. W., & Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. Proceedings of the 25th

International Conference on Machine Learning, ICML ’08 (pp. 1088–1095), New York, NY: ACM.
Walther, G.-R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B:

Biological Sciences, 365(1549), 2019–2024.
Williams, J. W., Blois, J. L., & Shuman, B. N. (2011). Extrinsic and intrinsic forcing of abrupt ecological change: Case studies from the late

quaternary. Journal of Ecology, 99(3), 664–677.
Yu, D., Liu, Y., Shi, P., & Wu, J. (2019). Projecting impacts of climate change on global terrestrial ecoregions. Ecological Indicators, 103, 114–123.

How to cite this article: Mastrantonio, G., Jona Lasinio, G., Pollice, A., Teodonio, L., & Capotorti, G. (2021). A
Dirichlet process model for change-point detection with multivariate bioclimatic data. Environmetrics, e2699.
https://doi.org/10.1002/env.2699

APPENDIX A. THE ALGORITHM

When using MCMC to estimate mixture-type models, extra care has to be given to simulate missing data without decreas-
ing the convergence speed. This is mainly due to the tendency to obtain regimes fully composed of missing values, with
the corresponding sets of likelihood parameters estimated by nonobserved data. An obvious consequence is an increase
in the number of occupied regimes A strategy would imply integrating out the missing data, but this would make the
sampling of the likelihood parameters more time consuming and complex under the proposed model, with no real advan-
tage in terms of the quality of the estimates. We then adopt a mixed-strategy where, at each iteration, i) we first sample
all parameters except for 𝜽 and 𝝍 using a likelihood marginalized with respect to the missing data, ii) we then simulate
the missing values and, finally, iii) we draw samples of 𝜽 and 𝝍 from their full conditionals based on the full likelihood.
Working with the marginalized-likelihood mitigates the problem of clusters composed by missing values, while likeli-
hood parameters are easily sampled from the full likelihood. The proposed strategy produces a valid MCMC algorithm as
shown in van Dyk and Park (2008) (see for example their example 8, or section 3).

In the following, we first show the form of the likelihood based only on nonmissing data, then the MCMC steps are
discussed in detail.

A.0.1 Likelihood over nonmissing data
For the model response variable y, obtained standardizing and transforming the observed data y∗ by (1), we have two
kinds of missing values:

1. some or all the components of yt,s are missing because we have missing values in y∗
t,s;

2. the value of y1,t,s is missing because y∗1,t,s is equal to zero.

Let yobs
t,s contain only nonmissing variables observed at time t and location s. Notice that yobs

t,s can also be an empty
set. Conditional independence of vectors yt,s given the model components and normality imply that the likelihood of
yobs|𝝍 ,𝜽 is simply specified by the densities f (yobs

t,s |𝜓t,s,𝜽t,s), with self-explicative notation. With the first kind of missing
data f (yobs

t,s |𝜓t,s,𝜽t,s) is given by

𝜙obs

(
yobs

t,s |𝜓obs
𝓁,s + 𝝁obs

t,s ,𝚺
obs
t,s

)
,

assuming 𝜙obs(⋅, ⋅, ⋅) = 1 when obs ≡ ∅.
With regard to the second kind of missing data, Equation (1) tells that the probability of y∗t,s = 0 corresponds to the

probability that y1,t,s ≤ 0, then in this case f (yobs
t,s |𝜓t,s,𝜽t,s) is given by:

∫
0

−∞
𝜙obs

(
yobs

t,s |𝜓obs
𝓁,s + 𝝁obs

t,s ,𝚺
obs
t,s

)
dy1,t,s.
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A.0.2 MCMC steps
Sampling 𝜽t,s
We define o

s as the set containing the Ks indices of 𝜼k that have been observed at station s, ordered by their temporal
appearance, and s as the ordered set of all natural numbers with the elements of o

s in the first Ks positions. We also
define ks, ls, and 1s as, respectively the kth, lth and first element of s.

As in the standard mixture-type model, it is generally easier to work with zs to sample 𝜽t,s since the relation 𝜽t,s = 𝜼zt,s

holds. We use a two-step strategy, composed of a merging step and a splitting step. Let k+
s and k−

s be the predecessor and
the successor of ks in s; notice that they respectively correspond to an empty regime if ks is the first or last element of
o

s . In the merging step three possible moves are available for the ksth regime: it is merged with the k−
s th regime with

probability proportional to p−; it is merged with the k+
s th regime with probability proportional to p+; it is not merged with

probability proportional to p.
To compute the probabilities, we use (6).
Then, we have

p− =
𝜋

nT
s,ks

s,k−
s

∏
t∶zt,s=ks

f (yobs
t,s |𝝍 s, 𝜼k−

s
)(∑∞

l=k−1𝜋s,ls

)nT
s,ks
∏Ks

l=k+1(𝜋s,ks +
∑∞

l′=l𝜋s,l′s )
nT

s,ls
−m+1−I(l=Ks)

, (A1)

p =
𝜋

nT
s,ks

−m+1−I(ks=Ks)

s,ks

∏
t∶zt,s=ks

f (yobs
t,s |𝝍 s, 𝜼ks

)∏Ks
l=k(𝜋s,ks +

∑∞
l′=l𝜋s,l′s )

nT
s,ls

−m+1−I(l=Ks)
,

p+ =
𝜋

nT
s,ks

s,k+
s

∏
t∶zt,s=ks

f (yobs
t,s |𝝍 s, 𝜼k+

s
)(∑∞

l=k𝜋s,ls

)nT
s,ks
∏Ks

l=k+1(𝜋s,ks +
∑∞

l′=l𝜋s,l′s )
nT

s,ls
−m+1−I(l=Ks)

, (A2)

if k = Ks, that is, ks is the last regime, we assume p+ = 0 while, if k = 1, that is, ks is the first regime, then p− = 0. The
algorithm is applied beginning to merge the first regime. If it is merged it then tries to merge the newly created regime,
otherwise it proceeds with the next.

The splitting step is based on the same probabilities used for the merging step. Allowing for a slight abuse of notation,
assume we take a generic regime ad split it into two parts. The first one has index ks, selected with probability proportional
to 𝜋s,ks among the indices not yet observed at station s, and has nT

s,ks
elements. If all terms in Equations (A1)–(A2) are

obtained based on the segmentation of the time series including the ksth regime, Equations (A1)–(A2) can be used to
compute the splitting probabilities. Under this setting, p+ is the probability that no changes occur, p is the probability of
the splitting, while p− merges the newly created regime with its predecessor. The algorithm is applied starting with the
first observation (t = 1) and each t is assumed to be the last element of regime ks. If ks is merged with k−

s , then the we
start again with t, otherwise with t + 1. If nT

s,ks
< m, then we assume p = 0.

Sampling 𝝅s
Following the work of Teh et al. (2006), since G0 is discrete and Gs ∼ DP(𝛼,G0), we have 𝝅s ∼ DP(𝛼, 𝜷). Let suppose that

𝜋̃s,ks |𝛼, 𝝃 ∼ B

(
𝛼𝜉ks , 𝛼

∞∑
l=k+1

𝜉ls

)
, k ∈ s

then, following Teh et al. (2006), the following relations, called stick-breaking construction, exist between 𝝅s and 𝝅s:

𝜋s,1s = 𝜋̃s,1s ,

𝜋s,ks = 𝜋̃s,ks

k−1∏
l=1

(
1 − 𝜋̃s,ls

)
.

Since there is a one-to-one relation between 𝝅̃s and 𝜋s we can sample the former and then transform it into a sample of
the latter.
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Working with 𝝅̃s is easier since 𝜋̃s,ks is the probability to select/stay in the ksth regime. The full conditional of 𝝅̃s is
then easily obtained as:

⎧⎪⎪⎨⎪⎪⎩
B

(
𝛼𝜉ks + nT

s,ks
− m + 1, 𝛼

∞∑
l=k+1

𝜉ls + 1 − I(k = Ks)

)
if ks ∈ s

B

(
𝛼𝜉ks , 𝛼

∞∑
l=k+1

𝜉ls)

)
otherwise

.

Sampling 𝝂𝓁
To define an efficient sampling scheme we introduce a stick-breaking construction for the distribution Gs, assuming

𝜆̃s,i|𝛼 ∼ B(1, 𝛼), i ∈ N

and

𝜼̃s,i|G0 ∼ G0. (A3)

Then also the distribution G𝜆
s =

∑
i∈N

𝜆s,i𝛿𝜼̃s,i , with

𝜆s,1 = 𝜆̃s,1,

𝜆s,i = 𝜆̃s,i

i−1∏
j=1

(
1 − 𝜋̃s,j

)
is DP(𝛼,G0), as well as Gs, and G𝜆

s
d
= Gs, where

d
= indicates equality in distribution. Indeed, since G0 is discrete some of

the atoms 𝜼̃s,i are the same The unique elements in 𝜼̃s,i are the same as those in 𝜼s,k. Then, the following holds:

𝜋s,k =
∑
i∈N

𝜆s,iI(𝜼̃s,i = 𝜼s,k). (A4)

It is then possible to uniquely derive Gs from G𝜆
s , meaning that working with the latter is equivalent of working with the

former.
To understand why this new parametrization is useful, note that every time we select or decide to stay in a regime

k, this is done with probability proportional to 𝜋s,k while, given (A4), with the new parametrization this is done with
probability proportional to one of the 𝜆s,i associated to 𝜋s,k, that is, we select one of the 𝜆s,is at each time-point. Then,
𝜆s,is can be seen as the probabilities of a DP-mixture model with number of observations equal to nT

s,k − m + 1, that is, the
number of “free” observations in regime k and station s, with scaling parameter 𝛼 (the one of 𝜆s,i).

We indicate the number of occupied regimes in this new mixture as ds,k which can be computed as

ds,k =
∑
i∈N

I(𝜼̃s,i = 𝜼s,k).

Using the Chinese restaurant process representation of a DP-mixture (Pitman, 2002), we can easily sample ds,k with the
following steps:

xs,k,i ∼ B
(

𝛼

i − 1 + 𝛼

)
, i = 1, … ,nT

s,k − m + 1

and then

ds,k =
nT

s,k−m+1∑
i=1

xs,k,i.
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Note that ds,k has to be computed only for the nonempty regimes of the CP-model. Given ds,k, the parameter 𝝂𝓁 can be
sampled quite easily. From (A3) we see that parameter 𝜼s,k is sampled ds,k times in regime k and station s, with probability
given by 𝜉ds,k

k =
∏9

𝓁=1𝜈
ds,k
𝓁,w𝓁,k

, see Equation (4). Then, let define

d𝓁
p =

∑
s∈

∑
k∈s

ds,kI(w𝓁,k = p),

as the total number that the pth component of the 𝓁th parameter is selected and let n𝓁 be the number of elements of 𝝂𝓁
that have d𝓁

p > 0. Without loss of generality, we also assume that the first n𝓁 elements of 𝝂𝓁 are those with d𝓁
p > 0. Since

𝝂𝓁 is the vector of weights of a draw from a DP, we have that

𝝂n𝓁

𝓁 ∼ Dir(d𝓁
1 , d

𝓁
2 , … , d𝓁

n𝓁 , 𝛾),

where 𝝂n𝓁

𝓁 contains the first n𝓁 elements of 𝝂𝓁 . As in the standard DP-mixture model, the posterior is a Dirichlet distri-
bution with parameters of the first n elements given by the number of “observations,” while the last one is the scalar
parameter of the DP and it is used to generate a new, not yet observed, component.

Sampling w𝓁,k
Let suppose that station s is in the kth regime, with parameter 𝜼k. If we indicate with 𝜼𝓁,ik the vector 𝜼k with 𝜂∗𝓁,i corre-
sponding to the 𝓁th element, then, using the DP-mixture representation based on 𝜆, it is easy to see that the probability
that the 𝓁th element is equal to 𝜂∗𝓁,i is proportional to

𝜈
ds,k
𝓁,i

∏
t∶zt,s=k

f (yobs
t,s |𝝍 s, 𝜼

𝓁,i
k ) (A5)

if this is coherent with the CP time dynamic, meaning that, once the 𝓁th element is changed, two regimes cannot have
the same vector of parameters 𝜼k, otherwise the probability is zero.

Expression (A5) has to be evaluated for all infinite possible values of w𝓁,k. To solve the problem we use the beam
sampling scheme (Van Gael et al., 2008), which can be easily implemented in this context. The idea is to introduce the
additional variable

us,k,𝓁 ∼ U(0, 𝜈𝓁,p∗ )

and then, conditioning on us,k,𝓁 , we have to evaluate (A5) multiplied by the density of us,k,𝓁 , that is 𝜈−1
𝓁,p∗ , only if 𝜈𝓁,i > us,k,𝓁 ,

drastically reducing the number of times (A5) has to be computed.

Sampling 𝛼
Here again we can use the representation of the CP model in terms of DP-mixtures. Conditioning on all 𝝅s,ks and ds,ks,
the full conditional of 𝛼 is proportional to

f (𝛼)
∏
s∈

∏
k∈o

f (ds,k|𝛼,nT
s,k), (A6)

where f (𝛼) is the prior distribution. The full conditional in (A6) has the same structure of the full conditional for the
DP parameter obtained by Fox et al. (2011) (section E.1 of the supplementary online material). Using their approach, we
assume a G(a𝛼, b𝛼) prior and define the following latent variables

r1,𝛼
s,k ∼ B(𝛼 + 1,nt

s,k − m + 1),

r2,𝛼
s,k ∼ Bern

(
nt

s,k − m + 1

nt
s,k − m + 1 + 𝛼

)
,
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for k ∈ o
s and s ∈  . Then, a posterior sample of 𝛼 is obtained sampling from

G
⎛⎜⎜⎝a𝛼 +

∑
s∈

∑
k∈o

s

(ds,k − r2,𝛼
s,k ), b𝛼 −

∑
s∈

∑
k∈o

s

log r1,𝛼
s,k

⎞⎟⎟⎠ .
Sampling 𝛾
As a matter of fact, parameter 𝛾 is responsible for the number of unique values of 𝝂𝓁 used in the model. If a G(a𝛾 , b𝛾 )
prior is assumed for 𝛾 , a reasoning similar to the one used to sample 𝛼 can be used to obtain its full conditional. Letting
d =

∑
s∈

∑
k∈s

ds,k, the full conditional of 𝛾 is proportional to

f (𝛾)
9∏

𝓁=1
f (n𝓁|𝛼, d𝓁),

which has the same structure of (A6). Then, if we define the following latent variables:

r1,𝛾
𝓁 ∼ B(𝛾 + 1, d),

r2,𝛾
𝓁 ∼ Bern

(
d

d + 𝛾

)
,

for 𝓁 = 1, … 9, a posterior sample for 𝛾 is obtained from

G

(
a𝛾 +

9∑
𝓁=1

(n𝓁 − r2,𝛾
𝓁 ), b𝛾 −

9∑
𝓁=1

log r1,𝛾
𝓁

)
.

Sampling ymiss

The conditional independence of yt,ss makes sampling the missing data quite easy. If the missing value is not due to zero
precipitations sampling is straightforward, since it can be simulated from the Normal conditional distribution. Conversely,
in the case of zero precipitations, we have to ensure that the simulated value is below zero and this is attained by a
truncated normal conditional distribution.

Sampling 𝜂∗𝓁,i
Samples of the 𝜂∗𝓁,i parameters are obtained by Metropolis steps. Even though the means could be updated using Gibbs
sampling, Metropolis proved to speed up convergence.

Let the set B𝓁
s,i contain the temporal indices corresponding to station s having parameter 𝜂∗𝓁,i and let 𝜽prop

t,s be the
vector-valued parameter 𝜽t,s with the 𝓁th value replaced by the proposed 𝜂∗𝓁,i. Then, the model contribution to the
Metropolis ratio is equal to ∏

s∈
∏

t∈B𝓁
s,i

f (yt,s|𝜓t,s,𝜽
prop
t,s )∏

s∈
∏

t∈B𝓁
s,i

f (yt,s|𝜓t,s,𝜽t,s)
. (A7)

To complete the Metropolis ratio, we must multiply (A7) for the prior and proposal density ratios.
Since we are working with a trivariate normal density, not all possible combinations of the correlation parameters

produce a valid nonnegative matrix and if a nonvalid value is proposed, the trivariate normal density is equal to zero and
it is then never accepted.

Sampling 𝝍 s
Sampling 𝝍 s is straightforward if we introduce the following new variable

𝜓j,s = 𝜓∗
j,s −

∑12
j=1𝜓

∗
j,s

12
. (A8)
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Notice that the equality 𝜓∗
j,s = 𝜓∗

j+12,s holds as 𝜓j,s = 𝜓j+12,s. These new variable definition is needed since the sum-to-zero
constraint on 𝜓j,s makes the sample challenging, while 𝜓∗

j,s has no such constraint. The likelihood can then be written as

𝜙3

⎛⎜⎜⎝yt,s|𝜓∗
j,s −

∑12
j=1𝜓

∗
j,s

12
+ 𝝁t,s,𝚺t,s

⎞⎟⎟⎠
and 𝜓∗

j,ss can be envisioned as regressive coefficients, that is,

𝜓∗
j,s −

∑12
j=1𝜓

∗
j,s

12
= Xj mod 12(𝜓∗

1,s, … , 𝜓∗
12,s)

′,

where Xj mod 12 is a row vector of dimension 12 with all elements equal to −1∕12 except the (j mod 12)th, which is
1 − 1∕12. A posterior sample of (𝜓∗

1,s, … , 𝜓∗
12,s)

′ can be then obtained using the standard sample of regressive coefficients
for a normal density if we assume a normal prior for all 𝜓j,ss, and consequently for 𝜓∗

j,ss. Having sampled (𝜓∗
1,s, … , 𝜓∗

12,s)
′

we can compute (𝜓1,s, … , 𝜓12,s)′ using (A8).

APPENDIX B. SIMULATED EXAMPLE

In this section we use the distribution model in (2) to simulate a multivariate dataset with components Y1,Y2,Y3 at 30
monitoring stations, with 360 time-points, providing a latent grouping structure that generates clusters of spatial units
and time regimes with the no-return constraint (according to the change-point model). Then, for each station we assume
that the minimum regime length is m = 60 and simulate it equal to 360 with probability 0.3 and to m + x with probability
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F I G U R E B1 Time regimes with simulated lengths at each of 30 monitoring stations
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F I G U R E B2 Examples of simulated data at three monitoring stations

0.7, where x is a Poisson random variate with mean 60. In Figure B1 we show the time regimes with simulated lengths at
each of 30 monitoring stations.

We restrict the possible values of the nine parameters so that each value can be sampled multiple times and gen-
erate regimes and groups of stations with exactly the same values of some or all the parameters. In details, the means
(𝜇Y1 , 𝜇Y2 , 𝜇Y3 ) assume values in the set D𝜇 = {5, … , 30}, the variances (𝜎2

Y1
, 𝜎2

Y2
, 𝜎2

Y3
) have values in D𝜎 = {1, 5, 20}, and

the correlations (𝜌Yi,Yj , i, j = 1, 2, 3, i ≠ j) can be equal to D𝜌 = {0, 0.5, 0.85}. At each time point and monitoring station
values of the parameters are sampled from these sets with probabilities equal to 1|Dh| , where h = 𝜇, 𝜎, 𝜌 and |Dh| is the car-
dinality of the set Dh. We ensure that the no-return constraint is satisfied and that the correlation matrix is nonnegative
definite. The elements of the cyclical components 𝝍 t,s are sampled from a normal distribution with mean 0 and variance
0.5. Examples of the simulated variables at three stations are shown in Figure B2, while the parameters-specific regimes
are in Figure B3. We estimate the model using the same priors, iterations, burnin, and thinning used for the real data
application (Section 4).

To evaluate if the DP-CP model is able to detect the CPs, we use P(𝜽t,s ≠ 𝜽t+1,s|y) and P(𝜽t,s,𝓁 ≠ 𝜽t+1,s,𝓁|y) with
𝓁 = 1, … , 9, that is, the posterior probabilities that the entire set of parameters, or a specific one, change value between
two consecutive time-points. As a matter of fact, we obtain P(𝜽t,s ≠ 𝜽t+1,s|y) ∈ [0, 0.09) and P(𝜽t,s,𝓁 ≠ 𝜽t+1,s,𝓁|y) ∈ [0, 0.16)
for the time-points and stations where 𝜽t,s = 𝜽t+1,s and 𝜽t,s,𝓁 = 𝜽t+1,s,𝓁 , respectively, and P(𝜽t,s ≠ 𝜽t+1,s|y) ∈ (0.96, 1] and
P(𝜽t,s,𝓁 ≠ 𝜽t+1,s,𝓁|y) ∈ (0.81, 1] otherwise. These results tell us that when there is a change in the data, our algorithm
is very much able to detect it. Moreover, the DP-CP model was able to detect the exact time when the CP occurred
for 30 among the 32 CPs of Figure B1, while the detected CP was off by only 1 time-point for the remaining
two.

The data are simulated with a (small) finite number of possible values for each parameter, then there are several
time points sharing the same values across stations and we want to evaluate if our proposal is able to detect such
similarities. To this end we compute the similarities 𝜋si,sj,t,𝓁 introduced in Section 4.4, which measure the similarities
between stations si and sj at time t for parameter 𝓁. For each 𝓁 ∈ 1, … , 9 we divide the similarities 𝜋si,sj,t,𝓁 into two
sets: one composed by the time-points and stations where 𝜽t,si,𝓁 = 𝜽t,sj,𝓁 and another where 𝜽t,si,𝓁 ≠ 𝜽t,sj,𝓁 , that is, the
two sets are respectively composed of the time-points and stations where the true 𝓁th parameter is the same or dif-
ferent. For all parameters, 95% of the values of 𝜋si,sj,t,𝓁 are in [0, 0.08) if the true parameters are different, while when
𝜽t,si,𝓁 = 𝜽t,sj,𝓁 we have that 95% of the values of 𝜋si,sj,t,𝓁 are in (0.91, 1], (0.89, 1] and (0.72, 1] for the means, variances,
and correlations, respectively. These results highlight that we are able to estimate with great accuracy when parameter
values are not shared by any two stations, while when they have the same value we are more confident on the results
for the means and variances, while equal correlations are a little harder to spot. In terms of parameter estimates we
obtain that 97.3% of the 95% HPD intervals at each time-point and station contains the true value used to simulate the
data.
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F I G U R E B3 Parameter-specific regimes at each of 30 monitoring stations
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APPENDIX C. LEGEND OF THE ITALIAN ECOREGION SYSTEM

T A B L E C1 Legend of the Italian ecoregion system 1

Ecoregion code and name Area (km2)

1 Temperate Division 189,266

1A Alpine Province 54,502

1A1 Western Alps Section 17,940

1A1a Alpi Marittime Subsection 4023

1A1b Northwestern Alps Subsection 13,917

1A2 Central and Eastern Alps Section 36,561

1A2a Pre-Alps Subsection 15,769

1A2b Dolomiti and Carnia Subsection 8249

1A2c Northeastern Alps Subsection 12,543

1B Po Plain Province 49,851

1B1 Po Plain Section 49,851

1B1a Lagoon Subsection 7461

1B1b Central Plain Subsection 33,108

1B1c Western Po Basin Subsection 9282

1C Apennine Province 84,633

1C1Northern and Northwestern Apennine Section 38,800

1C1a Toscana and Emilia-Romagna Apennine Subsection 17,206

1C1b Tuscan Basin Subsection 21,594

1C2 Central Apennine Section 26,398

1C2a Umbria and Marche Apennine Subsection 10,483

1C2b Lazio and Abruzzo Apennine Subsection 11,453

1C2c Marche and Abruzzo Sub-Apennine Subsection 4462

1C3 Southern Apennine Section 19,435

1C3a Campania Apennine Subsection 10,126

1C3b Lucania Apennine Subsection 9309

1D Italian part of the Illyrian Province 281
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T A B L E C2 Legend of the Italian ecoregion system 2

Ecoregion code and name Area (km2)

2 Mediterranean Division 112,849

2A Italian part of Ligurian-Provencal Province 1053

2B Tyrrhenian Province 85,203

2B1 Northern and Central Tyrrhenian Section 15,231

2B1a Eastern Liguria Subsection 699

2B1b Maremma Subsection 6165

2B1c Roman Area Subsection 4577

2B1d Southern Lazio Subsection 3790

2B2 Southern Tyrrhenian Section 20,054

2B2a Western Campania Subsection 3336

2B2b Cilento Subsection 3132

2B2c Calabria Subsection 13,586

2B3 Sicilia Section 25,832

2B3a Iblei Subsection 3709

2B3b Sicilia Mountains Subsection 7823

2B3c Central Sicilia Subsection 7794

2B3d Western Sicilia Subsection 6506

2B4 Sardegna Section 24,086

2B4a Southwestern Sardegna Subsection 5007

2B4b Northwestern Sardegna Subsection 4957

2B4c Southeastern Sardegna Subsection 11,564

2B4d Northeastern Sardegna Subsection 2557

2C Adriatic Province 26,592

2C1 Central Adriatic Section 2170

2C1a Marche and Abruzzo Coastal Subsection 2170

2C2 Southern Adriatic Section 24,422

2C2a Gargano Subsection 7007

2C2b Murge and Salento Subsection 17,415


