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Abstract: The aim of the present work is the synthesis and characterization of new perfluorinated
monomers bearing, similarly to Nafion®, acidic groups for proton transport for potential and future
applications in proton exchange membrane (PEM) fuel cells. To this end, we focused our attention on
the synthesis of various molecules with (i) sufficient volatility to be used in vacuum polymerization
techniques (e.g., PECVD)), (ii) sulfonic, phosphonic, or carboxylic acid functionalities for proton
transport capacity of the resulting membrane, (iii) both aliphatic and aromatic perfluorinated tags
to diversify the membrane polarity with respect to Nafion®, and (iv) a double bond to facilitate the
polymerization under vacuum giving a preferential way for the chain growth of the polymer. A
retrosynthetic approach persuaded us to attempt three main synthetic strategies: (a) organometallic
Heck-type cross-coupling, (b) nucleophilic displacement, and (c) Wittig–Horner reaction (carbanion
approach). Preliminary results on the plasma deposition of a polymeric film are also presented.
The variation of plasma conditions allowed us to point out that the film prepared in the mildest
settings (20 W) shows the maximum monomer retention in its structure. In this condition, plasma
polymerization likely occurs mainly by rupture of the π bond in the monomer molecule.

Keywords: fuel cells; Nafion®; PEM; Heck coupling; vinyl substitution; Wittig-Horner reaction

1. Introduction

Proton exchange membrane fuel cells (PEMFCs), also referred as solid polymer fuel
cells, are the simplest type of fuel cells, with application spanning from portable power to
automotive [1–3]. As solid polymer electrolytes, PEMFCs employ a membrane constituted
by a perfluorinated polymer bearing acidic groups, working both as an electronic insulator
(to keep separate the oxidative and the reductive half reactions) and as a proton conductor.

Among proton exchange membranes for PEM-type fuel cells, Nafion® is still the most
used and studied electrolyte due to its high proton conductivity and moderate swelling in
water [4,5]. Alongside its many advantages, the main drawback of Nafion® polymers is
due to the membrane hydration, which still represents an operative limit for fuel cells, since
the temperature must be maintained below 100 ◦C [6]. Another factor still limiting the
commercial availability of PEMFCs is the cost associated to the active materials employed
for their fabrication, i.e., Pt-based catalyst and the Nafion® membrane [6–8].

In the last few years, scientists have focused their attention on the development of
new catalytic systems with the aim of reducing costs through the enhancement of the
performance of the catalyst, by lowering the amount of noble metal (essentially Pt) [9] or
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by using less expensive metals [8,10–12]. Nevertheless, only a few efforts have been made
in the direction of finding a valid alternative to Nafion® [5,13,14].

Most alternative proton exchange polymeric membranes are perfluorinated poly-
mers bearing sulfonic or sulfonamidic groups. However, their performances are still not
sufficient. Since the nature and chemical characteristics of the membranes are strictly
connected to the water transport, it is necessary to increase the number of sulfonic groups
per monomeric unit in order to achieve a much higher proton conductivity [15]. Fluo-
rophosphonic acid monomers, which have higher chemical and thermal stabilities than
sulfonic acid moieties, are still rarely investigated [16–21].

Furthermore, for portable applications, the miniaturization of the FC is crucial (micro-
FC), and vacuum-based techniques such as plasma-enhanced chemical vapor deposition
(PECVD) are highly desirable to produce both the catalyst layer and the proton exchange
membrane in the form of thin films [13,22–25]. In order to be vacuum-compatible, the
volatility of the starting monomer for the deposition of the thin film protonic membrane is
mandatory.

In most of the works reported in the literature, these membranes are fabricated
from the polymerization of trifluoromethane sulfonic acid, chlorosulfonic acid, or vinyl
phosphonic acid with different fluorocarbons or vinylbenzenes [26]. However, most of
the commercially available acidic precursors have scarce volatility, due to the hydrogen
bond or acid/basic interactions, are highly corrosive, and therefore are not adapted for
vacuum deposition [27]. Moreover, the presence of a π bond in the monomer structure can
represent a preferential way for the chain growth of the polymer in a plasma environment,
avoiding the degradation of other functional groups, such as the acidic one, during the
polymerization process [27]. Therefore, tailored precursor synthesis is needed as the
commercial ones do not meet all the requirements.

With this in mind, we planned several strategies for synthesizing monomers possess-
ing the following features: (i) a sufficient volatility to be used in vacuum polymerization
techniques (e.g., PECVD), (ii) sulfonic, phosphonic, or carboxylic acid functionalities to
increase the proton transport capacity of the resulting membrane, (iii) both aliphatic and
aromatic perfluorinated tags to diversify the membrane polarity with respect to Nafion®,
and (iv) a double bond to facilitate the polymerization under vacuum, giving a preferential
way for the chain growth of the polymer [28].

On these bases, we focused our attention on perfluorinated esters having the gen-
eral formula depicted in Scheme 1. After polymerization, the free acidic functionalities
responsible for the protonic conductivity can be restored by alkaline hydrolysis of the
polymer.
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We report here the synthesis and the characterization of new perfluorinated molecules
bearing, similarly to Nafion®, acidic moieties for the protonic transport, potentially suitable
as monomers or co-monomers in PEM fuel cells construction. Finally, we report some
preliminary results on the plasma polymerization of one of the synthesized precursors.
Since there is a lack of papers dedicated to the synthesis of this type of monomer, our
work could represent a valid tool for subsequent applicative research in the preparation of
membranes with potential applications in PEM fuel cells.
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2. Results
2.1. Planning the Synthetic Strategy

Initial investigations were directed toward the synthesis of unsaturated perfluorinated
sulfonic esters of general formula A (Scheme 2), which to the best of our knowledge has no
precedent in the literature [29].
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A retrosynthetic approach persuaded us to attempt three main synthetic strategies
(Scheme 3): (a) organometallic Heck-type cross-coupling, (b) nucleophilic displacement,
and (c) Wittig–Horner reaction (carbanion approach).
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2.1.1. The Heck-Type Coupling Reaction

In the last few decades, we studied several synthetic protocols involving palladium
or copper-catalyzed Heck reactions utilizing greener or alternative reaction solvents such
as water or ionic liquids [30–32]. These latter proved to be particularly effective in the
activation of unreactive chloroarenes and hindered olefins [33].

In the present work, since an obvious disconnection analysis results in a direct coupling
of a vinyl ester with the iodopentafluorobenzene, the palladium-catalyzed Heck coupling
can be considered as an easy and direct way to obtain α,β-unsaturated fluoroaromatic
esters. Unfortunately, the lack of papers dealing with the synthesis of these kinds of
unsaturated compounds [34] can be considered clear evidence of a difficulty in the Heck
coupling when perfluoroaromatic molecules are employed. Moreover, to the best of our
knowledge, only two examples were described until now, in which the non-fluorinated
analogous phenyl vinylsulfonate (and its sodium salt) have been directly coupled with
iodobenzene [35,36].

During the screening, both well-established palladium–phosphine-based complexes
and less common but more reactive palladium nanoparticles (PdNPs) were tested as cata-
lysts [30]. In addition, in order to prevent undesirable side reactions such as desulfonation
or polymerization processes, we also planned to modify the structure of the target molecule
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by inserting a spacer between the sulfonate moiety and the double bond. Heck couplings
were carried out both in water and in organic solvents, depending on the nature of the
starting vinyl substrate.

Obtained results are summarized in Table 1. Unfortunately, reactions performed in
organic solvents were unproductive, even in the presence of Pd colloids (Table 1, runs 1–4).
GC-MS analyses revealed only the presence of unreacted iodopentafluorobenzene and the
disappearance of the vinyl substrate, which may be due to a plausible palladium-catalyzed
degradation or a thermal desulfonation of the starting material.

Table 1. Heck-type coupling of unsaturated sulfonates with perfluoroaryl halides a.
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On the contrary, encouraging results emerged by using vinylsulfonate salt 3 instead of
the corresponding ester, under typical phase transfer catalysis conditions. In fact, following
a protocol of ours [37], Pd colloids were used in an aqueous solution of tetrabutylammo-
nium hydroxide (TBAOH), affording a 50% of conversion into the coupled product 10, as
revealed by the 1HNMR spectrum of the reaction mixture (Table 1, run 5 and Figure S2).

However, all attempts made to raise conversions were unsuccessful, and even the iso-
lation of 10 from the reaction mixture led to very difficult results. Furthermore, no improve-
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ments were found even with the less substituted and more reactive 3,4,5-trifluoroiodobenzene
(Table 1, run 6). Lower yields were also obtained in the presence of a methylene spacer
between the sulfonic group and the double bond (Table 1, run 7).

Then, few modifications were made, and the substitution of fluorine atoms on the
aromatic ring, with a perfluorinated tag to the p-position, provided satisfactory results only
in the case of phenyl sulfonate 14, which was isolated in a 65% of yield (Table 1, runs 9).

Much better results were obtained with carboxylic esters. Thus, the Heck coupling
of methyl acrylate 15 with perfluorinated iodobenzene 5 afforded smoothly (E)-methyl-
3-(perfluorophenyl)acrylate 16 in 70% of isolated yield (Scheme 4, Equation (1)). Similar
satisfactory results were also reached by coupling pentafluorostyrene (17), which afforded
methyl 4-(perfluorostyryl)benzoate 19 in 78% of yield (Scheme 4, Equation (2)).
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Unfortunately, under similar conditions, all the attempts made to synthesize aryl
vinyl phosphonate were unproductive. Therefore, we paid attention to an alternative
strategy based on the oxidative Heck coupling by adopting a known procedure of Caryl-H
activation for the direct olefination of highly electron-deficient perfluoroarenes catalyzed
by Pd(OAc)2 and silver carbonate as a re-oxidant [38]. By means of a slight modifica-
tion of this method, commercially available vinyl diethyl phosphonate 20 and pentaflu-
orobenzene 21 were coupled for the first time in good yield, affording (E)-dimethyl 2-
(perfluorophenyl)vinylphosphonate 22 (Scheme 4, Equation (3)).

In summary, although the organometallic approach can be considered a short and
quick way to synthesize olefinic substrates, under explored conditions, it proved to be
poorly effective, affording low to moderate yields and showing some drawbacks that could
limit the scale up (e.g., toxic solvents and expensive reagents). Studies are in progress to
improve these results.

2.1.2. The Nucleophilic Displacement Approach

A different strategy was adopted involving the direct functionalization of terminal
perfluoroalkenes with a sulfonic group through the nucleophilic displacement of a fluorine
atom attached to the double bond. Based on results by Gross and Engler [39], such a vinylic
substitution can be carried out smoothly with sulfite anion, but it occurs preeminently with
the double bond rearrangement, affording the allyl sulfonate as a product with only trace
amounts of the expected α,β-unsaturated compound. With this in mind, perfluoro-hex-2-
ensulfonate 23 was initially prepared by reacting perfluorohex-1-ene with sodium sulfite in
water/isopropanol (Figure 1). Unfortunately, this strategy also suffered from the drawback
of giving high rates of addition to the double bond as a side reaction, which leads to minor
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amounts (25% ca.) of the saturated sulfonic salt 24, as revealed by 19F-NMR spectrum in
Figure 1.
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Figure 1. Nucleophilic displacement strategy for sulfonic esters and sulfonate salts 23–24 distribution
by 19F spectrum of the reaction mixture obtained by the treatment of perfluorohex-1-ene with
SO3

2−. In the spectrum, the following assignments are possible according to the literature [39]: CF3-
triplets (23f and 24f) at δ-81.22 ppm, intensity 1 (allylic product 23) and δ-81.86 ppm, intensity 0.5
(addition product 24); -CF = CF- at δ−153.83 ppm (23b,c), AB spin system, J(AB) 139.8 Hz; -CFH-
at δ−210.44 ppm, 2JF,H 30.5 Hz (24a); -CF2-S- at δ-110.6 ppm (23a); -CF2- at δ−119.40 ppm and
128.44 ppm (23d and 23e, respectively). The CFH group of the addition product creates a magnetic
inequivalence of neighbor CF2-groups (-CF2-CFH-CF2-SO3Na) and thus AB spin systems (δ from
−108 to −127.5 ppm), which has not been specified in detail (signals attributable to fluorine atoms
24a,c,d,e).

To obtain highly volatile compounds, salts 23 and 24 were transformed into the corre-
sponding methyl esters by treatment of the reaction mixture with gaseous HCl followed by
the addition of trimethylortoformate [40]. After distillation, sulfonate derivative 25 was
only obtained in 20% of overall yield (see Experimental section). It is worth mentioning
that the addition of compound 24 was the sole by-product observed with this strategy; no
compounds coming from the addition of HCl to the double bond were detected during the
successive steps of esterification, which was most probably due to the presence of fluorine
atoms on vinylic carbons [41].

To overcome all these problems, the vinylic substitution approach was replaced with a
simple nucleophilic displacement on a saturated carbon atom bearing a good leaving group
such as a bromide. In addition, for a further increase in reactivity, fluorine atoms near
the leaving group were replaced by hydrogen atoms starting from a homoallylic bromide
fluorinated onto the double bond, namely 4-bromo-1,1,2-trifluorobut-1-ene, as shown in
Scheme 5. More encouraging results were achieved by means of this new strategy and
the nucleophilic displacement occurred smoothly enabling the synthesis of homoallylic
fluorosulfonate ester 27 in a 52% of overall yield (Scheme 5).
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Figure 2. The Wittig–Horner route for synthesizing both aliphatic and aromatic perfluorinated α,β-
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Due to the practical importance of this compound, which seems to attract quite a bit
of interest in patents and has no precedent in the literature, the method was validated
performing a scale-up experiment on a gram scale, obtaining 20 g of the desired product.

2.1.3. Carbanion Approach: The Wittig–Horner Reaction

The previous strategies enabled the synthesis of perfluorinated aromatic, allylic, and
homoallylic sulfonates but failed in the case of their α,β-unsaturated analogous. To over-
come this limitation, a literature procedure [41] was adopted based on the Wittig–Horner
condensation of ethyl diethylphosphoryl methanesulfonate 28 and a proper perfluorinated
aldehyde Rf-CHO (Figure 2).
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In particular, diester (28), generated from the commercially available ethyl methansul-
fonate, was condensed with pentafluorobenzaldehyde and with 2,2,3,3,4,4,4-heptafluorobutanal,
affording the perfluoroaryl and perfluoroalkyl sulfonyl esters 29 and 30, respectively
(Figure 2).

In turn, methanesulfonate 28 intermediate was prepared by reacting the carbanion to
the alpha position of ethyl methanesulfonate with ethyl chlorophosphite (see for details
Section S7 in the Supplementary Materials).

Sulfonic esters 29 and 30 were obtained in moderate to good yields as a white solid
(m.p. 65 ◦C) and an oil (b.p. 135 ◦C, 10 mmHg), respectively, and were completely
characterized as reported in the Supplementary Material (see Section S7). Compounds
were identified by 1H- and 19F-NMR spectra (Figures 3 and 4).
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Below, a summary of perfluorinated monomers synthesized with the three strategies
used in this work is listed (Figure 5).
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All these compounds were subjected to a selection based on their volatility for choos-
ing the best candidate as suitable monomer for the polymerization using low-pressure
deposition techniques.

2.2. Thin Film Membrane Deposition by Low-Pressure Plasma

Due to the good thermal stability and high volatility, monomer 27 was chosen as
the best candidate for plasma polymerization. Studies are in progress for compounds 25
and 30.

Figure 6 compares the infrared spectra of vapors of compound 27 and the plasma
polymerized film obtained at low power (20 W). The main features of the monomer
spectrum are the CH3 and CH2 absorption bands between 2800 and 3000 cm−1, the band at
1767 cm−1 assigned to CF2=CF, bending of CH3 and CH2 groups at 1460 cm−1. The band
at 1370 cm−1 is ascribed to S=O stretching in the sulfonic ester group. The broad band
950–1300 cm−1 comprises absorptions from CF2 groups at about 1200 cm−1, the sulfonic
ester group at 1143 cm−1, and CF at 1090 cm−1. Most of these absorptions can be observed
also in the spectrum of the film deposited at the lowest plasma power (20 W), namely those
of the sulfonic ester functionality and the CF2 groups. The retention of such functionalities
in the deposited film points to a limited fragmentation of the monomer molecule in the
plasma at low power. Instead, the high-wavenumber region is dominated by a broad
band from 2800 to 3600 cm−1 assigned to OH groups, which was likely formed within the
plasma reactor due to some water vapor residues. The CH3 and CH2 stretching band likely
overlaps with the OH one, contributing to further broadening of the latter. Finally, the
absorption from the double bond CF2=CF in the monomer disappears in the deposited
film, indicating that the polymerization reaction has occurred by the rupture of this bond.
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Figure 6. Comparison between infrared spectra of compound 27 vapors and the plasma polymerized
film obtained at 20 W.

Figure 7 shows the infrared spectra of films deposited at increased plasma powers
(50–200 W). In this case, major differences can be observed with respect to the spectra of
Figure 4. More specifically, the main absorption band between 900 and 1300 cm−1 ca. is
strongly reduced and less defined, with the only band clearly distinguishable being that at
1080 cm−1 assigned to CF groups. The disappearance of absorptions from the π bond, CF2,
and sulfonic ester groups characterizing the monomer molecule is in agreement with the
more energetic plasma environment generated at higher power values. Furthermore, the
spectra are characterized by the absorption from OH groups from 3000 to 3500 cm−1 and a
sharp signal at 1418 cm−1, which may be indicative of sulfonyl fluorides or sulfates.
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Once more, the formation of these functionalities is reasonable in the energetic plasma
environment obtained at higher powers (50–200 W), where new reactive species are formed
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from the more extensive fragmentation of the precursor molecule. The latter assignment is
further confirmed by the increased intensity of the band at higher plasma powers. Finally,
the signal at 714 cm−1 seems to be correlated to the one at 1418 cm−1 and can be assigned
to S-F. The increase in the plasma power leads to a more extensive fragmentation of the
precursor molecule, and this is reflected in the increase in the hydroxyl group absorption
and the increase in the S-F absorptions.

To summarize the information coming from the IR characterization, in accordance
with the results reported in the literature, the plasma polymerization of compound 27 led
to thin film membranes with high monomer retention only at the lowest plasma powers
(20 W). Only in this case, in fact, it is possible to drive the polymerization of the monomer
mainly by rupture of the double bond and preserve the sulfonic ester functionality in the
deposited film. Increasing the power leads to a more extensive monomer fragmentation,
defluorination of the produced radicals, and extensive structural rearrangements in the
deposited films.

Figure 8 reports the film deposition rate, which is determined as the ratio between
film thickness and the deposition time (30 min), as a function of the plasma power. The
deposition rate increases up to 100 W and then decreases for higher values. This trend is
typical in PECVD processes and can be explained considering that below 100 W, increasing
the power of the monomer molecule is fragmented to a greater extent in the plasma, thus
generating a higher density of radicals, which are precursors of the growing film. This
condition is named the activated growth regime. However, above the threshold power,
recombination reactions, etching, and sputtering phenomena of the growing film also occur,
which results in a reduced film deposition rate (deactivated growth regime) [42].
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Finally, the wettability of the deposited films was tested through static water contact
angle measurements (Figure 9). IR analysis showed that deposited films contain both
hydrophilic and hydrophobic moieties, to a different extent, depending on the plasma
power used. All deposited films are highly hydrophilic with water contact angles in
the range of 25–40◦. The film deposited at 20 W with the highest monomer retention is
made by hydrophobic moieties such as CF2 groups, as well as hydrophilic ones, such
as OH functionalities. The hydrophilicity can be likely due to a surface segregation of
the polar functionalities. At higher plasma powers, IR spectra point out to an extensive
defluorination of the polymer matrix, which can be, beside the presence of the polar
functionalities, the reason for the film’s hydrophilicity.
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3. Materials and Methods
3.1. General Remarks

The starting reagents and solvents are commercially available (from Aldrich and
ABCR) (see the Supplementary Materials). Solvents (N,N-dimethylformamide (DMA),
N,N-dimethylacetamide (DMF), and N-methylpyrrolidone (NMP)) were dried and then
distilled before use (see for details Section S1 in the Supplementary Materials).

Pd catalysts of Table 1 were generated in situ from Pd(OAc)2 and triphenylphosphine,
while Pd(0) nanoparticles catalysts were prepared according to a known procedure by
reduction with LiBH4 (see: ChemSusChem 2012, 5, 109–116).

Reactions were monitored by GLC and GC-MS techniques by using an Agilent 5890 A
gas-chromatograph and an Agilent 6850/MSD 5975C instruments with a capillary column
HP-5MS (Agilent, l. 30 m, i.d. 0.25 mm, s.p.t. 0.25 µ).

NMR spectra were recorded on a Varian Inova 400 MHz spectrometer. Chemical shift
values are given in ppm relative to internal Me4Si.

Identification of the reaction products was accomplished by their preliminary isolation
by column chromatography on silica gel (SiO2 50–200 µm, from Baker) or by distillation.
Next, the products were identified by comparison of their MS and NMR spectra with those
reported in the literature.

For unknown compounds, high-resolution mass spectra were recorded by using a
Shimadzu LCMS-IT-TOF instrument with the following settings: mass range 50–1000 m/z,
ionization system electrospray ion source in negative ion mode, nebulizer gas nitrogen at 3
bar, dry gas nitrogen at 1.5 L/min and 250 ◦C, collision gas argon.

3.2. Deposition and Characterization of Thin Film Membranes by PECVD

Film depositions were carried out in a cylindrical parallel plate stainless steel reactor
evacuated by a turbomolecular/rotary system. Experiments were carried out feeding the
plasma with vapors of compound 27 at variable RF power (20–200 W) and a pressure
of 500 mTorr. The vapor flow rate was set with a needle valve to 0.25 sccm. The film
deposition time was fixed to 30 min, and double-polished silicon was used as a substrate
for deposition.

Film chemical composition was investigated by Fourier Transform Infrared (FTIR)
spectroscopy (BRUKER, Equinox 55). Spectra were recorded from 400 to 4000 cm−1 in
absorbance mode at 4 cm−1 resolution.

Film water contact angle (WCA) measurements were performed with a manual go-
niometer (Ramé-Hart, 100) and the reported WCA values were averaged over 5 measure-
ments on each sample with standard deviations of ±1◦ (for further details see Section S2 of
the Supplementary Materials).
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3.3. General Procedures for the Synthesis of Perfluorinated Monomers
3.3.1. Procedure for the Heck Coupling in Table 1: Synthesis of Perfluorosulfonic Ester 14

In a typical procedure, a 10 mL round-bottomed flask equipped with a magnetic
bar was charged with sulfonate ester or salt (1–4, 0.5 mmol), perfluorohaloarene (5–7,
0.5 mmol), K2CO3 (or TBAOH, 1 mmol), Pd acetate (or Pd-colloids, 3 mol%), and PPh3
(6 mol%) in 5 mL of DMF (DMA, NMP, or water) and heated at 120 ◦C for 4 h. At the
end of the reaction (GC-MS), the mixture was washed with HCl 5% and extracted with
dichloromethane. After drying and evaporation of the solvent in vacuo, the products were
purified by silica gel column chromatography (eluent petroleum ether/dichloromethane).

All attempts to isolate the expected products of Table 1 from the reaction mixture (sul-
fonate 8,9,12,13,14) had unsatisfactory results with the sole exception of phenyl sulfonate
14, which was obtained in a 65% of yield (see for details Section S3 in the Supplementary
Materials).

(E)-phenyl 2-(4-perfluorooctyl)phenylethene sulfonate 14. Pale yellow solid. m.p.: 47–51 ◦C
1H-NMR (400 MHz, CDCl3), δ: 6.96 (d, 1 H, J = 16.8 Hz, alpha vinyl proton); 7.20–7.42
(m, 5 H, aryl protons SO3Ph), 7.55 (d, 1 H, J = 16.8 Hz, beta vinyl proton); 7.55 (d, 2 H, J =
8.1 Hz, aryl protons); 7.66 (d, 2 H, J = 8.1 Hz, aryl protons). HRMS (ESI-TOF) m/z [M + H]+:
calcd for C22H12F17O3S+ 679.0230, found 679.0238.

3.3.2. Procedure for the Synthesis of Fluorinated Carboxylic Esters 16 and 19 (Scheme 4,
Equations (1) and (2))

In a 100 mL round-bottomed flask, equipped with a condenser and a magnetic bar,
1,2,3,4,5-pentafluoro-6-iodobenzene 5 (or methyl 4-iodobenzoate 18, 5 mmol), methyl
acrylate 15 (or 1,2,3,4,5-pentafluoro-6-vinylbenzene 17, 5 mmol), K2CO3 (10 mmol), Pd
acetate (3 mol%), and PPh3 (6 mol%) were refluxed in 50 mL of DMF. At the end of the
reaction (GC-MS, 2 ÷ 4 h), the mixture was washed with HCl 5% and extracted with
dichloromethane. After drying and evaporation of the solvent in vacuo, the products were
purified by silica gel column chromatography (eluent petroleum ether/dichloromethane).

(E)-methyl 3-(perfluorophenyl)acrylate 16. Dark red oil, b.p. 95 ◦C (15 mmHg) (yield 70 %).
1H-NMR (400 MHz, CDCl3), δ: 3.79 (s, 3H, methoxy); 6.70 (d, 1 H, J = 16.5 Hz, alpha
vinyl proton); 7.58 (d, 1 H, J = 16.5 Hz, beta vinyl proton); 13C-NMR (400 MHz, CDCl3), δ:
52.2 (MeO), 110.0 (t, 2JC,F = 13 Hz), 126.0 (t, 3JC,F = 9 Hz), 128.5, 137.95 (d, 1JC,F = 253 Hz);
141.81 (d, 1JC,F = 258 Hz); 145.75 (d, 1JC,F = 254 Hz); 166.52 (carbonyl). 19F-NMR (400 MHz,
CDCl3), δ: −148.05 (dd, 2F, 3JF,F = 21 and 4JF,F = 6 Hz), −159.78 (t, 1F, 3JF,F = 21 Hz), −170.29
(td like, 2F, 3JF,F = 21 and 4JF,F = 6 Hz); MS (EI): 252 (M+, 41), 221 (100), 193 (64), 143 (38), 123
(18), 117 (9), 93 (5), 59 (2). HRMS (ESI-TOF) m/z [M + H]+: calcd for C10H6F5O2

+ 253.0282,
found 253.0271.

(E)-methyl 4-(perfluorostyryl)benzoate 19: White solid. 1H-NMR (400 MHz, CDCl3), δ: 3.90
(s, 3 H, methoxy); 7.02 (d, 1 H, J = 16.9 Hz, vinyl proton); 7.40 (d, 1 H, J = 16.9 Hz, vinyl
proton); 7.53 (d, 2 H, J = 8.2 Hz, aryl protons); 8.00 (d, 2 H, J = 8.2 Hz, aryl protons); MS (EI):
328 (M+, 72), 297 (100), 269 (18), 250 (18), 219 (51), 199 (5), 192 (4), 148 (9), 109 (14), 77 (3), 51
(4). HRMS (ESI-TOF) m/z [M + H]+: calcd for C16H10F5O2

+ 329.0595, found 329.0590.

3.3.3. Procedure for the Oxidative Heck Coupling: Synthesis of Perfluorinated Phosphonyl
Ester 22 (Scheme 4, Equation (3))

This ester was prepared according to the literature [31]. In a 25 mL round-bottomed
flask Pd(OAc)2 (10 mol%) and Ag2CO3 (2.0 equiv) under N2 were added, which was
followed by DMF (2.4 mL) and DMSO (5%, 120 µL) with stirring. Pentafluorobenzene
21 (0.6 mmol, 1.0 equiv) and dimethyl vinylphosphonate 20 (2.0–3.0 equiv) were added
subsequently. The mixture was heated at 120 ◦C (oil bath). After stirring for 12 h, the
reaction mixture was cooled to room temperature and diluted with ethyl acetate, washed
with 1 N HCl and brine, dried over Na2SO4, filtered, and concentrated. The residue was
purified with silica gel chromatography (petroleum ether:ethyl acetate 3:2 as eluent) to
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provide the pure product (E)-dimethyl 2-(perfluorophenyl)vinylphosphonate 22 as colorless oil
(b.p. 105 ◦C, 0.001 mmHg). 1H NMR (400 MHz, CDCl3) δ 3.74 (s, 3H), 3.76 (s, 3H), 6.56 (t,
J = 17.4 Hz, 1H), 7.40 (dd, J = 24.2 Hz, 17.4 Hz, 1H). 13C NMR δ 52.84, 52.89, 110.38 (m),
123.01 (dt, J = 188.5 and 8.4 Hz), 132.78 (d, J = 6.1 Hz), 137.95 (dm, 1JC,F = 254.8), 141.95
(dm, 1JC,F = 257.0 Hz), 145.77 (dm, 1JC,F = 255.6 Hz). 19F NMR δ -140.0 (dd, 3JF,F = 22.0 Hz,
4JF,F = 7.3 Hz, 2F), −150.3 (t, 3JF,F = 19.5 Hz, 1F), −160.88 (td, 3JF,F = 19.5 and 4JF,F = 7.3 Hz,
2F). MS (EI) 302 (M+, 24), 283 (28), 207 (100), 170 (79), 143 (39), 110 (78), 93 (61). HRMS
(ESI-TOF) m/z [M + H]+: calcd for C10H9F5O3P+ 303.0204, found 303.0211.

3.3.4. Procedures for the Nucleophilic Substitution: Synthesis of Perfluorinated Sulfonic
Esters 25 and 27

Esters 25 and 27 were prepared starting from perfluorohex-1-ene or 4-bromo-1,1,2-
trifluorobut-1-ene, respectively, by treatment with sodium sulfite followed by the esterifica-
tion of sulfonate salts intermediate (23 and 26) with trimethyl orthoformate (see for details
Scheme 5, Figure 1 and Section S4 in the Supplementary Materials). Sulfonic esters 25 and
27 were characterized as reported below:

Methyl perfluorohex-2-ene-1-sulfonate 25 was isolated as a red oil (b.p. 90 ◦C, 0.2 mmHg).
19F-NMR (CDCl3) δ ppm (relative to CFCl3): −81.20 (t, 3F, 3JF,F = 8.20 Hz, CF3); −107.22
(dd, 2F, 3JF,F = 24.4 and 4JF,F = 12.2 Hz, CF2-SO3), −119.60 (m, 2F, CF2-CF2-CF=), −128.50
(m, 2F, CF2-CF2-CF=), −152.50 (dt, 1F, 3JF,F = 143.4 and 3JF,F = 24.4 Hz, =CF-CF2-SO3),
−153.70 (m, 1F, CF=CF-CF2-SO3). HRMS (ESI-TOF) m/z [M + H]+: calcd for C7H4F11O3S+

376.9705, found 376.9712.

Methyl 3,4,4-trifluorobut-3-ene-1-sulfonate 27 as a dark red oil in 89% of yield. 1H-NMR
(CDCl3) δ ppm: 2.67–2.85 (m, 2 H, =CHF-CH2), 3.24 (t, 2 H, J= 7.3 Hz, -CH2-SO3CH3),
3.83 (s, 3 H, SO3CH3). 13C-NMR (CDCl3) δ ppm: 21.05 (d, 2JC,F = 22.9 Hz, =CHF-CH2),
41.13 (s, -CH2-SO3CH3), 55.96 (s, SO3CH3). 125.53 (ddd, 1JC,F = 235.0 Hz, 2JC,F = 53.4
and 18.3 Hz, F2C = CHF-), 153.21 (ddd, 1JC,F = 288.4 and 276.2 Hz, 2JC,F = 45.0 Hz, F2C =
CHF-). 19F-NMR (CDCl3) δ ppm: −190.45 (ddt, 1 F, 3JF,F = 116.0 and 33.6 Hz, 3JF,H = 21.4 =
CHF-CH2), −135.73 (dd, 1 F, 2JF,F = 116.0, 3JF,H = 82.4, CF2 = CHF-), −116.65 (dd, 1 F, 2JF,F
= 82.4, 3JF,F = 33.6, CF2 = CHF-). MS (EI): 204 (0.1), 108 (100), 89 (20), 59 (23), 39 (40). HRMS
(ESI-TOF) m/z [M + H]+: calcd for C5H8F3O3S+ 205.0141, found 205.0149.

3.3.5. Procedures for Wittig–Horner Reaction: Synthesis of Perfluorinated Sulfonic Esters
29 and 30

These esters were prepared by adapting a literature procedure [35] that exploits the
Wittig–Horner reaction (see for details Section S7 of the Supplementary Materials).

(E)-ethyl 2-(perfluorophenyl)ethenesulfonate 29. A solution of ethyl diethylphosphoryl methane-
sulfonate 28 (1.0 equiv) in dry THF (1 mL × 0.25 mmol of 28) was treated at −78 ◦C under
nitrogen atmosphere with 2.3 M n-BuLi in hexane (approximately 1.05 equiv.). Stirring was
continued for 20 min. Then, freshly pentafuorobenzaldehyde (1.1 equiv.) was added. After
an additional 45 min. at −78 ◦C, the solution was allowed to warm to room temperature and
stirring was continued for 60 h. The bulk of the solvents was evaporated, and the residue
was treated with water (5 mL × 0.25 mmol) and extracted with dichloromethane (3 × 5 mL
× 0.25 mmol). The organic layers were dried over MgSO4 and evaporated to afford crude
unsaturated sulfonyl ester, which was purified by column chromatography (petroleum
ether:ethyl acetate 10:1 as eluent) affording pure (E)-ethyl 2-(perfluorophenyl)ethene sul-
fonate 29 as white solid (m.p. 65 ◦C) in a 70% of yield. 1H NMR (CDCl3): 1.40 (t, J = 6.9 Hz,
3 H, CH3); 4.25 (q, J = 6.9, 2 H, CH2); 7.09 (d, J = 15.9, 1 H, vinyl CH); 7.56 (d, J = 15.9, 1 H,
vinyl CH). 19F NMR (CDCl3): −139.7 (dt, 3JF,F = 24.4 and 4JF,F = 6.1 Hz, 2 F), −149.6 (t, 3JF,F
= 21.3 Hz, 1 F), −161.8 (m, 2 F). HRMS (ESI-TOF) m/z [M + H]+: calcd for C10H8F5O3S+

303.0109, found 303.0116.

(E)-ethyl 3,3,4,4,5,5,5-heptafluoropent-1-ene-1-sulfonate 30. This perfluorinated sulfonic ester
was prepared by an analogous procedure from 28 and 2,2,3,3,4,4,4-heptafluorobutanal
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(CH2Cl2:petroleum ether 7:3 as eluent) in a 60% of yield. The ester was initially obtained
as a mixture of E/Z isomer 85/15 in ratio. After distillation (b.p. 135 ◦C, 10 mmHg), the
major E isomer was isolated as red oil. 1H NMR (CDCl3): 1.39 (t, J = 7.1 Hz, CH3), 4.26
(q, J = 7.1, 2 H, CH2), 6.78 (dt, J = 15.4 and 11.2 Hz, vinyl CH), 6.96 (dt, J = 15.4 1.5 Hz, 1
H, vinyl CH). 13C δ 14.95, 69.01, 108.40 (tm, 1JC,F = 264.7 Hz, CF3CF2-), 112.80 (tt, 1JC,F =
255.6 and 2JC,F = 32.0 Hz, CF2C=), 117.52 (qt, 1JC,F = 287.6 and 2JC,F = 33.5 Hz, CF3), 130.4
(t, 2JC,F = 25.2 Hz), 135.8 (t, 3JC,F = 8.4 Hz). 19F NMR (CDCl3): -80.7 (t, 3JF,F = 9.2 Hz, 3 F);
−114.9 (quintet, 3JF,F = 9.2 Hz, 2 F); −127.6 (m, 2 F); HRMS (ESI-TOF) m/z [M + H]+: calcd
for C7H8F7O3S+ 305.0077, found 305.0071.

4. Conclusions

In conclusion, three main synthetic strategies were explored for synthesizing per-
fluorinated unsaturated sulfonic, phosphonic, and carboxylic compounds to be used as
monomers for future applications in producing proton exchange membranes. Among the
synthetic pathways presented, the organometallic approach gave the worst results, with
low yields, hard isolation of products, and difficult scale up. In contrast, nucleophilic
substitution with sulfite anion, as well as Horner–Wittig condensation strategies, gave
moderate to good yields depending on the structure of the target molecules. Studies are
still underway to improve these results.

Compound 27 was selected as the best candidate for thin film membrane preparation
by PECVD, based on its volatility. Plasma polymerization experiments were carried out at
different plasma powers (20–200 W). Comparison of the film chemical composition by IR
spectroscopy allowed us to point out that the film prepared in the mildest plasma conditions
(20 W) shows the maximum monomer retention in its structure. In this condition, plasma
polymerization likely occurs mainly by rupture of the π bond in the monomer molecule.
Increasing the power leads to a more extensive monomer fragmentation, defluorination of
the radicals and extensive structural rearrangements in the deposited films. Future studies
will address the deposition of the thin film by the copolymerization of compound 27 with a
different long-chain fluorocarbon and the measurement of the proton exchange capabilities
of our thin film membranes and their optimization.
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